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Abstract  65 

 66 

Background: High-grade adult-type diffuse gliomas (HGGs) constitute a heterogene-67 

ous group of aggressive tumors that are mostly incurable. Recent advances highlight-68 

ing the contribution of ribosomes to cancer development have offered new clinical per-69 

spectives. Here, we uncovered that IDHwt and IDHmut HGGs display distinct altera-70 

tions of ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogene-71 

sis, which could constitute novel hallmarks that can be exploited for the management 72 

of these pathologies. 73 

Methods: We analyzed (i) the ribosomal RNA 2’O-ribose methylation (rRNA 2’Ome) 74 

using RiboMethSeq and in-house developed bioinformatics tools 75 

(https://github.com/RibosomeCRCL/ribomethseq-nf and rRMSAnalyzer) on three inde-76 

pendent cohorts compiling 71 HGGs (IDHwt n=30, IDHmut n=41) and 9 non-neoplastic 77 

samples, (ii) the expression of ribosome biogenesis factors using medium throughput 78 

RT-qPCR as a readout of ribosome biogenesis, and (iii) the sensitivity of 5 HGG cell 79 

lines to RNA Pol I inhibitors (CX5461, BMH21).    80 

Results: Unsupervised analysis demonstrated that HGGs could be distinguished 81 

based on their rRNA 2’Ome epitranscriptomic profile, with IDHwt glioblastomas dis-82 

playing the most significant alterations of rRNA 2’Ome at specific sites. In contrast, 83 

IDHmut HGGs are largely characterized by an overexpression of ribosome biogenesis 84 

factors compared to non-neoplastic tissues or IDHwt glioblastomas. Finally, IDHmut 85 

HGG-derived spheroids display higher cytotoxicity to CX5461 than IDHwt glioblas-86 

toma, while all HGG spheroids display a similar cytotoxicity to BMH-21. 87 

Conclusion: In HGGs, IDH mutational status is associated with specific alterations of 88 

the ribosome biology and with distinct sensitivities to RNA Pol I inhibitors. 89 

 90 

 91 

  92 
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Importance of the study (146 words) 93 

 94 

Consistent multi-omics studies have shown that high-grade adult-type diffuse gliomas 95 

(HGGs) can be classified into three main groups, i.e., IDHmut and 1p/19q codeleted 96 

oligodendrogliomas, IDHmut astrocytomas and IDHwt glioblastomas, based on their 97 

genetic, transcriptomic and DNA methylation profiles. Recent advances have high-98 

lighted the contribution of ribosomes to cancer development and have offered new 99 

clinical perspectives. Herein, we show that ribosomal RNA (rRNA) epitranscriptomic 100 

and ribosome biogenesis are different in distinct HGG types. We uncovered that IDHwt 101 

glioblastomas display the most prominent defects in rRNA epitranscriptomics, whereas 102 

IDHmut astrocytomas and oligodendrogliomas exhibit enhanced expression of ribo-103 

some biogenesis factors compared to IDHwt glioblastomas. Moreover, based on their 104 

IDH mutational status, HGG-derived cell lines displayed distinct responses to CX5461 105 

and BMH-21, two clinically-evaluated inhibitors of the RNA Pol I that transcribes 106 

rDNAs. This study identifies a connection between HGG oncogenesis and the ribo-107 

some biology, and highlights new therapeutic strategies. 108 

          109 

  110 
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Introduction 111 

High-grade adult-type diffuse gliomas (HGGs) are brain tumors resembling glial cells 112 

that display highly heterogeneous prognoses and treatment responses. HGGs com-113 

prise three main histomolecular types, astrocytomas, oligodendrogliomas and glioblas-114 

tomas, based notably on the mutational status of isocitrate dehydrogenase (IDH) 1 and 115 

21,2. Indeed, glioblastomas are IDHwt, whereas astrocytomas and oligodendrogliomas 116 

are IDHmut, and can be further discriminated by the heterozygous 1p19q co-deletion 117 

occurring in oligodendrogliomas. IDHwt and IDHmut HGGs are associated with distinct 118 

epigenetic and transcriptomic dysregulations, leading to cancer-specific features. 119 

Thus, despite important advances in their histomolecular classification and under-120 

standing of their oncogenesis, HGGs remain mostly incurable. For instance, grade 4 121 

IDHwt glioblastoma patients treated with the conventional combination of surgery, ra-122 

diotherapy and temozolomide (TMZ) chemotherapy, display a median survival of only 123 

15 months. Grade 3 IDHmut astrocytoma and oligodendroglioma patients treated with 124 

radiotherapy and chemotherapy exhibit a much better outcome with a median survival 125 

of 10 and 15 years, respectively, nevertheless 20 to 30% of the patients die within the 126 

first five years after diagnosis3,4. Therefore, the identification of novel molecular mech-127 

anisms dysregulated in distinct HGG histomolecular types may significantly improve 128 

current therapeutic options. 129 

Several studies highlighted that ribosome biogenesis (RiBi) and functions are altered 130 

in cancer cells and that ribosomes can support oncogenic functions5. For instance, the 131 

c-MYC oncogenic activity is in part supported by a dysregulation of genes implicated 132 

in RiBi and global protein synthesis6. In addition, levels of RiBi are generally increased 133 

in cancer cells to support the high protein synthesis demand caused by their exacer-134 

bated proliferation rate7,8 and therefore, the inhibition of rRNA synthesis specifically 135 

kills cancer cells without affecting normal cells9,10. Such observations led to the devel-136 

opment of molecules specifically inhibiting RiBi that showed objective responses in 137 

clinical trials, such as CX546111–13.      138 

In addition to alteration of RiBi, recent observations suggest that variations of ribosome 139 

composition could also occur in cancer and be involved in disease etiology14–16. The 140 

ribosome is composed of 80 ribosomal proteins and 4 ribosomal RNAs (rRNAs), the 141 

latter supporting the enzymatic activity of the peptidyl-bond formation during the trans-142 

lation of mRNAs into proteins. For many decades, the ribosome was considered as a 143 

monolithic entity displaying a similar composition in all cells constituting an organism. 144 
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However, it appears now that the ribosome composition can display some degree of 145 

variations, both at the level of ribosomal proteins and rRNA chemical modifications, 146 

which contributes to modulate intrinsic translational activities that could shape particu-147 

lar phenotypes17,18. Variations of the ribosome composition at ribosomal protein levels 148 

have been reported in HGGs19–22. In IDHwt glioblastomas, the overexpression of the 149 

ribosomal protein RPS6 was shown to promote acquisition of glioma stem cell proper-150 

ties, a hallmark of the most aggressive IDHwt glioblastomas20–22. In addition, RPL22L1 151 

isoforms are expressed in distinct regions of IDHwt glioblastomas through alternative 152 

splicing and induce the production of ribosomes with specific compositions, which pro-153 

mote translational bias towards specific mRNA subsets15,19,23–30. In addition to riboso-154 

mal proteins, the chemical modifications of rRNA represent one of the major contribu-155 

tors to ribosome heterogeneity and led to the emergence of the notion of rRNA epi-156 

transcriptomics15. One of the main modifications, the methylation of the rRNA 2’O-ri-157 

bose (rRNA 2’Ome), occurs at 106 known rRNA sites in humans and the 2’Ome at 158 

specific positions are essential for rRNA activity. The catalysis of rRNA 2’Ome is per-159 

formed by an rRNA methylation complex composed of the methyl-transferase fibrillarin 160 

(FBL) and a single non-coding C/D box small nucleolar RNA (snoRNA or snoRD), 161 

which guides FBL at specific sites by base-pairing15. Hence, modulations of FBL or 162 

snoRD expression are sufficient to affect rRNA 2’Ome23,24,26. Interestingly, alterations 163 

of 2’Ome have been observed in cancer and we recently demonstrated by profiling 195 164 

primary mammary tumors using the RiboMethSeq approach, that only 40% of the 165 

known 2’O-methylated sites are altered, suggesting that only few rRNA sites can tol-166 

erate a lack of 2’Ome. Moreover, rRNA 2’Ome alterations are not random since rRNA 167 

2’Ome profiles were associated with breast cancer subtypes and tumor grades25. Sim-168 

ilarly, alterations of rRNA 2’Ome were described in a cohort of 17 diffuse large B-cell 169 

lymphoma samples27 and of 94 acute myeloid leukemia samples28. Importantly, alter-170 

ations of rRNA 2’Ome at some specific sites can affect both the translation of particular 171 

mRNA subsets and cell proliferation15,23,24,26 29,30. To date, whether alterations of rRNA 172 

epitranscriptomics occurs in gliomas and contributes to disease etiology remains un-173 

explored. Here, we investigated whether IDHwt and IDHmut HGGs display alterations 174 

in ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogenesis, to 175 

exploit these features as novel therapeutic targets of these diseases. 176 

 177 

 178 



 
Manuscript Number: N-O-D-23-00144R1 
 

7 
 

Materials and methods 179 

 180 

Human grade 3-4 adult-type diffuse glioma and non-neoplastic samples 181 

Three cohorts were built: a technical cohort (8 grade 4 IDHwt glioblastomas, 3 non-182 

tumoral samples); a test cohort detailed in Table 1 (13 IDHwt glioblastomas, 13 IDHmut 183 

astrocytomas, 14 IDHmut and 1p/19q codeleted oligodendrogliomas, 6 non-tumoral 184 

samples); a validation cohort (9 IDHwt glioblastomas, 6 IDHmut astrocytomas, 8 185 

IDHmut and 1p/19q co-deleted oligodendrogliomas). The percentage of tumoral cells 186 

was estimated by a neuropathologist as described in Fig.S1. Additional details are pro-187 

vided in Supplementary Information. 188 

 189 

Cell culture 190 

Human IDHwt glioblastoma (5706, N131520), IDHmut astrocytoma (LGG85) and 191 

IDHmut and 1p/19q codeleted oligodendroglioma (BT138, BT237) cells were cultured 192 

as spheres as described in Supplementary Information.  193 

 194 

Reverse Transcription and real time quantitative PCR 195 

cDNA synthesis was performed using the Prime Script RT Reagent kit (Takara). Me-196 

dium throughput qPCR was performed using the Biomark HD system (Fluidigm) as 197 

previously described31 (Table S1). The median Ct value of 5 housekeeping mRNAs 198 

was used for normalization.  199 

 200 

RiboMethSeq  201 

RiboMeth-seq was performed as previously described using the Illumina sequencing 202 

technology25,32. To process the sequencing data, a novel nextflow pipeline Ribo-203 

MethSeq-nf was developed and is currently available (https://github.com/Ri-204 

bosomeCRCL/ribomethseq-nf). This pipeline processes sequencing data as previ-205 

ously described25,32,33. To calculate the C-score, which reflects the rRNA 2’Ome level, 206 

the novel R package rRMSAnalyzer was developed (https://github.com/Ri-207 

bosomeCRCL/rRMSAnalyzer). The identification of significant alterations in rRNA 208 

2’Ome levels between groups was performed by applying two consecutive thresholds: 209 

the adjusted p-value < 0.05 (Kruskal-Wallis with FDR adjustment); and the mean ∆C-210 

score (i.e., difference between the highest and lowest mean C-score of the groups of 211 

interest) > 0.05.  212 
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IC50 assay 213 

3.103 cell spheroids were treated with CX5461 (Sigma-Aldrich)34 or BMH-21 (Sigma-214 

Aldrich)10. Cell cytotoxicity was assessed by CellToxTM Green Cytotoxicity Assay 215 

(Promega) and by CellTiter-Glo3D® luminescent cell viability assay (Promega). Cell 216 

viability was expressed as a percentage of the signal intensity normalized against 217 

DMSO (1%).  218 

 219 

 220 

Results 221 

 222 

A standardized approach for large-scale analyses of human samples using Ri-223 

boMethSeq  224 

Before investigating alterations of rRNA 2’Ome in the three main histomolecular HGGs, 225 

we first optimized the recently described RiboMethSeq approach25,32,35 to determine 226 

reliable quantifications of 2’Ome levels at 106 rRNA sites from patient tumor samples. 227 

First, based on the technical cohort (n=11) of IDHwt glioblastomas and non-neoplastic 228 

tissues, we observed that the C-score, which reflects rRNA 2’Ome levels at specific 229 

sites, was similar using either a manual or an automated RNA extraction protocol 230 

(Fig.S2). Second, we used the NovaSeq Illumina sequencing platform (up to 10 billion 231 

reads) to increase the total number of useful reads (Fig.S3A) and the number of sam-232 

ples sequenced in a single flowcell.  233 

We then randomly separated RNA samples of the test cohort and prepared two inde-234 

pendent libraries of 23 samples (40 HGGs and 6 non-neoplastic samples), each library 235 

also contained a commercially-available “reference” total RNA. Unsupervised analysis 236 

of the entire test cohort using PCA based on C-scores of either all rRNA positions 237 

(7055 sites) or the 106 positions corresponding to known rRNA 2’Ome sites, clearly 238 

distinguished samples depending on the library of origin, as illustrated by the lack of 239 

clustering of reference RNA (Fig. S3B, left panels). We evaluated adjustment of Ribo-240 

MethSeq data using the ComBat-seq algorithm, one of the most routinely used tools 241 

to adjust RNA-seq data36. Upon ComBat-seq adjustment, no distinction between sam-242 

ples based on their library of origin was observed in C-scores, including for the two 243 

reference RNA (Fig.S3B, right panels). These data demonstrate the efficacy of the 244 

ComBat-seq algorithm at removing batch effect from RiboMethSeq data.  245 
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Based on these results, we developed bioinformatics tools to perform reproducible 246 

analyses of RiboMethSeq data arising from large-scale cohorts (https://github.com/Ri-247 

bosomeCRCL).   248 

 249 

rRNA 2¶Ome profiles discriminate IDHwt from IDHmut adult-type diffuse gliomas  250 

Using the optimized approach selected above, we then investigated whether altera-251 

tions of rRNA 2’Ome differentially occur in the three main histomolecular HGGs using 252 

the test cohort: IDHwt glioblastoma (G, n=13), IDHmut astrocytoma (A, n=13), IDHmut 253 

and 1p19q codeleted oligodendroglioma (O, n=14) and non-neoplastic cerebral cortex 254 

(NT, n=6) (Table 1). Using unsupervised hierarchical clustering analysis (HCA), we 255 

first evaluated rRNA 2’Ome levels at the 106 known sites in the 46 non-neoplastic and 256 

glioma samples (Fig.1). The C-score reflects the rRNA 2’Ome levels as it corresponds 257 

to the ratio of the 5’ read-end counts at a nucleotide position to the local 5’ read-end 258 

count coverage; and when close to 1, C-score indicates that all rRNA molecules of the 259 

sample are 2’O-methylated at this specific site; whereas a C-score below 0.9 reflects 260 

a mix of 2’O-unmethylated and 2’O-methylated rRNA molecules. Here, most rRNA 261 

2’Ome sites had a score close to 1, albeit some sites were below 0.9, substantiating 262 

recent results in human samples from diffuse large B cell lymphoma, acute myeloid 263 

leukemia and breast cancer25,27,28. These data further confirmed observations by us 264 

and others that some rRNA molecules exist without 2’Ome at some specific sites, in-265 

cluding in non-neoplastic tissue.  266 

Interestingly, all IDHwt glioblastoma samples formed a separate branch (left-hand side 267 

of the HCA dendrogram), suggesting that their rRNA 2’Ome profile was clearly different 268 

from IDHmut astrocytoma and oligodendroglioma, as well as from non-neoplastic tis-269 

sue (Fig.1). Principal Component Analyses (PCAs) based on the rRNA 2’Ome profile 270 

indicated that the PC2 axis (variance=14.1%) strongly differentiated glioblastomas 271 

from other samples (Fig.S4A). To ensure consistency between the results of our clas-272 

sification and the expected outcome of the patients, we correlated PCA axes with sur-273 

vivals and mitotic index, as an internal control of tumor sample classification. Con-274 

sistent with the known differences regarding glioblastomas and IDHmt HGGs charac-275 

teristics, PC2 was significantly correlated with the IDH1/2 mutational status, the mitotic 276 

index, overall survival (OS) and progression-free survival (PFS) (Fig.S4B-D). To vali-277 

date these observations, we analyzed rRNA 2’Ome levels using RiboMethSeq on the 278 
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technical cohort, corresponding to an independent cohort composed of 8 IDHwt glio-279 

blastomas and 3 non-neoplastic tissues. Unsupervised PCA based on the rRNA 2’Ome 280 

profile showed that IDHwt glioblastomas could once again be clearly separated from 281 

non-neoplastic tissues (Fig.S4E). Altogether, our data revealed that rRNA 2’Ome lev-282 

els vary in HGGs as well as in non-neoplastic cerebral cortex, and that rRNA 2’Ome 283 

profiles discriminate IDHwt glioblastomas not only from non-neoplastic tissues but also 284 

from IDHmut HGG types.  285 

 286 

Most variable rRNA 2¶Ome sites are sufficient to discriminate IDHwt glioblas-287 

toma from IDHmut adult-type diffuse gliomas 288 

To better characterize differences in rRNA 2’Ome profiles between histomolecular 289 

HGG types, we then focused on the most variable rRNA 2’Ome sites. To identify such 290 

sites, we compared the variability of C-scores at each single site among all HGG sam-291 

ples of the test cohort (n=40) using the distribution of the inter-quartile range (IQR). A 292 

set of 19 sites showed an IQR higher than median + 2 × median absolute deviation 293 

(mad) and were considered as the most variable rRNA 2’Ome sites among HGGs (red, 294 

Fig.2A), in agreement with our recent findings that only a subset of rRNA sites displays 295 

variability in 2’Ome levels25. Interestingly, PCAs indicated that rRNA 2’Ome profiles 296 

based on this set of 19 sites are sufficient to discriminate IDHwt glioblastomas, IDHmut 297 

astrocytoma and oligodendrogliomas (Fig.2B).  298 

To validate these observations, we used a second, independent validation cohort of 299 

23 HGG samples (9 IDHwt glioblastomas, 6 IDHmut astrocytomas and 8 IDHmut, 300 

1p/19q codeleted oligodendrogliomas) (Fig.S1B). We performed an unsupervised 301 

analysis using the 19 most variable rRNA 2’Ome sites identified using the test cohort 302 

(Fig.2A). As for the test cohort, unsupervised analyses of the validation cohort distin-303 

guished the three histomolecular subtypes of HGGs (Fig.2C). In addition, the projection 304 

of the validation cohort samples onto the PCA constructed from the test cohort enabled 305 

us to identify the histomolecular subtypes of each sample, suggesting that de novo 306 

profiling of rRNA 2’Ome could help in the classification of HGGs (Fig.2D). In addition, 307 

comparison of test and validation cohorts in term of percentage of tumor cells suggests 308 

that the tumor heterogeneity did not affect our conclusions (Fig. S1B). Indeed, in the 309 

validation cohort, the mean percentage of tumor cells is significantly lower in astrocy-310 

tomas (38%) compared to oligodendrogliomas (69%), while no difference was ob-311 

served with glioblastomas (9%) (Kruskal-Wallis: p=0.045*; Mann-Whitney: A vs O 312 
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p=0.024*). In contrast, in the test cohort, the mean percentage of tumor cells is signif-313 

icantly lower in astrocytomas (38%) and oligodendrogliomas (39%) compared to glio-314 

blastomas (55%) (Kruskal-Wallis: p=0.034*; Mann-Whitney: A vs G p=0.0172*; O vs G 315 

p=0.0348*).  316 

These data further emphasize the specificity of IDHwt glioblastoma rRNA 2’Ome pro-317 

files compared to IDHmut HGGs and suggest that IDHwt glioblastomas display strong 318 

alterations of rRNA 2’Ome levels at some specific sites.  319 

 320 

Glioblastomas display the most frequent site-specific rRNA 2¶Ome alterations  321 

To identify rRNA sites whose 2’Ome levels significantly differed between HGG histo-322 

molecular types and non-neoplastic tissues, we performed a systematic analysis of 323 

each of the 106 rRNA 2’Ome sites using the test cohort and applied two consecutive 324 

thresholds, a Kruskal-Wallis test with adjusted p-values < 0.05 and a cut-off value for 325 

mean ΔC-scoresmax-min > 0.05. From this screen, only 16 rRNA 2’Ome sites displayed 326 

a significant variation in their level of methylation in at least one HGG or non-neoplastic 327 

tissue (Fig.3). Pairwise comparisons for these 16 sites revealed that 4 and 6 sites dis-328 

played significant alterations in 2’Ome levels in high-grade astrocytomas and high-329 

grade oligodendrogliomas, respectively, compared to non-neoplastic tissues (Fig.3B). 330 

In addition, rRNA 2’Ome levels appeared to be significantly increased on 6 sites in 331 

high-grade astrocytomas compared to high-grade oligodendrogliomas. Similar altera-332 

tions in rRNA 2’Ome levels between IDHwt and IDHmut tumours were observed using 333 

the validation cohort (Fig.S5A). Finally, the main differences could be attributed to gli-334 

oblastomas that displayed 12 and 14 of the 16 rRNA sites significantly altered com-335 

pared to non-neoplastic samples or high-grade astrocytoma and oligodendrogliomas, 336 

respectively. Strikingly, rRNA 2’Ome levels were mostly lower in glioblastomas com-337 

pared to non-neoplastic tissues, high-grade astrocytoma or high-grade oligodendrogli-338 

omas (Fig.3A). The same overall decrease in rRNA 2’Ome levels was confirmed in 339 

glioblastoma compared to non-neoplastic tissues using the technical cohort (Fig.S5B). 340 

Altogether, these results indicate that 2’Ome levels are altered at specific rRNA sites 341 

in HGGs, while glioblastomas display the highest frequency of alterations in rRNA 342 

2’Ome levels compared to non-neoplastic cerebral cortex and other HGG histomolec-343 

ular types. 344 

 345 
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Changes in C/D box snoRNA expression levels only partially explain alterations 346 

of rRNA 2¶Ome levels 347 

To investigate the origin of alterations of rRNA 2’Ome in HGGs, we focused on the 348 

expression of C/D snoRNAs (snoRDs), which guide in a sequence-specific manner the 349 

methyl-transferase FBL toward the rRNA nucleotide to methylate. We thus examined 350 

the correlation between levels of rRNA 2’Ome and related snoRDs. It was reported 351 

that snoRNA expression levels can be inferred from RiboMethSeq data37,38. Thus, we 352 

used RiboMethSeq raw data from the NovaSeq platform and applied an in-house pipe-353 

line to overcome limitations of snoRNA analysis by next-generation sequencing (see 354 

Supplementary methods)39,40. A strong and significant correlation (about 92%) be-355 

tween snoRNA levels either determined from RiboMethSeq or measured by RT-qPCR 356 

was observed in 9 glioma samples for 11 out of 12 selected snoRDs, thus validating 357 

our approach (Fig.S6A). Given that 2’Ome at a single rRNA site is catalyzed either by 358 

one or several snoRD15,41, we restricted our analysis to the rRNA 2’Ome sites (n=46) 359 

guided by a single snoRD. No significant correlation was observed between levels of 360 

rRNA 2’Ome and of corresponding snoRDs among 37 sites (Fig.S6B). In contrast, a 361 

significant albeit relatively low positive correlation was observed for 9 pairs of 362 

snoRD/rRNA sites, the best correlation being that of the 18S-Am576 site and its asso-363 

ciated SNORD93 (padj=9.10-6, r=0.68) (Fig.S6B-C). Thus, alterations of rRNA 2’Ome 364 

levels cannot be exclusively attributed to changes in C/D box snoRNA expression lev-365 

els. 366 

 367 

The expression profile of ribosome biogenesis factors discriminates IDHmut and 368 

IDHwt HGGs 369 

Since variations in snoRD expression levels cannot explain most of the changes ob-370 

served in rRNA 2’Ome levels, we tested a novel hypothesis. Indeed, in cancer, varia-371 

tions of 2’Ome levels in rRNAs are believed to passively arise from the link between 372 

ribosome biogenesis (RiBi) and concomitant rRNA chemical modifications, whereby 373 

changes in ribosome synthesis impact the rate-limiting rRNA 2’Ome process and 374 

therefore influence 2’Ome profiles15,25,27. Therefore, an overall decrease in rRNA 375 

2’Ome levels observed in different cancer tissues may be caused by RiBi hyperactiva-376 

tion to sustain a high demand in protein synthesis necessary to support the highly pro-377 

liferative cancer cells. As IDHwt glioblastomas possess a higher proliferative rate than 378 

IDHmut astrocytoma and oligodendrogliomas, including in our test cohort (based on 379 
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the mitotic index) (Fig.S4C-D), we hypothesized that the decrease in rRNA 2’Ome lev-380 

els at specific positions in IDHwt glioblastomas could be due to a rate-limiting 2’Ome 381 

process caused by an exacerbated RiBi.  382 

To investigate RiBi dysregulations across HGGs, we initially applied a gold-standard 383 

approach by analyzing levels of the 47S rRNA precursor (pre-rRNA), using Northern 384 

blot (Fig.S7A). However, this approach using tumor samples was challenging, notably 385 

due to the need for a large quantity of biological materials. Nevertheless, in a panel of 386 

9 analyzable samples, IDHmut astrocytoma and oligodendrogliomas surprisingly 387 

seemed to express more pre-47S rRNAs than IDHwt glioblastomas. However, only two 388 

IDHwt glioblastoma samples were analyzed, therefore preventing us to draw any con-389 

clusion. To bypass this technical issue, we then measured the expression of a set of 390 

20 genes involved in the early RiBi stages (referred to as “RiBi-gene set”). To reflect 391 

as much as possible this multistep process involving more than 200 factors7, we se-392 

lected the RiBi-gene set implicated in the main RiBi process, including rRNA transcrip-393 

tion (NCL, NPM, POLR1A, TAF1A, TAF1B, TAF1C and UBTF), rRNA maturation 394 

(BOP1, PES1 and WDR12), snoRNA biogenesis (RUVBL1, PIDH1D1 and RUVBL2), 395 

and H/ACA (DKC1, GAR1, NHP2 and NOP10) and C/D box (NOP56, SNU13 and FBL) 396 

snoRNP complexes (Fig.4A). Of note, three genes (PIH1D1, RUVBL2 and FBL) are 397 

located on the long arm of chromosome 19 (19q), which undergoes a heterozygous 398 

deletion in high-grade oligodendrogliomas. A readout for RiBi at steady-state was de-399 

termined by quantifying mRNA expression levels of these selected genes by medium 400 

throughput RT-qPCR in our validation series. mRNA levels were normalized against 401 

the median mRNA expression of 5 housekeeping genes, which did not significantly 402 

vary among the four groups (Fig.S7B). 403 

To examine the association between expression levels of RiBi factors and HGGs, we 404 

first performed an unsupervised approach using a PCA based on the RiBi-gene set 405 

profile (Fig.4B). Interestingly, three main clusters were observed. A first large cluster, 406 

composed of both non-neoplastic tissues and IDHwt glioblastomas (NT/G cluster), was 407 

distinct from two other clusters corresponding to IDHmut oligodendrogliomas (O) and 408 

astrocytoma (A). PC1 (variance: 67.8%), in particular, separated the NT/G cluster from 409 

A/O clusters, while the PC2 (variance: 9%) distinguished the O cluster from others. 410 

These data suggest that the expression profile of only 20 RiBi factors discriminate 411 

HGGs.  412 
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To ensure consistency between the results of our classification and the expected out-413 

come of the patients, we first calculated Pearson’s correlation coefficients between the 414 

first 5 PC dimensions and OS or PFS as an internal control (Fig.4C and Fig.S7C). 415 

Consistently, we observed a significant association exclusively for PC1 and PC2, indi-416 

cating that the clustering based on RiBi-gene set profiles provided by these two axes 417 

is sufficient to recapitulate all clinical data of interest. OS and PFS were significantly 418 

correlated with both PC1 and PC2 in a negative manner, indicating that samples clus-419 

tering at the right-hand side of the PC1 and top of PC2, i.e., IDHwt glioblastomas, 420 

display lower OS and PFS. Indeed, IDHwt glioblastoma patients exhibit the poorest 421 

OS (less than 30 months) and PFS (under 30 months), followed by IDHmut astrocy-422 

toma and oligodendroglioma patients that tend to cluster at the left part of PC1 and the 423 

top or bottom part of PC2, respectively.  424 

Strikingly, we also identified a strong correlation between PC1 and PC2 axes, and the 425 

IDH1/2 mutational and 1p/19q co-deletion status, respectively (Fig.S7D-E). Indeed, 426 

PC1 (G vs. A/O clusters) was significantly correlated with the IDH1/2 mutational status 427 

while PC2 (A/G vs. O clusters) segregated HGG tumors based on the 1p/19q co-dele-428 

tion status. Thus, expression profiling of the RiBi-gene set was strongly correlated with 429 

both clinical features and distinct genomic alterations of the HGG test cohort. Alto-430 

gether, these results suggest that the expression signature of only 20 genes involved 431 

in ribosome biogenesis is sufficient to discriminate IDHwt from IDHmut HGG histomo-432 

lecular types and that RiBi displays IDH mutational status-dependent alterations.  433 

 434 

Ribosome biogenesis factors are highly expressed in IDHmut adult-type diffuse 435 

gliomas  436 

Next, we individually compared mRNA expression levels of the 20 RiBi factors among 437 

the different HGGs (Fig.5 and Fig.S8A). Significant differences were observed in the 438 

expression of all tested RiBi factors between different groups (Mann Whitney test, 439 

Fig.S8A). Surprisingly, only a few RiBi genes were significantly differentially expressed 440 

in IDHwt glioblastomas compared to non-neoplastic samples (9 out of 20), with very 441 

moderate changes (d 2-fold change). In contrast, IDHmut astrocytoma and oligoden-442 

drogliomas significantly overexpressed most of these RiBi genes (19 and 16 out of 20 443 

RiBi genes, respectively). For instance, expression of NCL, which encodes a key factor 444 

in rRNA synthesis, increased by 2- and 3-fold in IDHmut astrocytoma and oligoden-445 

drogliomas, respectively (p < 0.001), while NCL expression levels in IDHwt samples 446 
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only slightly increased (Fig.5A and Fig.S8A). Likewise, the use of a second distinct set 447 

of primers to analyze NCL expression provided the exact same trend (Fig.S8B), there-448 

fore ruling out a potential technical caveat. These results suggest that ribosome bio-449 

genesis could be enhanced in IDHmut astrocytoma and oligodendrogliomas compared 450 

to IDHwt glioblastomas and non-neoplastic tissues.  451 

Interestingly, genes located on chromosome 19q (FBL, PIH1D1, RUVBL2) displayed 452 

a particular expression pattern (Fig.5C, 5E and Fig.S7E). Like other genes involved in 453 

RiBi, FBL, PIH1D1 and RUVBL2 were significantly overexpressed in IDHmut astrocy-454 

tomas compared to both IDHwt glioblastomas and non-neoplastic samples. However, 455 

mRNA expression levels in IDHmut oligodendrogliomas were lower than in IDHmut 456 

astrocytomas and displayed expression profiles resembling those of IDHwt glioblasto-457 

mas. Thus, FBL was highly expressed exclusively in IDHmut astrocytomas, whereas 458 

its expression levels were equivalent in IDHmut oligodendrogliomas and IDHwt glio-459 

blastomas, as confirmed by a second set of primers (Fig.S8B). Considering that 460 

IDHmut oligodendroglioma samples exhibited a heterozygous deletion of FBL, PIH1D1 461 

and RUVBL2 genes located on 1p/19q chromosomes, these data indicate that the spe-462 

cific expression profile observed for these genes in IDHmut oligodendrogliomas is 463 

likely due to a haploinsufficiency caused by genetic alterations. Interestingly, removal 464 

of these three genes in the RiBi-genes set still allowed us to distinguish IDHwt from 465 

IDHmut HGGs (data not shown), suggesting that copy number variation (CNVs) affect-466 

ing RiBi gene expression does not impact the distinction between IDHwt and IDHmut, 467 

as expected. Therefore, the ribosome biogenesis pathway is strongly enhanced in 468 

IDHmut gliomas, i.e., high-grade astrocytoma and oligodendroglioma, but remains 469 

moderately affected in IDHwt glioblastoma. 470 

 471 

HGGs display distinct cytotoxicity to RNA pol I inhibitors CX5461 and BMH-21   472 

Having identified an IDH mutational status-dependent alteration of RiBi in HGGs, we 473 

hypothesized that IDHmut and IDHwt HGGs display distinct cytotoxicity to RNA Pol I 474 

inhibitors, BMH-21 and CX5461, which inhibit the transcription of the 47S pre-rRNA 475 

and are promising new cancer treatments. We used a panel of 5 representative HGG 476 

cell lines, comprising IDHmut astrocytoma and IDHmut and 1p/19q codeleted oli-477 

godendroglioma cell lines (LGG85 and BT138/237, respectively) and IDHwt glioblas-478 

toma cell lines (5706 and N131520). Analyses of HGG spheroids in response to 72-479 
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hour treatments with RNA pol I inhibitors showed that all spheroids were similarly sen-480 

sitive to BMH-21 with an IC50 ranging from 1.06 to 1.56 PM (Fig.6A-C), as recently 481 

observed 42. However, CX5461 strongly impacted the viability of IDHmut astrocytoma 482 

and oligodendroglioma spheroids (IC50 ranging from 5.92 to 7.55PM), but not of IDHwt 483 

glioblastoma spheroids (Fig.6D-F). Hence, these results are consistent with our previ-484 

ous findings that IDHmut astrocytomas and oligodendrogliomas may be addicted to an 485 

enhanced RiBi pathway, therefore potentially sensitizing these AGD histomolecular 486 

types to clinically available RiBi inhibitors. Altogether, our results highlight the potency 487 

of RNA Pol I inhibitor usage as potential HGG therapy and further support an over-488 

activation of the RiBi pathway in IDHmut astrocytomas and oligodendrogliomas com-489 

pared to IDHwt glioblastomas and non-neoplastic tissues.  490 

 491 

 492 

Discussion 493 

High-grade adult-type diffuse gliomas (HGGs) are heterogeneous tumors associated 494 

with distinct, albeit poor, survival rates due to the lack of effective targeted therapies, 495 

in particular for the most aggressive histomolecular type, the IDHwt glioblastoma. 496 

Here, by performing the first concomitant analysis of rRNA 2’Ome and ribosome bio-497 

genesis in primary tumors, we report distinct, uncoupled alterations of rRNA epitran-498 

scriptomics and ribosome biogenesis in IDHmut and IDHwt HGGs, therefore revealing 499 

specific dysregulations of the ribosome biology that constitute new IDH mutational sta-500 

tus-associated hallmarks of HGGs.  501 

In the last 7 years, alterations of rRNA 2’Ome profiles have been reported using a 502 

newly developed approach RiboMethSeq in numerous cellular models and only in 503 

three types of cancers, namely breast cancer, acute myeloid leukemia and diffuse 504 

large-B cell lymphoma (DLBCL)15,25,27,28. Such alterations have been shown to be re-505 

stricted to only 40% of the known rRNA 2’Ome sites, suggesting that only one third of 506 

the sites may possess regulatory functions on ribosome activity. We now show that 507 

rRNA 2’Ome profiles also vary in HGGs. As previously observed in other cancers, only 508 

a small subset of known rRNA 2’Ome sites display variability in their 2’Ome levels in 509 

HGGs, suggesting these positions can tolerate absence of 2’Ome. The 19 most varia-510 

ble rRNA 2’Ome sites were randomly distributed on the ribosome structure, suggesting 511 

no coordinated effects on functional domains of the ribosome. Notably, similar in-512 

creases in rRNA 2’Ome levels at 18S_Am576 and decreases at 18S_Gm1447 were 513 
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observed in the most aggressive HGG type, glioblastoma, and breast cancer subtypes 514 

(triple negative or TNBC), suggesting a link between these sites and cancer aggres-515 

siveness25. A recent study demonstrated that alterations of 2’Ome levels at a single 516 

rRNA site are sufficient to affect cell proliferation, a hallmark of cancer aggressive-517 

ness26. Moreover, rRNA 2’Ome at 18S_Gm1447 was recently shown to support leuke-518 

mic stem cell functions by modulating translation28. Hence, whether these rRNA 2’Ome 519 

sites common to both HGGs and breast cancer contribute to the acquisition of cancer 520 

cell characteristics remains to be deciphered and could potentially represent new tar-521 

getable vulnerabilities. 522 

In IDHwt glioblastomas, alterations in rRNA 2’Ome levels mostly correspond to a de-523 

crease as observed in both the test and validation cohorts. In DLBCL, the global de-524 

crease in rRNA 2’Ome levels was correlated with the Ki67-estimated high proliferative 525 

rate of tumors. One hypothesis was that low rRNA 2’Ome levels indirectly resulted from 526 

an increase in rRNA synthesis associated with the hyperproliferative rate of cancer 527 

cells, which rendered components of the rRNA 2’Ome machinery limiting, although 528 

rRNA synthesis was not analyzed27. Consistently, we observed specific alterations of 529 

rRNA 2’Ome in IDHwt glioblastomas, which are the most proliferative tumors and dis-530 

play the highest mitotic index in our test cohort. However, we surprisingly observed an 531 

elevated ribosome biogenesis in IDHmut astrocytomas and oligodendrogliomas com-532 

pared to glioblastomas, suggesting that RiBi levels are not correlated with the prolifer-533 

ative rate, at least in HGGs, and cannot solely explain alterations of rRNA epitran-534 

scriptomics in HGGs. Even though the rate of ribosome biogenesis may contribute to 535 

regulating rRNA 2’Ome through a passive effect, additional molecular mechanisms 536 

should be further explored to identify the origin of rRNA 2’Ome alterations in cancer 537 

and understand the observed rRNA site- and cancer type-specificity. The mechanisms 538 

may include alterations of expressions and/or activities of RNA-binding proteins, such 539 

as DDX21 and FMRP, which contribute to the formation of bona fide functional snoRNP 540 

complexes29,43. Here, we report that alterations of C/D box snoRNA expression could 541 

be sufficient to explain alterations of rRNA 2’Ome levels at some, but not all, rRNA 542 

sites. The evolution of annotation and/or knowledge in biology of C/D box snoRNAs 543 

may fill the gap to better understand causes of rRNA 2’Ome alterations in cancer. Al-544 

together, our findings that main HGG histomolecular types are associated with altera-545 

tions in either ribosome quantity or quality, challenge the hypothesis that the decrease 546 
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in rRNA 2’Ome levels mainly results from a passive effect caused by an exacerbated 547 

ribosome biogenesis.  548 

Our data reveal that IDHmut HGGs, including both high-grade astrocytoma and oli-549 

godendroglioma, display the highest expression of ribosome biogenesis factors, sug-550 

gesting an increase in ribosome biogenesis. Whether dysregulations of IDH1/2 func-551 

tions, notably through the production of the oncometabolite D-2-hydroxyglutarate, 552 

could directly impact the regulation of ribosome biogenesis would need to be further 553 

explored. Nevertheless, the specificity of ribosome biogenesis alterations in HGGs of-554 

fers novel perspectives for clinical applications. Building on our observations, we found 555 

that HGGs are sensitive to the newly developed RNA pol I inhibitors, CX5461 and 556 

BMH-21, the former being successfully evaluated in clinical trials in advanced solid and 557 

hematological cancers7. Sensitivity of HGGs to RNA pol I inhibitors CX5461 and BMH-558 

21 has already been reported42,44,45, even though discrepancies regarding the sensi-559 

tivity of glioblastomas to CX5461 exist between our data and previous ones, possibly 560 

due to differences in experimental settings and genetic backgrounds of tested cell 561 

lines. In particular, the 3D culture conditions could decrease drug sensitivity compared 562 

to 2D culture conditions, as already reported46. In addition, the differential sensitivity of 563 

glioblastomas to CX5461 and BMH-21 could be attributed to off-target effects of these 564 

molecules as these RNA Pol I inhibitors act through distinct mechanisms and are 565 

known to affect several cellular pathways, including DNA repair10,34,47. Thus, whether 566 

the activity of these compounds may also rely on the genetic background of tested 567 

models impacting the different sensitivities of HGG types to CX5461 and BMH-21, 568 

should be further investigated. 569 

Altogether, our data indicate that alterations of the ribosome biology in HGGs are de-570 

pendent on the IDH mutational status and could represent targetable features in clinic. 571 

Thus, recent discoveries in the field of ribosomes have opened new avenues not only 572 

for a better understanding of cellular processes that contribute to HGG development 573 

and aggressiveness but also for designing future HGG type-specific therapeutic strat-574 

egies.  575 
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Figure Legends 772 

 773 

Figure 1. rRNA 2¶Ome levels vary in high-grade adult-type diffuse gliomas. An 774 

unsupervised hierarchical clustering of C-scores at the 106 known rRNA 2’O-ribose 775 

methylated (2’Ome) sites was performed in a test cohort of 40 high-grade (3-4) adult-776 

type diffuse glioma (HGG) samples and 6 non-tumoral, non-neoplastic cerebral cortex 777 

(NT) samples. C-scores are represented by a color scale from 0 (black) to 1 (yellow). 778 

IDHwt glioblastomas (G), high-grade astrocytomas (A), high-grade oligodendrogli-779 

omas (O) and non-neoplastic (NT) samples are depicted in pink, green, purple, and 780 

grey, respectively. The mean C-score for each site across the 46 samples is shown on 781 

the right-hand side of the graph. 86 sites have a mean C-score higher than 0.9 (black) 782 

and 20 sites lower than 0.9 (red). 783 

 784 

Figure 2. The most variable rRNA 2¶Ome sites are sufficient to distinguish differ-785 

ent HGG types. (A) Distribution of the interquartile range (IQR) of the C-score to de-786 

termine the C-score variability across HGG samples of the test cohort (n=40). rRNA 787 

2’Ome sites are ranked by increasing IQR value. The IQR distribution curve is plotted 788 

at the right-hand side of the graph. The “most variable sites” correspond to those with 789 

an IQR higher than median + 2 × median absolute deviation (mad) and were colored 790 

in red (19 sites). (B-D) Unsupervised Principal Component Analysis (PCA) based on 791 

C-scores of the 19 most variable sites as identified in (A). Independent PCA was per-792 

formed on IDHwt glioblastoma (G, pink circle), high-grade astrocytoma (A, green trian-793 

gle) and high-grade oligodendroglioma (O, purple diamond) samples of both test (B, 794 

n=40) and validation (n=23) cohorts. Validation cohort samples were projected on PCA 795 

of the test cohort (D). Percentage of variance explained by PC1 and PC2 are indicated. 796 

95 % confidence ellipsoids around the centroid of each group (larger pink circle, green 797 

triangle and purple diamond) are indicated.  798 

 799 

Figure 3. rRNA 2¶Ome levels are differently altered in HGG types. (A) Box plots 800 

showing the distribution of C-score in HGG and non-neoplastic samples of the test 801 

cohort for 16 rRNA 2’O-ribose methylated (2’Ome) sites that exhibited both statistically 802 

and biologically significant alterations between groups. These sites were identified us-803 

ing both Kruskal-Wallis statistical tests (with an adjusted p-value threshold of < 0.05) 804 
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and a mean ∆C-scoremax-min > 0.05 (absolute difference between the highest and low-805 

est mean C-score). The adjusted p-values corresponding to the statistical tests are 806 

indicated on the bottom left-hand side of each panel and median C-scores are repre-807 

sented by a black line within the box plots. (B) Pairwise comparison of mean C-score 808 

groups for the 16 significantly deregulated rRNA 2’Ome sites in the test cohort. Positive 809 

(UP) and negative (DOWN) ∆C-scoregroup1-group2 are shown in blue and red, respec-810 

tively. Adjusted p-values: *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001; ns, 811 

not significant. 812 

 813 

Figure 4. Expression profiles of RiBi factors distinguish HGG types. (A) Panel of 814 

genes involved in ribosome biogenesis constituting the 20 RiBi-gene set analyzed in 815 

HGG and non-neoplastic samples. Genes located on the short arm of chromosome 1 816 

(1p) or long arm of chromosome 19 (19q), which are heterozygously deleted in high-817 

grade oligodendrogliomas, are indicated. (B) A principal component analysis (PCA) 818 

based on the mRNA expression profile of the RiBi-gene set. Each dot represents a 819 

non-neoplastic (NT, grey square), IDHwt glioblastoma (G, pink circle), high-grade as-820 

trocytoma (A, green triangle) or high-grade oligodendroglioma (O, purple diamond) 821 

sample. Ellipsoids shows 90% confidence interval around the centroid (larger grey 822 

square, pink circle, green triangle, and purple diamond) of each group. Percentage of 823 

variance explained by PC1 and PC2 are indicated. (C) A heatmap showing Pearson’s 824 

correlation coefficients of PC1 to PC5 axes with the overall survival (OS), progression-825 

free survival (PFS) and mitotic index. R-values are depicted by different colors from -826 

0.6 (red, negative correlation) to 0.6 (blue, positive correlation). Significant correlations 827 

are indicated by an asterisk: **p < 0.01; ***p < 0.001.  828 

 829 

Figure 5. High-grade astrocytomas and oligodendrogliomas display the highest 830 

increased expression in ribosome biogenesis factors. Box plots showing relative 831 

mRNA expression levels determined by RT-qPCR analysis of the RiBi genes impli-832 

cated in rRNA (A) transcription and (B) maturation, (C) snoRNA biogenesis or associ-833 

ated to (D) H/ACA box and (E) C/D box snoRNAs in IDHwt glioblastomas (G, pink), 834 

high-grade astrocytomas (A, green), high-grade oligodendrogliomas (O, purple) and 835 

non-neoplastic (NT, grey) samples. FBL, PIH1D1 and RUVBL2 are located on chro-836 

mosomes 1p or 19q. 837 
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Figure 6. Glioma spheroids reveal distinct histomolecular type-dependent sen-838 

sitivity to ribosome biogenesis inhibitors. (A) Representative high-content screen-839 

ing microscopy images of 5706, N131520, BT138, BT237 and LGG85 cell line sphe-840 

roids treated or not (DMSO) with 10 PM of BMH-21 for 72 h. Hoechst and CellTox 841 

labelling are depicted in blue and green, respectively. Cell lines representative of glio-842 

blastomas, high-grade oligodendrogliomas and astrocytomas are shown in pink, pur-843 

ple and green, respectively. (B) Representative graphs indicating the viability percent-844 

age in response to increasing BMH-21 concentrations in 5706, N131520, BT138, 845 

BT237 and LGG85 cell line spheroids. Cell lines representative of IDHwt glioblasto-846 

mas, IDHmut oligodendrogliomas and astrocytomas are framed in pink, purple and 847 

green, respectively. (C) A table indicating means and standard deviations (SD) of 848 

BMH-21 IC50 calculated from graphs displayed in (B) (n=7). (D), (E) and (F) as in (A) 849 

(B) and (C), respectively, for CX5461 (n=3). 850 

 851 
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Abstract  65 

 66 

Background: High-grade adult-type diffuse gliomas (HGGs) constitute a heterogene-67 

ous group of aggressive tumors that are mostly incurable. Recent advances highlight-68 

ing the contribution of ribosomes to cancer development have offered new clinical per-69 

spectives. Here, we uncovered that IDHwt and IDHmut HGGs display distinct altera-70 

tions of ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogene-71 

sis, which could constitute novel hallmarks that can be exploited for the management 72 

of these pathologies. 73 

Methods: We analyzed (i) the ribosomal RNA 2¶O-ribose methylation (rRNA 2¶Ome) 74 

using RiboMethSeq and in-house developed bioinformatics tools 75 

(https://github.com/RibosomeCRCL/ribomethseq-nf and rRMSAnalyzer) on three inde-76 

pendent cohorts compiling 71 HGGs (IDHwt n=30, IDHmut n=41) and 9 non-neoplastic 77 

samples, (ii) the expression of ribosome biogenesis factors using medium throughput 78 

RT-qPCR as a readout of ribosome biogenesis, and (iii) the sensitivity of 5 HGG cell 79 

lines to RNA Pol I inhibitors (CX5461, BMH21).    80 

Results: Unsupervised analysis demonstrated that HGGs could be distinguished 81 

based on their rRNA 2¶Ome epitranscriptomic profile, with IDHwt glioblastomas dis-82 

playing the most significant alterations of rRNA 2¶Ome at specific sites. In contrast, 83 

IDHmut HGGs are largely characterized by an overexpression of ribosome biogenesis 84 

factors compared to non-neoplastic tissues or IDHwt glioblastomas. Finally, IDHmut 85 

HGG-derived spheroids display higher cytotoxicity to CX5461 than IDHwt glioblas-86 

toma, while all HGG spheroids display a similar cytotoxicity to BMH-21. 87 

Conclusion: In HGGs, IDH mutational status is associated with specific alterations of 88 

the ribosome biology and with distinct sensitivities to RNA Pol I inhibitors. 89 

 90 

 91 

  92 
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Importance of the study (146 words) 93 

 94 

Consistent multi-omics studies have shown that high-grade adult-type diffuse gliomas 95 

(HGGs) can be classified into three main groups, i.e., IDHmut and 1p/19q codeleted 96 

oligodendrogliomas, IDHmut astrocytomas and IDHwt glioblastomas, based on their 97 

genetic, transcriptomic and DNA methylation profiles. Recent advances have high-98 

lighted the contribution of ribosomes to cancer development and have offered new 99 

clinical perspectives. Herein, we show that ribosomal RNA (rRNA) epitranscriptomic 100 

and ribosome biogenesis are different in distinct HGG types. We uncovered that IDHwt 101 

glioblastomas display the most prominent defects in rRNA epitranscriptomics, whereas 102 

IDHmut astrocytomas and oligodendrogliomas exhibit enhanced expression of ribo-103 

some biogenesis factors compared to IDHwt glioblastomas. Moreover, based on their 104 

IDH mutational status, HGG-derived cell lines displayed distinct responses to CX5461 105 

and BMH-21, two clinically-evaluated inhibitors of the RNA Pol I that transcribes 106 

rDNAs. This study identifies a connection between HGG oncogenesis and the ribo-107 

some biology, and highlights new therapeutic strategies. 108 

          109 

  110 
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Introduction 111 

High-grade adult-type diffuse gliomas (HGGs) are brain tumors resembling glial cells 112 

that display highly heterogeneous prognoses and treatment responses. HGGs com-113 

prise three main histomolecular types, astrocytomas, oligodendrogliomas and glioblas-114 

tomas, based notably on the mutational status of isocitrate dehydrogenase (IDH) 1 and 115 

21,2. Indeed, glioblastomas are IDHwt, whereas astrocytomas and oligodendrogliomas 116 

are IDHmut, and can be further discriminated by the heterozygous 1p19q co-deletion 117 

occurring in oligodendrogliomas. IDHwt and IDHmut HGGs are associated with distinct 118 

epigenetic and transcriptomic dysregulations, leading to cancer-specific features. 119 

Thus, despite important advances in their histomolecular classification and under-120 

standing of their oncogenesis, HGGs remain mostly incurable. For instance, grade 4 121 

IDHwt glioblastoma patients treated with the conventional combination of surgery, ra-122 

diotherapy and temozolomide (TMZ) chemotherapy, display a median survival of only 123 

15 months. Grade 3 IDHmut astrocytoma and oligodendroglioma patients treated with 124 

radiotherapy and chemotherapy exhibit a much better outcome with a median survival 125 

of 10 and 15 years, respectively, nevertheless 20 to 30% of the patients die within the 126 

first five years after diagnosis3,4. Therefore, the identification of novel molecular mech-127 

anisms dysregulated in distinct HGG histomolecular types may significantly improve 128 

current therapeutic options. 129 

Several studies highlighted that ribosome biogenesis (RiBi) and functions are altered 130 

in cancer cells and that ribosomes can support oncogenic functions5. For instance, the 131 

c-MYC oncogenic activity is in part supported by a dysregulation of genes implicated 132 

in RiBi and global protein synthesis6. In addition, levels of RiBi are generally increased 133 

in cancer cells to support the high protein synthesis demand caused by their exacer-134 

bated proliferation rate7,8 and therefore, the inhibition of rRNA synthesis specifically 135 

kills cancer cells without affecting normal cells9,10. Such observations led to the devel-136 

opment of molecules specifically inhibiting RiBi that showed objective responses in 137 

clinical trials, such as CX546111–13.      138 

In addition to alteration of RiBi, recent observations suggest that variations of ribosome 139 

composition could also occur in cancer and be involved in disease etiology14–16. The 140 

ribosome is composed of 80 ribosomal proteins and 4 ribosomal RNAs (rRNAs), the 141 

latter supporting the enzymatic activity of the peptidyl-bond formation during the trans-142 

lation of mRNAs into proteins. For many decades, the ribosome was considered as a 143 

monolithic entity displaying a similar composition in all cells constituting an organism. 144 
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However, it appears now that the ribosome composition can display some degree of 145 

variations, both at the level of ribosomal proteins and rRNA chemical modifications, 146 

which contributes to modulate intrinsic translational activities that could shape particu-147 

lar phenotypes17,18. Variations of the ribosome composition at ribosomal protein levels 148 

have been reported in HGGs19–22. In IDHwt glioblastomas, the overexpression of the 149 

ribosomal protein RPS6 was shown to promote acquisition of glioma stem cell proper-150 

ties, a hallmark of the most aggressive IDHwt glioblastomas20–22. In addition, RPL22L1 151 

isoforms are expressed in distinct regions of IDHwt glioblastomas through alternative 152 

splicing and induce the production of ribosomes with specific compositions, which pro-153 

mote translational bias towards specific mRNA subsets15,19,23–30. In addition to riboso-154 

mal proteins, the chemical modifications of rRNA represent one of the major contribu-155 

tors to ribosome heterogeneity and led to the emergence of the notion of rRNA epi-156 

transcriptomics15. One of the main modifications, the methylation of the rRNA 2¶O-ri-157 

bose (rRNA 2¶Ome), occurs at 106 known rRNA sites in humans and the 2¶Ome at 158 

specific positions are essential for rRNA activity. The catalysis of rRNA 2¶Ome is per-159 

formed by an rRNA methylation complex composed of the methyl-transferase fibrillarin 160 

(FBL) and a single non-coding C/D box small nucleolar RNA (snoRNA or snoRD), 161 

which guides FBL at specific sites by base-pairing15. Hence, modulations of FBL or 162 

snoRD expression are sufficient to affect rRNA 2¶Ome23,24,26. Interestingly, alterations 163 

of 2¶Ome have been observed in cancer and we recently demonstrated by profiling 195 164 

primary mammary tumors using the RiboMethSeq approach, that only 40% of the 165 

known 2¶O-methylated sites are altered, suggesting that only few rRNA sites can tol-166 

erate a lack of 2¶Ome. Moreover, rRNA 2¶Ome alterations are not random since rRNA 167 

2¶Ome profiles were associated with breast cancer subtypes and tumor grades25. Sim-168 

ilarly, alterations of rRNA 2¶Ome were described in a cohort of 17 diffuse large B-cell 169 

lymphoma samples27 and of 94 acute myeloid leukemia samples28. Importantly, alter-170 

ations of rRNA 2¶Ome at some specific sites can affect both the translation of particular 171 

mRNA subsets and cell proliferation15,23,24,26 29,30. To date, whether alterations of rRNA 172 

epitranscriptomics occurs in gliomas and contributes to disease etiology remains un-173 

explored. Here, we investigated whether IDHwt and IDHmut HGGs display alterations 174 

in ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogenesis, to 175 

exploit these features as novel therapeutic targets of these diseases. 176 

 177 

 178 
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Materials and methods 179 

 180 

Human grade 3-4 adult-type diffuse glioma and non-neoplastic samples 181 

Three cohorts were built: a technical cohort (8 grade 4 IDHwt glioblastomas, 3 non-182 

tumoral samples); a test cohort detailed in Table 1 (13 IDHwt glioblastomas, 13 IDHmut 183 

astrocytomas, 14 IDHmut and 1p/19q codeleted oligodendrogliomas, 6 non-tumoral 184 

samples); a validation cohort (9 IDHwt glioblastomas, 6 IDHmut astrocytomas, 8 185 

IDHmut and 1p/19q co-deleted oligodendrogliomas). The percentage of tumoral cells 186 

was estimated by a neuropathologist as described in Fig.S1. Additional details are pro-187 

vided in Supplementary Information. 188 

 189 

Cell culture 190 

Human IDHwt glioblastoma (5706, N131520), IDHmut astrocytoma (LGG85) and 191 

IDHmut and 1p/19q codeleted oligodendroglioma (BT138, BT237) cells were cultured 192 

as spheres as described in Supplementary Information.  193 

 194 

Reverse Transcription and real time quantitative PCR 195 

cDNA synthesis was performed using the Prime Script RT Reagent kit (Takara). Me-196 

dium throughput qPCR was performed using the Biomark HD system (Fluidigm) as 197 

previously described31 (Table S1). The median Ct value of 5 housekeeping mRNAs 198 

was used for normalization.  199 

 200 

RiboMethSeq  201 

RiboMeth-seq was performed as previously described using the Illumina sequencing 202 

technology25,32. To process the sequencing data, a novel nextflow pipeline Ribo-203 

MethSeq-nf was developed and is currently available (https://github.com/Ri-204 

bosomeCRCL/ribomethseq-nf). This pipeline processes sequencing data as previ-205 

ously described25,32,33. To calculate the C-score, which reflects the rRNA 2¶Ome level, 206 

the novel R package rRMSAnalyzer was developed (https://github.com/Ri-207 

bosomeCRCL/rRMSAnalyzer). The identification of significant alterations in rRNA 208 

2¶Ome levels between groups was performed by applying two consecutive thresholds: 209 

the adjusted p-value < 0.05 (Kruskal-Wallis with FDR adjustment); and the mean ∆C-210 

score (i.e., difference between the highest and lowest mean C-score of the groups of 211 

interest) > 0.05.  212 
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IC50 assay 213 

3.103 cell spheroids were treated with CX5461 (Sigma-Aldrich)34 or BMH-21 (Sigma-214 

Aldrich)10. Cell cytotoxicity was assessed by CellToxTM Green Cytotoxicity Assay 215 

(Promega) and by CellTiter-Glo3D® luminescent cell viability assay (Promega). Cell 216 

viability was expressed as a percentage of the signal intensity normalized against 217 

DMSO (1%).  218 

 219 

 220 

Results 221 

 222 

A standardized approach for large-scale analyses of human samples using Ri-223 

boMethSeq  224 

Before investigating alterations of rRNA 2¶Ome in the three main histomolecular HGGs, 225 

we first optimized the recently described RiboMethSeq approach25,32,35 to determine 226 

reliable quantifications of 2¶Ome levels at 106 rRNA sites from patient tumor samples. 227 

First, based on the technical cohort (n=11) of IDHwt glioblastomas and non-neoplastic 228 

tissues, we observed that the C-score, which reflects rRNA 2¶Ome levels at specific 229 

sites, was similar using either a manual or an automated RNA extraction protocol 230 

(Fig.S2). Second, we used the NovaSeq Illumina sequencing platform (up to 10 billion 231 

reads) to increase the total number of useful reads (Fig.S3A) and the number of sam-232 

ples sequenced in a single flowcell.  233 

We then randomly separated RNA samples of the test cohort and prepared two inde-234 

pendent libraries of 23 samples (40 HGGs and 6 non-neoplastic samples), each library 235 

also contained a commercially-available “reference´ total RNA. Unsupervised analysis 236 

of the entire test cohort using PCA based on C-scores of either all rRNA positions 237 

(7055 sites) or the 106 positions corresponding to known rRNA 2¶Ome sites, clearly 238 

distinguished samples depending on the library of origin, as illustrated by the lack of 239 

clustering of reference RNA (Fig. S3B, left panels). We evaluated adjustment of Ribo-240 

MethSeq data using the ComBat-seq algorithm, one of the most routinely used tools 241 

to adjust RNA-seq data36. Upon ComBat-seq adjustment, no distinction between sam-242 

ples based on their library of origin was observed in C-scores, including for the two 243 

reference RNA (Fig.S3B, right panels). These data demonstrate the efficacy of the 244 

ComBat-seq algorithm at removing batch effect from RiboMethSeq data.  245 
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Based on these results, we developed bioinformatics tools to perform reproducible 246 

analyses of RiboMethSeq data arising from large-scale cohorts (https://github.com/Ri-247 

bosomeCRCL).   248 

 249 

rRNA 2¶Ome profiles discriminate IDHwt from IDHmut adult-type diffuse gliomas  250 

Using the optimized approach selected above, we then investigated whether altera-251 

tions of rRNA 2¶Ome differentially occur in the three main histomolecular HGGs using 252 

the test cohort: IDHwt glioblastoma (G, n=13), IDHmut astrocytoma (A, n=13), IDHmut 253 

and 1p19q codeleted oligodendroglioma (O, n=14) and non-neoplastic cerebral cortex 254 

(NT, n=6) (Table 1). Using unsupervised hierarchical clustering analysis (HCA), we 255 

first evaluated rRNA 2¶Ome levels at the 106 known sites in the 46 non-neoplastic and 256 

glioma samples (Fig.1). The C-score reflects the rRNA 2¶Ome levels as it corresponds 257 

to the ratio of the 5¶ read-end counts at a nucleotide position to the local 5¶ read-end 258 

count coverage; and when close to 1, C-score indicates that all rRNA molecules of the 259 

sample are 2¶O-methylated at this specific site; whereas a C-score below 0.9 reflects 260 

a mix of 2¶O-unmethylated and 2¶O-methylated rRNA molecules. Here, most rRNA 261 

2¶Ome sites had a score close to 1, albeit some sites were below 0.9, substantiating 262 

recent results in human samples from diffuse large B cell lymphoma, acute myeloid 263 

leukemia and breast cancer25,27,28. These data further confirmed observations by us 264 

and others that some rRNA molecules exist without 2¶Ome at some specific sites, in-265 

cluding in non-neoplastic tissue.  266 

Interestingly, all IDHwt glioblastoma samples formed a separate branch (left-hand side 267 

of the HCA dendrogram), suggesting that their rRNA 2¶Ome profile was clearly different 268 

from IDHmut astrocytoma and oligodendroglioma, as well as from non-neoplastic tis-269 

sue (Fig.1). Principal Component Analyses (PCAs) based on the rRNA 2¶Ome profile 270 

indicated that the PC2 axis (variance=14.1%) strongly differentiated glioblastomas 271 

from other samples (Fig.S4A). To ensure consistency between the results of our clas-272 

sification and the expected outcome of the patients, we correlated PCA axes with sur-273 

vivals and mitotic index, as an internal control of tumor sample classification. Con-274 

sistent with the known differences regarding glioblastomas and IDHmt HGGs charac-275 

teristics, PC2 was significantly correlated with the IDH1/2 mutational status, the mitotic 276 

index, overall survival (OS) and progression-free survival (PFS) (Fig.S4B-D). To vali-277 

date these observations, we analyzed rRNA 2¶Ome levels using RiboMethSeq on the 278 
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technical cohort, corresponding to an independent cohort composed of 8 IDHwt glio-279 

blastomas and 3 non-neoplastic tissues. Unsupervised PCA based on the rRNA 2¶Ome 280 

profile showed that IDHwt glioblastomas could once again be clearly separated from 281 

non-neoplastic tissues (Fig.S4E). Altogether, our data revealed that rRNA 2¶Ome lev-282 

els vary in HGGs as well as in non-neoplastic cerebral cortex, and that rRNA 2¶Ome 283 

profiles discriminate IDHwt glioblastomas not only from non-neoplastic tissues but also 284 

from IDHmut HGG types.  285 

 286 

Most variable rRNA 2¶Ome sites are sufficient to discriminate IDHwt glioblas-287 

toma from IDHmut adult-type diffuse gliomas 288 

To better characterize differences in rRNA 2¶Ome profiles between histomolecular 289 

HGG types, we then focused on the most variable rRNA 2¶Ome sites. To identify such 290 

sites, we compared the variability of C-scores at each single site among all HGG sam-291 

ples of the test cohort (n=40) using the distribution of the inter-quartile range (IQR). A 292 

set of 19 sites showed an IQR higher than median + 2 × median absolute deviation 293 

(mad) and were considered as the most variable rRNA 2¶Ome sites among HGGs (red, 294 

Fig.2A), in agreement with our recent findings that only a subset of rRNA sites displays 295 

variability in 2¶Ome levels25. Interestingly, PCAs indicated that rRNA 2¶Ome profiles 296 

based on this set of 19 sites are sufficient to discriminate IDHwt glioblastomas, IDHmut 297 

astrocytoma and oligodendrogliomas (Fig.2B).  298 

To validate these observations, we used a second, independent validation cohort of 299 

23 HGG samples (9 IDHwt glioblastomas, 6 IDHmut astrocytomas and 8 IDHmut, 300 

1p/19q codeleted oligodendrogliomas) (Fig.S1B). We performed an unsupervised 301 

analysis using the 19 most variable rRNA 2¶Ome sites identified using the test cohort 302 

(Fig.2A). As for the test cohort, unsupervised analyses of the validation cohort distin-303 

guished the three histomolecular subtypes of HGGs (Fig.2C). In addition, the projection 304 

of the validation cohort samples onto the PCA constructed from the test cohort enabled 305 

us to identify the histomolecular subtypes of each sample, suggesting that de novo 306 

profiling of rRNA 2¶Ome could help in the classification of HGGs (Fig.2D). In addition, 307 

comparison of test and validation cohorts in term of percentage of tumor cells suggests 308 

that the tumor heterogeneity did not affect our conclusions (Fig. S1B). Indeed, in the 309 

validation cohort, the mean percentage of tumor cells is significantly lower in astrocy-310 

tomas (38%) compared to oligodendrogliomas (69%), while no difference was ob-311 

served with glioblastomas (9%) (Kruskal-Wallis: p=0.045*; Mann-Whitney: A vs O 312 
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p=0.024*). In contrast, in the test cohort, the mean percentage of tumor cells is signif-313 

icantly lower in astrocytomas (38%) and oligodendrogliomas (39%) compared to glio-314 

blastomas (55%) (Kruskal-Wallis: p=0.034*; Mann-Whitney: A vs G p=0.0172*; O vs G 315 

p=0.0348*).  316 

These data further emphasize the specificity of IDHwt glioblastoma rRNA 2¶Ome pro-317 

files compared to IDHmut HGGs and suggest that IDHwt glioblastomas display strong 318 

alterations of rRNA 2¶Ome levels at some specific sites.  319 

 320 

Glioblastomas display the most frequent site-specific rRNA 2¶Ome alterations  321 

To identify rRNA sites whose 2¶Ome levels significantly differed between HGG histo-322 

molecular types and non-neoplastic tissues, we performed a systematic analysis of 323 

each of the 106 rRNA 2¶Ome sites using the test cohort and applied two consecutive 324 

thresholds, a Kruskal-Wallis test with adjusted p-values < 0.05 and a cut-off value for 325 

mean ǻC-scoresmax-min > 0.05. From this screen, only 16 rRNA 2¶Ome sites displayed 326 

a significant variation in their level of methylation in at least one HGG or non-neoplastic 327 

tissue (Fig.3). Pairwise comparisons for these 16 sites revealed that 4 and 6 sites dis-328 

played significant alterations in 2¶Ome levels in high-grade astrocytomas and high-329 

grade oligodendrogliomas, respectively, compared to non-neoplastic tissues (Fig.3B). 330 

In addition, rRNA 2¶Ome levels appeared to be significantly increased on 6 sites in 331 

high-grade astrocytomas compared to high-grade oligodendrogliomas. Similar altera-332 

tions in rRNA 2¶Ome levels between IDHwt and IDHmut tumours were observed using 333 

the validation cohort (Fig.S5A). Finally, the main differences could be attributed to gli-334 

oblastomas that displayed 12 and 14 of the 16 rRNA sites significantly altered com-335 

pared to non-neoplastic samples or high-grade astrocytoma and oligodendrogliomas, 336 

respectively. Strikingly, rRNA 2¶Ome levels were mostly lower in glioblastomas com-337 

pared to non-neoplastic tissues, high-grade astrocytoma or high-grade oligodendrogli-338 

omas (Fig.3A). The same overall decrease in rRNA 2¶Ome levels was confirmed in 339 

glioblastoma compared to non-neoplastic tissues using the technical cohort (Fig.S5B). 340 

Altogether, these results indicate that 2¶Ome levels are altered at specific rRNA sites 341 

in HGGs, while glioblastomas display the highest frequency of alterations in rRNA 342 

2¶Ome levels compared to non-neoplastic cerebral cortex and other HGG histomolec-343 

ular types. 344 

 345 
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Changes in C/D box snoRNA expression levels only partially explain alterations 346 

of rRNA 2¶Ome levels 347 

To investigate the origin of alterations of rRNA 2¶Ome in HGGs, we focused on the 348 

expression of C/D snoRNAs (snoRDs), which guide in a sequence-specific manner the 349 

methyl-transferase FBL toward the rRNA nucleotide to methylate. We thus examined 350 

the correlation between levels of rRNA 2¶Ome and related snoRDs. It was reported 351 

that snoRNA expression levels can be inferred from RiboMethSeq data37,38. Thus, we 352 

used RiboMethSeq raw data from the NovaSeq platform and applied an in-house pipe-353 

line to overcome limitations of snoRNA analysis by next-generation sequencing (see 354 

Supplementary methods)39,40. A strong and significant correlation (about 92%) be-355 

tween snoRNA levels either determined from RiboMethSeq or measured by RT-qPCR 356 

was observed in 9 glioma samples for 11 out of 12 selected snoRDs, thus validating 357 

our approach (Fig.S6A). Given that 2¶Ome at a single rRNA site is catalyzed either by 358 

one or several snoRD15,41, we restricted our analysis to the rRNA 2¶Ome sites (n=46) 359 

guided by a single snoRD. No significant correlation was observed between levels of 360 

rRNA 2¶Ome and of corresponding snoRDs among 37 sites (Fig.S6B). In contrast, a 361 

significant albeit relatively low positive correlation was observed for 9 pairs of 362 

snoRD/rRNA sites, the best correlation being that of the 18S-Am576 site and its asso-363 

ciated SNORD93 (padj=9.10-6, r=0.68) (Fig.S6B-C). Thus, alterations of rRNA 2¶Ome 364 

levels cannot be exclusively attributed to changes in C/D box snoRNA expression lev-365 

els. 366 

 367 

The expression profile of ribosome biogenesis factors discriminates IDHmut and 368 

IDHwt HGGs 369 

Since variations in snoRD expression levels cannot explain most of the changes ob-370 

served in rRNA 2¶Ome levels, we tested a novel hypothesis. Indeed, in cancer, varia-371 

tions of 2¶Ome levels in rRNAs are believed to passively arise from the link between 372 

ribosome biogenesis (RiBi) and concomitant rRNA chemical modifications, whereby 373 

changes in ribosome synthesis impact the rate-limiting rRNA 2¶Ome process and 374 

therefore influence 2¶Ome profiles15,25,27. Therefore, an overall decrease in rRNA 375 

2¶Ome levels observed in different cancer tissues may be caused by RiBi hyperactiva-376 

tion to sustain a high demand in protein synthesis necessary to support the highly pro-377 

liferative cancer cells. As IDHwt glioblastomas possess a higher proliferative rate than 378 

IDHmut astrocytoma and oligodendrogliomas, including in our test cohort (based on 379 
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the mitotic index) (Fig.S4C-D), we hypothesized that the decrease in rRNA 2¶Ome lev-380 

els at specific positions in IDHwt glioblastomas could be due to a rate-limiting 2¶Ome 381 

process caused by an exacerbated RiBi.  382 

To investigate RiBi dysregulations across HGGs, we initially applied a gold-standard 383 

approach by analyzing levels of the 47S rRNA precursor (pre-rRNA), using Northern 384 

blot (Fig.S7A). However, this approach using tumor samples was challenging, notably 385 

due to the need for a large quantity of biological materials. Nevertheless, in a panel of 386 

9 analyzable samples, IDHmut astrocytoma and oligodendrogliomas surprisingly 387 

seemed to express more pre-47S rRNAs than IDHwt glioblastomas. However, only two 388 

IDHwt glioblastoma samples were analyzed, therefore preventing us to draw any con-389 

clusion. To bypass this technical issue, we then measured the expression of a set of 390 

20 genes involved in the early RiBi stages (referred to as “RiBi-gene set´). To reflect 391 

as much as possible this multistep process involving more than 200 factors7, we se-392 

lected the RiBi-gene set implicated in the main RiBi process, including rRNA transcrip-393 

tion (NCL, NPM, POLR1A, TAF1A, TAF1B, TAF1C and UBTF), rRNA maturation 394 

(BOP1, PES1 and WDR12), snoRNA biogenesis (RUVBL1, PIDH1D1 and RUVBL2), 395 

and H/ACA (DKC1, GAR1, NHP2 and NOP10) and C/D box (NOP56, SNU13 and FBL) 396 

snoRNP complexes (Fig.4A). Of note, three genes (PIH1D1, RUVBL2 and FBL) are 397 

located on the long arm of chromosome 19 (19q), which undergoes a heterozygous 398 

deletion in high-grade oligodendrogliomas. A readout for RiBi at steady-state was de-399 

termined by quantifying mRNA expression levels of these selected genes by medium 400 

throughput RT-qPCR in our validation series. mRNA levels were normalized against 401 

the median mRNA expression of 5 housekeeping genes, which did not significantly 402 

vary among the four groups (Fig.S7B). 403 

To examine the association between expression levels of RiBi factors and HGGs, we 404 

first performed an unsupervised approach using a PCA based on the RiBi-gene set 405 

profile (Fig.4B). Interestingly, three main clusters were observed. A first large cluster, 406 

composed of both non-neoplastic tissues and IDHwt glioblastomas (NT/G cluster), was 407 

distinct from two other clusters corresponding to IDHmut oligodendrogliomas (O) and 408 

astrocytoma (A). PC1 (variance: 67.8%), in particular, separated the NT/G cluster from 409 

A/O clusters, while the PC2 (variance: 9%) distinguished the O cluster from others. 410 

These data suggest that the expression profile of only 20 RiBi factors discriminate 411 

HGGs.  412 
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To ensure consistency between the results of our classification and the expected out-413 

come of the patients, we first calculated Pearson¶s correlation coefficients between the 414 

first 5 PC dimensions and OS or PFS as an internal control (Fig.4C and Fig.S7C). 415 

Consistently, we observed a significant association exclusively for PC1 and PC2, indi-416 

cating that the clustering based on RiBi-gene set profiles provided by these two axes 417 

is sufficient to recapitulate all clinical data of interest. OS and PFS were significantly 418 

correlated with both PC1 and PC2 in a negative manner, indicating that samples clus-419 

tering at the right-hand side of the PC1 and top of PC2, i.e., IDHwt glioblastomas, 420 

display lower OS and PFS. Indeed, IDHwt glioblastoma patients exhibit the poorest 421 

OS (less than 30 months) and PFS (under 30 months), followed by IDHmut astrocy-422 

toma and oligodendroglioma patients that tend to cluster at the left part of PC1 and the 423 

top or bottom part of PC2, respectively.  424 

Strikingly, we also identified a strong correlation between PC1 and PC2 axes, and the 425 

IDH1/2 mutational and 1p/19q co-deletion status, respectively (Fig.S7D-E). Indeed, 426 

PC1 (G vs. A/O clusters) was significantly correlated with the IDH1/2 mutational status 427 

while PC2 (A/G vs. O clusters) segregated HGG tumors based on the 1p/19q co-dele-428 

tion status. Thus, expression profiling of the RiBi-gene set was strongly correlated with 429 

both clinical features and distinct genomic alterations of the HGG test cohort. Alto-430 

gether, these results suggest that the expression signature of only 20 genes involved 431 

in ribosome biogenesis is sufficient to discriminate IDHwt from IDHmut HGG histomo-432 

lecular types and that RiBi displays IDH mutational status-dependent alterations.  433 

 434 

Ribosome biogenesis factors are highly expressed in IDHmut adult-type diffuse 435 

gliomas  436 

Next, we individually compared mRNA expression levels of the 20 RiBi factors among 437 

the different HGGs (Fig.5 and Fig.S8A). Significant differences were observed in the 438 

expression of all tested RiBi factors between different groups (Mann Whitney test, 439 

Fig.S8A). Surprisingly, only a few RiBi genes were significantly differentially expressed 440 

in IDHwt glioblastomas compared to non-neoplastic samples (9 out of 20), with very 441 

moderate changes (d 2-fold change). In contrast, IDHmut astrocytoma and oligoden-442 

drogliomas significantly overexpressed most of these RiBi genes (19 and 16 out of 20 443 

RiBi genes, respectively). For instance, expression of NCL, which encodes a key factor 444 

in rRNA synthesis, increased by 2- and 3-fold in IDHmut astrocytoma and oligoden-445 

drogliomas, respectively (p < 0.001), while NCL expression levels in IDHwt samples 446 
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only slightly increased (Fig.5A and Fig.S8A). Likewise, the use of a second distinct set 447 

of primers to analyze NCL expression provided the exact same trend (Fig.S8B), there-448 

fore ruling out a potential technical caveat. These results suggest that ribosome bio-449 

genesis could be enhanced in IDHmut astrocytoma and oligodendrogliomas compared 450 

to IDHwt glioblastomas and non-neoplastic tissues.  451 

Interestingly, genes located on chromosome 19q (FBL, PIH1D1, RUVBL2) displayed 452 

a particular expression pattern (Fig.5C, 5E and Fig.S7E). Like other genes involved in 453 

RiBi, FBL, PIH1D1 and RUVBL2 were significantly overexpressed in IDHmut astrocy-454 

tomas compared to both IDHwt glioblastomas and non-neoplastic samples. However, 455 

mRNA expression levels in IDHmut oligodendrogliomas were lower than in IDHmut 456 

astrocytomas and displayed expression profiles resembling those of IDHwt glioblasto-457 

mas. Thus, FBL was highly expressed exclusively in IDHmut astrocytomas, whereas 458 

its expression levels were equivalent in IDHmut oligodendrogliomas and IDHwt glio-459 

blastomas, as confirmed by a second set of primers (Fig.S8B). Considering that 460 

IDHmut oligodendroglioma samples exhibited a heterozygous deletion of FBL, PIH1D1 461 

and RUVBL2 genes located on 1p/19q chromosomes, these data indicate that the spe-462 

cific expression profile observed for these genes in IDHmut oligodendrogliomas is 463 

likely due to a haploinsufficiency caused by genetic alterations. Interestingly, removal 464 

of these three genes in the RiBi-genes set still allowed us to distinguish IDHwt from 465 

IDHmut HGGs (data not shown), suggesting that copy number variation (CNVs) affect-466 

ing RiBi gene expression does not impact the distinction between IDHwt and IDHmut, 467 

as expected. Therefore, the ribosome biogenesis pathway is strongly enhanced in 468 

IDHmut gliomas, i.e., high-grade astrocytoma and oligodendroglioma, but remains 469 

moderately affected in IDHwt glioblastoma. 470 

 471 

HGGs display distinct cytotoxicity to RNA pol I inhibitors CX5461 and BMH-21   472 

Having identified an IDH mutational status-dependent alteration of RiBi in HGGs, we 473 

hypothesized that IDHmut and IDHwt HGGs display distinct cytotoxicity to RNA Pol I 474 

inhibitors, BMH-21 and CX5461, which inhibit the transcription of the 47S pre-rRNA 475 

and are promising new cancer treatments. We used a panel of 5 representative HGG 476 

cell lines, comprising IDHmut astrocytoma and IDHmut and 1p/19q codeleted oli-477 

godendroglioma cell lines (LGG85 and BT138/237, respectively) and IDHwt glioblas-478 

toma cell lines (5706 and N131520). Analyses of HGG spheroids in response to 72-479 
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hour treatments with RNA pol I inhibitors showed that all spheroids were similarly sen-480 

sitive to BMH-21 with an IC50 ranging from 1.06 to 1.56 PM (Fig.6A-C), as recently 481 

observed 42. However, CX5461 strongly impacted the viability of IDHmut astrocytoma 482 

and oligodendroglioma spheroids (IC50 ranging from 5.92 to 7.55PM), but not of IDHwt 483 

glioblastoma spheroids (Fig.6D-F). Hence, these results are consistent with our previ-484 

ous findings that IDHmut astrocytomas and oligodendrogliomas may be addicted to an 485 

enhanced RiBi pathway, therefore potentially sensitizing these AGD histomolecular 486 

types to clinically available RiBi inhibitors. Altogether, our results highlight the potency 487 

of RNA Pol I inhibitor usage as potential HGG therapy and further support an over-488 

activation of the RiBi pathway in IDHmut astrocytomas and oligodendrogliomas com-489 

pared to IDHwt glioblastomas and non-neoplastic tissues.  490 

 491 

 492 

Discussion 493 

High-grade adult-type diffuse gliomas (HGGs) are heterogeneous tumors associated 494 

with distinct, albeit poor, survival rates due to the lack of effective targeted therapies, 495 

in particular for the most aggressive histomolecular type, the IDHwt glioblastoma. 496 

Here, by performing the first concomitant analysis of rRNA 2¶Ome and ribosome bio-497 

genesis in primary tumors, we report distinct, uncoupled alterations of rRNA epitran-498 

scriptomics and ribosome biogenesis in IDHmut and IDHwt HGGs, therefore revealing 499 

specific dysregulations of the ribosome biology that constitute new IDH mutational sta-500 

tus-associated hallmarks of HGGs.  501 

In the last 7 years, alterations of rRNA 2¶Ome profiles have been reported using a 502 

newly developed approach RiboMethSeq in numerous cellular models and only in 503 

three types of cancers, namely breast cancer, acute myeloid leukemia and diffuse 504 

large-B cell lymphoma (DLBCL)15,25,27,28. Such alterations have been shown to be re-505 

stricted to only 40% of the known rRNA 2¶Ome sites, suggesting that only one third of 506 

the sites may possess regulatory functions on ribosome activity. We now show that 507 

rRNA 2¶Ome profiles also vary in HGGs. As previously observed in other cancers, only 508 

a small subset of known rRNA 2¶Ome sites display variability in their 2¶Ome levels in 509 

HGGs, suggesting these positions can tolerate absence of 2¶Ome. The 19 most varia-510 

ble rRNA 2¶Ome sites were randomly distributed on the ribosome structure, suggesting 511 

no coordinated effects on functional domains of the ribosome. Notably, similar in-512 

creases in rRNA 2¶Ome levels at 18S_Am576 and decreases at 18S_Gm1447 were 513 
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observed in the most aggressive HGG type, glioblastoma, and breast cancer subtypes 514 

(triple negative or TNBC), suggesting a link between these sites and cancer aggres-515 

siveness25. A recent study demonstrated that alterations of 2¶Ome levels at a single 516 

rRNA site are sufficient to affect cell proliferation, a hallmark of cancer aggressive-517 

ness26. Moreover, rRNA 2¶Ome at 18S_Gm1447 was recently shown to support leuke-518 

mic stem cell functions by modulating translation28. Hence, whether these rRNA 2¶Ome 519 

sites common to both HGGs and breast cancer contribute to the acquisition of cancer 520 

cell characteristics remains to be deciphered and could potentially represent new tar-521 

getable vulnerabilities. 522 

In IDHwt glioblastomas, alterations in rRNA 2¶Ome levels mostly correspond to a de-523 

crease as observed in both the test and validation cohorts. In DLBCL, the global de-524 

crease in rRNA 2¶Ome levels was correlated with the Ki67-estimated high proliferative 525 

rate of tumors. One hypothesis was that low rRNA 2¶Ome levels indirectly resulted from 526 

an increase in rRNA synthesis associated with the hyperproliferative rate of cancer 527 

cells, which rendered components of the rRNA 2¶Ome machinery limiting, although 528 

rRNA synthesis was not analyzed27. Consistently, we observed specific alterations of 529 

rRNA 2¶Ome in IDHwt glioblastomas, which are the most proliferative tumors and dis-530 

play the highest mitotic index in our test cohort. However, we surprisingly observed an 531 

elevated ribosome biogenesis in IDHmut astrocytomas and oligodendrogliomas com-532 

pared to glioblastomas, suggesting that RiBi levels are not correlated with the prolifer-533 

ative rate, at least in HGGs, and cannot solely explain alterations of rRNA epitran-534 

scriptomics in HGGs. Even though the rate of ribosome biogenesis may contribute to 535 

regulating rRNA 2¶Ome through a passive effect, additional molecular mechanisms 536 

should be further explored to identify the origin of rRNA 2¶Ome alterations in cancer 537 

and understand the observed rRNA site- and cancer type-specificity. The mechanisms 538 

may include alterations of expressions and/or activities of RNA-binding proteins, such 539 

as DDX21 and FMRP, which contribute to the formation of bona fide functional snoRNP 540 

complexes29,43. Here, we report that alterations of C/D box snoRNA expression could 541 

be sufficient to explain alterations of rRNA 2¶Ome levels at some, but not all, rRNA 542 

sites. The evolution of annotation and/or knowledge in biology of C/D box snoRNAs 543 

may fill the gap to better understand causes of rRNA 2¶Ome alterations in cancer. Al-544 

together, our findings that main HGG histomolecular types are associated with altera-545 

tions in either ribosome quantity or quality, challenge the hypothesis that the decrease 546 
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in rRNA 2¶Ome levels mainly results from a passive effect caused by an exacerbated 547 

ribosome biogenesis.  548 

Our data reveal that IDHmut HGGs, including both high-grade astrocytoma and oli-549 

godendroglioma, display the highest expression of ribosome biogenesis factors, sug-550 

gesting an increase in ribosome biogenesis. Whether dysregulations of IDH1/2 func-551 

tions, notably through the production of the oncometabolite D-2-hydroxyglutarate, 552 

could directly impact the regulation of ribosome biogenesis would need to be further 553 

explored. Nevertheless, the specificity of ribosome biogenesis alterations in HGGs of-554 

fers novel perspectives for clinical applications. Building on our observations, we found 555 

that HGGs are sensitive to the newly developed RNA pol I inhibitors, CX5461 and 556 

BMH-21, the former being successfully evaluated in clinical trials in advanced solid and 557 

hematological cancers7. Sensitivity of HGGs to RNA pol I inhibitors CX5461 and BMH-558 

21 has already been reported42,44,45, even though discrepancies regarding the sensi-559 

tivity of glioblastomas to CX5461 exist between our data and previous ones, possibly 560 

due to differences in experimental settings and genetic backgrounds of tested cell 561 

lines. In particular, the 3D culture conditions could decrease drug sensitivity compared 562 

to 2D culture conditions, as already reported46. In addition, the differential sensitivity of 563 

glioblastomas to CX5461 and BMH-21 could be attributed to off-target effects of these 564 

molecules as these RNA Pol I inhibitors act through distinct mechanisms and are 565 

known to affect several cellular pathways, including DNA repair10,34,47. Thus, whether 566 

the activity of these compounds may also rely on the genetic background of tested 567 

models impacting the different sensitivities of HGG types to CX5461 and BMH-21, 568 

should be further investigated. 569 

Altogether, our data indicate that alterations of the ribosome biology in HGGs are de-570 

pendent on the IDH mutational status and could represent targetable features in clinic. 571 

Thus, recent discoveries in the field of ribosomes have opened new avenues not only 572 

for a better understanding of cellular processes that contribute to HGG development 573 

and aggressiveness but also for designing future HGG type-specific therapeutic strat-574 

egies.  575 
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Figure Legends 772 

 773 

Figure 1. rRNA 2¶Ome levels vary in high-grade adult-type diffuse gliomas. An 774 

unsupervised hierarchical clustering of C-scores at the 106 known rRNA 2¶O-ribose 775 

methylated (2¶Ome) sites was performed in a test cohort of 40 high-grade (3-4) adult-776 

type diffuse glioma (HGG) samples and 6 non-tumoral, non-neoplastic cerebral cortex 777 

(NT) samples. C-scores are represented by a color scale from 0 (black) to 1 (yellow). 778 

IDHwt glioblastomas (G), high-grade astrocytomas (A), high-grade oligodendrogli-779 

omas (O) and non-neoplastic (NT) samples are depicted in pink, green, purple, and 780 

grey, respectively. The mean C-score for each site across the 46 samples is shown on 781 

the right-hand side of the graph. 86 sites have a mean C-score higher than 0.9 (black) 782 

and 20 sites lower than 0.9 (red). 783 

 784 

Figure 2. The most variable rRNA 2¶Ome sites are sufficient to distinguish differ-785 

ent HGG types. (A) Distribution of the interquartile range (IQR) of the C-score to de-786 

termine the C-score variability across HGG samples of the test cohort (n=40). rRNA 787 

2¶Ome sites are ranked by increasing IQR value. The IQR distribution curve is plotted 788 

at the right-hand side of the graph. The “most variable sites´ correspond to those with 789 

an IQR higher than median + 2 × median absolute deviation (mad) and were colored 790 

in red (19 sites). (B-D) Unsupervised Principal Component Analysis (PCA) based on 791 

C-scores of the 19 most variable sites as identified in (A). Independent PCA was per-792 

formed on IDHwt glioblastoma (G, pink circle), high-grade astrocytoma (A, green trian-793 

gle) and high-grade oligodendroglioma (O, purple diamond) samples of both test (B, 794 

n=40) and validation (n=23) cohorts. Validation cohort samples were projected on PCA 795 

of the test cohort (D). Percentage of variance explained by PC1 and PC2 are indicated. 796 

95 % confidence ellipsoids around the centroid of each group (larger pink circle, green 797 

triangle and purple diamond) are indicated.  798 

 799 

Figure 3. rRNA 2¶Ome levels are differently altered in HGG types. (A) Box plots 800 

showing the distribution of C-score in HGG and non-neoplastic samples of the test 801 

cohort for 16 rRNA 2¶O-ribose methylated (2¶Ome) sites that exhibited both statistically 802 

and biologically significant alterations between groups. These sites were identified us-803 

ing both Kruskal-Wallis statistical tests (with an adjusted p-value threshold of < 0.05) 804 



 
Manuscript Number: N-O-D-23-00144R1 
 

25 
 

and a mean ∆C-scoremax-min > 0.05 (absolute difference between the highest and low-805 

est mean C-score). The adjusted p-values corresponding to the statistical tests are 806 

indicated on the bottom left-hand side of each panel and median C-scores are repre-807 

sented by a black line within the box plots. (B) Pairwise comparison of mean C-score 808 

groups for the 16 significantly deregulated rRNA 2¶Ome sites in the test cohort. Positive 809 

(UP) and negative (DOWN) ∆C-scoregroup1-group2 are shown in blue and red, respec-810 

tively. Adjusted p-values: *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001; ns, 811 

not significant. 812 

 813 

Figure 4. Expression profiles of RiBi factors distinguish HGG types. (A) Panel of 814 

genes involved in ribosome biogenesis constituting the 20 RiBi-gene set analyzed in 815 

HGG and non-neoplastic samples. Genes located on the short arm of chromosome 1 816 

(1p) or long arm of chromosome 19 (19q), which are heterozygously deleted in high-817 

grade oligodendrogliomas, are indicated. (B) A principal component analysis (PCA) 818 

based on the mRNA expression profile of the RiBi-gene set. Each dot represents a 819 

non-neoplastic (NT, grey square), IDHwt glioblastoma (G, pink circle), high-grade as-820 

trocytoma (A, green triangle) or high-grade oligodendroglioma (O, purple diamond) 821 

sample. Ellipsoids shows 90% confidence interval around the centroid (larger grey 822 

square, pink circle, green triangle, and purple diamond) of each group. Percentage of 823 

variance explained by PC1 and PC2 are indicated. (C) A heatmap showing Pearson¶s 824 

correlation coefficients of PC1 to PC5 axes with the overall survival (OS), progression-825 

free survival (PFS) and mitotic index. R-values are depicted by different colors from -826 

0.6 (red, negative correlation) to 0.6 (blue, positive correlation). Significant correlations 827 

are indicated by an asterisk: **p < 0.01; ***p < 0.001.  828 

 829 

Figure 5. High-grade astrocytomas and oligodendrogliomas display the highest 830 

increased expression in ribosome biogenesis factors. Box plots showing relative 831 

mRNA expression levels determined by RT-qPCR analysis of the RiBi genes impli-832 

cated in rRNA (A) transcription and (B) maturation, (C) snoRNA biogenesis or associ-833 

ated to (D) H/ACA box and (E) C/D box snoRNAs in IDHwt glioblastomas (G, pink), 834 

high-grade astrocytomas (A, green), high-grade oligodendrogliomas (O, purple) and 835 

non-neoplastic (NT, grey) samples. FBL, PIH1D1 and RUVBL2 are located on chro-836 

mosomes 1p or 19q. 837 
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Figure 6. Glioma spheroids reveal distinct histomolecular type-dependent sen-838 

sitivity to ribosome biogenesis inhibitors. (A) Representative high-content screen-839 

ing microscopy images of 5706, N131520, BT138, BT237 and LGG85 cell line sphe-840 

roids treated or not (DMSO) with 10 PM of BMH-21 for 72 h. Hoechst and CellTox 841 

labelling are depicted in blue and green, respectively. Cell lines representative of glio-842 

blastomas, high-grade oligodendrogliomas and astrocytomas are shown in pink, pur-843 

ple and green, respectively. (B) Representative graphs indicating the viability percent-844 

age in response to increasing BMH-21 concentrations in 5706, N131520, BT138, 845 

BT237 and LGG85 cell line spheroids. Cell lines representative of IDHwt glioblasto-846 

mas, IDHmut oligodendrogliomas and astrocytomas are framed in pink, purple and 847 

green, respectively. (C) A table indicating means and standard deviations (SD) of 848 

BMH-21 IC50 calculated from graphs displayed in (B) (n=7). (D), (E) and (F) as in (A) 849 

(B) and (C), respectively, for CX5461 (n=3). 850 

 851 



Table 1. Clinical characteristics of patients with high-grade primary diffuse 
gliomas constituting the test cohort 

        

  Glioblastoma 
Astrocytoma 
grade 3/4 

Oligodendroglioma 
grade 3 

  (n=13) (n=13) (n=14) 

Age (years) 
mean [min-max] 

 60 [52-73] 36 [25-52]  53 [35-66]  

Gender       

     Female 4 (31%) 4 (31%) 5 (36%) 

     Male 9 (69%) 9 (69%) 9 (64%) 

Tumor location       

     Temporal 3 (23.1%) 3 (23.1%) 2 (14.3%) 

     Frontal 7 (53.8 %) 10 (76.9%) 12 (85.7%) 

     Occipital 1 (7.7%) 0 (0%) 0 (0%) 

     Parietal 2 (15.4%) 0 (0%) 0 (0%) 

Genetic alteration       

     mutation IDH1/2  0 (0%)  13 (100%) 14 (100%)  

     del 1p/19q 0 (0%) 0 (0%) 14 (100%) 

     ATRX- NA 12 (92.3%) 0 (0%) 

Progression       

     Yes 12 (92.3%) 5 (38.5%) 3 (21.4%) 

     No 0 (0%) 8 (61.5%) 11 (78.6%) 

     NA 1 (7.7%) 0 (0%) 0 (0%) 

Tumor cells (%) 
mean [min-max] 

55 [30-85] 38 [20-60] 40 [20-70] 
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Supplementary Materials and Methods  47 

 48 

Cell culture 49 

Human IDHwt glioblastoma 5706 and N131520 (from Dr A Idbaih), IDHmut 50 

astrocytoma LGG85 (from Dr JP Hugnot), and IDHmut and 1p/19q codeleted 51 

oligodendroglioma BT138 and BT237 (from Dr K Ligon) cell lines were cultured as 52 

spheres in Ultra Low Attachment 6-well plates (Dutscher) to inhibit cell adhesion and 53 

promote sphere formation. Spheroids were passaged at most 30 times by enzymatic 54 

dissociation (Accumax, Sigma-Aldrich,). Glioblastoma and astrocytoma spheroids 55 

were cultured in DMEM/F12 medium (Gibco) supplemented with 1X B27 and 1X N2 56 

supplement (Fisher Scientific), 20 ng/mL bFGF (Miltenyi), 20 ng/mL EGF (Miltenyi) and 57 

1X Penicillin/Streptomycin (Gibco). Oligodendroglioma spheroids were cultured in 58 

NeuroCult NS-A Proliferation medium (STEMCELL technologies) supplemented with 59 

20 ng/mL bFGF, 20 ng/mL EGF and 1X Penicillin/Streptomycin. 60 

 61 

Human grade 3-4 adult-type diffuse glioma and non-neoplastic samples 62 

Three cohorts were build using tumoral and non-neoplastic samples collected between 63 

2010-2016 (NeuroBioTec, CRB HCL, Lyon, France, Biobank BB-0033-00046). First, a 64 

technical cohort containing 11 samples, including 8 grade 4 IDHwt glioblastoma (G) 65 

and 3 non-tumoral (NT) samples (epilepsy surgery), was selected. Second, a test 66 

cohort was composed of 40 high-grade (3-4) primary adult-type diffuse glioma samples 67 

and comprised 13 IDHwt glioblastomas (G, annotated G1 to G13), 13 IDHmut 68 

astrocytomas (grade 3 n=9, grade 4 n=4) (A, A1 to A13) and 14 IDHmut and 1p/19q 69 

codeleted oligodendrogliomas (grade 3) (O, A1 to A14) (WHO 2021 classification) 70 

(Table 1). Six non-tumoral (NT) control samples were provided by patients without 71 

diagnosed brain neoplastic events between 2003-2015 (epilepsy surgery for tuberous 72 

sclerosis complex n=3 or for other cause n=2, autopsy n=1). Finally, a validation cohort 73 

was composed of 23 high-grade (3-4) gliomas, including 9 IDHwt glioblastomas (G, 74 

annotated Ga to Gi), 6 IDHmut astrocytomas (grade 3 n=5, grade 4 n=1) (A, Aa to Af) 75 

and 8 IDHmut and 1p/19q co-deleted oligodendrogliomas (grade 3) (O, Oa to Oh). 76 

The percentage of tumoral cells was estimated by a neuropathologist using Carbolic 77 

Toluidine Blue staining (RAL Diagnostics) during RNA preparation (Fig.S1). HGGs 78 

were classified using an integrated histomolecular algorithm according to WHO 2021 79 
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classification, e.g., IDH-R132H immunostaining followed by IDH1/2 targeted Next 80 

Generation Sequencing. In the test cohort, tumor samples were associated with clinical 81 

data, including the IDH1/2 mutational status, the mitotic index and patient survival 82 

(Table 1). Overall survival (OS) was defined as the survival duration from the date of 83 

surgery (biopsy or surgery) to either the date of death or last follow-up. Progression-84 

free survival (PFS) corresponded to the survival duration from the date of surgery 85 

(biopsy or surgery) to either the date of radiological tumor progression, death, or last 86 

follow-up. Patients were informed and written consent of all participants was obtained 87 

in accordance with French regulations. 88 

 89 

Sample preparation and RNA purification  90 

Approximately 15 to 30 frozen 10 µm sections were cut on a cryostat (Leica Biosystems 91 

CM3050S) (Supplementary Figure S1A). The first, last and every 30th section of each 92 

sample were stained with Carbolic Toluidine Blue (RAL Diagnostics) to assess sample 93 

homogeneity and, when required, to estimate the percentage of tumoral cells before 94 

RNA purification (Supplementary Figure S1B). Total RNA was extracted using either 95 

the Maxwell RSC simplyRNA Tissue Kit (Promega) on a Maxwell RSC Instrument 96 

(Promega) configured with Low Elution Volume (LEV) hardware according to the 97 

manufacturer¶s protocol or TRIzol (Invitrogen) according to manufacturer¶s instructions. 98 

RNA quality and concentrations were measured using a Nanodrop 2000 99 

Spectrophotometer (ThermoScientific). 100 

 101 

RiboMethSeq  102 

RiboMeth-seq was performed as previously described using the Illumina sequencing 103 

technology25,32. Briefly, total RNA was fragmented under alkaline conditions prior to 104 

the preparation of 24 sample libraries using the NEBNext Multiplex Small RNA Library 105 

kit (New England Biolabs). A calibrated source of total RNA (Human Xpress Ref 106 

Universal Total RNA, Qiagen) was introduced in each library. In contrast to previous 107 

studies, sequencing was performed using an Illumina NovaSeq sequencer in single-108 

end mode (SR50), in order to sequence up to 48 samples (equivalent to 2 libraries) 109 

per run with a median sequencing depth of 40 million reads per sample.  110 

To process the sequencing data, a novel nextflow pipeline RiboMethSeq-nf was 111 

developed and is currently available (https://github.com/RibosomeCRCL/ribomethseq-112 

nf). This pipeline processes sequencing data as previously described25,32,33. Briefly, 113 
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fastQC was used to verify sequencing quality and adapter removal was performed 114 

using Trimmomatic. The trimmed reads were aligned by Bowtie2 on the 7.2 kb-long 115 

rRNA sequence of reference (NR_046235) and the 5¶ read-ends were computed using 116 

bedtool genomcov utility. To calculate the C-score, which reflects the rRNA 2¶Ome 117 

level, the novel R package rRMSAnalyzer was developed 118 

(https://github.com/RibosomeCRCL/rRMSAnalyzer). The C-score was calculated 119 

using a normalization against the median raw counts of neighboring +/- 6 nucleotide 120 

window25.  121 

The C-scores of the 106 admitted rRNA 2¶Ome sites were extracted for further 122 

analysis, either as a rRNA 2¶Ome profile or as a site-by-site comparison. The most 123 

variable rRNA 2¶Ome sites were identified using the distribution of the inter quartile 124 

range (IQR) of each site across the test cohort samples25, the sites having an IQR 125 

higher than median + 2 × median absolute deviation (mad) being defined as the most 126 

variable ones. The identification of significant alterations in rRNA 2¶Ome levels 127 

between groups was performed by applying two consecutive thresholds: the adjusted 128 

p-value < 0.05 (Kruskal-Wallis with FDR adjustment); and the mean ¨C-score (i.e., 129 

difference between the highest and lowest mean C-score of the groups of interest) > 130 

0.05.  131 

 132 

Batch effect adjustment of RiboMethSeq data using ComBat-Seq 133 

Batch effect adjustment of RiboMethSeq data was performed using 5¶ read-end count 134 

matrix as input for ComBat-seq1. As currently reported for RNA-seq data, a batch effect 135 

between two libraries may be observed using RiboMethSeq. ComBat-seq tool was 136 

developed to adjust batch effect in RNA-seq data following a negative binomial 137 

distribution and both its input and output are integer counts. ComBat-seq was used 138 

with default parameter settings. This process produces an adjusted 5¶ read-end count 139 

matrix that is then used to calculate the C-score as described above. Adjustment of 140 

RiboMethSeq data using Combat-seq has been included in the rRMSAnalyser R 141 

package as an optional function (https://github.com/RibosomeCRCL/rRMSAnalyzer). 142 

 143 

Reverse Transcription and real time quantitative PCR 144 

cDNA synthesis was performed using the Prime Script RT Reagent kit (Takara) from 145 

500 ng or 200 ng of total RNA for real time and medium throughput qPCR, respectively. 146 

Gene expression was evaluated by medium throughput qPCR using the Biomark HD 147 
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system (Fluidigm), as previously described21, and according to the manufacturer¶s 148 

instructions. For each sample, two independent reverse transcription reactions were 149 

performed. A PCR multiplex was first carried out to amplify genes of interest and 150 

facilitate their detection (Table S1). After exonuclease I treatment, qPCR reactions 151 

were performed on a 96.96 Dynamic Array™ IFC (Fluidigm) using the Master Mix 2X 152 

EvaGreen (Biorad) according to manufacturer¶s recommendations, in technical 153 

triplicates. The Fluidigm Real Time PCR Analysis software (v 4.5.2) was used for the 154 

calculation of relative fold-changes by applying the 2-'CT method based on a total of 6 155 

Ct values per sample. The median Ct value of 5 housekeeping mRNAs (ACTIN, 156 

GAPDH, HPRT1, PGK1, PPIA) was used for normalization. Data were then normalized 157 

against Human Xpress Ref Universal Total RNA (Qiagen) as a standard RNA.  158 

Real time qPCR was performed using SYBR Green (Roche, Applied Biosystem) 159 

according to the manufacturer¶s protocol. Serial dilutions were systematically included 160 

to calculate qPCR efficacy, verify amplification linearity, and calculate relative cDNA 161 

concentrations. Relative fold-change was calculated as described above using PPIA 162 

mRNA levels to normalize SNORD levels. 163 

 164 

Northern blot 165 

RNA samples were analyzed by northern blot as previously described 2. Briefly, total 166 

RNAs were resolved by electrophoresis on 1.2% agarose, 6% formaldehyde, 0.02ௗM 167 

3-(N-morpholino)propanesulfonic acid (MOPS) gels. Transfers were performed by 168 

capillarity on a nylon membrane (Nytran SuperCharge, Whatman) with 10X SSC (1.5 169 

M sodium chloride, 0.15 M sodium citrate, pH 7.0). Membranes were incubated 170 

overnight at 42°C with hybridization buffer (ULTRAhyb¥-Oligo, Invitrogen) containing 171 

Dy682-conjuagted human E-actin (10 nM) and Dy782-conjugated 47S pre-rRNA (50 172 

nM) DNA probes. Membranes were washed four times with 0.1X SSC and 0.1% SDS 173 

before signal exposure on ChemiDoc MP (Bio-Rad). Quantification was performed 174 

using Image Lab software (Bio-Rad) and relative 47S pre-rRNA levels were 175 

determined by normalization against E-actin mRNA levels.  176 

E-actin probe 1: 5¶-Dy682-TTGCACATGCCGGAGCCGTTGTCGACGAC-3¶ 177 

E-actin probe 2: 5¶-Dy682-CACACGCAGCTCATTGTAGAAGGTGTGGTGCC-3¶ 178 

E-actin probe 3 5¶-Dy682-CGTACATGGCTGGGGTGTTGAAGGTCTCAAACAT-3¶ 179 

47S ribosomal RNA probe:  180 
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5¶-Dy782-181 

CGGAGGCCCAACCTCTCCGACGACAGGTCGCCAGAGGACAGCGTGTCAGC-3¶ 182 

 183 

snoRNA quantification using RiboMethSeq data 184 

SnoRNAs were quantified from RiboMethSeq datasets as previously described 3. 185 

Briefly, Trimmomatic was used to remove adaptors and low-quality reads 4. Trimmed 186 

reads were aligned with STAR 5 to the human genome assembly (Ensembl hg38 V101) 187 

using our custom annotation (based on Ensembl hg38 V101) containing added 188 

snoRNAs 189 

(https://zenodo.org/record/4570182/files/hg38_Ensembl_V101_Scottlab_2020.gtf) 6. 190 

Counts were attributed to genomic features using CoCo 7 and our custom annotation.  191 

 192 

IC50 assay 193 

Approximately 3.103 cells per well were seeded onto 96-well microplates Ultra Low 194 

Attachment (Corning, 4515) in triplicate to form spheroids. After overnight incubation, 195 

spheroids were treated with seven or nine doses of CX5461 (Sigma-Aldrich)24 or BMH-196 

21 (Sigma-Aldrich)25, respectively, at constant final DMSO concentrations (1%). After 197 

72 h, cell cytotoxicity was assessed by CellToxTM Green Cytotoxicity Assay (Promega), 198 

according to the manufacturer¶s instructions, followed by imaging using Opera 199 

Phoenix® Plus High-Content Screening System, and by CellTiter-Glo3D® luminescent 200 

cell viability assay (Promega) quantified with Spark® microplate to determine the IC50. 201 

Cell viability was expressed as a percentage of the signal intensity normalized against 202 

DMSO (1%).  203 

 204 

Statistical methods 205 

Data and statistical analyses of both RT-qPCR and RiboMethSeq as well as graphical 206 

representation, were performed using R (v 4.1.2). Unsupervised data analysis was 207 

achieved by hierarchical clustering and principal component analysis (PCA). 208 

Hierarchical clustering was generated with the ComplexHeatmap package using 209 

Manhattan distance and Ward¶s linkage method. PCA was computed using ade4 210 

package with the default parameters and visualized via factoextra package. To 211 

correlate the first 5 principal components (PCs) of the PCA on gene expression or 212 

rRNA 2¶Ome profiles with the clinical features (OS, PFS, mitotic index), the 213 
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eigencorplot function of PCAtools package was used. Pearson¶s correlation coefficient 214 

and the False Discovery Rate (FDR) method for the adjusted p-values were applied.  215 

Pairwise comparison between groups was performed using non-parametric Wilcoxon 216 

rank-sum test, or Kruskal-Wallis test when more than 2 groups were identified. The 217 

FDR method was used for p-value adjustment when multiple tests were undertaken. A 218 

p-value < 0.05 was considered to be statistically significant. Regarding the rRNA 219 

2¶Ome, in addition to a significant adjusted p-value, a mean ̈ C-score greater than 0.05 220 

was considered for identifying differentially methylated 2¶Ome rRNA 2¶Ome sites, the 221 

¨C-score corresponding to the difference between the highest and the lowest mean C-222 

score of the groups of interest.  223 

Cell viability and IC50 were determined using the log(inhibitor) vs. response variable 224 

slope sigmoidal (four PL) function of GraphPad Prism (v 9.5.0 (525)). 225 

 226 

 227 

  228 
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Supplementary Table 1. RT-qPCR primer sequences  258 

*Housekeeping genes 259 

 260 

Genes Forward primer Reverse primer Genomic 
location 

*Actin 5¶-CCAACCGCGAGAAGATGA-3¶ 5¶-TCCATCACGATGCCAGTG-3¶ 7p22.1 
BOP1 5¶-GACGATCCTGACTACTGGCG-3¶ 5¶-ACCTGCTCATCCGTCAGTCT-3¶ 8q24.3 
DKC1 5¶-CCCTTTGGAAAAGCTGTTGA-3¶ 5¶-TAATCTTGGCCCCATAGCAG-3¶ Xq28 
FBL #1  5¶-CCTGGGGAATCAGTTTATGG-3¶ 5¶-CCAGGCTCGGTACTCAATTTT-3¶ 19q13.2 
FBL #2 5¶-CCTGCGTAATGGAGGACACT-3¶ 5¶-GCTGAGGCTGTGGAGTCAAT-3¶ 
*GAPDH 5¶-AGCCACATCGCTCAGACAC-3¶ 5¶-GCCCAATACGACCAAATCC-3¶ 12p13.31 
GAR1 5¶-CAAGACCAAGGACCTCCAGA-3¶ 5¶-TCATCTTCACAGGGATGCAG-3¶ 4q25 
*HPRT1 5¶-TGACACTGGCAAAACAATGCA-3¶ 5¶-GGTCCTTTTCACCAGCAAGCT-3¶ Xq26.2 
NCL #1 5¶-CCAGAACCAAAATGGCAAAT-3¶ 5¶-CTGATTGCTCTGCCCTCAAT-3¶ 2q37.1 
NCL #2 5¶-GTCAGCAAGGATGGGAAAAG-3¶ 5¶-TAGATCGCCCATCGATCTCT-3¶ 
NHP2 5¶-GGTCAACCAGAACCCCATC-3¶ 5¶-TTCTGCTTCACCGCTTTCTT-3¶ 5q35.3 
NOP10 5¶-GAAGAAATTTGACCCGATGG-3¶ 5¶-TGAAGCGTTTCTTGATGGTG-3¶ 15q14 
NOP56 5¶-AGGCTATTCTGGATGCCTCA-3¶ 5¶-GTAGGCTCTGGCGGTATTCA-3¶ 20p13 
NPM 5¶-TTGTTGAAGCAGAGGCAATG-3¶ 5¶-TATTTCAAAGCCCCCAAGG-3¶ 5q35.1 
PES1 5¶-GGCAAGAGGCGAAAAATCCG-3¶ 5¶-TTCTTCTCAGACCTCACCGC-3¶ 22q12.2 
*PGK1 5¶-AAGTGAAGCTCGGAAAGCTTCTAT-3¶ 5¶-AGGGAAAAGATGCTTCTGGG-3¶ Xq21.1 
PIH1D1 5¶-TGAGTCTGGGAGAGCCTCAT-3¶ 5¶-AAATCGCTGTTCTGCATCCT-3¶ 19q13.33 
POLR1A 5¶-CTGAGCCCCTGGGAATTGAG-3¶ 5¶-CCTTCATTCTTCCACAGGGCA-3¶ 2p11.2 
*PPIA 5¶-GTCAACCCCACCGTGTTCTT-3¶ 5¶-CTGCTGTCTTTGGGACCTTGT-3¶ 7p13 
RUVBL1 5¶-AAGGGGATGTGC ACA AAA AG 5¶-CACATCCAAGTCATGCAAGG-3¶ 3q21.3 
RUVBL2 5¶-CGCTCTTCTCAGGTGACACA-3¶ 5¶-CAGCACTCCAGGGATGATCT-3¶ 19q13.33 
SNU13 5¶-GCTACTGGACCTCGTTCAGC-3¶ 5¶-ACTCAGAGATGCCCCTGTTG-3¶ 22q13.2 
TAF1A 5¶-TCCTGGAGTTTGGGACCCTT-3¶ 5¶-TGGTGAGTACCTCTTGGGCT-3¶ 1q41 
TAF1B 5¶-CGAGGAGGCGGAAGAGTTTA-3¶ 5¶-TCTCTCTGTAACATTGTGGCAAGA-3¶ 2p25.1 
TAF1C 5¶-CGGAGTGAAGATGCTGGACA-3¶ 5¶-GCCCCCAAACGAAAAAGCAA-3¶ 16q24.1 
UBTF 5¶-TGTGGAACGACCTGTCTGAG-3¶ 5¶-CTCTCCGACTGAGCCTTGAG-3¶ 17q21.31 
WDR12 5¶-TAAAGGGGCAGAGGAATGGAT-3¶ 5¶-CAACATCCGTATGTCCCACAA-3¶ 2q33.2 
SNORD31 5¶- ACCAGTGATGAGTTGAATACCG-3¶ 5¶- CACAGCTCAGAAAATACCTTTCA-3¶ 11q12.3 
SNORD104 5¶-GCCTGCTGTGATGACATTCC-3¶ 5¶-TCAGACTCCAGTTCGCATCA-3¶ 17q23.3 

SNORD144 5¶-TTCATATCCAGTGATTAAACCTTTTC-3¶ 5¶-ATTCAATAATCACAACGGTTCA-3¶ 4q21.22 
SNORD127 5¶-GCAACTGTGATGAAAGATTTGGT-3¶ 5¶-GGCAACATCAGTTTAGAGGGA-3¶ 14q21.2 
SNORD46 5¶-AGAATCCTTAGGCGTGGTTG-3¶ 5¶-ATGACAAGTCCTTGCATTGG-3¶ 1p34.1 
SNORD93 5¶-GCCAAGGATGAGAACTCTAATCTGA-3¶ 5¶-GCCTCAGGTAAATCCTTTAATCCA-3¶ 7p15.3 
SNORD69 5¶-TGAAGCAAATGATGATAAACTGG-3¶ 5¶-AACATGAAGCTCAGGGTTGG-3¶ 3p21.1 
SNORD119 5¶-AACCTTGACTGAAGCTGATGA-3¶ 5¶-CTGGATCTCAGAGTAATCCTGCT-3¶ 20p13 
SNORD65 5¶-AAATCACCCAAAATAGCTGGAA-3¶ 5¶-TCAGAAAACCATAGGTTCACCA-3¶ 17p11.2 
SNORD91A 5¶-CGTCTGAACCTGTCTGAAGCA-3¶ 5¶-GGAGAAGTCTCAGAACCACACA-3¶ 17p13.3 
SNORD91B 5¶-AGAGCCAATGATGTTTTTATTCAA-3¶ 5¶-ACACAGAAGTTGCATCACTGG-3¶ 17p13.3 
SNORD80 5¶-ACAATGATGATAACATAGTTCAGCAG-3¶ 5¶-ATCAGATAGGAGCGAAAGACTTAATA-3¶ 1q25.1 
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Supplementary Figure Legends 261 

 262 

Figure S1. Sample processing and anatomopathological analyses. (A) Diagram 263 

presenting the workflow of sample processing. Briefly, snap frozen tissues of the test 264 

and validation cohorts were cut into 10 µm-slices using a cryostat. The first, the last as 265 

well as one slice every 30 sections were placed on glass slides and stained with 266 

Toluidine Blue for analysis by an anatomopathologist to estimate the number of slices 267 

required for further analyses, to verify the tumor integrity in the course of tumor cutting 268 

and to collect tumoral features (percentage of tumoral cells, necrosis). Other slices 269 

were pooled and RNA extraction was performed on a Maxwell® apparatus. For the 270 

technical cohort, pooled slices were separated in half and RNA was extracted using 271 

either Trizol or Maxwell®. Created with Biorender.com. (B) A table indicating the 272 

percentage of tumor cells in each sample from the test and the validation cohorts.   273 

 274 

Figure S2. Reproducibility of RiboMethSeq using two different methods of RNA 275 

extraction. (A) An unsupervised Principal Component Analysis (PCA) based on C-276 

scores of the 106 known rRNA 2¶Ome sites of the technical cohort composed of 11 277 

samples. Total RNA was extracted either by Maxwell (S1-1 to S11-1, red) or Trizol (S1-278 

2 to S11-2, blue) methods. Percentage of variance explained by PC1 and PC2 are 279 

indicated. (B) Summary of Pearson¶s correlation coefficient (R) of C-scores obtained 280 

with the two different RNA extraction methods. In the technical cohort, a strong 281 

correlation between C-scores was observed within the same sample, regardless of the 282 

method used for RNA purification. 283 

 284 

Figure S3. RiboMethSeq optimization using Illumina NovaSeq device and 285 

ComBat-seq algorithm. (A) Distribution of the numbers of either sequence reads or 286 

uniquely mapped reads using the Illumina NovaSeq device in the 48 samples of the 287 

test cohort (40 HGGs, 6 non-neoplastic and 2 reference RNAs). A blue line indicates 288 

the mean of sequence reads obtained in a previous work using an Illumina HiSeq 289 

device (Marcel et al. NAR cancer 2021). (B) Unsupervised Principal Component 290 

Analysis (PCA) based on either C-scores at 7055 rRNA sites (top) or C-scores at the 291 

106 known rRNA 2¶Ome sites (bottom) before (left) and after (right) adjustment of 5¶-292 
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end read counts using ComBat-seq algorithm. The 48 samples of the test cohort were 293 

prepared as two distinct libraries (L1, green; L2, red). RNA control samples included 294 

in each library are indicated. 295 

 296 

Figure S4. IDHwt glioblastomas have a distinct rRNA 2¶Ome profile, which is 297 

correlated with clinical features. (A) Unsupervised Principal Component Analysis 298 

(PCA) on adjusted C-scores at the 106 known rRNA 2¶Ome sites in the test cohort 299 

composed of IDHwt glioblastoma (G, pink circle), high-grade astrocytoma (A, green 300 

triangle), high-grade oligodendroglioma (O, purple diamond) and non-neoplastic (NT, 301 

grey square) samples. Percentage of variance explained by PC1 and PC2 are 302 

indicated. The 95 % confidence ellipsoids around the centroid (larger pink circle, green 303 

triangle, purple diamond and grey square) of each group are drawn. (B) Box plots 304 

showing the distribution of IDHwt and IDHmut HGG samples of the test cohort on PC1 305 

(left panel) or PC2 (right panel) axes. P-values using non-parametric Wilcoxon rank-306 

sum test are indicated on top. (C) Correlations between the clinical features (OS: 307 

overall survival; PFS: progression-free survival; and mitotic index) and projections on 308 

either PC1 (left) and PC2 (right) are displayed for the HGG types of the test cohort. 309 

Pearson¶s correlation coefficients (R) are indicated on top. (D) A heatmap showing 310 

Pearson¶s correlation coefficients (R), as calculated in (C), of PC1 to PC5 axes with 311 

sample clinical features for the test cohort. R values are depicted by different colors 312 

from -0.6 (red, negative correlation) to 0.6 (blue, positive correlation), Significant 313 

correlations are indicated by an asterisk: **p < 0.01; ***p < 0.001. (E) Unsupervised 314 

PCA based on the C-score of the 106 known rRNA 2¶Ome sites of the technical cohort 315 

composed of 3 non-neoplastic (grey square) and 8 IDHwt glioblastoma (pink circle) 316 

samples. 317 

 318 

Figure S5. Comparison of rRNA 2¶Ome sites significantly altered between HGG 319 

subtypes (A) or glioblastoma and non-neoplastic samples (B) in independent 320 

cohorts. Box plots showing the C-score distribution in HGG subtypes of the validation 321 

cohort (A) or in IDHwt glioblastoma (pink) and non-neoplastic (grey) samples of the 322 

technical cohort (B) for the 15 and 12 sites identified in the test cohort shown in Figure 323 

3, respectively. P-values determined by Kruskal-Wallis or Mann-Whitney statistical 324 
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tests are indicated at the bottom of each panel and median C-scores are drawn as 325 

black lines. 326 

 327 

Figure S6. Comparison of rRNA 2¶Ome levels and e[pression of related C/D bo[ 328 

snoRNAs. (A) Correlations of the expression of 12 C/D box snoRNAs (SNORDs) in a 329 

panel of 9 HGG samples of the test cohort either determined from RiboMethSeq data 330 

(TPM, y-axis) or measured by RT-qPCR (relative mRNA expression, x-axis). 331 

Spearman¶s correlation coefficients (R) are indicated with corresponding p-values. (B) 332 

Summary of Spearman¶s correlation coefficient (R) between C-scores at 46 rRNA sites 333 

and associated-SNORD expressions both determined by RiboMethSeq in the test 334 

cohort. The most variable sites identified in Figure 2 are indicated. Significant 335 

correlations are indicated with asterisk: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 336 

0.0001. (C) Correlation of C-scores at 18S_Am576 and corresponding expression 337 

levels of the related SNORD93 in the test cohort. R and p-value are indicated on the 338 

top left-hand side of the graph. 339 

 340 

Figure S7. HGG histomolecular types display IDH mutational status-associated 341 

disparities in RiBi. (A) Northern blots using probes targeting the 47S pre-rRNA and 342 

actin mRNAs on IDHwt glioblastoma (G, pink), high-grade astrocytoma (A, green), 343 

high-grade oligodendroglioma (O, purple) and non-neoplastic (NT, grey) samples. The 344 

47S pre-rRNA expression is normalized against actin mRNA signals and expression 345 

levels depending on ³NT-6´ samples are indicated below (³Rel. Exp´). ND: 47S pre-346 

rRNA expression levels could not be determined due to undetectable actin mRNA 347 

levels. (B) Distribution of median Ct values of 5 reference genes (ACTIN, GAPDH, 348 

HPRT1, PGK1, PPIA) in the HGG subtypes of the test cohort: IDHwt glioblastomas (G, 349 

pink); high-grade astrocytomas (A, green); high-grade oligodendrogliomas (O, purple); 350 

non-neoplastic (NT, grey) samples; and a reference RNA (RNA ctrl, blue) (C) 351 

Correlation between the clinical features (OS: overall survival; PFS: progression-free 352 

survival; and mitotic index) of HGG samples and projections on either PC1 (left) or PC2 353 

(right) axes from PCA in Figure 4B. Pearson¶s correlation coefficients (R) are indicated 354 

on top left-hand side. Each dot corresponds to a sample colored as in (B). (D) 355 

Distribution of IDHwt and IDHmut HGG samples on PC1 (left panel) or PC2 (right 356 

panel) axes from PCA in Figure 4B. P-values using non-parametric Wilcoxon rank-sum 357 
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test are indicated on top. (E) Distribution of 1p19q deleted or non-deleted (³WT´) 358 

samples on PC1 (top panel) or PC2 (bottom panel) axes from PCA in Figure 4B. P-359 

values using non-parametric Wilcoxon rank-sum test are indicated on top.  360 

 361 

Figure S8. RiBi is elevated in high-grade astrocytomas and oligodendrogliomas. 362 

(A) Summary of pairwise comparisons of relative mRNA expression levels of individual 363 

RiBi genes from the RiBi-gene set. Positive and negative fold-changes are shown in 364 

blue and red, respectively. Adjusted p-value using Wilcoxon Mann Whitney statistical 365 

test are indicated (*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001; ns, not 366 

significant). Genes located in the region 1p/19q are indicated. (B) Relative expression 367 

of NCL (left) and FBL (right) mRNAs in IDHwt glioblastoma (G, pink), high-grade 368 

astrocytomas (A, green), high-grade oligodendrogliomas (O, purple), non-neoplastic 369 

(NT, grey) samples determined by RT-qPCR using 2 different primer sets (#1 and #2). 370 


