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Abstract 

Combating the global warming-related climate change demands prompt actions to 

reduce greenhouse gas emissions, particularly carbon dioxide. Biomass-based 

biofuels represent a promising alternative fossil energy source. To convert biomass 

into energy, numerous conversion processes are performed at high pressure and 

temperature conditions and the design and dimensioning of such processes requires 

thermophysical property data, particularly thermal conductivity, which are not 

always available in the literature. In this paper, we proposed the application of 

Chemoinformatics methodologies to investigate the prediction of thermal 

conductivity for hydrocarbons and oxygenated compounds. A compilation of 

experimental data, followed by a careful data curation were performed to establish 

a database. The support vector machine algorithm has been applied to the database 

leading to models with good predictive abilities. The SVR model has then been 

applied to an external set of compounds, i.e. not considered during the training of 

models. It showed that our SVR model can be used for the prediction of thermal 

conductivity values for temperatures and/or compounds that are not covered 

experimentally in the literature. 
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Introduction 

In the context of reducing the concentration of greenhouse gases (GHGs) emissions in 

the atmosphere, the use of biomass-derived energy represents a promising alternative to 

fossil resources. To convert biomass into useful forms of energy (e.g. biofuels), a variety 

of conversion processes are necessary, and their design and dimensioning (from a 

chemical engineer’s point of view) needs as support, the knowledge of thermophysical 

properties. For example, transport properties involving mass and heat transfers are widely 

considered in industrial applications such as separators, reactors, or heat exchangers. 

More specifically focusing on aircrafts, the fuel itself represents the main heat transfer 

fluid within the thermal management systems. The thermal conductivity (λ) of fluids 

therefore represents an essential thermodynamic data to consider for the design and the 

development of processes leading to alternative fuels. 

Several experimental techniques have been developed to measure the thermal 

conductivity, e.g. the transient hot-wire method – consisting in monitoring temperature 

changes of a thin metallic wire – which is considered to be one of the standard 

macroscopic techniques for fluids [1,2]. Due to the phenomena of convection and 

radiation, which result in heat loss, it is difficult to accurately determine thermal 

conductivity using these methods within large-scale equipment. Recently, by downsizing 

experiments to reach scales of milli- or microfluidic techniques, Oudebrouckx et al. [3] 

and Moreno et al. [4] succeeded in predicting thermal conductivity values with few 

microlitres of products. For instance, Moreno et al. proposed new experimental data for 

2,5-dimethylfuran for temperatures ranging from 293.15 to 333.15K [4]. 

The use of alternative methods is however essential, whether to supplement 

experimental data or even to feed process simulators. Indeed, data on thermal 

conductivity for oxygenated compounds, particularly under extreme temperature and 



 

 

pressure conditions, remain limited or even unavailable in the literature. Existing models 

have been used in some scenarios for the prediction of thermal conductivity of liquids [5–

7]. However, these types of models have not often been applied to a wide range of polar 

substances, such as alcohols, ketones, organic acids, among others. Accurate prediction 

involving equation of state (EoS) remains difficult due to the scarcity of experimental 

data, which directly affects the accuracy of the parameters required for EoS. Hence, 

another alternative for modeling thermal conductivity is the use of machine learning 

based approaches, as proposed by Malatesta et al. for mixtures of hydrocarbons used as 

aviation turbine fuel surrogates [8]. Lu et al. recently reported the development of a 

quantitative structure-property relationship (QSPR) based model to predict the thermal 

conductivity of diverse organic compounds in liquid phase [9]. Their model was trained 

on a set of chemical compounds – similar to our target – including chemical families such 

as alcohols, ethers, aldehydes, ketones, acids, and esters. The 6-descriptor linear model 

was developed by Lu et al. combining a genetic function approximation and a variety of 

molecular descriptors derived from geometries optimized using density functional theory. 

However, this model approximates the temperature dependency of thermal conductivity 

as a constant identical value for all compounds, which experimental data do not seem to 

show. Moreover, it seems that the Training/Test sets splitting randomly performed led to 

compounds representation in both sets for different temperature values [9]. 

In this work, we propose to revisit the development of a QSPR based model for 

the prediction of thermal conductivity using a ML algorithm leading to a ‘non-linear’ 

approach combined to a compilation of accurate reference data to obtain a coherent 

database and performing an appropriate Training/Test set splitting. After presenting the 

data collection and curation methods and the strategy followed to develop new QSPR 



 

 

based models, we expose the predictive performances of models and discuss their 

utilization for external data prediction, before concluding. 

Materials and Methods 

These last years, we have devoted large efforts in the application of machine learning on 

chemical databases to derive QSPR based models for the prediction of various property 

values [10,11]. These approaches aim at identifying non-obvious correlations between 

property values of the matter and some features encoding information about the matter. 

Reviews already exist containing detailed elements regarding the developments and 

applications of QSPR based models, and best practices in developing such models 

[12,13]. 

Database 

The accuracy of predictive ML-based models is mainly related to the quality of data used 

as support to develop these models, and thus one of the keystones of such a work success 

stands in the database itself. The available experimental data on thermal conductivity was 

collected from existing databases, mainly DIPPR [14,15] but also the DETHERM [16], 

NIST and data from the recent literature, including data for 2,5-dimethylfuran recently 

measured by our group using Microfluidics [4]. It should be emphasized that no data 

originating from models or even from data fittings has been considered. Hydrocarbons 

and oxygenated compounds were the focus of the study, and Figure 1 shows the 

distributions of these two classes of compounds in the database, as well as distributions 

of considered subfamilies. It shows that hydrocarbons and oxygenates represent roughly 

40% and 60% of chemicals, respectively. Hydrocarbons may then be discretized in terms 

of alkanes, alkenes, and cyclic molecules such as naphthenics and aromatics. In the 

database, cyclic compounds represent about 31% of hydrocarbons and the remaining ones 



 

 

are for 61% saturated paraffins (n- and i-alkanes) and 8% alkenes. Regarding oxygenated 

compounds, the database includes, in decreasing order of occurrence: alcohols, esters, 

carboxylic acids, ethers, ketones, formats, aldehydes, and epoxides. It should be noted 

that 6 oxygenates are polyfunctionals, i.e. they are constituted of at least two of the latter 

chemical characteristics. 

 For each compound, as many data points as possible were collected to account 

for the temperature dependence of λ. In some cases, experimental thermal conductivity 

values reported for one compound at a specific temperature can vary depending on the 

sources of data, and only one value has been retained for each molecule and temperature 

condition. The priority was given to values reported as 'Accepted' by the DIPPR staff 

reviewers, and when necessary, averages were taken. Then, parameters of the expression 

proposed by Jamieson – equation (1) – were regressed using data points within the 

database: 

𝜆(𝑇) = 𝐴 (1 + 𝐵𝜏
1

3⁄ + 𝐶𝜏
2

3⁄ + 𝐷𝜏) (1) 

with τ = 1 −  T
Tc

⁄ , where Tc is the critical temperature in K [17]. The as-obtained A to 

D parameters were subsequently used together with equation (1) to generate, for each 

compound, 10 data points by varying the temperature from the lowest of collected data 

up to Tc. Although the direct use of experimental data is a common practice in QSPR 

development, the use of pseudo-experimental data as proposed here enables, when 

modelling a property dependence as a function of a characteristic (here, the temperature), 

to reduce any over-representation or unbalance effect of compounds as well as a reduction 

of the noise in reference data.  

From conclusions drawn in previous studies [18–20], solely descriptors derived 

from the chemical and structural formulae were considered and hereafter labelled as 

functional group count descriptors (FGCD). In this latter family of molecular descriptors 



 

 

are included counts of atoms and groups of atoms identified as relevant from chemical 

aspects. Such a simple representation of compounds has been shown to provide relevant 

descriptors usable in QSPR procedure [21]. FGCD under consideration in this study, 

labelled from X1 to X42, are listed in Table 1. As an example, the FGCD labelled X4 

denotes the number of CH3 groups. The molar mass (MM) of neat compounds was also 

computed and used as an additional descriptor (labelled X42). Simplified molecular input 

line entry specification (SMILES) codes were assigned to each neat compound within the 

database. FGCD were automatically calculated using the RDKit [22] and SMILES 

arbitrary target specification (SMARTS) matching functionalities [23], SMARTS codes 

corresponding to considered FGCD are given in Table 1. 

The complete database containing names, SMILES, investigated temperatures 

and pseudo-experimental λ values for 157 hydrocarbons and oxygenated compounds is 

available in the supporting information. 

 

Chemical space representation 

The information contained within our database was pre-processed by applying a principal 

component analysis (PCA) on molecular descriptor values. The three first principal 

components resulting from the PCA were used as an approximated graphical 

representation of the chemical space for our database. Figure 2 represents the projections 

of compounds within this chemical space. As seen, some molecules are isolated from all 

others, located at the borders of the domain, this is typically the case for molecules such 

as butyl octadecenoate, bis(2-ethylhexyl) benzene-1,2-dicarboxylate, Dihexyl 

hexanedioate, or even 2,4,6-Trimethyl-1,3,5-trioxane. These latter data points and many 

others – 32 compounds in total – thus appear as structural outliers, and their presence in 

external sets may induce violations of the applicability domain of models. These 32 



 

 

molecules were therefore systematically used during the learning processes, as detailed 

hereafter. 

 

Machine learning modelling 

During last decades of QSPR model developments, the use of external validation has been 

shown necessary to ensure their ability to be applied to new fluids, i.e. not considered 

within the data set used to train the model [24]. Its popular version is the n-fold cross-

validation (n-CV) in which the data set is randomly divided in approximately equal n 

portions. An aggregate of (n-1) portions forms a Training set − used to train models, and 

the remaining portion constitutes an external set or Test set − used to evaluate model’s 

performances. We emphasize that no data point belonging to external sets was used to 

derived models. This procedure is repeated n times choosing for each a new portion of 

data as an external set. The subject of external validation for QSPR analysis has been 

addressed by Muratov et al. [25]. Considering our database content with ten temperatures 

– ten thermal conductivity values – for each molecule, a ‘compound out’ strategy was 

applied in this study, meaning that a molecule belongs to only one fold. To avoid any 

strong violation of the applicability domain of models during the cross-validation 

procedure, we fixed 32 molecules in a specific fold always used to form Training sets. A 

5-CV was applied to the 125 remaining molecules, and the Training and Test sets thus 

represent 84% and 16% of the database, respectively. 

We demonstrated in a number of previous works that the combination of 

molecular descriptors such as FGCD and Support Vector Machines (SVM) provides 

accurate solutions in terms of property modelling [20,21,26]. The Support Vector 

Regression (SVR) as implemented within the LibSVM library [27] was employed, with 

both linear and radial basis function kernels, and with an epsilon insensitive zone [28]. 



 

 

According to this method, three parameter values need to be optimized: cost, epsilon, and 

gamma. We followed the approach previously proposed by Gantzer et al. [29], and the 

Sequential Quadratic Approximation (SQA) method implemented in our in-house 

program [30] was used to optimize the SVR parameter values within a 5-CV procedure. 

Finally, a model was developed using the set of optimized parameters and considering 

the 1570 data points of the database. 

Models are evaluated according to their ability to predict reference thermal 

conductivity values. Predicted values are compared to reference pseudo-experimental 

data, and the performances of models are evaluated by means of metrics such as Mean 

Absolute Error (MAE, equation (2)), Root Mean Squared Error (RMSE, equation (3)), 

coefficient of determination (𝑅2, equation (4)), or Concordance Correlation Coefficient 

(CCC, equation (5)), defined respectively as: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑥𝑖|

𝑁

1

 (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖)2

𝑁

1

 (3) 

𝑅2 = 1 −  
∑ (𝑦𝑖 − 𝑥𝑖)2𝑁

1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

1
⁄  (4) 

𝐶𝐶𝐶 =
2 ∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁

1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
1  + ∑ (𝑦𝑖 − 𝑦̅)2𝑁

1 +  𝑁(𝑥̅ − 𝑦̅)2 
 (5) 

with 𝑦𝑖 the predicted value, 𝑥𝑖 the experimental value, x̅ the average of experimental 

thermal conductivity values, y̅ the average of predicted thermal conductivity values, and 

N is the number of data points in the considered set. Chirico et al. have shown that the 

use of CCC is advocated considering various scenarios such as location shifts, scale shifts, 

and location plus scale shifts [31,32]. MAE and RMSE values have the unit of the 

property under consideration, while R2 and CCC are unitless. 



 

 

Results and discussion 

The entire collection of experimental data, curated as detailed in the previous section, was 

used to derive predictive models. From the performed regressions of experimental data 

points using equation (1), we generated a set of pseudo-experimental data subsequently 

used to train a machine learning algorithm. Figure 3a) presents evolutions of thermal 

conductivity values as a function of the temperature for alkan-1-ols. No clear trend 

appears for this subfamily of alcohols, with for example slope values in between -0.0002 

to -0.0003 W.m-1.K-2, for pentan-1-ol and octan-1-ol, respectively. A similar study was 

carried out for n-alkanes and Figure 3b) presents the evolution of thermal conductivity 

values as a function of temperature for this family of compounds. The figure clearly 

shows an evolution of slopes when moving from light linear alkanes to higher numbers 

of carbon atoms, from -0.0006 to -0.0002 W.m-1.K-2. It is interesting to note that this latter 

value is in line with that reported by Lu et al. in their model [9]. The observed variation 

in slopes from one compound to another justifies our decision to use an algorithm that 

establishes non-linear correlations between the descriptors and the reference thermal 

conductivity values, such as SVM. Because of its obvious effect on thermal conductivity 

values –  values are negatively correlated with T – the temperature (expressed in Kelvin) 

was considered as an additional descriptor. This approach is commonly employed for 

temperature dependent properties [33]. 

A 5-CV was applied resulting in a splitting of the database into 5 folds, plus one 

additional containing the molecules fixed in training to avoid violation of the applicability 

domain. Note that for each compound, the dependency of λ on temperature is ensured by 

ten data points, which avoids any over-representation or unbalance effect of compounds 

within the database. The cost, epsilon, and gamma parameters of the SVR were optimized 

considering the six folds. Table 2 presents RMSE and R² values calculated on the Training 



 

 

and Test sets for the five ephemeral models generated during the 5-CV. It shows that 

values of metrics are roughly stable from one decomposition to another with for instance, 

mean RMSE and R² values of 0.0025 W.m-1.K-1 and 0.984 on Training sets, respectively. 

A final model was then trained using the set of optimized parameters (cost = 537.930000; 

epsilon = 2.305940 ; gamma = 0.419818) and considering all reference data within the 

Training set. Performances of the obtained SVM-based model were evaluated using 

metrics such as MAE, RMSE, R2, and CCC, which values are presented in Table 3. When 

applied to Training data, metrics indicate that the developed model accurately reproduces 

reference data, with for instance a R2 of 0.992. The good agreement between reference 

and predicted values using the SVR model is illustrated in Figure 4. This latter presents 

the scatterplots of reference vs. predicted thermal conductivity values using the SVM-

based model. All data points are not too scattered on both sides of the bisector, indicating 

that predicted values are in good agreement with reference data. However, several data 

points appear to have been overestimated by the model, more precisely, they correspond 

to the 10 data related to dodecan-1-ol for which absolute relative deviations of about 11% 

are observed with respect to pseudo-experimental data. Analysing the information 

contained in Figure 3a), data points corresponding to dodecan-1-ol (represented by dark 

blue circles) seem to be abnormally low roughly considering the trend with the number 

of carbon atoms in alkan-1-ols, while emphasising that we have taken into account the 

values quoted as 'Accepted' by the DIPPR [14,15]. It should be noted that, in the database 

used by Lu et al. [9], reference thermal conductivity values for dodecan-1-ol range from 

0.148 W.m-1.K-1 (at 440 K) to 0.166 (at 310 K) W.m-1.K-1, in reasonable agreement with 

our predicted values (an absolute relative deviations of about 5%). For their 6-descriptor 

linear model, Lu et al. reported a R2 value of 0.914 and a RMSE of 0.0067 W.m-1.K-1. 

However, authors did not perform the Training/Test splitting following a ‘compound-out’ 



 

 

approach, which represents a too favourable scenario and avoid any conclusion regarding 

predictive ability of the model. 

During the data curation, many chemical compounds were discarded due to an 

insufficient number of experimental data to regress parameters of equation (1). These data 

points were set aside to be considered as a Validation set. Our SVM-based model was 

applied to compounds and temperature conditions within the Validation set. Predictive 

performances of our SVR model were evaluated on the validation set using metrics such 

as MAE, RMSE, R2, and CCC, which values are presented in Table 3. Metrics suggested 

that the developed model has a good predictive ability and accurately reproduces 

reference data, with for instance a R2 value of 0.836 and a RMSE of 0.0080 W.m-1.K-1. 

As for the Training set, the good agreement observed between reference and predicted 

values using the SVR model is illustrated in Figure 4. For compounds belonging to the 

Validation set, the SVR model was used to predict thermal conductivity values for 

temperatures up to critical temperatures. A to D parameters of equation (1) were then 

regressed on the basis of predicted values. The as-obtained parameter values are reported 

in Table 4. As an example, Figure 5 presents the evolution of thermal conductivity values 

as a function of temperature for diethyl oxalate – with SMILES formula 

CCOC(=O)C(=O)OCC –, and proposes a comparison between predictions using the SVR 

model and equation (1) fed with regressed parameters displayed in Table 4, and the 

experimental data reported by Riedel [34]. It shows the good agreement between the three 

sources of data at 293.15 K. Figure 5 illustrates the possible use of our SVR model: the 

prediction of thermal conductivity values for temperatures and/or compounds that are not 

covered experimentally in the literature. 



 

 

Conclusions 

We proposed here the application of Chemoinformatics methodologies to investigate the 

thermal conductivity prediction for hydrocarbons and oxygenated compounds in liquid 

phase. A compilation of experimental data and then a careful data curation were 

performed to establish a database of reference values. A pre-processing of the data has 

demonstrated that the use of algorithm leading to linear models would be a too strong 

approximation in terms of modelling for predicting the effects of temperature. Thus, a 

SVM algorithm was applied to the database to generate predictive models, within a 5-CV 

procedure and we emphasize the ‘compound out’ strategy followed for the splitting of 

data into Training and Test sets. Comparisons performed with respect to reference data 

have demonstrated that our SVR model has good predictive reliability and robustness, 

with a MAE of 0.0018 W.m-1.K-1 calculated on the entire database. 

The SVR model has been used to predict the evolution of the thermal conductivity 

as a function of the temperature for a series of compounds for which there were too few 

experimental data in the literature to be included in the learning process. Performed 

comparisons showed the good agreement between predicted values and available 

experimental data. This confirms that our SVR model can be used for the prediction of 

thermal conductivity values for temperatures and/or compounds that are not covered 

experimentally in the literature. 
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List of figures: 

Figure 1. Distributions of hydrocarbons (black) and oxygenated compounds (dark grey) 

considered within the database. The values in brackets above bars stand for the number 

of compounds of each chemical family. 

Figure 2. Projections of compounds into the space formed by PC1, PC2 and PC3, the 

three first principal components resulting from the PCA on descriptor values. The 

percentages of variance explained by PC1, PC2 and PC3 are 11%, 9%, and 8%, 

respectively. 

Figure 3. Thermal conductivity values as a function of temperature for a) alkan-1-ols and 

b) n-alkanes. 

Figure 4. Scatterplots of pseudo-experimental vs. predicted thermal conductivity values 

using the SVM-based model. The dashed line stands for the bisector of the diagram 

surrounded by two dotted lines corresponding to a 5% uncertainty. 

Figure 5. Evolution of thermal conductivity values as a function of temperature for 

CCOC(=O)C(=O)OCC (diethyl oxalate), predicted using the SVR model (triangle) and 

equation (1) fed with regressed parameters in Table 4 (square), and compared with 

available experimental data (cross) [34]. 
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Table 1. Molecular descriptors selected for the development of models. 

Label SMARTS Label SMARTS 

X1 [H] X22 [CX4H2][CX3H0](=[O])[OX2H0] 

X2 [C,c] X23 [CX3H1](=[O])[OX2H0] 

X3 [O,o] X24 [CX4H3][OX2H0][#6] 

X4 [CX4H3] X25 [CX4H2][OX2H0][#6] 

X5 [CX4H2] X26 [CX4H1][OX2H0][#6] 

X6 [CX4H1] X27 [CX3H0](=[O])[OX2H1] 

X7 [CX4H0] X28 [CX3H1](=[O])[OX2H1] 

X8 [CX3H2]=[CX3H1] X29 [OX2H0][CX3H0](=[O]) 

X9 [CX3H1]=[CX3H1] X30 [OX2H1][CX4H2][CX4H2][OX2H0][#6] 

X10 [CX3H2]=[CX3H0] X31 [OX2H0][CX4H1][OX2H0] 

X11 [cH1] X32 [cX3H0][O][cX3H0] 

X12 [cH0] X33 [#6][CX3H1](=O) 

X13 [c][CX4H3] X34 [#6][OX2H0][#6] 

X14 [c][CX4H2] X35 [#6][CX3H0](=[O])[#6] 

X15 [OX2H1] X36 [#6][CX4H2][OX2H1] 

X16 [CX4H3][OX2H1] X37 [#6][CX4H1]([#6])[OX2H1] 

X17 [c][OX2H1] X38 [CX4H3][CX3H0](=[O])[OX2H1] 

X18 [CX4H3][CX3H0](=[O])[#6] X39 [#6][CX3H0](=[O])[#8] 

X19 [CX4H2][CX3H0](=[O])[#6] X40 [O,o;R] 

X20 [CX3H1](=[O]) X41 [C;R] 

X21 [CX4H3][CX3H0](=[O])[OX2H0] X42 MM 

 

  



 

 

Table 2. RMSE (in W.m−1.K−1) and R² values calculated on Training and Test sets for the 

ephemeral SVR based models generated during the 5-CV. 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Training      

RMSE 0.0021 0.0025 0.0025 0.0026 0.0027 

R² 0.988 0.983 0.983 0.982 0.982 

Test      

RMSE 0.0050 0.0057 0.0060 0.0054 0.0056 

R² 0.944 0.918 0.915 0.940 0.917 

 

  



 

 

Table 3. Performance characteristics (statistical metrics) of the SVR based model 

calculated on the Training set (1570 data points) and Validation set (31 data points). 

 Training Validation 

MAE (W.m−1.K−1) 0.0018 0.0060 

RMSE (W.m−1.K−1) 0.0024 0.0080 

R² 0.992 0.836 

CCC 0.996 0.920 

 

  



 

 

Table 4. Values of the parameters in equation (1) regressed on predictions using the SVR 

model. 

IUPAC name A B C D Tc (K) 

octan-2-one 0.076 0.386 -1.790 3.050 632.7 

pentan-2-one 0.088 0.207 -0.987 2.203 561.1 

prop-2-en-1-ol 0.097 0.191 -0.921 2.093 545.1 

octanoic acid 0.086 0.116 -0.639 1.764 693.0 

1-propoxypropane 0.059 0.333 -1.625 4.243 530.6 

2-methylpropanal 0.066 0.504 -2.419 4.684 544.0 

4-methylphenol 0.108 0.286 -1.265 1.802 704.6 

octadec-9-enoic acid 0.114 0.017 -0.231 0.943 781.0 

diethyl oxalate 0.100 0.118 -0.599 1.562 618.0 

dibenzofuran 0.103 0.376 -1.665 2.019 824.0 

bis(2-ethylhexyl) hexanedioate 0.100 0.312 -1.486 2.088 845.0 

prop-2-enoic acid 0.106 0.123 -0.605 1.466 615.0 

1,3-diacetyloxypropan-2-yl acetate 0.163 0.007 -0.034 0.049 701.4 

dec-1-ene 0.063 0.461 -2.169 4.284 617.0 

2,2,5-trimethylhexane 0.046 0.442 -2.208 4.601 569.8 

2-methylbutane 0.054 -0.103 -0.062 3.023 460.4 

butyl propanoate 0.060 0.359 -1.733 3.999 594.5 

methyl benzoate 0.065 0.652 -2.988 4.758 702.0 

propanal 0.104 0.208 -1.030 2.696 505.0 

1,2-bis(2-methoxyethoxy)ethane 0.101 0.176 -0.868 1.885 651.0 

1-methyl-2-propan-2-ylbenzene 0.056 0.687 -3.118 4.913 657.0 

 

 


