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Abstract

This paper presents a method for compensating temporal
illumination variations in whisk-broom hyperspectral imag-
ing. Whisk-broom imaging scans the scene sequentially,
capturing a complete spectrum at each spatial coordinate
pixel-by-pixel over time. The scanning process takes time,
which is not problematic under constant illumination, but
capturing cultural artefacts on-site often involves sunlight
as the natural illumination source. While it may be con-
sidered beneficial due to its broad spectrum, sunlight fluc-
tuates over time. Thus the resulting hyperspectral image
suffers from temporal illumination variation, affecting the
observed value and hindering scene analysis. A previous
approach proposed using a quick extra single-vertical scan
alongside the standard raster (horizontal) scan for compen-
sation. However, it fails when the additional single-vertical
scan is performed near or on a black frame. This work aims
to overcome this issue by incorporating multiple columns
or a full-vertical scan (column scan) to the horizontal scan
image (row scan). Furthermore, we introduce a logarithm
space and utilise the low-dimensional structures of the il-
lumination and reflectance spectra. Experiments show that
the proposed method eliminates the temporal illumination
variations in the in-site captured hyperspectral images of
stained-glass windows in the historic Amiens Cathedral,
France.

1. Introduction
In cultural heritage, digital studies of materials and

features have become imperative for acquiring knowledge
about cultural artefacts and archaeological objects. Such
studies provide historians, scholars, conservators, and ar-
chaeologists with efficient tools to enhance their under-
standing and guide appropriate preservation measures [22].
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Figure 1: The framework of the proposed method for illu-
mination compensation.

More than traditional RGB information is required to
capture and analyse cultural artefacts’ subtle variations.
Therefore, utilising spectral data, particularly through hy-
perspectral imaging (HSI), becomes essential. HSI mea-
sures a scene’s spectral radiance I(U, V, λ), collecting
three-dimensional information commonly known as a dat-
acube. Unlike RGB cameras that offer information in three
channels, HSI provides a much higher level of spectral dis-
crimination capturing data across numerous narrow bands
of up to more than 2000 bands [24].

This allows comprehensive analysis and identification
of materials or features based on their distinctive spec-
tral signatures [23]. This assists in identifying hidden de-
tails, studying pigments and materials, detecting damages
or degradation, and guiding appropriate conservation mea-
sures even for rendering such cultural heritage artefacts [7].
However, capturing hyperspectral images is challenging.



The datacubes have an extra dimension, that is, the 2D spa-
tial (U, V ) and wavelength axis λ, but we use available 2D
detector arrays to create the 3D datacube [17]. System de-
signers either measure time-sequential 2D slices of the dat-
acube or divide the datacube into multiple 2D elements that
can be recombined into a datacube during post-processing
[12]. These approaches are commonly referred to as scan-
ning and snapshot methods. Although the whisk-broom
scanning approach is favoured for its superior spectral res-
olution and flexibility in spatial scanning [11], it scans a
scene one pixel at a time, resulting in a time-consuming ac-
quisition process.

Acquiring data from stained glass windows presents
challenges due to their transparent nature. Measurement
setups must effectively capture transmittance while accom-
modating the stained glass’s size. In outdoor measurements,
natural sunlight offers a practical solution, eliminating the
need for complex lighting arrangements. However, fluctua-
tions in light conditions and the time-consuming acquisition
process introduce temporal illumination variations [1, 21],
affecting spectral cubes and hindering scene analysis. This
issue persists when measuring the same stained-glass win-
dow at different times. Although capturing a reference ob-
ject under sunlight during scanning helps correct for the
variation, it is not feasible inside buildings.

This paper proposes a method to eliminate temporally
varying illumination in whisk-broom HSI without requir-
ing a reference object. Specifically, we introduce using two
spectral cubes, with one cube scanned perpendicular to the
other. Furthermore, linear models are formed by present-
ing the cubes in spectral logarithm space and leveraging on
low-dimensional models to address problem. Quantitative
and qualitative evaluations confirm that the proposed model
eliminates temporal illumination variations. Consequently,
this approach enables the acquisition of a spectral cube with
high spectral and spatial resolution, even in natural illumi-
nation variations. The specific achievements of this paper
are as follows:

1. The paper proposes the use of two spectral images with
one cube scanned perpendicular to the other leveraging
on the flexibility of whisk-broom imaging system.

2. The utilisation of the logarithm space of the spectral
data which allows the formation of linear equations for
efficient and analytical solutions.

3. Through quantitative evaluation using a public dataset,
our proposed method outperforms a previous state-of-
the-art approach.

4. Field experiments on stained-glass windows inside
Amiens Cathedral demonstrated the effectiveness and
performance of the proposed method.
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Figure 2: (a) Overview of the imaging system designed in
this study. (b) The red arrows illustrate the whisk-broom
column-wise scanning to form a column scan image. (c)
The orange arrows illustrate the whisk-broom row-wise
scanning to form a row-scan image.

2. Related Work

An image is formed through the interaction of illumi-
nation spectral power distribution and surface reflectance
spectra. Illumination and reflectance spectra separation
(IRSS) has been a long-standing problem in computer vi-
sion tasks. This separation is crucial because an object’s
perceived colour relies on the surface spectral reflectance
rather than the spectrum of incident illumination [25]. Pre-
vious approaches addressing the IRSS problem can be cat-
egorised into groups on RGB images and those based on
multi or hyperspectral images. In the context of RGB im-
ages, a notable work is the gamut mapping algorithm by
[10]. It estimates the illuminant based on the limited ob-
servable RGB values under a given illuminant. Other ap-
proaches include the Max-RGB algorithm, which estimates
the light source colour using the maximum response of dif-
ferent colour channels [18]. The Grey-World method [3]
assumes that the illuminant colour is the average colour of
all image pixels, considering object reflectance to be, on
average, grey. While some methods for the IRSS problem
rely on image statistics [2, 9]. Regarding spectral data, an
initial approach to IRSS by [13] approximated illumination
and reflectance spectra as a linear combination of distinct
basis spectra. They recovered these spectra using statisti-
cal distributions within a space described by finite linear
models. Subsequently, [4] improved accuracy by imposing
constraints on reflectance and illumination and used sim-
ulated annealing to avoid local optima. Additionally, [8]
enhanced computational speed by introducing an analytic
solution involving logarithms and incorporating an extra re-
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Figure 3: Experimental setup: The object is a colour chart
of ColorCheckerPassport (X-rite, Inc) under uncontrollable
illumination near a window.

gression step for result refinement. Researchers have gener-
alised IRSS-RGB image methods to address the IRSS prob-
lem in hyperspectral images. For example, [15] estimated
illumination and reflectance spectra based on the dichro-
matic reflectance model, while [14] introduced a subspace-
based model to extract reflectance and shading components
as a convex optimisation problem, building upon the as-
sumption of [18]. However, all methods assume constant
illumination and do not consider temporally varying en-
vironments when capturing hyperspectral images. To ad-
dress this, [26] proposed a low-rank matrix factorisation ap-
proach using singular value decomposition (SVD) to sepa-
rate illumination and reflectance under general spectral il-
lumination. Additionally, [5] utilised a Conditional Ran-
dom Field (CRF) model to estimate reflectance under mul-
tiple illumination conditions by incorporating spatial infor-
mation in local patches. However, this approach lacks ef-
fective compensation for temporally varying illumination in
hyperspectral images acquired using whisk-broom scanning
systems. [11] introduced a technique to compensate for the
temporal illumination changes in whisk-broom HSI by in-
corporating an additional single-column scan alongside the
raster scan. However, this method relies on the selected col-
umn and becomes more prone to errors when the extra scan
is performed near or on a black frame.

In contrast, our approach avoids relying on restrictive
column selection and employs the full column instead.
Specifically, we capture two scans of the scene, with one
image (row scan) being scanned perpendicular to the other
(column scan).

3. Proposed method
3.1. Image formation model

A hyperspectral image, denoted as I ∈ RU×V×λ
+ , cap-

tures comprehensive data in a 3D format, including posi-
tional and wavelength information. Here, U and V repre-
sent the image height and width, respectively, and λ is the
number of spectral channels.

Each pixel, referred to as a spectral vector iu,v records
a continuous observation value along the wavelength axis.
Let ρu,v and l denote reflectance (or transmittance) at point
(u, v) and illumination spectrum respectively. Then spectral
vector iu,v can then be presented as:

iu,v = ρu,v ⊙ l, (1)

where ⊙ is the Hadamard (element-wise) product.
Scanning outdoor scenes with a whisk-broom imaging

device is time-consuming [6]. The illumination varies over
time due to sunlight fluctuations, making the illumination
spectrum a function of time. Thus, Eq. (1) can be written
as:

iu,v = ρu,v ⊙ l(t), (2)

where l(t) can be defined at the moment each scan has been
performed. t is the time taken to perform a scan. Here,
our goal is to recover the hyperspectral image unaffected by
these variations.

3.2. Compensation for illumination changes

This study developed whisk-broom imaging device com-
prises two high spectral-resolution spectrometers and a two-
dimensional mechanical scanning head. Figure 2 (a) illus-
trates the composition of the system. The mechanical scan-
ner head is flexible and scans with a spatial resolution up
to 0.01◦ for 360◦ in azimuth direction and 70◦ elevation
direction to form a spatially hyperspectral image. In this
manner, it can systematically scan the scene row by row
(row scanning) or column by column (column wise). For
column scan, the scan order is from top to bottom in each
column and column by column from left to right, as illus-
trated by the red arrows in Figure 2 (b). For row scanning,
the scan order is from left to right in each row, and row-by-
row from top to bottom, as illustrated by the orange arrows
in Figure 2 (c).

To simplify the problem, we make the assumption that
the variations in illumination are insignificant or constant
while scanning a row or column in the respective row or
column scan image. Suppose row and column scan images
are noted as i↓ and i→ respectively. Thus, spectral vectors
can be expressed as:

i→u,v = ρu,v ⊙ l(t→u )
i↓u,v = ρu,v ⊙ l(t↓v),

(3)



where t→ and t↓ can be defined as:

t→ ∈ [t→1 · · · t→U ]

t↓ ∈
[
t↓1 · · · t

↓
V

]
.

(4)

3.2.1 Reflectance estimation

Firstly, our proposed method emphasises the separation of
illumination and reflectance spectra; we then utilise the esti-
mated reflectance to mitigate the effects of temporal illumi-
nation variations. Given that the formulation of the hyper-
spectral image follows a multiplicative model, as expressed
in Eq. (2), we can transform the formulation into logarithm-
spectral space. By doing so, we can rewrite Eq. (3) as an
additive equation in a wavelength-independent format, re-
sulting in a linear representation as:

log i→u,v = log ρu,v + log l(t→u )
log i↓u,v = log ρu,v + log l(t↓v).

(5)

Previous studies such as [8, 16] have demonstrated that
illumination and reflectance spectra can be assumed to have
a low-dimensional spectral property. Building on this, we
propose an approximation for the logarithm of the illumina-
tion (log l) and reflectance spectra (log ρ) as a linear combi-
nation of a limited set of basis spectra as follows:

log l(t→u ) ≃
m∑
i=1

ϵ→u,iEi, (6)

log l(t↓v) ≃
m∑
i=1

ϵ↓v,iEi, (7)

log ρu,v ≃
n∑

j=1

σjSj , (8)

where m, n are the number of illumination and reflectance
basis, respectively, and ϵi, σj are the weighting factor as-
sociated with basis spectrum Ei and Sj . Using this low-
dimensional approximation, we can rewrite Eq. (5) as:

log i→u,v =
∑n

j=1 σjSj +
∑m

i=1 ϵ
→
u,iEi

log i↓u,v =
∑n

j=1 σjSj +
∑m

i=1 ϵ
↓
v,iEi.

(9)

Furthermore, we can express Eq. (9) in matrix form. No-
tably, the spatial structure has been embedded into the equa-
tion, resulting in the following expression:

c =

[
IU×V IU ⊗ 1V 0
IU×V 0 1U ⊗ IV

]σj 0
0 ϵ→i
0 ϵ↓i

[
Sj

Ei

]
, (10)

where IN is an an N × N identity matrix, ⊗ is the Kro-
necker product operator, 1N is an N -dimensional vector of
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Figure 4: Illustration of the coefficient matrix A under the
assumption that the illumination change is constant in every
individual row (u) or column scan (v).

ones. In the other hand, c is the observation matrix such
that:

c =
[

log i→1,1 · · · log i→U,V log i↓1,1 · · · log i
↓
U,V

]⊤
.

(11)

Let A =

[
IU×V IU ⊗ 1V 0
IU×V 0 1U ⊗ IV

]
represent the vec-

tors of coefficient matrices, W =

σj 0
0 ϵ→i
0 ϵ↓i

 be the weight

of the basis matrix, and B =

[
Sj

Ei

]
represent the matrix of

the basis vectors. As such, Eq. (10) can simply be repre-
sented as:

c = AWB. (12)

Figure 4 illustrates the coefficient matrix A when U = 5
and V = 4.

Given that the illumination and reflectance spectra have
the low-rank property, we introduce Singular Value Decom-
position (SVD) to extract the principal components (or the
eigenvectors) from the observation matrix c. Thus given ob-
servation c, it can be factorised by SVD to:

c = UDV
⊤
=

rx∑
i=1

uiΣivi
⊤, (13)

where U and V are the orthogonal matrices, and D is the
diagonal matrix containing the singular values. The left and
the right vectors ui and vi are the i-th columns of U and V ,
respectively; Σi is the i-th singular value, and rx is the rank
of c.



By using Eq. (12) and Eq. (13) we form:

c = UDV
⊤
= AWB. (14)

We can further equate:

UD = AW

V
⊤

= B.
(15)

In Eq. (15), the variables U , D, and A correspond to known
values. By representing UD as Y , we can derive a linear
equation denoted by:

Y = AW. (16)

The utilization of logarithm space in the formulation of
Eq. (16) introduces the need for careful consideration of
negative or small values when solving it to estimate the pa-
rameter W . This precaution is essential to preserve mathe-
matical consistency and numerical accuracy, as emphasised
by [8]. Furthermore, saturation occurs when a sudden in-
crease in sunlight and the captured scene’s radiance exceeds
the spectrometer’s limited range. Consequently, the pixel
intensity becomes clipped at its maximum output value.

To tackle these challenges, our proposed method incor-
porates intensity filtering. Initially, we establish an inten-
sity threshold by defining upper and lower limits. This
threshold is vital in filtering undesired data outside the de-
sired range. We then defined the spectrum filter and pixel
filter. For the spectrum filter, we exclusively considered
spectral channels with intensity values surpassing the upper
threshold. It should be noted that we cannot recover the im-
age at the wavelength once the channel is filtered out. For
the pixel filter, we ensured that the minimum value of the
pixels in the spectrum filter exceeded the lower limit, given
that we do not filter all pixels on a given row or column.

Given A in Eq. (16) is a large sparse and non-invertible
matrix, we employed the mean square minimisation ap-
proach based on linear regression. This approach proved
to be most suitable for determining the optimal values for
W . After obtaining W , we then separated the illumination
and reflectance components by multiplying it with the basis
matrix B and applying element wise exponential, as shown
in Eq. (17). Letting N represent the matrix multiplication
WB, the estimated illumination spectra l(t→u ), l(t↓v), and
reflectance spectra ρu,v can be represented as:l(t→u )

l(t↓v)
ρu,v

 = e◦N , (17)

where W is the estimated weight matrix and {e◦N}ij =
eNij .

Figure 5: Experimental setup: Stained-glass window cap-
ture in Cathédrale Notre-Dame d’Amiens.

3.2.2 Compensation

Since the illumination l and reflectance ρu,v spectra are un-
known, the separation problem is non-unique. This is be-
cause one can arbitrarily form the spectral vectors iu,v with
unknown illumination l and reflectance ρu,v spectra. Thus,
we create a sub-goal to compensate for the illumination
variation, we guide the compensation by utilizing a pixel
kx,y from the row scan image (i→u,v) and pixel jx,y from the
estimated reflectance (ρu,v) where x and y represents the
selected row and column. The procedure for compensation
is as follows:

1. A pixel, denoted as kx,y , was manually selected from
the row scan image (i→u,v).

2. At the same location x, y, a corresponding pixel de-
noted as jx,y was manually selected from the estimated
reflectance (ρu,v).

3. For each wavelength, we estimated the illumination
amplitude using kx,y and the reflectance jx,y .

4. By multiplying this illumination spectrum by the esti-
mated reflectance, we obtain spectral vector iu,v which
is free from (temporal) variation in the illumination
spectra.

Figure 1 summarizes the proposed method.

4. Results and Discussions
A series of experiments were carried out to evaluate

the effectiveness and performance of the proposed method,
comparing it with the Robust Principal Component Anal-
ysis (RPCA) method proposed by [11]. The experimental
procedures were as follows: First, a custom imaging system
was developed, comprising a scanning head and two one-
point spectrometers, as depicted in Figure 2 (a). The spec-
trometers employed in this system were the Maya2000 Pro
models manufactured by Ocean Optics, Inc. These spec-
trometers offer 2068 channels, the visible range (“VIS”)



spectrometer covers a spectral range from 199.50 nm to
1118.15 nm, and the Infrared (“IR”) spectrometer covers
a spectral range from 500.81 nm to 1398.87 nm, with an
approximate spectral resolution of 0.5 nm. The RobotEye
REHS25, a high-precision scanning device manufactured
by Ocular Robotics Ltd., was utilised; it provides a spatial
resolution of up to 0.01◦ for 360◦ in the azimuth direction
and a range of 70◦ in the elevation direction. An optical fi-
bre was employed to establish optical connectivity between
the spectrometers and the scanner. A fibre core with a diam-
eter of 200µm was employed for these experiments. Next,
we proceeded with two separate measurements to assess the
performance of the proposed method. The first experiment
in section 4.1 was conducted to enable quantitative evalu-
ation. Additionally, we conducted a second experiment in
section 4.2 in a real-world scenario within a Cathedral fea-
turing stained-glass windows.

4.1. Qualitative Evaluation

Two hyperspectral images of a ColorChecker Passport
(X-Rite, Inc.) were captured on a partly cloudy afternoon,
where the temporal sunlight conditions varied as illustrated
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Figure 6: Overview of filtering, (a) the red and purple lines
show the illumination spectrum of the data cube and the
green shows the spectral filter, and (b) the white represents
pixels that were used while black represents filtered out pix-
els.

in Figure 3. Specifically, one image ( i→) was obtained
through a row-scanning process with a scan time of 1197 s,
and the other image was acquired via column-scanning, i↓,
with a scan time of 1275 s.

We used 3 as the lower limit for the filtering process
and the upper limit as 5000. Figure 6 shows the resulting
spectrum filter and pixel filter. After filtering, 1351 chan-
nels were filtered out. An open-source Python package for
colour science [19] synthesised RGB images from the spec-
tral cubes. Figure 7 displays the synthesised RGB images,
showcasing the row and column scan images and the out-
comes achieved using the RPCA and the proposed method.
It is evident from the figure that the images obtained under
natural sunlight conditions were significantly influenced by
temporal variations in illumination. Conversely, the pro-
posed methods effectively mitigate this variation compared
to the RPCA method. Both methods create spatial artefacts,
with the proposed method having fewer artefacts than the
RPCA method.

The primary objective is to compare the spectra of each
colour patch within the compensated spectral cubes iu,v
against the corresponding spectra in the spectral library.
The spectral library introduced by [20] was utilised for this
evaluation. This library comprises reflectance values for
each colour patch found in the ColorChecker Passport (X-
Rite, Inc.). We implemented the pre-processing method
stipulated in [11]. In Figure 9, the mean spectra of each
colour patch acquired from the row scan and column scan,
as well as the compensated cubes generated by both the
RPCA method and the proposed method, are presented.
These mean spectra are compared to those obtained from
the spectral library, which serves as the ground truth ref-
erence. It is worth noting that the spectra obtained from
both scans differ from those of the library due to the tempo-
ral variations in illumination, which impact the estimation
of the illumination spectrum. However, the spectra by the
proposed method exhibit a much closer resemblance to the
groundtruth than the RPCA method. We further evaluated
the findings using the RMSE as a quantitative measure. We
computed the RMSE between each pixel within the patch
and the corresponding ground truth value of the patch across
all spectral channels encompassing the spectral library.

Table 1 presents the mean and standard deviation of the
root mean square error (RMSE) among different datacubes,
and Figure 8 illustrates the relationship between the dif-
ferent datacubes and the RMSE value using a violin plot.
As anticipated from the observations in Figure 9, the plot
reveals that the proposed method’s mean, standard devia-
tion and median RMSE are lower than that of the row scan
(i→u,v), column scan (i↓u,v), and RPCA methods. This sug-
gests that, on average, the proposed method achieves bet-
ter accuracy regarding RMSE. Furthermore, the shape of
the violin plot distribution indicates that the RMSE values
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Figure 7: RGB images were synthesised from scanned images with illumination variations and mitigated results.
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Data Cubes
Metric i→u,v i↓u,v RPCA Proposed
Mean 0.16 0.19 0.07 0.03
Std 0.07 0.10 0.04 0.02

Table 1: Mean and standard deviation (Std) of the RMSE of
the color patches.

of the proposed method are highly concentrated around the
median. This implies that the proposed method consistently
performs well, as evidenced by the reduced variation in the
RMSE values.

4.2. Experiments with Stained- glass windows

Figure 5 shows the experimental setup used to cap-
ture hyperspectral images of stained-glass windows inside
the Cathédrale Notre-Dame d’Amiens, situated in Amiens,
France. We captured both row and column scan images for
two stained glass windows (XIII and XVIII) on a partly
cloudy day, where the temporal sunlight conditions varied.
Table 2 shows the spatial resolution and scan time for the
hyperspectral images obtained. We established the lower

Time for scan (s)
ID Subject Resolution Row scan column scan
(1) XIII 480× 225 4936 5693
(2) XVIII 520× 240 4848 4982

Table 2: Spatial resolution and time consumed for the scans.

limit as 1 for the filtering process and the upper limit as
1000. After filtering, 654 and 716 channels were filtered
out for the XIII and XVIII windows, respectively. We then
applied the proposed method to the filtered hyperspectral
images of the stained-glass windows.

Figures 10 and 11 display the synthesised RGB images
along with the mitigated results from the scan. Additionally,
to visualise the mitigation effect, we present the difference
between the scan and the results obtained through the pro-
posed method in Figure 10 (d) and Figure 11 (d). Compared
to the scan, the mitigated result exhibits reduced intensity
in the blue regions of the difference image and increased
intensity in the red regions.

5. Conclusions
We introduced using a full-column scan to address the

challenge of temporal varying illumination in whisk-broom
hyperspectral imaging. To solve the problem, we have
employed low-dimensional models on the logarithm of re-
flectance and illumination spectra. Our approach involves
using Singular Value Decomposition (SVD) to solve the
problem. Experimental results demonstrate that our method
can mitigate temporal illumination variations on stained
glass windows. Our method can serve in the digital preser-
vation and analysis of stained-glass windows for restora-
tion. In future work, we aim to implement global constraints
with improved computational efficiency accounting for the
smooth varying of the illumination Spectrum.
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Figure 9: Comparison of spectra in each colour patch.

(a) Horizontal scan {i } (b) Vertical scan {i } (c) Compensated (d) Diff.

Figure 10: (a–c)Synthesized RGB image of the stained
glass window no. XIII, (d) the difference between the row
scan (i→) and the mitigated results.

(a) Horizontal scan {i } (b) Vertical scan {i } (c) Compensated (d) Diff.

Figure 11: (a–c)Synthesized RGB image of the stained
glass window no. XVIII, (d) the difference between the row
scan (i→) and the mitigated results.
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