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ABSTRACT

Context. The Yarkovsky—O’Keefe—Radzievskii—Paddack (YORP) effect plays an important role in the rotational properties and evo-
lution of asteroids. While the YORP effect induced by the macroscopic shape of the asteroid and by the presence of surface boulders
has been well studied, no investigation has been performed yet regarding how craters with given properties influence this effect.

Aims. We introduce and estimate the crater-induced YORP effect (CYORP), which arises from the concave structure of the crater, to
investigate the magnitude of the resulting torques as a function of varying properties of the crater and the asteroid by a semi-analytical
method.

Methods. By using a simple spherical shape model of the crater and assuming zero thermal inertia, we calculated the total YORP
torque due to the crater, which was averaged over the spin and orbital motions of the asteroid, accounting for self-sheltering and self-
sheltering effects.

Results. The general form of the CYORP torque can be expressed in terms of the crater radius Ry and the asteroid radius R:
(Tcyorp) ~ WR%RMEI)/C, where W is an efficiency factor. We find that the typical values of W are about 0.04 and 0.025 for the spin
and obliquity component, respectively, which indicates that the CYORP can be comparable to the normal YORP torque when the size
of the crater is about one-tenth of the size of the asteroid, or equivalently when the crater/roughness covers one-tenth of the asteroid
surface. Although the torque decreases with the crater size Ry as ~R3, the combined contribution of all small craters can become non-
negligible due to their large number when the commonly used power-law crater size distribution is considered. The CYORP torque
of small concave structures, usually considered as surface roughness, is essential to the accurate calculation of the complete YORP
torque. Under the CYORP effect that is produced by collisions, asteroids go through a random walk in spin rate and obliquity, with a
YORP reset timescale typically of 0.4 Myr. This has strong implications for the rotational evolution and orbital evolution of asteroids.
Conclusions. Craters and roughness on asteroid surfaces, which correspond to concave structures, can influence the YORP torques
and therefore the rotational properties and evolution of asteroids. We suggest that the CYORP effect should be considered in the future

investigation of the YORP effect on asteroids.

Key words. minor planets, asteroids: general

1. Introduction

The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect,
which is a thermal torque produced by surface emission, has a
strong influence on the rotational state and evolution of asteroids
(Rubincam 2000; Vokrouhlicky & Capek 2002; Bottke Jr et al.
2006). It can either increase or decrease the spin rate and can also
change the spin obliquity of an asteroid on timescales that also
depend on physical and dynamical properties of the considered
asteroid (e.g., Capek & Vokrouhlicky 2004; Scheeres & Gaskell
2008; Statler 2009; Rozitis & Green 2012). Although a slow pro-
cess in general, it could be directly measured by ground-based
observations (e.g., Durech et al. 2018). Moreover, it provides an
explanation for some observed properties, such as the preferred
orientation of the spin axis of members of the Koronis aster-
oid family (Vokrouhlicky et al. 2003), as well as some asteroid
shapes, such as the top shapes of primaries of small binary sys-
tems (e.g., Walsh et al. 2008), and possibly the shapes of the
asteroids Bennu and Ryugu (although another explanation has
been proposed for these particular cases; Michel et al. 2020).

In particular, to be at the origin of top-shaped asteroids,
the YORP effect needs to cause an increase in spin rate on a

continuous basis or in a trend that allows the shape to evolve in
a spinning top on a timescale that makes it possible. However,
it was found that small changes in the surface topography of an
asteroid can strongly influence the YORP effect outcome (Statler
2009), for instance, causing a spin down rather than a spin up,
which could alter a systematic increase in the rotation rate and
potentially make it difficult to achieve a top shape. Therefore, it
is crucial to assess the effect of surface topography on the total
YORP torque.
The current YORP model reads

Tyorp = Tnyore + TTyorp, (D

where Tnyorp Stands for the YORP effect on the whole aster-
oid, and Ttyorp stands for the tangential YORP effect, which
describes the YORP effect related to the presence of boulders
and surface roughness (Golubov & Krugly 2012; Golubov et al.
2014; Golubov 2017).

Here, we consider another surface characteristic that has not
been considered so far and that might also influence the evolution
of an asteroid rotation state under the YORP effect. Images sent
by space missions showed us that asteroid surfaces are populated
with craters, whose distribution and properties can differ from
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Fig. 1. Simple crater model (left panel) and features in the asteroid that affect the total YORP torque (right panel). In the left panel, the yellow
arrow represents the light coming from the direction of the Sun, and the shadow region is shaded in gray. Parameters /4 and R, are the depth and
radius of the crater, respectively. The edge circle of the crater on the ground level is denoted by C. The angle between the sunlight and ground
normal is denoted by Ay. The right panel shows the boulders and craters on the surface of asteroids that could contribute to the total YORP effect.
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Fig. 2. Three coordinate systems in this paper: coordinate system oxyz for calculating the illuminated domain in the crater, PABC for calculating
the effective recoil force of an arbitrary surface element, and OXYZ for averaging the YORP torque over the spin and orbital motion.

one object to the next (see, e.g., Marchi et al. 2015, for a review),
depending on its age, its response to impacts, and other possible
processes, such as surface motions that can erase small features
or boulder armoring that can prevent a crater from forming (e.g.,
Bierhaus et al. 2022; Daly et al. 2022). Nevertheless, craters are
an important and systematic characteristic of asteroid surfaces
that may have some influence on the YORP effect because this
effect is sensitive to the fine topography (Statler 2009).

For the first time, we propose here the concept of the crater-
induced YORP (called CYORP hereafter) and show that CYORP
may contribute to the total YORP torque as well, which adds a
“CYORP” term into Eq. (1),

Tvorp = Tnyore + Ttyore + Tcyore, (2)
where
Tcyorp otal = ZiTcyYORP,i 3)

as a summation for a whole set of craters or concave structures
on the asteroid (see Fig. 1). The CYORP torque is the difference

A70, page 2 of 13

between the torque caused by the crater and the torque by the
ground before the birth of the crater,

“

Here Tground is the normal YORP torque of the ground before the
birth of the crater (see Fig. 1), which can be expressed as

Tcyorp = Terater — ground+

Toround = RR%)% Ccos Arg X ng, (®)]
where Ry is the radius of the crater, ®@ is the solar flux on the
asteroid, ¢ is the speed of light, A is the incident angle of the
light, and ry and ny are the position vector and unit normal vector
of the crater, respectively (see Fig. 2).

The CYORP torque arises due to the concave structure of the
crater. The vertical wall of the crater induces a force tangential
to the surface, and the curvature of the crater induces a normal
force component that is different from the force that is produced
by the ground without the crater. Thus, the force that leads to
the CYORP torque comprises of both the tangential and normal
components. The self-sheltering and self-heating effects because
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of concavity influence the total torque; this is also considered in
this work. In general, Tcyorp takes the form of the following
scaling rule with the radius of the crater Ry and of the asteroid
Ryt

(O]
Tcyorp = W?R(%Rast, (6)

where W is a function of the properties of the crater and the
asteroid (the detailed derivation of this equation is presented
in Sect. 2). As a general rule, Tcyorp is thus proportional to
the square of the crater radius and to the asteroid radius. Based
on this scaling relation, we developed a semi-analytic method
that can be applied to the calculation of the CYORP effect, and
it provides a basic understanding of the relative influence of
each parameter. The derived CYORP torque can be applied both
for craters and for any concave structures on the surface of an
asteroid, although a modification accounting for the geometry is
needed.

We focus here on one crater and vary its properties to deter-
mine how they influence the YORP effect. As a first step, we
assume zero thermal inertia (Rubincam’s approximation; see
Rubincam 2000), which can be applied to asteroids with low
thermal conductivity or slow rotation. Rubincam’s approxima-
tion is suitable for calculating the spin component of the YORP
torque. The model including the thermal inertia of the asteroid
will be the topic of a next study. In the following, we present
our calculation of the crater-induced YORP torque in Sect. 2,
accounting for the crater shape and other related thermophysical
processes. Section 3 presents results for various asteroid prop-
erties and locations of the crater. In Sect. 4 we give the typical
value of the CYORP torque (Sect. 4.1), which could be used to
estimate the order of magnitude, and we analyze the applicabil-
ity of the CYORP effect to the complete YORP torque and to the
spin evolution of asteroids (Sect. 4.2). In Sect. 5 we summarize
the main results and draw the conclusion.

2. Calculation of the crater-induced YORP torque
2.1. Shape model for the crater

We considered a simple shape model for the crater, which is rep-
resented by a full or part of a semi-sphere with a radius R, and
depth i (see Fig. 1). In this way, the size and the shape of the
crater can be determined by two parameters R; and y,, where

Ri—h
R,

(M

sin Yo =

We considered a coordinate system (x, y, z) with the origin
located at the sphere center (see Fig. 2). The unit vectors e, e,
and e, were chosen so that e, lay along the symmetry axis of
the spherical crater and e, lay in the plane of e, and the unit
solar position vector s. Vector e, follows the right-hand rule.
Equivalently, e, and e are defined as

e, =e; XSs,

®)

e, =¢,Xe,.

In this coordinate system (see Fig. 2), the crater can be defined
as

Z ={(x,y,2) € R3|x2 + y2 +72 = Ry,z > R; sinvyp}. )

Applying

x =rsinfcos¢

y =rsinfsing (10)
X =rcosé,

the crater is equivalently

Z={(xy.2) eR}r=Ry,0 € (0,7/2 = y0), ¢ € (0,27)}.  (11)

The widely used parameter depth-diameter ratio translates as

iz 1 —sinvyy (12)
Dy  2cosyy

where Dy = 2R is the diameter of the crater.

2.2. Shadowing effect

For a concave geometry such as a crater, the influence of self-
shadowing plays a significant role for the YORP effect. There are
three consequences of self-shadowing. (1) The crater is sheltered
by itself, that is, the fraction in the shadow of the crater does not
receive the photons from direct solar radiation. (2) The effective
angular momentum transfer that occurs in a surface element is
affected by the neighboring topology because the radiated pho-
tons can be reabsorbed by the shelter. As a result, the effective
recoil force (and the YORP torque) is different from that in the
case of a nonsheltered environment. (3) The radiation caused by
secondary illumination from the crater itself, which is ignored in
this work for simplicity. As we show in Sect. 3, the first effect of
shadowing contributes to the net YORP torque of a crater, and
the second effect weakens the YORP torque.

2.2.1. llluminated area

The unit vector directed toward the Sun from the crater s’ repre-
sents the direction of the parallel sunlight. When we consider
that the size of a typical asteroid R,y (on the order of some
kilometers) is much smaller than the distance from the Sun d
(on the order of one au), the unit vector pointing from the cen-
ter of the asteroid to the Sun is s =~ §’. In the following context,
we use s to denote the position of the Sun relative to both the
asteroid and the crater.

The unit position vector of the Sun in the coordinate system
(x, y, z) can be expressed as

13)

where A is the incident angle of the light. To determine the region
that is exposed to sunlight, we need to find the expression func-
tion of the boundary of the illuminated region. First, we define
the edge of the crater at the ground level, which is a circle as

(14)

The boundary is the projection of the upmost circle C; of
the crater on the crater Z along the light. The boundary can be
obtained by solving the intersection of the crater ZZ and an ellip-
tic cylinder, which contains C; and along s. When an arbitrary
point in the circle C; is (x',y’, Z'), the elliptic cylinder is

§ = sin de, — cos Ae_,

C = {(x, 4, )X + y* = R} cos® yp,z = Ry siny}.

X% +y? =Ricos’yp

7=0

x—x  z-7 (15)
sind  —cosA

y=y.

A70, page 3 of 13



A&A 668, A70 (2022)

After reduction, the expression of this elliptic cylinder is

(x +ztan )* + y*> = R3. (16)

Combining this with the expression of the crater (Eq. (9)) and
applying x = Ry sinfsin¢, y = R;sinfcos¢ and z = R cos 6,
we obtain the expression of the intersection curve,

_ cos2dcosd +siny
- sin2A4sin 6

0s ¢ (17)

Because 0 < ¢ < 27, given a polar angle 6, Eq. (17) has two
solutions (if a solution exists) ¢ and ¢, , for ¢ with ¢, + ¢, = 2,
in which we assume ¢; < ¢, for further analysis. The illuminated
region is represented by

(18)

24 0 + si
W e {(x, 4.2) € Zlcos b < cos 21 cos 6 + sin yo}

sin 24 sin 8

It is not guaranteed that Eq. (17) has a solution because the
right side of the equation can be larger than 1. Depending on the
incident angle of the light A, there are three illumination modes,
given an incident angle of light A as follows:

(1) The whole crater is illuminated <= A < . In this case,
Ww=2

(2) Two sides of the crater (e.g., east and west) are illuminated
= vy <A< a/4+vyy/2. In this case, W = {(x,y,2) €
Z16 € (0,7/2 =22 + yp),¢ € (0,2n) or 6 € (m/2 — 24 +
Y0:7/2 = 0), ¢ € (41, ¢2)}.

(3) One side of the crater is illuminated < n/4 + yy/2 <
A < w/2. In this case, W = {(x,y,2) € Z|0 € 24 —yy —
n/2,7[2 = 0), ¢ € (d1,¢2)}.

We refer to Appendix A for the details of the above math-

ematical description of these three illumination modes, or a

self-examination may be made through plane geometry in Fig. 1.

Although the different illumination modes are based on Eq. (18),

they refer to different integration domains. Expressing them

explicitly helps solve the thermal recoil force of the crater (see

Eq. (31) in Sect. 2.2.2), as the crater could go through all these

modes during a rotational period.

2.2.2. Self-heating

The surface of asteroids experiences three types of forces, which
are caused by absorbed, scattered, and reemitted photons, respec-
tively. The torque produced by absorbed photons is proven to
average out after integrating over the spin and orbital periods
for any asteroid shapes. Therefore, this type of force does not
contribute to the YORP torque of the whole asteroid (Nesvorny
& Vokrouhlicky 2008). Both the recoil forces produced by scat-
tered and reemitted photons depend on the light scattering law.
We assumed the simple and most widely used Lambert scat-
tering law, in which the light is emitted in all directions with
an intensity proportional to the cosine of the angle between the
light direction and the normal vector of the surface. For concave
configurations such as a crater, we should consider the self-
heating effect, which arises because some of the photons may
be re-absorbed by the nearby shelter, which prevents them from
contributing to the effective recoil force (Statler 2009; Yan & Li
2019). The reemission of the obscuring parts, which might make
a difference for a concave structure (Rozitis & Green 2013), is
ignored in this work for its complexity and will be studied in the
future.

A70, page 4 of 13

We consider a reference frame with the origin at the point P
located at the polar angle 6 (see Fig. 2). The orthogonal basis is
represented by three unit vectors:

éc=n
eg =ecXe, (19)

ey =eép Xec.

Here n is the normal vector of the surface element. An arbitrary
vector of the light ray that is emitted through a solid angle dQ
can be expressed by the polar angle u and the azimuth angle v
in this reference frame. According to Lambert’s scattering law,
the recoil force on the surface element dS that is located at the
latitude of @ can be expressed as

® sinu cosv
f= —f — cosp| sinusiny [dQ. (20)
q c
H cos 1

Here H is the region on the sky in which the light ray is not
reabsorbed. In the spherical coordinate system, the boundary of
H is the intersection curve of an elliptic cone and the unit sphere,
both of which are centered at the origin. This elliptic cone must
contain the upmost circle (C in Fig. 1). When an arbitrary point
inCis (x',y’,7’), the elliptic cone expressed by (x, y, ) is

¥+ [(x' = xp)cos @ — (7 — z0) sin ] = cos® vy
(x" = x0)sin@ + (7' —zp) cos8 =0
r*_Y_Y

Xy

21

Here (x, 0, zg) = (sinyg sin 6,0, 1 — sin y, cos ) is the center of
the circle C in the coordinate system (a, b, c). Combining this
with the unit sphere, which is

X =singcosvy

y =sinusiny (22)

Z = COS [,
we obtain the function of the boundary of the illuminated sky:

cos 2y cos 6 + sinyg

cosy = — (23)

sin 2y sin 6

Here we assume that the solutions of this equation for v are v,
and v, with v; < v,. Thus, the region H is

2 0 + si
H = {(x,y,z) € R3u € (0, 7/2), cos v < _ cos2ucos SIHY()}.

sin 2u sin 6,

(24)

It can be also expressed as
+ —_
H = {(x, y,2) € Ry € (0,27, € (%n)} (25)
where
= t —FF | € O, . 26

y1=are an(tan&cosv) ©.7) (26)
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Therefore, the recoil force of the surface element that is
located at the latitude 6 is

o sinp cos v 11(6)
f= _f — cos | sinusinv |sinudvdy = |0 (27)
qqy C 7
H cos i 50

Here f{(6) and f;(6) are functions of the latitude 6 of the surface
element, resulting from v; and v,. The second component can-
cels out because the integral of sin v over either (v;, v») or (0, 2r)
is zero. Given ec = nand e4 = n/tan6 + e./ sin 6 (see Eq. (19)),
we have

S = hH@On+ f5(0e., (28)
with
(0
f10) = f5(6) + iﬁ
and (29)
£00)
f(0) = =—.
sin @

2.3. Integral of the recoil force

The total recoil force of the crater can be obtained by integrat-
ing the recoil force (Sect. 2.2.2) over the illuminated region
(Sect. 2.2.1),

F = f fds = f fi(@)n + f3(0)e, sin Bdpdé. (30)
w w
Because n = —sin 6 cos ¢e, — sin fsin e, — cos fe_, in the coor-
dinate system (x, y, z), we have
— fi(@) sinfcos ¢ Fi(1)
F = f sin@| — f1(0) sinfsin ¢ d¢dd = |0 1)
Y = fi@coso + £0) F3()

The y-component vanishes due to the symmetry of the integral
domain on ¢ (see Eq. (18)). The tangential component and the
normal component of the recoil force both exist, and not only
one of them as in TYORP or NYORP.

2.4. Averaged YORP torque

The radiative torque is expressed as

Terater =f I"deS.
w

Here r' = ry + r is the position vector from the mass center of
the asteroid to the surface element dS on the crater, where ry
denotes the position vector of the sphere center of the crater,
and r denotes the vector from the sphere center to the surface
element. Because r X f ~ nx n =0 and r < ry, Eq. (32) can be
simplified as

(32)

1@m=j‘mxﬂSzme=RMWXQ+&MWXQ.
w
(33)

When we substitute e, = s/sind + e,/ tan A into Eq. (33), the total
torque becomes

_ @ Oxs—(Fl(/D

(34)

Teraer = mr an 1 + F3(/1)) ro X ny.

Plugging Eqs. (5) and (34) into Eq. (4), we obtain

T _ @
CYORP = —
sin A

520
+ F5(1) +7TR03— cos A|roXng.
c

Fi(D)
X —_
Tos ( tan A

(33)

In order to understand this CYORP effect on the secular spin
evolution of an asteroid, we need to average it over its dynamic
timescale. It is well known that the timescale of the YORP effect
is much longer than the orbital period and spin period, therefore
it is useful to calculate the average YORP torque over the orbital
period and the spin period. In general, the spin period (some
hours) is much shorter than the orbital periods (some years), so
that the integral over the orbital motion and that over the spin
motion can be treated separately.

We consider an inertia reference frame (XYZ) with the origin
O at the asteroid center (see Fig. 2). The axis OZ is the spin axis
of the asteroid, and the OXY plane is the equatorial plane. The
position vector of the crater ry is

ro = ro(sin @ cos B3, sin « sin 3, cos @), (36)

where r( is the distance from the crater to the mass center of
the asteroid. The unit normal vector ny of the ground can be
expressed as

ny = (sin(a + A) cos(B + 9), sin(a + A) sin(8 + 0), cos(a + A))= —e,,
(37)

where the independent variables § and A denote deviations of the
normal vector from the position vector, which is determined by
the geometry of the asteroid. The unit solar vector s is

s = (cosn, cos esinn, sin € sinmn), (38)

where 1 is the angle of orbital motion. The vector e, can be
expressed as a function of s and e, according to Eq. (13).
Therefore, the averaged CYORP torque is

1 27 27
(Texore) = 75 f f TcyorpH (s - no)dBdn. (39)
™= Jo 0
Here H is the Heaviside step function, which is defined as
Hex) = 1, x>0 40)
Y70, x < 0.

The average CYORP torque turns out to be a function of yy, «,
€, 6 and A, where
vo describes the depth-diameter ratio of the crater (see Fig. 1),

« is the latitude of the crater,

€ is the obliquity of the asteroid,

A and ¢ describes the deviation of the normal vector ny from
the position vector ry (see Eq. (37)), which is determined by
the macroscopic geometry of the asteroid.

The dependence of the CYORP effect on these parameters is
exposed in the next section.

3. Results

In general, the averaged CYORP torque has the form
D

(Tevore): = Wo(y0, @, €, A,0)—RiRus, (0
0]

<TCYORP>E = WE(’}/()’ a, €, A7 6)?R§Rasta (42)

A70, page 5 of 13
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Fig. 3. Map of the dimensionless parameter W scaled by color from blue (low) to red (high) as a function of 6 and A (which are related to the
asymmetry of the asteroid; see Sect. 3.1). The spin component W, is shown in the left panel, and the obliquity component W, is shown in the right

panel. Here both « and € are set to be /4.

where the W function can be obtained from Eq. (39). Here
(Tcyore); and (Tcyorp)e are equivalent to the Z and Y com-
ponents of the CYORP torque, denoting the spin and obliquity
torques, respectively. In the following analysis, we present the
values of W, and W, in different cases to show how the CYORP
torque varies with the parameters.

3.1. Asteroid shape

The asteroid shape affects the relation between ry and ny. For
example, a spherical asteroid has ry/ro = ny, while a prolate
asteroid does not. The relation between r( and ng translates into
A and ¢ (see Egs. (36) and (37)) in our calculation. Figure 3
shows the values of the dimensionless parameter W in terms of
6 and A, where @ = € = /4. We demonstrate that for Z-axis
symmetric asteroids, which is equivalent to 6 = 0, the CYORP
torque disappears due to the antisymmetry of the torque function
over the integral domain. However, for nonsymmetric asteroids
(6 # 0), the CYORP torque includes both the spin and obliquity
components.

3.1.1. Z-axis symmetric asteroid

Here, we call a Z-axis symmetric asteroid an asteroid that has a
surface of revolution around the z-axis (major principal axis)'.
Some well-known examples are top-shape asteroids and sym-
metric ellipsoid asteroids with an axis ratio 1:1:¢; (¢; > 0). A
Z-axis symmetric asteroid has 6 = 0 everywhere on its surface,
as demonstrated in Appendix B. Given ¢ = 0, we substitute
Egs. (36) and (37) into Eq. (35), leading to

o sin7 sin a sin B sin € — sin 7 cos @ cos €

1
Tcyore = —
sin A

cos1cosa — sinn sina cos Bsin €
sinz sin @ cos B cos € — cosnsina sinf

N (43)
Fi(D) 2 sinBsin A
+[ = +F3(/1)+7TR%—COS/1 cosfBsinAf,
tan A 3c 0

' Cross sections perpendicular to the Z-axis are circular.
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where
cosd=mng-s
= cosnsin(a + A)cosf + sinnsin(a + A)sinScose  (44)
+ sincos(a + A) sine.

The secular CYORP torque is calculated by averaging
TcyorpH(cos 1) over the spin angle £ and orbital angle  accord-
ing to Eq. (39).

Interestingly, after averaging, the obliquity component (Y
component) and the spin component (Z component) vanish
because they are antisymmetric in the interval domain S €
(0, 27) and i € (0, 27). This becomes clear in the example of
the domain 8 € (0, 7) and n € (0, 7). Because sin(7 — x) = sinx
and cos(m — x) = —cos x, for any point pair ({,7), we can find
that another point pair (r — {,m — 1) exists for which the Y-
axis and Z-axis components of TcyorpH(cos 1) have the same
absolute value but the opposite sign; this is shown by investi-
gating Eqs. (43) and (44). The Y-axis and Z-axis components of
Tcyorp change sign, but A does not change at all. In the domain
£ € (0, m) and 5 € (0, m), the average function is therefore anti-
symmetric about (7/2, w/2) for Y-axis and Z-axis components,
which leads to the fact that the average is 0. Other antisymmet-
ric points in the whole domain are (7/2,37/2), 3n/2,7/2), and
(37/2,3n/2). Therefore, there is no spin and obliquity compo-
nent of the CYORP torque left for Z-axis symmetric asteroids
(6 = 0). This antisymmetric property does not occur in the X-
axis component of (Tcyorp), Which changes the precession angle
of the asteroid. Although Nature knows no perfectly Z-axis sym-
metric asteroid, this analysis implies that the torque would be
severely weakened for a nearly Z-axis symmetric asteroid (small
0), which is also shown in Fig. 3. However, this antisymme-
try of Tcyorp is only valid when Rubincam’s approximation
(zero thermal inertial) is applied and would be broken in the
case of nonzero thermal inertia, for which the spin and obliquity
components still exist (see Sect. 3.4).

3.1.2. Asymmetric asteroid

A perfectly Z-axis symmetric asteroid does not exist in
Nature, for which even the normal YORP effect vanishes
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Fig. 4. Map of the dimensionless parameter W, which varies with the latitude of the crater o and the obliquity of the asteroid €, scaled by color
from blue (low) to red (high). The spin component W, is shown in the left panel, and the obliquity component W, is shown in the right panel. Here

both ¢ and A are set to be /4.

(Breiter et al. 2007). We therefore investigated how the CYORP
effect depends on the asymmetry of the asteroid. For an asteroid
without a perfectly symmetric shape, the position vector ry and
the normal vector n( are not always aligned in the same longi-
tude (6 # 0). We already know (Sect. 3.1.1) that when ¢ = O,
the CYORP torque only has the obliquity component. In this
section, we investigate how ¢ affects the CYORP effect in the
imperfectly symmetric case. We also investigate the effect of A.
For simplicity, we fixed other parameters by setting the crater
shape parameter yy = 0.2, the latitude & = /4, and the obliquity
€ =m/4.

Figure 3 shows that the spin component starts from O and
grows with increasing ¢ to a magnitude comparable to the oblig-
uity component. Thus, in the case of 6 # 0, which is more
common in real craters on asteroids, the CYORP torque has a
non-negligible spin component that changes the spin rate of the
asteroid in the long term.

3.2. Crater latitude a and asteroid obliquity e

In order to determine how W varies with the crater latitude and
the obliquity, we need to keep other variables constant. Figure 4
shows the W map with a crater latitude @ € (0, 7) and an asteroid
obliquity € € (0,7) when ¢ and A are set to be 7/4. The latitude
of large craters can cause their shape to depart from the semi-
sphere model used in our study (Fujiwara et al. 1993; Daly et al.
2020b). The effect of more complex geometries is left for future
studies.

3.3. Crater depth-diameter ratio

The above results assume that the depth-diameter ratio #/D
of the crater is ~0.16, while real craters on asteroids exhibit
wide ranges of this ratio. Figure 5 shows the recoil forces
(Eq. (31)) caused by craters with different depth-diameter ratios.
Moreover, for the tangential component of the recoil force, the
self-sheltering effect is negligible in shallow craters (low //Dy),
while for the normal component, the self-heating effect cannot
be ignored even in shallow craters.

3.4. Thermal inertia

The inclusion of nonzero thermal inertia increases the complex-
ity of the problem and requires a numerical method to obtain
a precise solution, which is beyond the scope of this paper.
However, we can reasonably modify the total force of the crater
in order to mimic the thermal lag effect due to nonzero thermal
inertia. We assumed that the Sun rises from the east and sets
in the west from the view of a crater on the asteroid. The west
part of the crater is illuminated in the morning and the east part
is illuminated in the evening. The YORP torque arises from the
temperature difference between the west and east parts. However,
the temperature difference in the morning should be different
from that in the evening as a result of the thermal inertia. In the
morning, the crater just experienced a dark night, while in the
evening, the crater has been sunlit for the whole day. This means
that the temperature of the crater is not symmetric in the daytime,
which will induce a nonzero y component of the total recoil force
F in Eq. (31),
F>(1) #0. (45)
Although we are currently unable to obtain the precise solu-
tion of F»(A), we can at least examine whether it has an effect
on the CYORP torque by simply performing the transforma-
tion Fy (1) — F(4)/ V2 and F5(2) — F;(1)/ V2. Here a hidden
assumption is that F'; (1) and F,(A) are on the same order of mag-
nitude. This transformation does not give a direct estimate of the
considered thermal inertia, and it is used here only to account
for the effect of nonzero thermal inertia. In future work, we will
directly estimate the consequences of given values of thermal
inertia on CYORP.

Figure 6 shows the values obtained for W, and W, when
60 = A = 0. With nonzero thermal inertia, the spin and obliquity
components arise for some sets of (@, €), while they are always
zero without thermal inertia due to § = 0, which has already been
proven in Sect. 3.1.1. Therefore, we infer that the nonzero ther-
mal inertia of the asteroid can induce a nonzero spin component
of the CYORP torque for Z-axis symmetric asteroids, and should

A70, page 7 of 13



A&A 668, A70 (2022)

0.000
~0.025
~0.050
&
£ -0.075
el
&
N
< -0.100
<9
-0.125
o150 — dD=0.05
—— d/ID=0.15
oq7s] — @D=025 S
0.0 0.5 1.0 15 2.0 25 30

e(")

0.00

—0.05

-0.10

F3/2®dS/3c)

-0.15

— d/D=0.05

—— dID=0.15

—0.20 —— d/D=025

00 05 10 15 20 25 3.0
e(*)

Fig. 5. Recoil forces for craters with different 2/ Dy. The results considering the self-heating effect are shown by solid lines, and the results obtained
without the self-heating effect are shown by dashed lines. The left panel denotes the tangential component of the recoil force, and the right panel

denotes the normal component.

1807 180
160 0.015 160
0.02
140 0.010 140 =
120 0.005 120 0.01
100 'EEE= -~ 100 .
& “ ERRES 0.000 &' “ 0.00
60 ~0.005 60 —0.01
40 -0.010 40
-0.02
20 0015 20
04 0
0 20 40 60 80 100 120 140 160 180 40 60 80 100 120 140 160 180
a(®) a(®)

Fig. 6. Color map of the dimensionless parameters W, (left panel) and W, (right panel) accounting for nonzero thermal inertia. The variables ¢ and
A are set to zero. Here a nonzero value of W, and W, arises, while the values are zero throughout the map in the regime of zero-thermal inertia, as

proven in Sect. 3.1.1.

affect the behavior of the CYORP torque; this will be studied in
future works.

4. Discussion and implications
4.1. Order of magnitude

In order to understand the effectiveness of the CYORP torque
better, it is useful to compare it with the two torques in the cur-
rent YORP model: the normal YORP (NYORP) torque, which is
caused by the global asymmetry of the asteroid, and the tangen-
tial YORP (TYORP) torque, which results from the temperature
difference of two sides of boulders. To a first approximation, the
normal YORP torque for an asteroid can be simply expressed as

® 1
(Txyorp.2) ~ Cz?Rgst cos (2e + -), (46)

3
o
(Ixyore,e) ~ Cf;Rast sin 2e. (47)
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Here C, and C, are dimensionless YORP coefficients of the spin
component and obliquity component, respectively. Golubov &
Scheeres (2019) computed the normal YORP torques for type I,
IT, 111, and IV asteroids? from the sources of photometric obser-
vations, radar measurements, and in situ observations. For type
I and 1II asteroids, the number distribution of C, peaks around
0.005, while for type III and IV asteroids, the peak is located at
C, < 0.001. Here we took C, = 0.005 for the following compari-
son. It was shown that an approximate correlation between these
two coefficients is given by C¢/C, ~ 2/3 (Golubov & Scheeres
2019; Marzari et al. 2020).

The tangential YORP torque for one boulder, which is dom-
inated by the spin component, is (Golubov & Krugly 2012)

0]
{Ttyorpp) = C1pS Rast?v (48)

2 Asteroids are categorized into types L, II, III, and IV according to the
behavior of the YORP torque curve (Vokrouhlicky & Capek 2002).
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component, and the dashed curve denotes the obliquity component.

where § is the projection area of the boulder on the ground
base. The parameter Ct}, measures the efficiency of the torque,
depending on the thermal parameter and the shape model
(Golubov 2017). For a spherical boulder, Ct}, ~ 0.002, while for
a wall, Crp, ~ 0.01. The numerical simulation by Sevecek et al.
(2015) on a polyhedron model of the boulder found Ctj, ~ 0.001.
When all the boulders on asteroid Itokawa were considered, the
total TYORP torque was (Golubov & Scheeres 2019)

_(1n® —InB®yp)

D
(T'ryorp) ~ Cr—R; i exp o

- )(cos2 e+1). (49
For spherical boulders, I' = 1.518 and In ®, = 0.58. The coef-
ficient Ct depends on the roughness of the surface and on the
shape of the asteroid. For asteroid (25143) Itokawa, the value
of Ct was estimated as 0.0008 + 0.0005 (geveéek et al. 2015;
Marzari et al. 2020).

The general form for the CYORP torque of one crater is
similar to Eq. (48),

(Texors) = W RiRus. (50)
When 6 = A = a = n/4, W, is about 0.04 and W, is about 0.025.
Comparing Egs. (50) to (48), we find that the CYORP torque is
one order of magnitude stronger than the TYORP torque for a
crater and a boulder (spherical model) of the same size.

In Figure 7 we compare the CYORP torque for a single crater
to the NYORP and TYORP torques for the whole asteroid as
functions of the obliquity €. Here parameters and the magni-
tude of the TYORP (e.g., the size distribution and the thermal
parameter of boulders) follow the research performed on aster-
oid Ttokawa (Seveéek et al. 2015). The TYORP torque differs
from one asteroid to the next because the morphology of aster-
oids differs (Kanamaru et al. 2021). For the CYORP torque, other
parameters apart from the obliquity were set to be constant as
0=A=a=n/4and Ry/R,s = 1/3. We considered three crater
depth-diameter ratios, 1/Dy = 0.08, 0.13, and 0.168, as exam-
ples, which are the mean values for asteroids Itokawa, Eros, and
Vesta, respectively (Hirata et al. 2009; Robinson et al. 2002;
Vincent et al. 2014). In these cases, the values of W, are 0.04,
0.028, and 0.025, respectively, while W, is much smaller. For a
deep crater with h/Dy = 0.168, the CYORP torque for a single

crater is comparable to the NYORP torque. CYORP decreases
with decreasing depth-diameter ratio, but even for a shallow
crater with a depth-diameter ratio ~0.08, the CYORP torque is
stronger than the total TYORP torque for the whole asteroid.

Although we assumed a large crater with a size one-third of
the size of the asteroid to calculate the CYORP torque, large
craters like this exist on real asteroids (e.g., asteroids Itokawa
and Ryugu, Hirata et al. 2009; Noguchi et al. 2021). Accord-
ing to Hirata et al. (2009), the largest three craters on Itokawa
are 134 m (h/Dy ~ 0.11), 128 m (h/Dy ~ 0.12), and 117 m
(h/Dgy ~ 0.15). Considering that the mean diameter of asteroid
Itokawa is ~313 m, the value of Ry/R, set to one-third is rea-
sonable for real asteroids and appropriate for asteroid Itokawa.
It might be twice the total torque or cancel the NYORP torque,
depending on whether the sign of the CYORP torque is oppo-
site to that of the TYORP torque. In Fig. 7, the CYORP torque
is positive all over the obliquity, which is not the same for all
cases, however, leading to the change in sign of the total YORP
torque in some obliquities when the CYORP torque is added to
the NYORP torque. Therefore, we show that the CYORP effect
might be the main complement to the NYORP effect in addition
to the TYORP effect. Especially when the thermal inertia of the
asteroid is extremely low, the TYORP effect vanishes, so that
the CYORP effect might be the only complement to the NYORP
effect.

The CYORP torque for a smaller crater decreases as the
CYOREP torque scales as ~R2 . which, however, does not mean
that the contribution of small craters to the total CYORP torque
is negligible. On the contrary, small craters could even give rise
to a more significant CYORP torque than that produced by large
craters because there are many small craters. This is analyzed
in more detail in the next section as this section focuses on the
order of magnitude of the CYORP torque of a single crater.

4.2. Applicability

The CYORP effect, which is induced by concave structures on
an asteroid surface, is expected to have widespread applications
in the rotational dynamics of asteroids. It contributes to the accu-
rate calculation of the complete YORP torque by providing a
systematical assessment of the YORP torques from large-scale
(craters) and small-scale (roughness) concave structures over
a huge parameter space (Sect. 4.2.1). In addition, the CYORP
effect is linked to the collision history of asteroids, whose sur-
faces are modified by impact craters. The spin rate and obliquity
are expected to go through a random walk under the CYORP
effect. This has strong implications on the rotational and orbital
evolutions of asteroids (Sect. 4.2.2).

4.2.1. Calculation of the total YORP torque

Recently, in situ observations by spacecraft provided high-
resolution images of asteroids and measurements of their physi-
cal properties (e.g., Hirata et al. 2009; Daly et al. 2020a), which
enabled investigating the YORP effect with a high-resolution
shape model of the considered asteroid (Kanamaru et al. 2021;
Roberts et al. 2021). With high-resolution images, the thermally
induced torque of craters whose sizes are above the image res-
olutions can be well represented by the NYORP torque, but we
still miss the consideration of small craters or concave structures
that are below the image resolution.

As we highlight in Sect. 4.1, the CYORP torque produced by
small craters and not by large craters might be the main contrib-
utor to the total CYORP effect. The cumulative size distribution
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of craters is typically represented by a power law of the form

NR 2 Ro) « Ry (51)

(e.g., p ~ 3 for asteroid Itokawa; Hirata et al. 2009). The total
CYORP torque of craters is simply the sum of torques due to all
the craters (see Eq. (3)), which reads

o b ,_
Teyorp o = N(R > Ry) - W;R%Ras[ o W;Ré P Ragt- (52)

In the case of p > 2, the total CYORP torque is dominated by

small craters because it scales as R(Z)fp . Some of the CYORP
torques may cancel out due to the opposite signs of the torques
over different latitudes. However, because the torque curve is not
antisymmetric over the latitude (see Fig. 4), it is still possible
that there are enough torques of one sign to keep the net value
of the torque from all craters on the same order of magnitude
as the equivalent torque from a single large crater. Essentially,
the CYORP torque depends on the total area of the craters on
the surface. For example, 100 craters, each covering an area of
1 m?, are equivalent for the CYORP torque to one single crater
covering an area of 100 m?.

The concept of a “crater” in this paper can be extended to any
concave structure as we do not use other properties of craters
than the shape. It is hard to confine a characteristic size range
of the CYORP effect because it works for all sizes in principle.
Therefore, even though the resolution of the shape model might
seem high from in situ observations (e.g., 80 cm in the shape
model of Bennu; Barnouin et al. 2019), it may still not be high
enough to resolve the small surface structures that could never-
theless induce a considerably strong CYORP torque. This poses
challenges to the precise measurement of the total YORP torque.
The definition of a very small crater is vague, and to compute
YORP torques, the term “roughness” may be more appropri-
ate. In this sense, the CYORP effect resulting from small-scale
concave structures serves the same purpose as the YORP effect
from surface roughness (Rozitis & Green 2012). Rozitis &
Green (2012) showed with numerical simulations that the sur-
face roughness mainly dampens the total YORP effect, while our
result based on a semi-analytical method shows that the CYORP
effect may either enhance or weaken the YORP torque, depend-
ing on many factors (see Figs. 3, 4, and 6). Furthermore, by
using a semi-analytical method, which is much faster to run over
the whole parameter space, we performed a systematic inves-
tigation of how the CYORP effect depends on the properties
of the craters and the asteroid. The CYORP effect resulting
from the roughness on a surface provides a potential explana-
tion for the inconsistency of the YORP model that have been
encountered so far with the measurement in the case of asteroid
Itokawa, even though high-resolution shape models were used
(Vokrouhlicky et al. 2004; Scheeres et al. 2007; Lowry et al.
2014; Breiter et al. 2009; Sevelek et al. 2015). Therefore, apply-
ing the CYORP effect to the measurement of the YORP torque
caused by the surface roughness, together with the TYORP
effect (Golubov & Lipatova 2022), would be an effective way to
improve the estimated accuracy of the YORP effect. In addition,
the CYORP effect can also be applied to estimating the YORP
torque when it is too expensive to compute the total YORP torque
on a precise shape model or when detailed information of an
asteroid is unavailable.

The resolution of the OSIRIS-REx mission is ~80 cm
(see Daly et al. 2020a). This leads to a shape model with
more than three million facets, which makes it computation-
ally demanding and time-consuming to calculate the complete
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YORP torque, however. It is impractical to apply such a com-
plicated shape model to an analysis of the YORP effect under
different rotational and orbital conditions (e.g., for building a
statistical database of the YORP torques). The computational
expense increases the difficulty of fully investigating the rota-
tional evolution of a particular asteroid or of an asteroid family.
Moreover, precise shape models are not available for most
asteroids, of which high-resolution images are lacking. There-
fore, a simplified but still accurate YORP model is needed, to
which the CYORP effect might contribute. The CYORP torque,
together with the TYORP torque, might be interpreted as esti-
mation errors to the NYORP torque through a lack of necessary
information on the asteroid,

Tyorp = TNYORP + OTYORP + OCYORP- (53)

Here oryorp and ocyorp are the uncertainties caused by all
boulders and craters, respectively. Although we do not fully
understand the precise magnitude of oryorp and ocyorp at
the current stage, with more information on asteroid surfaces
(e.g., the size distribution of boulders and craters) and fur-
ther explorations of TYORP and CYORP effects, we would
be able to estimate the YORP torque from limited information
(e.g., a low-resolution shape model derived from photometric
observations).

The existence of ocyorp might explain the different distribu-
tions of the YORP torques from photometric shape models and
from radar shape models that were found by previous simula-
tions (Marzari et al. 2020). Because shape models derived from
the photometry are usually convex, which means that the infor-
mation on craters is lost, while those from radar data could be
concave, the different distribution of the YORP torques in these
two groups might be caused by the CYORP effect in the sec-
ond group. In addition, to simulate the YORP effect on synthetic
pseudo-asteroid shape models, shape models including concave
structures (e.g., Devogele et al. 2015) would be more appropriate
to account for the CYORP effect.

4.2.2. Influence on spin evolution

The CYORP torque measures the torque difference of a crater
and the ground before the occurrence of the crater (see Eq. (4)).
As the crater is produced by a collision event, the CYORP torque
naturally computes the change in YORP torque before and after
a collision by its definition. Each collision event produces a
CYOREP torque, resulting in a random walk of the YORP torque
over the collisional history, which affects the spin evolution of
the asteroid. Therefore, by applying the CYORP effect to an
asteroid, we might be able to trace back its spin evolution assum-
ing the crater age is known, although other factors (e.g., the
boulder distribution) should be considered together. In this way,
the CYORP effect builds a bridge between spin evolution and
collisional history.

We consider a crater with a radius Ry on an asteroid with a
radius R,y. The size of the impactor has a relation to the crater
size

Rimp = Ro/ fc,

where the factor f¢ is determined by a crater scaling law
(Holsapple 1993; Bottke et al. 2020). The timescale of such an
impact is

(54)

1
~ PRZ,N(R > Rimp)’

ast

(35)

Timp
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Here P; = 2.85 x 107'® km~2 yr~! is the intrinsic collision prob-
ability. The number of impactors that are larger than R;n, can be
calculated by a simple power law (Holsapple 2022),

Rimp b
N(R>Rimp)=CR(1km) (56)

with Cg = 6 x 10° and bg = 2.2. When the total area of craters
reaches one-tenth of the asteroid surface area (equivalent to a
crater with the size one-third of the asteroid radius), the YORP
torque is reset by the CYORP torque, as shown in Sect. 4.1.
Therefore, the critical number of impacts that can reset the
YORP torque is

No =~ RZ,/10R}. (57)

Now we are able to derive the timescale for a reset of the YORP
torque,

TYORP,reset = NOTimp
Ry (Ro/fc1 km)Pr
10R}  CrPR%
br—2
1 R,
107CxP; 2% (1 km)Px

(58)

The dependence of the Tyogrpeset ON the crater size Ry is weak,
and the YORP reset effect does not depend on the asteroid size
R.st. When we substitute f- ~ 100 as was found from the small
carry-on impactor (SCI) experiment of the mission Hayabusa2
on asteroid Ryugu (Arakawa et al. 2020), we obtain

RO br-2
R
100 m

fe

—bg
TYORP,reset ™~ 04 (_) ( (59)

100

Equation (59) is a rough estimate because the factor f- and the
power index by should be functions of the asteroid size. The
timescale (~0.4 Myr) for reorientation caused by the CYORP
effect is much shorter than the typical timescale of spin axis
reorientation by collisions (~1 Gyr for a 1 km radius object;
see Athanasopoulos et al. 2022). This indicates that the CYORP
effect may play an important role in the spin evolution of a sin-
gle asteroid or asteroid families, while in current models, the
change of the YORP torque caused by a collision event, as well as
other resurfacing activities (e.g., regolith movement Miyamoto
et al. 2007; Cheng et al. 2021), is lacking (Marzari et al. 2011;
Holsapple et al. 2020; Holsapple 2022).

In addition, the CYORP effect could be applied to rotational
disruption models (Jacobson et al. 2014) to determine the life-
time of an asteroid; here a more comprehensive knowledge of the
outcomes of rotational failure is also needed (Zhang et al. 2018).
Furthermore, the Yarkovsky effect, which is a radiative force
that slowly changes the orbits of asteroids (Vokrouhlicky 1998;
Vokrouhlicky et al. 2000; Bottke Jr et al. 2001), highly depends
on the spin obliquity, which can be altered by the CYORP torque.
Thus, the CYORP effect could play an important role in the
long-term orbital dynamics of asteroid families, and it might,
for example, modify the V-shape evolution of asteroid families
(Vokrouhlicky et al. 2006; Nesvorny et al. 2015; Delbo’ et al.
2017; Bolin et al. 2018).

Therefore, the CYORP effect is a mechanism that is crucial
for understanding the spin evolution and even the orbital evolu-
tion of asteroids. To include the CYORP effect in a Monte Carlo

simulation of the spin evolution and the orbital evolution of aster-
oids, we need a complete sample of all possible outcomes of the
CYORP torque, which depends on the properties of craters and
asteroids. At the current stage, this would not be possible because
we ignored the effects of thermal inertia and of secondary illu-
mination of the crater here, which may also be important and
will be investigated in the next work.

5. Conclusions

We first proposed and examined the significance of the crater-
induced YORP (CYORP) torque by developing a semi-analytical
method. This method speeds up the computation and allows us to
study the functional dependence of the CYORP on the properties
of the crater and the asteroid.

CYOREP arises from the torque difference produced by a
crater and the ground without the crater. The assumption of zero
thermal conductivity (Rubincam’s approximation) and a simple
semi-sphere model of craters were implemented. We find that the
CYORP torque includes the spin and obliquity components, the
values of which depend on the diameter-depth ratio, latitude and
normal vector of the crater, and the obliquity and thermal inertia
of the asteroid.

We gave a general form of the CYORP torque as Tcyorp ~
WCDRgRaS[/c (see Egs. (41) and (42)) and estimated the typi-
cal value of the dimensionless CYORP coefficient W, ~ 0.04,
W ~ 0.01 for a deep crater and W, ~ 0.025, W, ~ 0.005 for a
shallow crater. We showed that the CYORP torque is one order
of magnitude stronger than the TYORP torque for a crater and a
boulder of the same size. A crater with a radius of one-third of
the asteroid radius (as found on asteroid Itokawa) will produce
a CYORP torque that is comparable to the NYORP torque and
stronger than the TYORP torque for the whole asteroid. Craters
or roughness that cover one-thenth of the asteroid surface have
the same effect. Unlike the necessary presence of thermal inertia
for a nonzero value of the TYORP torque, CYORP exists without
thermal inertia, which implies that for fast-spinning asteroids or
asteroids with low thermal conductivity, the YORP effect will be
dominated by NYORP and CYORP effects.

Although CYORP decreases with the size of the crater as R(Z),
the large number of small craters may mean that the CYORP
torques that are due to all small craters are non-negligible. It is
the total area covered by concave structures that matters, which
implies that the CYORP effect caused by the surface roughness
would be crucial for the complete YORP torque (see Sect. 4.2.1).
Previous research demonstrated the YORP sensitivity to surface
roughness by a numerical method (Rozitis & Green 2012). Our
work performed a systematic investigation of the YORP torque of
the concave structure, which could be applied in surface rough-
ness, over a much larger parameter space by a semi-analytical
method. This lies the foundation for the accurate prediction of
the YORP torque on a real asteroid. The CYORP effect pro-
vides a potential reason why the modeled YORP torque so far
was unable to match the measured value in the case of asteroid
Itokawa (Breiter et al. 2009) even though high-resolution shape
models were applied. The CYORP effect might also explain
the difference of the YORP torques between photometric-shape
models, which is convex, and radar-shape models, which con-
tain concave structure (Marzari et al. 2020). However, at the
current stage, it is unclear whether the CYORP torque is dom-
inated by large concave structures (e.g., craters) or small ones
(e.g., roughness).

Moreover, because an asteroid experiences numerous
impacts that lead to the production of craters during its evolution
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(Bottke et al. 2020), the resulting CYORP torques may cause
a random walk of the spin rate and obliquity of the asteroid,
which may either slow down or even prevent the YORP spin-
up from occuring, deferring the formation of top shapes and
binary systems based on this process (Walsh & Jacobson 2015).
Our estimation showed that the timescale for reorientation of
an asteroid caused by the CYORP effect is ~0.4 Myr with a
weak dependence on the asteroid size (see Sect. 4.2.2), which
is much shorter than the timescale caused by collisions. This
is a rough estimate, and a more complete CYORP model with
nonzero thermal inertia and the secondary illumination effect
is needed to build a statistic sample pool covering all possible
outcomes of the CYORP torque under different conditions. The
CYORP effect can have strong implications on the spin evolution
and also on the orbital evolution (through the Yarkovsky effect),
which will be assessed in a future work. Overall, we suggest that
the CYORP effect should be incorporated into future research of
the YORP effect.
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Appendix A: Integration domain for three
illumination modes

There are three illumination modes for a crater according to dif-
ferent solutions of inequality: (1) full illumination; (2) two-side
illumination; and (3) one-side illumination. These three illumi-
nation modes have different illuminated domains, which are all
equivalent to inequality (18), however. Categorizing them is just
for the sake of integration of the total recoil force (see Eq. (31)).
To obtain the illuminated area, we need to solve the inequal-

ity
cos 24 cos 6 + siny

Al
sin 24 sin 6 (A1

cos ¢ <

One obvious solution is when the right-hand side of the above
inequality is larger than 1,

cos2Acos 8 + siny

- - > 1, (A.2)
sin 24 sin 6

we have

cos2 + 6) > cos(g +70)- (A3)
Noting that 21+ 6 € (24,22 +71/2—yy), /2 +yy € (0, 1), and the
cosine function decreases in this domain, we can easily obtain
the condition that inequality (A.2) always holds for all ¢ and 6,
which is given by

T T

~+ 21+ = — o, A4
S trn> RRL (A4)
which gives

A< %p. (A.5)

Therefore, when A < 7y, inequality (18) holds for all 6 and ¢,
which means that the crater is illuminated everywhere. This is
illumination mode (1). In this case,

Ww=2Z. (A.6)

When 4 > v, the inequality can hold for all ¢ when 8 fulfills

the requirement according to inequality (A.3)

0<% +0-21 (A7)

A hidden condition of the above inequality is /2 + yg — 24 > 0.
Therefore

T Y

yo< A<=+ 22,

) (A.8)

This is illumination mode (2). In this mode, when 6 > 7 + yo —
24, the solution of inequality (A.l) is ¢; < ¢ < ¢». Therefore,
illumination mode (2) can be described as

W = (6, 5,2) € ZIO € (0, % =21+ v0), ¢ € (0,270)
2
N N (A.9)
or g e (5 —2/1"'70,5 = v0), ¢ € (d1, $2)}.

For A > /4 + y,/2, the solution of inequality (A.l) is ¢; <
¢ < ¢, but we have to ensure that the right-hand side is larger
than -1,

cos 21 cos 8 + sinyy
sin2Asin 6

> -1, (A.10)

which yields

0 < 7—2r +yo =2 (A.11)

Therefore, illumination mode (3) is equivalent to

W ={(x,y,2) € ZI0 € QA—yo —7/2,7/2 = y0), ¢ € (¢1, P2)}.
(A.12)

Appendix B: § of Z-axis symmetric asteroids

The variable ¢ is the longitude difference between the position
vector ry and the normal vector ny. We show below that when
the shape of the asteroid is Z-axis symmetric, § = 0 is valid
everywhere on the surface of the asteroid.

For an arbitrary Z-axis symmetric asteroid, the unit posi-
tion vector of a point on the surface can be expressed by two
independent variables £ and k as

ro = (kcos{, ksin(, p(k)), (B.1)

where p(k) is a function of k, depending on the specific shape
of the asteroid. If the asteroid is an unit sphere, for example, we

have p(k) = = V1 — k2. The unit normal vector is

_ 6"0 61‘0

= * ok

= ___dp/dk (cos¢,sind,
V1 + (dp/dk)?

By comparing Equation (B.1) and (B.2), we see that ry and ny
share the same azimuth angle . Therefore, for any point on a
Z-axis symmetric asteroid, the difference between the azimuth
angles of the position vector and the normal vector is zero, which
means 6 = 0 in Equation (37).

ny
(B.2)

1
_dp/dk)'
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