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Abstract 11 

The purpose of this study is to discuss economic impacts stemming from variable-rate (VR) 12 

nitrogen fertilization, one of the main precision agriculture practices. Economic impacts are 13 

related to reduced nitrogen use and increased crop yields thanks to a better distribution of inputs, 14 

net from possible spatial and temporal uncertainty. The case studies included in the review (N=31) 15 

focus on nitrogen fertilization for grain crops, particularly wheat and maize, comparing uniform 16 

nitrogen applications versus variable-rate applications for several years in different countries. 17 

Findings highlight relevant changes in amounts of nitrogen applied, with the evidence of higher 18 

nitrogen efficiency resulting in reduced operating costs, while changes in crop yields are less 19 

evident: VR applications and uniform applications substantially reach the same production level, 20 

and higher nitrogen use efficiencies are achievable without significantly compromising yields. 21 

Overall, net economic impacts are in favour of VR fertilization. 22 

This work can raise farmers' and other stakeholders' knowledge of the actual economic impacts 23 

stemming from the adoption of VR fertilization and helps policymakers to understand the 24 

economic impact of precision agriculture and the need to foster sustainability-based policies.   25 

 26 

Keywords: precision agriculture, variable-rate technology, economic impact, fertilization, 27 

nitrogen. 28 

 29 

Review Methodology  30 

We searched the Scopus and Web of Science databases (Keyword search terms used: variable 31 

rate, site-specific, precision; saving, cost, revenue, profit; nitrogen; cereals, wheat, barley, corn, 32 

maize). In addition, new studies were sourced from the selected works through snowballing. 33 

 34 

Introduction  35 

A critical issue confronting humankind today is how to meet the growing demand for food in the 36 

long term in a sustainable way. In the agricultural sector, widespread adoption of precision 37 

agriculture (PA) seems to be a compulsory choice as it can increase the efficiency of farm systems 38 

while minimizing environmental impacts [1], especially for large farms [2]. Indeed, the required 39 

increase in food production will necessarily rely on a more accurate estimation of crop and soil 40 

requirements and improvements in the operation and management of existing plots. 41 

PA is a management strategy that refers to technologies that allow for site-specific and better 42 

distribution of agricultural inputs like seeds, fertilizers, pesticides, and water. PA may improve 43 

productivity and resources through better management of the spatial and temporal variability in 44 
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the field compared to conventional agriculture [3,4]. It can lead to economic impacts from input 45 

saving and a potential increase in crop yields and, thus, revenues. However, it may also be the 46 

case that operating costs diminish to make up for potential yield decreases [5]. In this context, PA 47 

adoption can also mitigate potential negative environmental impacts arising from excessive 48 

exploitation of agricultural inputs that often characterize conventional agriculture [4].  49 

Although the potential benefits that characterize PA technologies are acknowledged in the 50 

literature, some perceived risks that slow down their adoption among farmers exist today; in this 51 

regard, initial cost and technology complexity are primary issues [3,6]. Novel technologies can 52 

entail a high degree of risk for the farmer, especially if their adoption requires a substantial capital 53 

investment and the benefits are unclear in advance. Nevertheless, it can open up opportunities for 54 

new agricultural business models characterized by an increased share kept by farmers in the food 55 

value chains [7]. 56 

In this study, we have focused on fertilization, a ubiquitous farming activity that in PA can be 57 

carried out through variable rate (VR) application systems, also known as site-specific fertilization. 58 

This approach is often supported by other monitoring technologies to sense the canopy and by 59 

guidance technology that can be automatic. At the operational level, VR technology can be 60 

conceptually divided into two sets: the map-based application systems, which are based on 61 

historical data collected over time with monitoring technologies, and the real-time sensor-based 62 

systems that can adjust the application rates on the go.  63 

We aimed to review scientific articles characterized by high methodological rigour describing case-64 

bond applications of VR fertilization and then discuss to which extent these technologies can 65 

contribute to increasing economic impacts for farmers. The question that motivated our research 66 

is to see whether PA can actually have significant positive impacts on farming performance and if 67 

so, raise awareness of these impacts. We also offer policymakers an opportunity to understand 68 

PA's positive economic impacts. 69 

Methods 70 

Using VR fertilization technologies can lead to economic benefits through reducing operating costs 71 

in the form of fertilizer use reduction and providing improved yields and farm operating revenues. 72 

This review focuses on the demonstrated input savings and yield increases from VR fertilization 73 

compared to conventional, uniform rate treatments.  74 

The review was conducted using a set of study inclusion criteria satisfying quality and 75 

transparency requirements following the guidelines provided by Higgins et al. [8]. The inclusion 76 

criteria adopted in this review are summarized in Table 1. Two main exclusion criteria were 77 

considered: off-topic works and, avoiding double-count of papers, study reviews. 78 

In line with the adopted inclusion criteria, the search involved (i) the systematic searching of the 79 

online databases Scopus and Web of Science (WoS), and (ii) the use of the "snowballing 80 

technique", with new studies sourced from the works referenced in the selected studies. 81 

The literature review was based on articles indexed in Scopus in the areas "Agriculture and 82 

Biological Sciences" and "Environmental Sciences" and in the WoS area "Agronomy". Several sets 83 

of keywords were chosen to obtain a range of research and conference papers to be analyzed, 84 

varying the type of economic impact (cost saving, revenue, yield, profit); searches have been 85 

performed considering keywords synonyms (variable rate, site-specific). The search query 86 

ultimately used was the following: 87 

TITLE-ABS-KEY((variable rate OR site-specific OR precis*) AND (sav* OR cost* OR revenue* OR 88 
profit*) AND (nitrogen appl*) AND (cereal* OR wheat OR barley OR maize OR corn OR mais)) 89 



Following the best practices to perform systematic reviews, including PRISMA mapping [9], 90 

collecting eligible works consisted of checking the title, the abstract and the full text according to 91 

the inclusion criteria adopted. 92 

In total, 250 records were screened; of these, 196 were reviews or considered off-topic and thus 93 

excluded; the remaining full-text articles were assessed for eligibility, and 29 papers were 94 

excluded because they did not contain enough quantitative data to estimate at least directly or 95 

indirectly either the amounts of fertilizer use or the yields at the end of the season. After this 96 

screening procedure, 29 articles were finally identified (Figure 1). 97 

Results 98 

We extracted information for our analysis from 29 articles accounting for 31 case studies (2 99 

articles contained 2 case studies each, accounting for different crops). Study objectives range from 100 

analysing the performance of VR fertilization compared to uniform applications (24 studies) or 101 

testing new, integrated VR fertilization technologies (7 studies). In most studies (26), VR 102 

fertilization obtained the highest N use efficiency, often below the quantity applied in uniform 103 

applications. Yield losses were inexistent or not statistically significant in 19 cases.  104 

One interesting finding concerns the 6 studies reporting the worst yield performance (from -2.5% 105 

to -4.3%); for these cases, the higher savings in N use ranging between 9.4% and 42.1% allowed to 106 

make higher net returns compared to uniform N fertilization, thereby confirming 107 

Schimmelpfennig's assumption [3] that yield decreases are more than offset by operating cost 108 

decrease. Only 3 studies reported no savings concerning N applications; of these, one study 109 

reported an unusual temporal and spatial variability across the years during which the 110 

experiments took place, while the other two were conducted in a similar setting for barley and 111 

wheat, and proved that uniform applications were the most effective strategy. However, it must 112 

be considered that the field experiments reported in these articles were performed between 1998 113 

and 2000 with technologies quite different from current state-of-the-art technology. 114 

Table 2 shows the characteristics of the studies ordered by descending end year of the 115 

experiment. No significant correlation was found between N savings, yields, and crop type. Little 116 

significant correlation (r=0.31) was found between crop yield and experiment period (considering 117 

starting and final years), reflecting world cereal yield increment over the last 30 years. Figure 2 118 

and 3 show the statistical distribution of N savings (min -9.6%, max 42.5%, mean 13.6%, median 119 

9.4%) and yield increase (min -4.3%, max 6.1%, mean 0.4%, median 0.7%), respectively. 120 

Conclusion 121 

VR fertilization refers to practices and technologies allowing site-specific, optimized distribution of 122 

fertilizers. Such input optimization can lead to economic impacts intrinsically related to improved 123 

nitrogen use efficiency, which in most cases gives rise to input savings, resulting in a decrease in 124 

operating costs. More rarely, it leads to yield increments, resulting in higher revenues.  125 

Agriculture is the dominant source of nitrogen pollution, and farm-level decisions are pivotal for 126 

improving nitrogen management and use efficiency [39]. In this review, we found consistent 127 

evidence that, independently from possible field variability, a higher nitrogen use efficiency is 128 

achievable without significantly compromising yields. For these reasons, we expect VR fertilization 129 

to receive increased attention from policymakers interested in addressing nitrogen pollution. All 130 

that by considering that a reduction of fertilizer use by 20% fostered by the EU Farm to Fork 131 

Strategy appears to be possible but still hardly achievable. In this regard, initiatives aimed at 132 

increasing the participation of citizens and food system actors are desirable [40,41]. 133 



The analysis results contribute to the body of knowledge on PA, providing useful information to 134 

farmers and policymakers regarding the actual economic impacts resulting from the adoption of 135 

VR fertilization systems. Effective policies to incentivize the implementation of PA in ways that 136 

achieve their promise of economic and environmental improvement are expected, particularly for 137 

small farms that find it hard to spread PA technology investment costs over small surfaces [2, 42].  138 

 139 
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