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In the North Atlantic, there are two main western boundary currents related to the
Atlantic Meridional Overturning Circulation (AMOC): the Gulf Stream flowing northward
and the Deep Western Boundary Current (DWBC) flowing southward. Here we analyze
data from the OVIDE section (GO-SHIP A25 Portugal-Greenland 40–60◦N) that crosses
the DWBC and the northward extension of the Gulf Stream, the North Atlantic Current.
We show that North Atlantic western boundary currents play a key role in the transport
of dissolved organic matter, specifically dissolved organic carbon (DOC). Revisited
transports and budgets of DOC with new available data identify the eastern Subpolar
North Atlantic (eSPNA) as an important source of locally produced organic matter for
the North Atlantic and a key region in the supply of bioavailable DOC to the deep
ocean. The East Greenland Current, and its upstream source the East Reykjanes
Ridge Current on the eastern flank of the mid-Atlantic ridge, are export pathways of
bioavailable DOC toward subtropical latitudes. The fast overturning and subsequent
remineralization of DOC produced in the autotrophic eSPNA explains up to 38% of
the total oxygen consumption in the deep North Atlantic between the OVIDE section
and 24◦N. Carbon budgets that do not take into account this organic remineralization
process overestimates the natural uptake of carbon dioxide (CO2) from the atmosphere
by one third. The inclusion of DOC transports in regional carbon budgets reconciles the
estimates of CO2 uptake in the North Atlantic between model and observations.

Keywords: dissolved organic carbon, North Atlantic, carbon budget, carbon dioxide, biogeochemistry, Atlantic
Meridional Overturning Circulation

INTRODUCTION

Western boundary currents are strong and narrow currents confined to the western sides of ocean
basins. In the North Atlantic, the Gulf Stream is the western boundary current of the anticyclonic
subtropical gyre and the North Atlantic Current (NAC) is its northeastward extension (Arhan,
1990; Rossby, 1996). At depth, the Deep Western Boundary Current (DWBC) transports North
Atlantic Deep Water (NADW) at the exit of the cyclonic subpolar gyre toward to world ocean
(Schott and Brandt, 2007). The conversion of the warm and salty waters of the NAC into colder
and fresher waters of the DWBC in the eastern Subpolar North Atlantic (eSPNA) is the main driver
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of the Atlantic Meridional Overturning Circulation (AMOC)
(Daniault et al., 2016; Lozier et al., 2019).

The trans-Atlantic section OVIDE (A25 GO-SHIP, 40–
60◦N) crosses the northeastward pathway of the NAC and two
southward western boundary currents, one located at the eastern
flank of the Reykjanes Ridge [East Reykjanes Ridge Current
(ERRC)] and another at the eastern Greenland slope [East
Greenland Current (EGC) Figure 1] (Lherminier et al., 2007,
2010). These boundary currents are the continuations of the
NAC toward the Labrador Sea that are joined by the DWBC
fed by the overflows from the Nordic Seas (Daniault et al.,
2016). While it is known that upper ocean western boundary
currents are inorganic nutrient streams (Pelegrí et al., 1996,
2006; Williams et al., 2006, 2011), their influence in the organic
nutrient transport remains uncertain. The role of the organic
matter cycling, dissolved organic carbon (DOC) and nitrogen
(DON), in the biogeochemistry of the North Atlantic has been
recently revisited based on OVIDE data. An inverse model
approach determined that DOC carried to subpolar latitudes
from the tropics by the NAC is exported from the deep water
formation regions toward the subtropical Atlantic within the
lower limb of the AMOC (Fontela et al., 2016). A subsequent
reevaluation identified the eSPNA as an important source of
organic nutrients (DON) by itself (Fernández-Castro et al., 2019).
More quantitative assessments are necessary since production,
export and remineralization of organic nutrients (DON and DOP,

FIGURE 1 | Schematic map of the North Atlantic large scale circulation. Warm
and salty (cold and fresh) currents represented in red (blue and cyan).
Intermediate circulation of Mediterranean Water (Labrador Sea Water)
represented in orange (gray). Tracks for the OVIDE section, and
24.5◦N–RAPID and Greenland-Scotland (G-S) Ridge are indicated (black
lines). The eastern Subpolar North Atlantic (eSPNA) domain is comprehended
between the OVIDE section and the G-S Ridge (black line). Abbreviations for
the water masses are: DSOW, Denmark Strait Overflow Water; ISOW,
Iceland-Scotland Overflow Water; LSW, Labrador Sea Water; ENACW,
Eastern North Atlantic Central Water; MW, Mediterranean Water.
Abbreviations for the main currents are: EGC, East Greenland Current; ERRC,
East Reykjanes Ridge Current; DWBC, Deep Western Boundary Current
formed by the southward spreading of LSW, ISOW, and DSOW. Schematic
diagram of the large-scale circulation adapted from Daniault et al. (2016).

dissolved organic phosphorus) influence the large-scale inorganic
nutrient budgets (Torres-Valdés et al., 2009).

Dissolved organic carbon produced in surface waters
(Carlson, 2002) can be vertically exported to depth through
overturning circulation, deep convection and subduction (Tian
et al., 2004; Carlson et al., 2010; Hansell et al., 2012; Fontela
et al., 2016). This carbon export alters the partial pressure of
carbon dioxide (pCO2) in surface waters and therefore influences
air-sea carbon dioxide (CO2) exchanges. In fact, the carbon
sequestration mediated by DOC represents around a third of
the North Atlantic CO2 sink (Fontela et al., 2016). Estimates
of atmospheric CO2 uptake by the North Atlantic (18–49◦N)
ranges between 200 Tg-C·year−1 for observation-based estimates
of surface ocean partial pressure of CO2 (pCO2) (Takahashi
et al., 2009; Landschützer et al., 2014) to 300 Tg-C·year−1 for
inversion models (Mikaloff Fletcher et al., 2007; Gruber et al.,
2009; Gerber and Joos, 2010). Therefore, there is an important
mismatch of 100 Tg-C·year−1 between models and observations
in the latitude band 18–49◦N. To date, no study has addressed
what is the contribution of western boundary currents in the
organic matter transport and the CO2 uptake.

MATERIALS AND METHODS

OVIDE Sampling Program
The OVIDE section, a high-resolution hydrographic survey from
Portugal to Greenland, is repeated biennially during spring-
summer since 2002 (Figure 1). Cruise data are available from the
CLIVAR Carbon Hydrographic Data Office, (CCHDO) and sea
scientific open data edition (SEANOE) (OVIDE Group, 2020).
DOC was sampled during the 2002 (10 June–12 July) and 2016
(17 June–31 July) cruises. Around 30 full-depth hydrographic
stations separated by a mean distance of 100 kilometers were
sampled for DOC. Each cruise has a total of about 300 DOC
samples. During the 2016 cruise, samples for DOC (30 mL)
were dripped directly from the Niskin bottles into pre-combusted
(450◦C, 24 h) amber glass flasks that were acid-cleaned and
dried prior to each station. After acidification with phosphoric
acid (H3PO4), the samples were stored frozen until analysis.
Sampling procedure for the 2002 cruise was reported in Álvarez-
Salgado et al. (2013). During the sampling process there was
no filtration. Indeed, it was previously shown that there is
no difference between filtered and unfiltered samples at the
µmol·kg−1 resolution at depths larger than 1000 m (Hansell
and Carlson, 2001). This is because the probability of inclusion
of particulate material in the small volume (30 mL) of the
sample is very low. In consequence, we can assume that the total
organic carbon (TOC) measured represents the DOC pool. DOC
was measured by high temperature catalytic oxidation with a
Shimadzu TOC-V analyzer (Álvarez-Salgado et al., 2013), with a
measurement error of±1–2 µmol·kg−1. The accuracy was tested
daily with certified deep seawater reference materials (CRM)
provided by D.A. Hansell (University of Miami, United States).
The measurements of CRM in 2002 (44.5 ± 1.1 µmol·kg−1,
n = 17) and 2016 (43.7± 1.8 µmol·kg−1, n = 37) are in agreement
with the expected range (43–45 µmol·kg−1).
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Additionally, a modeled [DOC] was calculated following
Fontela et al. (2016) methodology based on the inversion of an
extended Optimum Multiparameter (eOMP) analysis of twelve
Source Water Types (SWT) (García-Ibáñez et al., 2015) that
resolves the water mass [DOC] characterization ([DOC]SWT).
The coupling of the resultant [DOC]SWT with the water mass
fractions that composes a sample according to the eOMP allows
us to estimate a modeled [DOC] value ([DOC]eOMP) for samples
without measured DOC (Supplementary Table 1).

In the present study, we discuss the cycling of the bioavailable
DOC pool: eDOC, where the prefix “e” comes from excess
DOC (Santana-Falcón et al., 2017). The [eDOC] is defined
as the difference between the DOC and a fixed background
refractory concentration ([eDOC] = [DOC]-[DOCrefractory],
where [DOCrefractory] = 40 ± 1 µmol·kg−1). The eDOC pool
includes the labile, semi-labile and semi-refractory fractions
of DOC, with lifetimes between days and decades (Hansell,
2013). Then, the eDOC concept is useful to express relevant
biogeochemical processes at decadal timescale because it is
directly proportional to the bioavailability of the DOC. The
background refractory DOC was taken in accordance with the
concentration of the deep-water [DOC] (Hansell, 2013).

Transports and Budgets
Transports at OVIDE are computed combining the absolute
velocity field orthogonal to the section (v) with the in situ
densities (ρi.s.) and the interpolated tracer concentration (Eq. 1)
(Álvarez et al., 2004; Lherminier et al., 2010; Zunino et al.,
2014; Fontela et al., 2016, 2019; Pérez et al., 2018). In the
OVIDE section, the available resolution of the standard tracers:
temperature, salinity, dissolved oxygen and macronutrients, and
its velocity field is at least six times larger than for DOC.
Therefore, the DOC distribution was interpolated ([DOC]interp)
to the higher resolution of the OVIDE section with a
triangulation algorithm (Delaunay, 1934; Figure 2). The net
transports represent the full-depth water column and the tracers
considered are the interpolated fields of [DOC] and [eDOC]
from the measurements, and from the water mass reconstruction
[DOC]eOMP and [eDOC]eOMP.

TOVIDE
(e)DOC =

Portugal∫
Greenland

surface∫
bottom

v · ρi.s. ·
[
(e) DOCinterp] dxdz (1)

Errors were computed using a perturbation method based on
normally distributed perturbations of the velocity and the tracer
field. The perturbations were generated taking into account the
error covariance matrix for the velocities (Mercier, 1986) and
the measurement error for the DOC. Final transport errors are
the standard deviations of a thousand transport perturbation
simulations. The potential density level at which the maximum
cumulative southward transport occurs is the limit between the
upper and lower limbs of the AMOC (σAMOC) (Lherminier et al.,
2007; Mercier et al., 2015). Density criteria for AMOC separation,
rather than depth levels, is preferred because it captures the
full overturning in the eSPNA by entirely accounting for the

flows in the upper and lower branches of the AMOC that are in
reverse directions at overlapping depths but of different densities
(Mercier et al., 2015; Lozier et al., 2019). This isopycnal level
is 32.18 kg·m−3 for 2002 and 32.17 kg·m−3 for 2016. The
integration of transports from surface to σAMOC is the tracer
transport in the upper limb. The integration of transport between
σAMOC and the bottom is the tracer transport in the lower
limb. Transports at the Greenland-Scotland (G-S) Ridge and
26◦N are computed as in Pérez et al. (2013) and Fontela et al.
(2016) and updated with recent data available for the subarctic
exchanges (Østerhus et al., 2019) and the RAPID/MOCHA Time
Series array (we will refer from now on asRAPID) (Smeed et al.,
2018). The transport across σAMOC is an output of our model in
the eSPNA, and is assumed zero in the subtropical box. More
details about the transport computations can be found in the
Supplementary Tables 2, 3. The eDOC budget in the eSPNA,
as the volume comprised in between the OVIDE section and the
G-S Ridge, is the net balance between eDOC consumption due
to biological activity and lateral advection. Budget errors were
computed by error propagation as the square root of the sum of
all squared errors. Mass conservation is ensured with the same net
northward transport (0.65 Sv) across the two boundaries of the
eSPNA. In the southward limit the net northward transport is the
mean of the transport across OVIDE for the cruises 2002 (0.25 Sv)
and 2016 (1.05 Sv). At the G-S Ridge the mean net transport
resultant from the data available is 0.2 Sv (Supplementary
Table 2). In order to ensure mass conservation, the difference
(0.45 Sv) has been added to the larger and most variable flux
across the G-S Ridge, that is, the Eastern North Atlantic Central
water (ENACW) mass (Østerhus et al., 2019) (Supplementary
Table 2). Because transport of volume is balanced, a decrease
(increase) in a tracer transport implies a sink (source). Other
sources of eDOC, as for example atmospheric deposition or
input from rivers, are not considered due their low contributions
(Fontela et al., 2016; Fernández-Castro et al., 2019).

RESULTS

DOC Distribution and Transports
The vertical distributions of [DOC] along the OVIDE section for
the years 2002 and 2016 (Figures 2A,B) are similar, with high
values at the surface ([DOC] > 60 µmol·kg−1) decreasing with
depth. The lowest [DOC] is found in the deepest part of the
section over the Iberian Abyssal Plain (>4000 m depth), with
values close to [DOCrefractory]. There is an increase in [DOC]
of intermediate waters (∼1000–2000 m) from East to West
(Supplementary Figure 1). Thick vertical strips with high [DOC]
are observed in the ERRC and EGC currents. Above the eastern
flank of the Reykjanes Ridge, high [DOC] is more evident in 2016
than in 2002. At the Greenland slope (45◦W) there is a higher
[DOC] in 2002 than in 2016.

The transport distribution of DOC at the OVIDE section
(Figures 2C,D) follows the orthogonal velocity field: positive
(negative) transport indicates northward (southward) direction.
The main currents are visible in the longitudinal distribution
of the depth-integrated accumulated transport of DOC from
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FIGURE 2 | Vertical distribution of dissolved organic carbon (DOC, in µmol·kg−1) along the OVIDE section (A) 2002 and (B) 2016 from Greenland (left) to the Iberian
Peninsula (right). Sampling points for DOC are indicated by open circles. Transports of DOC (kmol·s−1), orthogonal to the OVIDE section, in (C) 2002 and (D) 2016.
Positive (negative) values represents northward (southward) transports. Isopycne σAMOC (potential density referred to 1000 dbar, solid black line) separating the
upper and lower limbs of AMOC is also shown. Note that the depth scale is not linear. Accumulative sum of the depth-integrated DOC transports (kmol·s−1) from
the Iberian Peninsula (right) to Greenland (left) in (E) 2002 and (F) 2016. The net transport (black line) is the sum of the upper (red line) and lower limb (blue line)
transports. Note that this accumulated transport starts at 0 kmol·s−1 in the easternmost position and finishes at the westernmost position where it equals the net
transport across the OVIDE section.

the Iberian Peninsula to Greenland (Figures 2E,F). The σAMOC
isopycnal sets the limit between the upper waters with a net
northward transport of DOC and the bottom waters with
a net southward transport of DOC (Figures 2E,F). The net
transport of DOC obtained by summing the contributions of
the upper and lower limbs is southward: −65 ± 31 kmol·s−1

and −35 ± 57 kmol·s−1 for 2002 and 2016, respectively. The
transports are usually surface intensified, while in the ERRC and
EGC they are remarkably barotropic. At the western boundary
currents, the intensified southward transports associated with
Iceland Scotland Overflow Water (ISOW) over the eastern flank
of the Reykjanes Ridge (Figures 2E,F) and Denmark Strait
Overflow Water (DSOW) in the Irminger Basin are also identified
(Spall and Price, 1998; Lherminier et al., 2007; Zunino et al.,
2017). For the year 2002 the southward transport of ISOW over
the eastern flank of the Reykjanes Ridge is interrupted by a
recirculation feature that is not visible in 2016. The NAC is a
wide DOC stream in northward direction (Figures 2E,F). The

transport of DOC by the NAC is larger in the upper limb,
but its deep extension also reaches the lower limb, especially at
their northernmost branches (Daniault et al., 2016). Conversely,
the EGC is a narrow and powerful DOC stream in southward
direction in the lower limb of the AMOC (Figures 2E,F).

The net transport of eDOC is also southward and quite
similar: −73 ± 19 and −76 ± 27 kmol·s−1, for 2002 and
2016, respectively. The longitudinal distribution of the depth-
integrated accumulated transport of eDOC from the Iberian
Peninsula to Greenland for 2002 and 2016 are shown in
Figure 3, along with the modeled transport. Following the
transport evolutions from east to west, there is a first zone (∼10–
20◦W) where accumulated transports differ between 2002 and
2016, with 2016 (2002) showing a net northward (southward)
transport. This difference disappears to the West, where the
main feature is the steep increase in accumulated northward
transport (positive) that dominates from longitude 20◦W to
∼25◦W (NAC) with similar patterns in 2002 as 2016. Then,

Frontiers in Marine Science | www.frontiersin.org 4 November 2020 | Volume 7 | Article 593757

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-593757 November 23, 2020 Time: 15:9 # 5

Fontela et al. North Atlantic DOC Streams

FIGURE 3 | Depth-integrated accumulated transports of eDOC (kmol·s−1) from the Iberian Peninsula (right) to Greenland (left) for the occupations of the OVIDE
section 2002 (blue lines) and 2016 (red lines). Note that this accumulated transport starts at 0 kmol·s−1 in the easternmost position and finishes at the westernmost
position where it equals the net transport across the OVIDE section. Solid lines are the transports with the measured samples while dashed lines are the transports
with the modeled eOMP characterization. The band around the measured transports represents the accumulated standard deviation error. The position of the
Reykjanes Ridge is represented with the black dashed line and the gray vertical bar. The positions of the main currents crossed by the OVIDE section is represented
with colored bands and the acronyms: EGC, East Greenland Current; IC, Irminger Current; ERRC, East Reykjanes Ridge Current; NAC, North Atlantic Current and
the anticyclonic recirculation.

in the eastern flank of the Reykjanes Ridge (Figure 3), 2002
and 2016 cruises are again different: in 2002 there is a plateau
with little change in accumulated transport, while in 2016 there
is a steep decrease that corresponds with a notable southward
transport at the eastward flank of the Reykjanes Ridge. In the
Irminger Sea, the accumulated transports are similar for both
years until the western boundary. Reaching Greenland (∼40◦W),
there is a steep decrease in accumulated transport linked to the
dominant EGC in southward direction. The agreement between
the transports computed with the measured concentrations and
the ones modeled with the water masses distribution (dashed
lines in Figure 3) is reasonable, especially for the 2002 cruise. In
2016, the evolution of the measured and modeled accumulated
transports differs mainly between 30 and 25◦W, above the
eastern flank of the Reykjanes Ridge, and then the difference
remains constant until the end of the section. In 2002 the
difference in net transports is concentrated exclusively in the
westernmost southward current. Even so, the net eDOC transport
using the water mass model reconstruction is −6 ± 24 and
16 ± 41 kmol·s−1 for the 2002 and 2016, respectively. The
differences in net transport between both methodologies are
evident (67 and 92 kmol·s−1).

eDOC Budget
eDOC transports across the eSPNA are summarized in
Figure 4 combining the results from 2002 to 2016 cruises.
Northward transport of eDOC by the upper limb of the
AMOC is 215 ± 33 kmol·s−1. Southward transport of eDOC
across the section in the lower limb of the AMOC is
290 ± 34 kmol·s−1. The mean velocity-weighted [eDOC]
advected northward in the upper limb of the AMOC across

the OVIDE section is 11.6 ± 1.8 µmol·kg−1, while the
mean velocity-weighted [eDOC] advected southward in the
lower limb is 16.2 ± 1.9 µmol·kg−1 (Figure 4). This means
an enrichment in eDOC of 4.6 ± 2.6 µmol·kg−1 along
the AMOC North of OVIDE section. Accordingly, we find
a net southward eDOC transport of −75 ± 33 kmol·s−1

(28 Tg-C·year−1) across the section. Through the G-S Ridge,
96 ± 11 kmol·s−1 of eDOC are transported northward, while
−94 ± 7 kmol·s−1 are flowing southward as overflow waters.
Accordingly, there is an insignificant net eDOC transport
across the G-S Ridge. Across the eSPNA there is an increase
of 2.8 µmol·kg−1 in the average velocity-weighted [eDOC]
in the upper limb between OVIDE (11.6 ± 1.8 µmol·kg−1)
and the G-S Ridge (14.4 ± 1.7 µmol·kg−1) (Figure 4).
The intense overturning circulation inside the eastern-SPNA
(11.6 ± 1.4 Sv) shows an even higher average velocity-weighted
[eDOC] (16.5 ± 2.9 µmol·kg−1) that results in a downward
eDOC transport of 196 ± 35 kmol·s−1 (74 Tg-C·year−1). The
net eDOC budget in the eSPNA is the sum of the advection
terms and amounts to 77 ± 49 kmol·s−1. At 24.5◦N the
eDOC circulation is characterized by an upper-limb northward
transport of 239 kmol·s−1 (17 Sv) and an almost negligible
lower-limb southward transport of only 7 kmol·s−1 (16.8 Sv),
resulting in a net northward eDOC transport of 232 kmol·s−1

(87 Tg-C·year−1). The velocity-weighted [eDOC] of the upper
limb of the AMOC at RAPID (13.6 µmol·kg−1) is slightly
higher than that found at the OVIDE section, while a large
decrease in the velocity-weighted [eDOC] of the lower-limb of
the AMOC of 15.8 µmol·kg−1 is observed between OVIDE
(16.2 µmol·kg−1) and RAPID (0.4 µmol·kg−1). Because volume
transports are balanced, a decrease in eDOC transport is the
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FIGURE 4 | Mean eDOC budget in the North Atlantic (24.5–65◦N) for the years 2002 and 2016. The schema represents the eDOC transport (kmol·s−1 in bold black
numbers and Tg-C·year−1 in color at the arrows tips), volume transport (Sv, gray numbers below eDOC transport) and mean [eDOC] (µmol·kg−1, italicized numbers
below volume transport) between the RAPID section (left), the OVIDE section (middle) and the G-S Ridge (right). The net production of eDOC is in the green ellipse
(kmol·s−1) and the net consumption in the orange ellipse (kmol·s−1). The separation between upper and lower AMOC limbs is represented with the gray dashed line.
Values inside the gray rectangular boxes represent the mean apparent oxygen utilization (AOU, in µmol·kg−1) in the lower limb. The downward export in the eSPNA
inferred from the observed values is represented with the dashed arrow. Associated uncertainties (±) are given when available.

consequence of a eDOC sink that we identify as consumption
due to remineralization mediated by microbiological plankton
respiration, the net eDOC transport decrease in the lower limb
of the AMOC between OVIDE and RAPID implies an eDOC
consumption of 283 kmol·s−1 (107 Tg-C·year−1). The expected
eDOC consumption (sink) in the upper layer between RAPID
and OVIDE is balanced with eDOC production (source) in
the euphotic layer.

DISCUSSION

Basin-scale repetitions of DOC measurements in the global
ocean are scarce. Here we show DOC measurements along two
occupations of a North Atlantic section separated in time by
14 years (2002–2016). The distribution of DOC (Figures 2A,B)
shows differences in the surface layer and in the western
boundary currents. The main circulation features of the northern
North Atlantic described with OVIDE data are visible in the
DOC transport (Figures 2E,F): the anticyclonic recirculation
toward subtropical latitudes near the Iberian Peninsula (15–
10◦W) (Pollard et al., 1996; Paillet and Mercier, 1997), the three
main branches of the NAC (25–15◦W) and the strong DWBC
(Daniault et al., 2016). In the West European Basin the transport
differences between 2002 and 2016 (Figure 3, 20–10◦W) are the
consequence of a westward displacement in the usual southward
anticyclonic recirculation south of the NAC. The mean top-to-
bottom transport in the West European Basin (east of 19◦W)
in the year 2002 is 15 Sv, close to the mean climatological value
of −13 ± 2 Sv (Daniault et al., 2016), in contrast with the top-
to-bottom transport of 0.8 Sv for 2016. This is consistent with
the increase in subarctic water from the Labrador Sea and the
following shift of the subpolar front toward southern locations
in 2016 (Holliday et al., 2020).

The transport of eDOC by the EGC is larger than the transport
by the ERRC, but both currents act as significant organic carbon
streams in southward direction. The influence of the ERRC as
an intense organic carbon stream is more evident in 2016. The
core of the ISOW flowing southward across OVIDE section
is located just at the eastern flank of the Reykjanes Ridge.
An exceptionally large ISOW transport has been reported in
June 2014 at this location (García-Ibáñez et al., 2018), so we
suggest that the anomaly of eDOC (Supplementary Figure 2)
is driven by this enhanced southward ISOW transport that
has been sustained, at least, until 2016. Despite the overall
coincidence between the accumulated transports computed with
the measured and the modeled concentrations (Figure 3),
possible bias in the reconstruction of tracer transports with the
water mass composition approach (Fontela et al., 2016; de la
Paz et al., 2017) must be carefully evaluated in strong barotropic
western boundary currents (Supplementary Figure 2). The
mean transport at the eastern flank of the Reykjanes Ridge
across OVIDE section is southward and dominated by the
ERRC (Daniault et al., 2016). An important question about
these findings is why was the [DOC] in the ERRC not as
barotropic in the 2002 as in 2016? We suggest that this was
because the circulation was more intense in 2016 than in 2002
(Figure 2C), due in particular to the recent increase in southward
ISOW transport (García-Ibáñez et al., 2018). We suggest that an
intense ISOW flow in the ERRC (as in 2016 cruise) increases
the amount of DOC enriched waters from upstream locations
(south of Iceland) affecting the vertical DOC distribution.
Nevertheless, the view of the ERRC as a continuous flow along
the eastern flank of the ridge has been recently questioned
by Petit et al. (2019) who showed that the ERRC intensity and
properties strongly vary in latitude by constant exchange of mass
and properties with the Iceland Basin and across the Ridge,
resulting in a maximum top-to-bottom barotropic transport
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at OVIDE latitudes. The fact that the northward recirculation
feature of summer 2002 does not appear in the climatological
mean circulation (Daniault et al., 2016) is also an example of
the tenuous significance of a biogeochemical budget constructed
with a single summer cruise. The averaging of repeated sections
improves the assessment of long-term biogeochemical budgets
and reduces their uncertainties (Ganachaud and Wunsch, 2002;
Fontela et al., 2019).

With respect to the previous published budgets (Fontela
et al., 2016; Fernández-Castro et al., 2019) there are some
differences in volume fluxes because we used the most recent
transport estimates at the G-S Ridge (Østerhus et al., 2019) and
RAPID (Smeed et al., 2018). Furthermore, the net transport
across OVIDE section or G-S Ridge have not been forced to
be zero (Fernández-Castro et al., 2019), and the necessary mass
conservation is ensured by imposing the same net northward
transport across the two boundaries of the eSPNA. The DOC in
the eSPNA, rather than being in balance as suggested by the initial
modeled approach (Fontela et al., 2016), is confirmed as a net
southward source of recently produced DOC (77± 49 kmol·s−1).
This result is in line with the southward export of organic matter
from the eSPNA (Fernández-Castro et al., 2019).

In the eSPNA, there is a gain of 4.9 µmol·kg−1 in the
mean velocity-weighted [eDOC] that is conveyed into the lower
limb (16.5 ± 0.6 µmol·kg−1) compared to that at OVIDE
(11.6± 0.5 µmol·kg−1); and there is also a gain of 2.8 µmol·kg−1

in the mean velocity-weighted [eDOC] of the northward flow
through the G-S Ridge (14.4 ± 4.5 µmol·kg−1). These results
point to an increase in [eDOC] due to local DOC production
of 77 ± 49 kmol·s−1. The coupling between production and
export of DOC in the North Atlantic reflects the export of
locally produced DOC (Roshan and DeVries, 2017). This result
agrees within uncertainties with the magnitude of the net DOC
production (111 ± 45 kmol·s−1) reported by Fernández-Castro
et al. (2019). Thus, the relatively fast overturning circulation
conveys the recently produced [eDOC] that is afterward exported
toward subtropical latitudes.

The export of bioavailable DOC toward subtropical latitudes
has impacts in the heterotrophic communities downstream. The
consumption of DOC in the lower limb (283 kmol·s−1) between
subpolar and subtropical latitudes is 70% larger than previously
reported (Fontela et al., 2016). This result supposes that the
magnitude of DOC exported via deep water formation previously
considered for the whole Atlantic Ocean (227 kmol·s−1,
0.086 PgC·year−1) (Hansell, 2013) should be revised up. Globally,
there is an increasing consensus for the DOC export out of
surface waters of around 2 PgC·year−1 (Hansell et al., 2009;
Letscher et al., 2015; Roshan and DeVries, 2017), but only a tenth
of that DOC (∼530 kmol·s−1) reaches depths greater than 500 m
(Hansell et al., 2009). Thus, the AMOC plays a key role at global
scale providing >50% of the deep-ocean bioavailable DOC.

The northward advection of subtropical waters and the
inorganic nutrient availability in the eSPNA are closely
related (Johnson et al., 2013; Hátún et al., 2017). Following
stoichiometric relationships, DOC transports are expected to
be concurrent with organic nutrient (DON/DOP) transports
(Hopkinson and Vallino, 2005). In contrast with the inorganic
nutrients, advection of subtropical waters into the eSPNA would

bring higher loads of dissolved organic nutrients. This can be seen
in the large [DOC] of ENACW (Supplementary Table 1, Fontela
et al., 2016) and in the mean velocity-weighted [eDOC] of the
AMOC upper limb. Organic nutrient streams can be biologically
assimilated whatever the depth, although the consumption of
dissolved organic matter is favored in euphotic zones (Letscher
et al., 2015). On the contrary, inorganic nutrient streams are
subsurface features that require the induction into the euphotic
zone in order to be biologically assimilated (Williams et al.,
2006). The large primary production in the eSPNA is maintained
by the transport of inorganic nutrient streams mediated by
the NAC (Pelegrí et al., 1996; Fontela et al., 2019). Taking
into account that the origin of DOC is biological production
(Carlson, 2002), the net production of DOC (77 ± 49 kmol·s−1)
set the eSPNA as a net autotrophic region. This result agrees
within uncertainties with the net autotrophy found in the
eSPNA through biogeochemical assessments in Maze et al. (2012)
(107 kmol·s−1) and Fontela et al. (2019) (119 kmol·s−1). The
short transit times of the circulation of a water parcel around
the subpolar gyre (3 ± 1 year) (Fernández-Castro et al., 2019)
coupled with the process of overturning and the existence of
strong western boundary currents converts the eSPNA in a
hotspot for the export of bioavailable DOC into the deep ocean
and toward subtropical latitudes.

The apparent oxygen utilization (AOU) quantifies the total
oxygen consumption since the last time the water mass was at
the surface (where it is assumed to be at oxygen saturation).
AOU can be converted to carbon-equivalents (AOU-Ceq) with
the molar ratio 1C/1O2 = -0.72 proposed by Anderson (1995).
The ratio between the decrease in eDOC along the pathway
of the AMOC (1eDOC = 15.8 µmol·kg−1, Figure 4) and
the increase in AOU-Ceq (1AOU-Ceq = (21–79 µmol·kg−1)∗
1C/1O2, 41.8 µmol·kg−1) can be used to quantify the relative
significance of eDOC export for the biological pump in terms
of oxygen consumption. The contribution of eDOC to total
oxygen consumption trough respiration between subpolar and
subtropical latitudes is 38 ± 7%. This ratio is slightly above the
33 ± 6% found in Fontela et al. (2016), but it is in agreement
regardless the new consideration of the eSPNA as a source of
recently produced DOC. The contribution of DOC oxidation
to oxygen consumption reveals the bioavailability of the eDOC
and the relatively short transit time of the recently formed DOC
across the autotrophic eSPNA.

The North Atlantic (18–49◦N) uptakes a considerable amount
of atmospheric CO2. Observation-based estimates (200 Tg-
C·year−1, Takahashi et al., 2009; Landschützer et al., 2014) and
ocean inverse transport estimates (300 Tg-C·year−1, Mikaloff
Fletcher et al., 2007; Gruber et al., 2009; Gerber and Joos,
2010) differ in 100 Tg-C·year−1 (Figure 5). Furthermore,
inversion models are able to discriminate the gas exchange
of natural CO2 from the anthropogenic contribution, with a
consensus around 200 Tg-C·year−1 for the natural uptake of
CO2 (Mikaloff Fletcher et al., 2007; Gruber et al., 2009). The
methodology to estimate the uptake of natural CO2 in inversion
models do not include the DOC divergence, which is assumed
small (Mikaloff Fletcher et al., 2007). Our findings claim that
DOC divergence in the North Atlantic lower limb is relevant
enough to be considered (Figure 5). We argue that the DOC
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FIGURE 5 | North Atlantic CO2 uptake (18–49◦N) in ocean inversion models
and observations. From left to right, graph bar of CO2 uptake (Tg-C·year−1)
estimated trough ocean inversion models based in DIC divergences (red
colors, Mikaloff Fletcher et al., 2007; Gruber et al., 2009; Gerber and Joos,
2010) and trough partial pressure of CO2 in the air-sea interface (blue colors,
Takahashi et al., 2009; Landschützer et al., 2014). The magnitude of DOC
divergence (this study) is represented in the green bar. Horizontal blue dashed
line represents the air-sea CO2 flux (200 Tg-C·year−1) that includes the DIC
divergence in the interior ocean. When considering the DOC divergence, the
inversion model estimates (the three last red bars) are consistent with air-sea
CO2 flux observations.

consumption of 107 Tg-C·year−1 found here is transformed
in dissolved inorganic carbon (DIC) through remineralization
in the dark ocean. That source of DIC is then erroneously
assigned to uptake from the atmosphere in the inversion
models. Here we show that around a third of the total uptake
(half of the natural uptake) diagnosed by the inverse models
is due the DOC circulation with the AMOC. If inversion
model estimates included this source of DIC from DOC in
their divergences, there would be agreement with observations
(Figure 5). Note that this interpretation reconciles the sink
estimates between inverse models (300 Tg-C·year−1 minus
the 107 Tg-C·year−1 DOC remineralization) and observations
(200 Tg-C·year−1) (Takahashi et al., 2009; Landschützer et al.,
2014). Therefore, models that do not include organic carbon
transports overestimate the natural uptake of CO2 from the
atmosphere in the North Atlantic.

CONCLUSION

Here, we present a quantitative assessment of the key role that
Western Boundary Currents have in the transport of DOC in the
North Atlantic mediated by the AMOC. The western boundary
currents are intense organic carbon streams responsible for the
export of bioavailable DOC recently formed in the autotrophic
waters of the subpolar North Atlantic. The overturning created
by the light-to-dense deep water formation conveys and exports
a considerable magnitude of eDOC (196 ± 35 kmol·s−1).
Fundamentally the EGC, and its upstream source, the ERRC in
the eastern flank of the Reykjanes Ridge, feed the export pathway
of bioavailable DOC toward subtropical latitudes.

With almost 40% of the oxygen consumption explained
by DOC remineralization, bioavailable DOC exported from

subpolar latitudes fuels heterotrophic communities in deep-
sea downstream subtropical zones and explains part of the
connection between sources and sinks of energy in the North
Atlantic carbon cycle. The remineralization of DOC to DIC
in the lower limb of the AMOC is a relevant biogeochemical
process that should be included in inverse modeling approaches
to avoid the overestimation of the natural uptake of CO2 from the
atmosphere. The inclusion of DOC transports in regional carbon
assessments reconcile the estimates of CO2 uptake in the North
Atlantic between observations and inverse models.
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