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Highlights

Revisiting column-generation-based matheuristic for learning clas-
sification trees

Krunal Kishor Patel, Guy Desaulniers, Andrea Lodi

• Improved subproblem model resulting in fewer subproblems than in
Firat et al. (2020).

• Using data-dependent constraints as cutting planes in the master prob-
lem.

• An optimization model to generate these cutting planes on demand.

• A preprocessing and initialization routine that results in faster training.
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Abstract

Decision trees are highly interpretable models for solving classification
problems in machine learning (ML). The standard ML algorithms for training
decision trees are fast but generate suboptimal trees in terms of accuracy.
Other discrete optimization models in the literature address the optimality
problem but only work well on relatively small datasets. Firat et al. (2020)
proposed a column-generation-based heuristic approach for learning decision
trees. This approach improves scalability and can work with large datasets.
In this paper, we describe improvements to this column generation approach.
First, we modify the subproblem model to significantly reduce the number
of subproblems in multiclass classification instances. Next, we show that the
data-dependent constraints in the master problem are implied, and use them
as cutting planes. Furthermore, we describe a separation model to generate
data points for which the linear programming relaxation solution violates
their corresponding constraints. We conclude by presenting computational
results that show that these modifications result in better scalability.
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1. Introduction

In machine learning (ML), a classification problem consists in predicting,
from a predefined set of classes, the class to which a data point belongs. Each
data point (also called data row) is described by features that are used to
predict its class. Classification problems can be solved using decision trees
that are highly interpretable models. In a decision tree, each internal node
contains a test based on the dataset’s features. In this work, we focus on
univariate binary decision trees. In such trees, the internal node tests, called
hereafter split checks, use only a single feature that can vary from one node to
another. Each internal node has two branches. Each leaf node is associated
with a target class. A data row starts at the tree’s root node and follows
the branches based on its feature values and the split checks at the internal
nodes. Finally, it reaches a leaf node, where it is classified in the target class
associated with that leaf node.

To determine the split checks of a decision tree, a supervised learning al-
gorithm is run on a training dataset, where the real class of each data point
is known. Usually, the goal of this algorithm is to maximize accuracy, i.e.,
the number of training data points correctly classified. After the training
is completed, the decision tree with its selected split checks can be used to
classify unseen data rows. The standard ML algorithms for training deci-
sion trees, like CART (Breiman et al., 1984) and ID3 (Quinlan, 1986), use
heuristics that optimize for one-depth level accuracies. They are fast in terms
of training times. However, the generated trees are suboptimal in terms of
overall accuracy.

Learning optimal binary decision trees is an NP-complete problem (Laurent and Rivest,
1976). Many authors have created optimization models for learning decision
trees optimal in terms of accuracy. Günlük et al. (2021), Verwer and Zhang
(2017), Verwer and Zhang (2019), Bertsimas and Dunn (2017), and Aghaei et al.
(2021) introduced Mixed Integer Linear Programs (MIPs) for training deci-
sion trees. Narodytska et al. (2018) presented a SAT model to train decision
trees. Finally, Verhaeghe et al. (2020) proposed a constraint programming
model for training decision trees for binary classification tasks.

These models can learn trees with better accuracies compared to CART
and ID3. Sometimes they can find the optimal decision tree for a given
dataset. However, the biggest issue with these models is scalability. Firat et al.
(2020) stated that Bertsimas and Dunn (2017) and Verwer and Zhang (2017)
MIP models failed to handle datasets with more than 10,000 rows. Except
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for the binary classification model of Verhaeghe et al. (2020), no other paper
(from the ones cited above) showed results on datasets with more than 10,000
rows.

To address the scalability problem, Firat et al. (2020) introduced a column-
generation-based heuristic to train more accurate univariate binary decision
trees of predefined depth. In this approach, the master problem uses one
variable for each path in the tree, where a path is defined by a set of nodes
from the root node to a leaf node, associated with split checks, and a target
class at the leaf node. This results in a large number of variables that are gen-
erated using subproblems. Firat et al. (2020) proposed a subproblem model
that requires solving one subproblem for each leaf and each possible target
class. Integer solutions are obtained by transforming the restricted master
problem of the last column generation iteration into a MIP and solving it
using a MIP solver.

It should be noted that this approach would still be heuristic even if a
branch-and-price algorithm was used because not all possible split checks
are considered at each node. However, in our experiments, we analyze the
optimality of the computed solution for a fixed set of candidate split checks to
gain information about the best accuracy that can be achieved using branch-
and-price.

In this paper, we improve the Firat et al. (2020) column generation ap-
proach to make it faster and more scalable. This includes a preprocessing
and initialization routine that reduces the size of the master problem and
subproblems in the column generation process and results in faster training.
Our main contributions are as follows:

1. We introduce a modified subproblem model for the column generation
approach with more variables and constraints than the one proposed
in Firat et al. (2020) but requires fewer subproblems overall (one sub-
problem per leaf instead of one subproblem per leaf and target class).
We show that the updated subproblem model results in faster training.

2. We prove that the data-dependent constraints in the master problem
(enforcing that each row in a given dataset reaches a single leaf in the
tree) are implied and can, thus, be added to the model as cutting planes
only if they are violated.

3. We extend the set of these constraints to unknown rows by providing
a separation model that can generate any unlabeled row for which the
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corresponding constraint is violated.

4. We computationally show the significant benefits of our approach with
respect to Firat et al. (2020) on datasets from the literature.

This paper is organized as follows. Section 2 presents an overview of
the column-generation-based heuristic for training decision trees proposed in
Firat et al. (2020). In Section 3, we describe the proposed modifications to
this matheuristic. In Section 4, we report the results of various computational
experiments to show the effect of our modifications. Finally, in Section 5, we
present our conclusions and some future research directions.

2. Overview of Firat et al. (2020) column generation approach

In this section, we describe the column-generation-based heuristic pro-
posed in Firat et al. (2020) for generating decision trees. The authors focus
on creating univariate binary decision trees of a fixed depth. The trees can
handle multiclass classification, unlike in Günlük et al. (2021) and Verhaeghe et al.
(2020). As this is a heuristic, the authors do not claim to generate optimal
classification trees. Instead, they try to address the scalability issues in the
other optimization models for learning decision trees.

The problem that Firat et al. (2020) attempt to solve is as follows. Con-
sider a training dataset with rows in set R, features in set F , and targets
in set T . Without loss of generality, assume that each feature is numerical
(if not, we can convert it into a numerical feature by using natural numbers
or one-hot encoding). The goal is to learn a complete binary classification
tree of a given depth that maximizes accuracy on the training dataset. In
other words, we want to find the best split checks for each internal node and
the best target values for each leaf node in the decision tree. We use Nint

and Nlf to refer to the set of all internal nodes and the set of all leaf nodes,
respectively.

Each split check a has two components. A feature fa ∈ F and a threshold
value µa ∈ R for that feature. A row r ∈ R with value vfar for feature fa takes
the left branch from the node with this split check if vfar ≤ µa and takes the
right branch otherwise.

One can consider optimizing over all possible split checks at each node.
However, this can be computationally very expensive. Instead, Firat et al.
(2020) used a subset Sj of all possible split checks (called candidate split
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checks) for each node j ∈ Nint. Because of this, the learned tree may not be
optimal. Nevertheless, such a tree provides better accuracy than the trees
generated, for example, by CART.

To generate the candidate split checks, Firat et al. (2020) use the ‘Thresh-
old sampling’ process. They used 300 runs of the CART algorithm on ran-
domly selected 90% training data rows. For each run, they collect the gen-
erated split check for each node. From the collected split checks, they select
the most frequent q split checks for each node j and add them to Sj , where

q =
⌊

150
|Nint|

⌋

for the root node and q =
⌊

100
|Nint|

⌋

for the other nodes. Finally,

they run CART on the entire training dataset. They select all the split checks
generated in this run, i.e., they add them to their respective set Sj . Con-
sidering these split checks ensures that the final output will have accuracy
at least as high as the CART output if the associated model is solved to
optimality.

The goal of the learning problem is to find a split check for each node
j ∈ Nint from the given set Sj and a target from T for each leaf node to
achieve maximum accuracy on the training dataset.

Firat et al. (2020) proposed to model this problem as the following MIP,
called the integer master problem (integer MP) in the context of a column
generation algorithm. Consider the paths from the root node to the leaf nodes
in the tree. Each path has a specific split check assigned to each internal node
it contains and a specific target assigned to its leaf node. For each path, we
define a binary variable that takes value 1 if the path is selected and 0
otherwise. The MIP ensures that the selected paths are consistent with each
other, i.e., they form a tree. Relying on the notation presented in Table 1,
the MIP is as follows:
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Table 1: Notation for the MIP (1).

Sets
R set of rows in the dataset.
F set of features in the dataset.
Nlf , Nint sets of leaf and internal nodes in the decision tree.
pBT (l) set of nodes in the paths to leaf l in binary tree.
DPl set of decision paths ending in leaf l.
Rl(p) subset of rows directed to leaf l through path p.
Sj set of candidate split checks for node j.

Parameters
sp(j) split check assigned at node j in path p.
CP (p) number of correct predictions for path p.

Decision Variables
xp binary variable indicating if path p ∈ DPl is assigned

to leaf l ∈ Nlf .
ρj,a binary variable indicating if split check a ∈ Sj is as-

signed to node j ∈ Nint.

Max
∑

l∈Nlf

∑

p∈DPl

CP (p)xp (1a)

s.t.
∑

p∈DPl

xp = 1, ∀l ∈ Nlf (1b)

∑

l∈Nlf

∑

p∈DPl:
r∈Rl(p)

xp = 1, ∀r ∈ R (1c)

∑

p∈DPl:
sp(j)=a

xp = ρj,a, ∀l ∈ Nlf , j ∈ pBT (l) ∩Nint, a ∈ Sj (1d)

xp ∈ {0, 1}, ∀p ∈ DPl, l ∈ Nlf (1e)

ρj,a ∈ {0, 1}, ∀j ∈ Nint, a ∈ Sj. (1f)

The objective function (1a) maximizes accuracy (minimizes the misclas-
sification error). Constraints (1b) ensure that exactly one path is selected
for each leaf. Constraints (1c) force each row to follow exactly one selected
path. The known class of the row may not match the target of the followed
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path. Constraints (1d) impose that the selected paths are consistent with
respect to split checks on common nodes: if two paths are selected with a
common node, the same split check must be assigned to the common node in
both paths. Note that in this model, the variable upper bounds are implied
and can be dropped while solving the linear relaxation of the MIP.

In general, each row in the training dataset has equal weights. However,
this model is able to support rows with different weights. In this case, we
need to compute the objective coefficients CP (p) as a weighted sum of the
correctly classified rows for each path p.

Model (1) contains a large number of variables, one per path in sets DPl,
l ∈ Nlf . As proposed by Firat et al. (2020), we can alleviate this drawback by
applying column generation. In this context, we refer to the linear relaxation
of the MIP as the master problem (MP) and to the MIP itself as the integer
MP. Column generation is used to solve the MP. At each iteration, it solves
using a standard linear programming solver a restricted MP (RMP), i.e., the
MP restricted to a small subset of its variables. In the first iteration, the
RMP is initialized with the paths generated from the last run of CART on
the complete training dataset in the threshold sampling process. Solving the
current RMP provides a pair of optimal primal and dual solutions. To verify
if the primal solution is also optimal for the whole MP, a set of subproblems
(SPs), namely, one for each leaf node l ∈ Nlf and each target class t ∈ T , is
solved with the goal of identifying columns (paths) with a positive reduced
cost with respect to the current RMP dual solution. When such columns
are found, they are added to the RMP and another iteration is started.
Otherwise, the column generation process stops with an optimal solution to
the MP.

Relying on the additional notation presented in Table 2, the SP for leaf
l ∈ Nlf and target t ∈ T can be formulated as the following MIP:

Max
∑

r∈Rt

yr − αl −
∑

j∈pBT (l)

∑

a∈Sj

γl,j,auj,a −
∑

r∈R

βryr (2a)

s.t.
∑

a∈Sj

uj,a = 1, ∀j ∈ pBT (l) (2b)

yr ≤
∑

a∈Sj∩T (r)

uj,a, ∀j ∈ LC(l), r ∈ R (2c)
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Table 2: Additional notation for the SP (2) defined for leaf l and target t.

Sets
Rt set of rows in the dataset with target t.
LC(l) set of nodes in Nint that have left child in pBT (l).
RC(l) set of nodes in Nint that have right child in pBT (l).
T (r) set of split checks for which row r takes the left branch:

{a = (fa, µa) ∈ ∪j∈Nint
Sj : v

fa
r ≤ µa}.

F (r) set of split checks for which row r takes the right
branch: {a = (fa, µa) ∈ ∪j∈Nint

Sj : v
fa
r > µa}.

Parameters
k depth of the decision tree, levels are indexed by h =

0, ..., k − 1.
vfr value of feature f in row r.
αl dual value of constraint (1b) for leaf l.
βr dual value of constraint (1c) for row r.
γl,j,a dual value of constraint (1d) for leaf l, node j, and

split check a.
Decision Variables
yr binary variable indicating if row r ∈ R reaches leaf l.
uj,a binary variable indicating if split check a ∈ Sj is as-

signed to node j ∈ pBT (l).

yr ≤
∑

a∈Sj∩F (r)

uj,a, ∀j ∈ RC(l), r ∈ R (2d)

∑

j∈LC(l)

∑

a∈Sj∩T (r)

uj,a +
∑

j∈RC(l)

∑

a∈Sj∩F (r)

uj,a − (k − 1) ≤ yr, ∀r ∈ R

(2e)
∑

j∈pBT (l)

uj,a ≤ 1, ∀a ∈
⋃

j∈pBT (l)

Sj (2f)

yr ∈ {0, 1}, ∀r ∈ R (2g)

uj,a ∈ {0, 1}, ∀j ∈ RC(l) ∪ LC(l), a ∈ Sj. (2h)

The objective function (2a) aims at maximizing the reduced cost of the
path generated. Constraints (2b) ensure that exactly one split is selected
for each node in the path. Constraints (2c)-(2e) evaluate if the row r would
reach the leaf by following the generated path. That is, the variable yr takes
the value 1 if and only if a split check from the set T (r) is selected for all
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nodes in LC(l) and a split check from the set F (r) is selected for all the nodes
in RC(l). Because of the objective direction, constraint (2e) for a row r is
only needed if βr ≥ 1 for r ∈ Rt and βr ≥ 0 for r 6∈ Rt. Constraints (2f)
impose that each split is selected at most once in a path. Given that these
constraints led to infeasible SPs when the candidate sets of split checks are
small for some nodes in our experiments, we have decided to remove them.
This only increases the search space but does not change the rest of the
algorithm.

Because model (2) is a MIP, generating paths using it can be compu-
tationally expensive. To address that, Firat et al. (2020) also introduced
a pricing heuristic. This heuristic randomly generates paths and evaluates
their reduced costs. If the reduced cost of a generated path is positive, the
path is added to the RMP. Model (2) is only used if the heuristic fails to find
any path with a positive reduced cost.

In theory, the column generation process stops if model (2) proves that
all columns have a non-positive reduced cost. Given that the convergence
might be slow, it can also terminate when a time limit is reached.

To obtain an optimal integer solution to the integer MP (1), non-truncated
column generation can be embedded into a branch-and-bound algorithm to
yield a branch-and-price algorithm (Barnhart et al., 1998). However, to limit
the computational times, Firat et al. (2020) rather applied a RMP heuristic
(Joncour et al., 2010; Sadykov et al., 2019) that consists in converting the
last RMP solved into a MIP that can be solved using a commercial MIP
solver without adding any new columns. The selected paths in the final
solution describe a valid learned tree.

3. Modifications of the column generation approach

This section describes our modifications of the column-generation-based
heuristic of Firat et al. (2020). In Section 3.1, we show how to reduce the
number of SPs by adding the target computation for the leaf nodes in the
constraints of the SPs. In Section 3.2, we analyze the constraints (1c) in the
integer MP (1) and show that they are implied by the other constraints. In
Section 3.3, we describe a separation algorithm for using constraints (1c) as
cutting planes to speed up the solving process.
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Table 3: Additional notation for the SP (3) for leaf l.

Parameters
Wr weight of row r.

Decision Variables
zr binary variable indicating if row r ∈ R reaches leaf l

and has the same target as the path being generated.
wt binary variable indicating if target t ∈ T is selected

for the generated path.

3.1. Merged SPs

In Firat et al. (2020), there is one SP (2) for each leaf l ∈ Nlf and each
target t ∈ T . Consequently, there are |Nlf | × |T | SPs in total. We propose
to merge the SPs by incorporating the target computation in the MIP model
using extra variables and constraints. This reduces the number of SPs to
|Nlf |. This modification is inspired by the flow-based MIP formulation of
Aghaei et al. (2021), which is very similar to (2), except that it focuses on
the entire tree instead of just one path. Relying on the additional notation
presented in Table 3, the merged SP for a given leaf l ∈ Nlf is formulated as
follows:

Max
∑

r∈R

Wrzr − αl −
∑

j∈pBT (l)

∑

a∈Sj

γl,j,auj,a −
∑

r∈R

βryr (3a)

s.t.
∑

a∈Sj

uj,a = 1, ∀j ∈ pBT (l) (3b)

yr ≤
∑

a∈Sj∩T (r)

uj,a, ∀j ∈ LC(l), r ∈ R (3c)

yr ≤
∑

a∈Sj∩F (r)

uj,a, ∀j ∈ RC(l), r ∈ R (3d)

∑

j∈LC(l)

∑

a∈Sj∩T (r)

uj,a +
∑

j∈RC(l)

∑

a∈Sj∩F (r)

uj,a − (k − 1) ≤ yr, ∀r ∈ R

(3e)

zr ≤ yr, ∀r ∈ R (3f)

zr ≤ wt, ∀t ∈ T, r ∈ Rt (3g)
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∑

t∈T

wt = 1 (3h)

zr ∈ {0, 1}, ∀r ∈ R (3i)

yr ∈ {0, 1}, ∀r ∈ R (3j)

uj,a ∈ {0, 1} ∀j ∈ RC(l) ∪ LC(l), a ∈ Sj. (3k)

Except for the first term, the objective function is the same as (2a).
The new first term

∑

r∈RWrzr computes the weighted sum of the number
of rows being correctly classified. The weight Wr of a row r is generally
set to 1. However, using the weights in the model allows us to train on
the dataset where the rows have different weights (i.e., not all the rows are
equally important). We also need this because our approach changes the
weights of the rows in the dataset during the preprocessing stage.

Constraints (3b)-(3e) are the same as constraints (2b)-(2e). As previously
mentioned, constraint (3e) for a row r is only useful if βr ≥ 1 for r ∈ Rt and
βr ≥ 0 for r 6∈ Rt because of the objective direction. Constraints (3f)-(3g)
ensure that the variable zr takes value 1 if the row r reaches leaf l and has
the same target as the path being generated. Constraint (3h) imposes the
selection of exactly one target for the generated path.

Overall the new SP model (3) has 2×|R|+1 new constraints and |R|+|T |
new variables. Because of the merging, we have fewer SPs, but the model is
larger than model (2).

3.2. Redundancy of MP constraints (1c)

Observe that constraints (1c) in the integer MP (1) are dependent on the
dataset but do not depend on the target of the rows. We show that these
constraints are implied by constraints (1b), (1d)–(1f). The proof of this result
relies on the the following lemma that is presented first.

Lemma 3.1. In any solution to the model (1) that satisfies the constraints
(1b), (1d), and (1f), there exists a split check a∗j ∈ Sj for every internal node
j ∈ Nint such that

ρj,a∗j = 1 and ρj,a = 0, ∀a ∈ Sj \ {a
∗
j}. (4)

Proof. Consider an internal node j ∈ Nint. There exists a leaf l ∈ Nlf such
that j ∈ pBT (l). We sum constraints (1d) over all candidate split checks
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a ∈ Sj for leaf l and node j to obtain

∑

a∈Sj

ρj,a =
∑

a∈Sj

∑

p∈DPl:
s(j)=a

xp =
∑

p∈DPl

xp = 1,

where the last equality follows from constraints (1b). Given that the ρj,a
variables are binary according to (1f), there is a single variable in the first
sum, say for a = a∗j , that takes value 1. All the others are equal to 0.

Theorem 3.2. For any decision tree with depth k ≥ 1, constraints (1c) are
implied by constraints (1b), (1d)–(1f). In other words, model (1) is equivalent
to:

Max
∑

l∈Nlf

∑

p∈DPl

CP (p)xp (5a)

s.t.
∑

p∈DPl

xp = 1, ∀l ∈ Nlf (5b)

∑

p∈DPl:
sp(j)=a

xp = ρj,a, ∀l ∈ Nlf , j ∈ pBT (l) ∩Nint, a ∈ Sj (5c)

xp ∈ {0, 1}, ∀p ∈ DPl, l ∈ Nlf (5d)

ρj,a ∈ {0, 1} ∀j ∈ Nint, a ∈ Sj. (5e)

Proof. Since model (5) is a relaxation of model (1), any feasible solution to
model (1) is also feasible for model (5). We now show the opposite direction.

Consider an arbitrary data row r ∈ R. Let Pr be the subset of paths that
are followed by row r from root node to some leaf node (which may have
a different target than the row). We need to show that for this row r, any
feasible solution to model (5) contains exactly one path in set Pr.

Consider a feasible solution to model (5), which, therefore, satisfies con-
straints (1b), (1d), and (1f). By Lemma 3.1, we know that, in this solution,
exactly one split check is assigned to each node. At the root node of the
decision tree, let the assigned split check be a = (fa, µa). Clearly, either
vfar ≤ µa and the row follows the left branch, or vfar > µa and the row follows
the right branch. Using a similar argument at each other node reached by
the row, we infer that row r visits a unique set of nodes (and split checks) to
reach a unique leaf node l ∈ Nlf in the tree.
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In set Pr, there are exactly |T | different paths that correspond to these
sets of nodes and split checks, namely, one for each possible target in T .
However, constraints (5b) and (5d) ensure that exactly one of these paths is
selected for leaf l, implying that constraint (1c) for row r is satisfied by this
solution of model (5). Consequently, all feasible solutions to model (5) are
also feasible for model (1).

3.3. Search for violated MP constraints (1c)

Although the constraints (1c) are implied in the integer MP (1), they
are needed for a stronger linear relaxation (see results in Section 4.4). So,
instead of removing them, we use them as cutting planes. In other words, we
solve the RMP without constraints (1c) and add to the RMP only those that
are violated by the linear relaxation solution. The search for the violated
constraints is performed by inspection of the individual rows in R.

Furthermore, we experimented with considering only one bound (lower
or upper) when adding constraints (1c) as cutting planes. We found that the
upper bound inequality version of constraints (1c) performs similarly to using
them as equality constraints. On the other hand, the lower bound inequality
version of constraints (1c) results in a poor linear relaxation. Section 4.4 will
detail experimental results.

The linear relaxation strength of model (1) depends on the dataset R.
If it does not contain sufficient rows to obtain a strong bound, the column-
generation-based heuristic may result in a poor-quality solution. Observe,
however, that there is no need to limit the constraints (1c) to a predetermined
dataset R. Indeed, any possible row described by a set of feature values
should follow a single path in the tree to reach a leaf (independently of the
target associated with this leaf). Consequently, we do not limit our search
for violated constraints (1c) to the rows in set R, but also to any potential
row for which we do not know the target. We will call the latter rows the
unlabeled rows as no target will be associated with them.

To generate an unlabeled row for which a given MP solution violates the
corresponding constraint (1c), we develop a separation model. In fact, this
model does not identify a specific row but determines whether the row would
take the left or right branch on each split check. With these information, we
can deduce bounds on the feature values that a row should have to yield a
violated constraint and construct a corresponding unlabeled row by selecting
arbitrary feature values respecting these bounds.
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Consider the solution of the current RMP. Let DP denote the subset of
paths p such that xp takes a positive value x∗p in this solution. Furthermore,
for any row r, let Pr be the subset of paths in DP followed by this row. We
want to generate an unlabeled row r (or equivalently, find the branch taken
on each split check) such that

∑

p∈Pr
x∗p 6= 1. This constraint can be violated

in two ways. Either the upper bound or the lower bound can be violated.
From preliminary experiments using the existing constraints (1c) with only
the lower or only the upper bound, we observed that using only the upper
bound results in a stronger linear relaxation. Hence, we only focus on the
violations of the upper bound.

Let θp be a binary variable that takes value 1 if the generated row follows
path p ∈ DP . Let ψa be a binary variable that takes value 1 if the row takes
the right branch on split check a ∈ S and 0 otherwise. Thus, the row follows
a path p if ψa = 1 for all split checks a ∈ Rp and ψa = 0 for all split checks
a ∈ Lp, where Rp (resp. Lp) is the set of split checks for which path p takes
the right (resp. left) branch.

With these variable definitions, we can determine if the generated row
follows a path p ∈ DP using the following equation:

θp =
∧

a∈Lp

¬ψa ∧
∧

a∈Rp

ψa. (6)

As different split checks on possibly different paths may involve the same
feature, there must be some consistency between the branches taken by the
unlabeled row on these checks, i.e., there might be some implied relations
between split checks. Assume that two split checks a and b are defined on
the same feature f with different threshold values µa and µb with µa ≤ µb. In
that case, whenever the row takes the left branch on split check a (vfr ≤ µa

or, equivalently, ψa = 0), it must also take the left branch on split check b

(vfr ≤ µb or ψb = 0). This relation translates into the constraint

¬ψa =⇒ ¬ψb. (7)

Relying on the notation presented in Table 4, the separation model for
generating violated constraints (1c) for a given solution of the MP can be
expressed as follows:
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Table 4: Notation for the separation model (8).

Sets
DP set of paths p with x∗p > 0.
S set of all split checks.
Lp set of split checks where path p takes the left branch.
Rp set of split checks where path p takes the right branch.
Parameters
x∗p value of variable xp in the current RMP solution.
fa feature of split check a.
µa threshold of split check a.
Decision Variables
θp binary variable indicating if the generated row follows

path p ∈ DP .
ψa binary variable indicating if the generated row takes

the right branch on split check a ∈ S.

Max
∑

p∈DP

x∗pθp (8a)

s.t. θp =
∧

a∈Lp

¬ψa ∧
∧

a∈Rp

ψa, ∀p ∈ DP (8b)

¬ψa =⇒ ¬ψb, ∀a, b ∈ S : fa = fb, µa ≤ µb (8c)

θp ∈ {0, 1}, ∀p ∈ DP (8d)

ψa ∈ {0, 1}, ∀a ∈ S. (8e)

The objective function (8a) aims at finding an unlabeled row with a max-
imum left-hand side in constraint (1c). Constraints (8b) and (8c) have been
introduced above.

Model (8) is solved by constraint programming, using the CP-SAT solver.
A violated constraint (1c) is found whenever the optimal value of (8) is
strictly greater than 1. In fact, we retrieve all intermediate solutions obtained
by the solver that have an objective value greater than 1 and generate one
cut for each of them. These cuts, if any, are then added to the MP.
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4. Computational results

In this section, we report the results obtained in our computational ex-
periments. Section 4.1 gives an overview of the datasets used for these exper-
iments and the experimental setup. In Section 4.2, we describe our prepro-
cessing and initialization routines and show their effects. In Section 4.3, we
report the computational results on merging the SPs as described in Section
3.1. In Section 4.4, we present the computational results for different ways
of using constraints (1c) in the MP. Finally, in Section 4.5, we compare our
revised column generation matheuristic with that of Firat et al. (2020).

4.1. Datasets and experimental setup

We used 12 datasets from the UCI repository (Dua and Graff, 2017) for
our computational experiments. There are six small datasets involving be-
tween 500 and 10,000 rows and six large datasets containing over 10,000 rows.
The small datasets are also used in Verwer and Zhang (2019) and Firat et al.
(2020). These datasets are already processed, and all features are numerical
with no missing values. Each dataset is split into training (50% of the rows)
and testing (25%) parts, and the split is done randomly five times.1 The
reported performance for each dataset is averaged over these five train-test
splits. We use the same train-test splits as Verwer and Zhang (2019) and
Firat et al. (2020).

For the large datasets, the train-test split used by Firat et al. (2020)
is not available. We performed the same cleaning steps as in Firat et al.
(2020), including transforming classes to integers and converting string fea-
tures into numerical ones. For each dataset, we then generated five ran-
dom train-test splits like for the small datasets. The dataset specifications
are listed in Table 5. The datasets and the source code are available at
https://github.com/krooonal/col_gen_estimator/tree/dtreedev.

For the experiments, we used a cluster of CPU servers, each with two
sockets of Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz, 28 cores each
(total of 56 cores), and 512GB RAM. However, for training, each process
was limited to 8 threads and 16 GB of memory. We imposed these limits
to ensure a fair comparison with Firat et al. (2020). For the comparison, we
use the numbers reported in Firat et al. (2020).

1The remaining 25% was used by Bertsimas and Dunn (2017) for validation but we did
not use it.
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Table 5: Dataset sizes.

Dataset Number of rows Number of features Number of classes
Small
Tic tac toe 958 18 2
Indian diabetes 768 8 2
Car evaluation 1728 5 4
Seismic bumps 2584 18 2
Spambase 4601 57 2
Statlog satellite 4435 36 6
Large
Default Credit 30000 23 2
Hand posture 78095 33 5
HTRU 2 17898 8 2
Letter Recognition 20000 16 26
Magic04 19020 10 2
Shuttle 43500 9 7

We used Python 3 for all computations, scikit-learn version 1.2.2 (Pedregosa et al.,
2011) for running CART, Gurobi 9.5.0 (Gurobi Optimization, 2021) to solve
the RMP (with or without integrality requirements), and the CP-SAT solver
from Google OR-Tools (Google, 2021) to solve the SPs ((2) or (3)) and to gen-
erate cutting planes by solving (8). Indeed, preliminary experiments showed
that using the CP-SAT solver for the SPs is about twice as fast as using
Gurobi. Since the CP-SAT solver can only solve problems with integer co-
efficients, we multiply the objective coefficients by a scaling factor 105 and
round them to the nearest integer. This is equivalent to solving the model
using a MIP solver with 10−5 as the optimality threshold.

Our computational approach is the same as in Firat et al. (2020) except
for the optional preprocessing and initialization steps 4 and 5 below. The
preprocessing step is further described in Section 4.2. The complete process
is as follows:

1. Run 300 iterations of CART on randomly selected 90% of the training
data and collect split checks for each node.

2. Select the q most frequent split checks for each internal node as the

candidate split checks, where q =
⌊

150
|Nint|

⌋

for the root node and q =
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⌊

100
|Nint|

⌋

for the other nodes.

3. Run CART on the entire training data. Add the generated split checks
to the candidate split checks and the generated paths to the initial
RMP. This step ensures that the final output tree will have accuracy
at least as high as the CART output.

4. [Optional] Run 100 iterations of CART on randomly selected 80% of
the training data and add the generated paths to the initial RMP. A
path is added only if the split checks it contains belong to the candidate
split checks of the corresponding nodes.

5. [Optional] Preprocessing: If any two rows in the dataset have the same
target and the rows take the same branches on all candidate split checks
of the reachable nodes, remove one of the rows and increase the weight
of the other row by one.

6. Perform column generation iterations to solve the MP. Stop if it is
solved to optimality (all SPs failed to generate new columns) or a time
limit is reached.

7. Solve the integer MP (1) restricted to the generated columns to get the
final decision tree.

In our revised column generation approach, we apply a simpler version of
the pricing heuristic presented in Firat et al. (2020). We start with randomly
selecting a leaf l ∈ Nlf , then for each node j ∈ pBT (l), we randomly select
a split check a ∈ Sj that has not been selected before. If we are able to
select different split checks for each node in the path, we compute the target
of the path that maximizes the accuracy for the set of rows following this
path. Finally, we compute the reduced cost of the generated path using the
duals from model (1). If the reduced cost is greater than the threshold value
10−6, we add the path to the RMP. We repeat this process 100 times in each
column generation iteration. Unlike Firat et al. (2020), we do not maintain
a set of feasible columns that are not yet added to the RMP.

Except for the experiments in Section 4.5, the depth of the tree is fixed
to k = 4 for all our experiments.
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4.2. Initialization and preprocessing results

In steps 1–3 above, we follow the process of generating candidate split
checks as in Firat et al. (2020). To initialize the RMP, Firat et al. (2020)
only retain the paths generated from the last run of CART on the entire
dataset (step 3). We extend further this initialization by collecting all paths
generated during additional iterations of CART on a randomly selected sub-
set of the training dataset (step 4).

After generating all the candidate split checks and paths for initialization,
we compute the set of reachable nodes for each row in the training dataset.
A node j is reachable by a row r if an assignment of split checks exists for
the ancestor nodes of node j such that row r can reach node j by following
the branches of the ancestor nodes. We use these sets of reachable nodes to
compare pairs of rows in the training dataset.

If two rows take the same branch on all the split checks on the reachable
nodes, for one of the rows, we remove the corresponding constraint (1c) from
integer MP (1) and constraints (3c)-(3e) from the SP (3) (or constraints (2c)-
(2e) from the SP (2)). We then add 1 to the weight Wr of the other row r

that is kept as it is. Removing such duplicate constraints reduce the size of
integer MP (1) and SPs (3) (or SPs (2)).

We trained the models with three variations of our approach to evaluate
the effects of the preprocessing step 5 and the initialization step 4. For these
experiments, we imposed no time limit. The variations are the following:

Default : Default training process with steps 4 and 5 enabled.

No Preprocess : Training process with preprocessing in step 5 disabled.

No Init : Training process with extra initialization in step 4 disabled.

Figure 1 shows the solving time for all variations.2 We can observe that
No Preprocess gives the best solving times for the small datasets (left part of
the black divider) except for the Car evaluation dataset. However, for large
datasets, it gives the worst solving times except for Magic04 dataset. This
suggests that the preprocessing step 5 is helpful only on large instances.

2Result for the Letter Recognition instances is not included as the training process did
not finish after 15 hours.
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Figure 1: Solving time for different ways of using preprocessing and initialization.

The solving times for the No Init variant are always larger than the
Default variant except for Spambase and Shuttle datasets. This suggests
that extra initialization is helpful in general.

All variations have similar accuracy gains over CART, as expected. The
average training accuracy gain over CART is 0.9% for all variations.

4.3. Merged SPs results

To evaluate the effect of merging the SPs, we disabled the pricing heuris-
tic. We set a time limit of 1 hour (without the pricing heuristic, the solving
times are too large). The extra initialization and preprocessing steps 4 and 5
were enabled for all datasets.

The merged SPs are generally faster than the original SPs and hence add
more columns to the RMP in the same time limit. We can observe this
in Figure 2. Furthermore, as shown in Figure 3, the extra columns added
because of the faster SPs lead to larger gains in accuracy over CART on
the training dataset. The dataset ‘Tic-tac-toe’ is the only notable exception
where the original SPs added more columns compared to the merged SPs.
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Figure 2: Number of columns added with original and merged SPs.

Figure 3: Accuracy gain over CART on training datasets with original and merged SPs.
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However, the accuracy gains over CART are larger for the approach with the
merged SPs.

4.4. MP constraints (1c) results

To evaluate the effect of constraints (1c), also referred to in the following
as the beta cuts, we experimented with the following six algorithm variants:

No Beta: The MP is solved without using any constraints (1c).

Beta Lb: The MP does not contain any constraints (1c) at the beginning,
but they are added as inequality cuts with only the lower bound.

Beta Ub: The MP does not contain any constraints (1c) at the beginning,
but they are added as inequality cuts with only the upper bound.

Beta Eq : The MP does not contain any constraints (1c) at the beginning,
but they are added as equality cuts.

All Beta: The MP contains all constraints (1c) from the beginning. This is
the setting used by Firat et al. (2020).

Extra Beta: Same as the Beta Eq variant except that additional equality
cuts for unlabeled rows can be generated using model (8).

Consequently, beta cuts associated with unlabeled rows are only gener-
ated in the Extra Beta variant. In all variants with cuts, the cut generation
algorithm is invoked at every 10 iterations of column generation. For these
experiments, we considered no time limit and enabled the initialization and
preprocessing steps 4 and 5.

Figure 4 shows the solving times for all variants.3 The solving times for
No Beta are the shortest among all variants. The Beta Lb variant has similar
(but slightly larger) solving times than No Beta. However, these two variants
provide the worst linear relaxation compared to the others (see Figure 5).
Hence, they also result in the lowest accuracy gains over CART compared to
the other variants (see Figure 6).

The solving times for Beta Ub are larger than those of No Beta. The
Beta Eq variant has similar but slightly larger solving times compared to the

3Results for the Letter Recognition dataset are not included as the training process did
not finish after 15 hours.
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Figure 4: Solving time for different ways of using constraints (1c).

Beta Ub variant. These two variants are consistently faster than the All Beta
variant. Finally, the variant Extra Beta has the largest solving times. These
four variants (Beta Ub, Beta Eq , All Beta, and Extra Beta) have similar
linear relaxation (Figure 5) and result in similar accuracy gains over CART
on the training dataset (Figure 6). The Extra Beta variant has slightly better
accuracy gains over CART compared to the other three variants. However,
the difference is too small to observe it in the diagrams (on average 0.95%
versus 0.93% for Beta Ub, Beta Eq , and All Beta variants).

Table 6 shows the average training accuracy gains over CART when we
use a time limit of 600 seconds. The gains for Beta Ub, Beta Eq , All Beta,
and Extra Beta are comparable and much better than those achieved by
the other two variants. Given that the average solving time of Beta Ub is
less than the three others, we conclude that Beta Ub has the best trade-off
between solving time and training accuracy gain over CART.
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Figure 5: MP value for different ways of using constraints (1c).

Table 6: Average training accuracy gain over CART for different ways of using constraints
(1c) with a 600s time limit.

Method Train accuracy (%) Gain over CART (%)
CART 81.40 0.00
No Beta 81.85 0.45
Beta Lb 82.04 0.64
Beta Ub 82.29 0.90
Beta Eq 82.29 0.89
All Beta 82.28 0.87
Extra Beta 82.26 0.86

Our approach does not consider all possible split checks for each node.
Hence, we cannot prove the optimality of the generated tree even if we would
be applying a full branch-and-price algorithm. However, for the problem
limited to the candidate split checks for each internal node, we can analyze
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Figure 6: Training accuracy gain over CART for different ways of using constraints (1c).

the optimality of our solutions. We compared the MP optimal values to the
values of the best integer solutions found. The Extra Beta variant can prove
optimality for 53 instances out of 55 instances (see Figure 7). Thus, in most
cases, we can prove optimality using a heuristic approach. This suggests
that branch-and-price might not improve solution quality significantly in the
presence of the beta cuts generated using model (8). Note that the solution
values produced by the other variants (Beta Ub, Beta Eq , and All Beta) are
very close to the optimal values, as shown in Figure 6.

4.5. Comparison with Firat et al. (2020)

This section compares our best results against the results reported in
Firat et al. (2020). For these experiments, we used the merged SP model
(3). We disabled the preprocessing step 5 for small datasets and enabled
it for the large datasets, while the initialization step 4 was enabled for all
datasets. As done by Firat et al. (2020), we set a time limit of 600 seconds
for the training and considered three tree depths k = 2, 3, 4.
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Figure 7: Number of instances solved to optimality for different ways of using constraints
(1c).

Table 7 compares training accuracy gains over CART against the column
generation approach of Firat et al. (2020) where CG stands for column gen-
eration. Better gains are highlighted in bold. The revised column generation
approach achieved strictly larger gains on 13 cases and strictly lower gains
on 2 cases out of a total of 18 comparisons.

The accuracies for training are not available for the large datasets in
Firat et al. (2020). We compare the testing accuracy gains against the col-
umn generation approach of Firat et al. (2020) in Table 8. The revised col-
umn generation approach achieves strictly larger gains on 6 cases and strictly
lower gains on 3 cases out of 18 instances. We also report the training accu-
racy gains obtained by our column generation heuristic for the large datasets
in Table 9. Out of 18 instances, our heuristic yields a gain on 11 instances,
with a maximum gain of 3.2%.

Note that both approaches focus on improving the training accuracies
and do not take extra steps to generalize the performance across the testing
datasets. However, even if the model is not trained having generalization
in mind, it still can significantly improve over CART. With more focus on
generalizing the performance over unseen data, we should be able to produce

26



Table 7: Comparision of training accuracy gains for small datasets.

Accuracy (%)
Firat et al. CG Revised CG

Instance k CART CG Gain CART CG Gain
Tic tac toe 2 71.2 71.8 0.6 71.3 71.8 0.5

3 75.4 76.7 1.3 75.4 77.4 1.9
4 84.4 85.4 1.0 84.5 86.2 1.8

Indian diabeties 2 77.3 78.8 1.5 77.3 78.8 1.5
3 78.9 81.2 2.3 78.9 81.3 2.4
4 82.9 84.2 1.3 82.9 85.3 2.4

Car evaluation 2 76.9 76.9 0.0 76.9 76.9 0.0
3 79.0 79.8 0.8 79.0 80.2 1.2
4 84.2 85.2 1.0 84.2 85.7 1.5

Seismic bumps 2 93.1 93.3 0.2 93.1 93.4 0.3
3 93.4 93.7 0.3 93.4 93.7 0.3
4 93.9 94.2 0.3 93.9 94.3 0.4

Spambase 2 86.0 87.1 1.1 85.9 87.2 1.3
3 89.6 90.3 0.7 89.6 90.3 0.6
4 91.6 91.6 0.0 91.6 92.0 0.4

Statlog satellite 2 63.2 64.0 0.8 63.2 64.3 1.1
3 78.7 79.5 0.8 78.7 80.0 1.3
4 81.6 82.9 1.3 81.6 83.6 2.0

even better results. We discuss some directions to address this issue in the
next section.

5. Conclusion and future work

In this work, we presented modifications to the column-generation-based
heuristic of Firat et al. (2020) that can be applied to generate decision trees.
First, we reduced the number of SPs by moving the target computation in
the constraints. This results in a faster generation of columns. Then, we
showed that the data-dependent constraints in the integer MP are implied
and presented ways to use them as cutting planes. This helps solve the RMP
faster. Furthermore, we described an optimization model to generate these
cutting planes on demand even if the corresponding data row is not in the
training dataset. These additional cutting planes helped to show that we can
generate optimal decision trees for the given candidate split checks in most
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Table 8: Comparision of testing accuracy gains for the large datasets.

Accuracy (%)
Firat et al. CG Revised CG

Instance k CART CG Gain CART CG Gain
Default Credit 2 82.3 82.3 0.0 81.9 81.9 0.0

3 82.3 82.3 0.0 82.0 82.0 0.0
4 82.3 82.3 0.0 81.9 82.0 0.0

Hand posture 2 56.4 56.4 0.0 56.6 56.6 0.0
3 62.5 62.8 0.3 62.6 63.0 0.4
4 69.0 69.1 0.1 69.4 69.7 0.3

HTRU 2 2 97.8 97.8 0.0 97.6 97.6 0.0
3 97.9 97.9 0.0 97.7 97.7 0.0
4 98.0 98.0 0.0 97.8 97.7 -0.1

Letter Recog 2 12.5 12.7 0.2 12.3 12.7 0.4
3 17.7 18.6 0.9 17.6 19.6 2.0
4 24.8 27.0 2.2 24.5 27.8 3.3

Magic04 2 78.4 79.1 0.7 79.0 79.7 0.7
3 79.1 80.1 1.0 79.1 79.9 0.8
4 81.5 81.5 0.0 81.6 82.4 0.8

Shuttle 2 93.7 93.7 0.0 93.9 93.9 0.0
3 99.6 99.7 0.1 99.6 99.7 0.0
4 99.8 99.8 0.0 99.8 99.8 0.0

instances. Note that this model can also be linearized into a MIP model,
an avenue that might be explored in future research. Finally, we described
a process for better initializing the RMP and preprocessing the dataset to
reduce the size of the model. The extra initialization and preprocessing steps
further help to reduce the solving times, especially for the larger datasets.

As future work, we can consider developing a diving heuristic (see Sadykov et al.,
2019) to derive better integer solutions for the variant where constraints (1c)
are not used (No Beta). This variant has the best solving time but the worst
solutions compared to the other variants. Also, as the SPs only change in
the objective function across the column generation iterations, we can explore
how the information generated by solving previous SPs can be exploited to
solve the subsequent SPs faster (Gleixner, 2022).

Finally, as we did not focus on generalizing the performance of our ap-
proach for out-of-sample datasets, the suggestions made by Firat et al. (2020)
to generalize this performance can be studied, namely, to penalize the num-
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Table 9: Training accuracy gains of the revised CG heuristic for the large datasets.

Accuracy (%)
Instance k CART CG Gain
Default Credit 2 82.0 82.0 0.0

3 82.2 82.2 0.0
4 82.3 82.5 0.1

Hand posture 2 56.6 56.6 0.0
3 62.7 63.1 0.5
4 69.4 69.9 0.4

HTRU 2 2 97.8 97.8 0.1
3 98.0 98.1 0.1
4 98.2 98.3 0.0

Letter Recog 2 13.1 13.4 0.3
3 18.2 20.8 2.6
4 25.6 28.8 3.2

Magic04 2 79.6 80.0 0.4
3 80.0 81.0 1.0
4 82.7 83.7 1.0

Shuttle 2 93.9 93.9 0.0
3 99.7 99.7 0.0
4 99.8 99.9 0.0

ber of active leaves (i.e., reached by at least one row) in the integer MP and to
enforce in the SP a minimum number of rows following any generated path.
It would be interesting to study the performance of the proposed heuristic
with these changes.
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