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Multi-flow Optimization of a Greenhouse System: A Hierarchical Control Ap-

proach

Pierre Clement Blaud, Pierrick Haurant, Philippe Chevrel, Fabien Claveau, Anthony

Mouraud

• Greenhouses are multi-flow systems combining heat, electricity, gas and CO2

• Hierarchical control is proposed as an alternative to the usual rule-based con-

troller

• The second level of the controller uses an artificial neural network as dynamic

model

• The controller allows efficient dynamic operation and energy and economical

savings
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Abstract

Greenhouses are implemented all over the world to increase agricultural production

thanks to contolled environmental conditions (inside temperature, moisture and CO2

contents). However, such systems are energy-intensive.

The presented work focuses on controlling a greenhouse’ onsite multi-energy sys-

tem (gas, heat and electricity), extended to a multi-flow system as the CO2 produced

by the energy units is used as a plant fertilizers. In this view, a three levels hierarchical

control has been developed: a steady state economic MPC is combined with a dynamic

Multi-energy MPC and low-level PID controllers. This new controller aims at deter-

mining the best synergies for economic flows management, subject to compliance with

the required climatic conditions in the greenhouse.

The proposed controller is applied to a greenhouse which energy system is based

on a thermal energy storage fuelled by a gas boiler and a combined heat and power unit.

The results are confronted to a usual ruled-based controller performed by greenhouses

owners, showing a more efficient dynamic functioning of the energy system. Conse-

quently, less gas is consumed (80.79 t to 76.03 t), heat is produced when needed, and

electricity from the CHP is economically optimized allowing less importation from the

grid (from 17.80 MWh to 15.88 MWh), and profitable selling.

Keywords: Multi-flow system, Greenhouse, hierarchical control, model predictive

control, energy hub, artificial neural network, multi-physics modeling
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1. Introduction

Agriculture is facing great challenges to feed the world’s population in the 21th cen-

tury, due to its exponential rising, an increase in natural disasters and the stabilization

of farmland surfaces [1]. Some technologies such as greenhouses farms are becoming

necessary for maximizing agricultural production and reducing resource usage [1].

Indeed, greenhouses aim at making grow the cultures in a regulated environment in

which atmosphere gas contents, luminosity and temperature are controlled. As a con-

sequence, the quality and quantity of crop productions can be improved since the plants

are less stressed. In addition, harvest times can be increased, water consumption can

be reduced and fungicides as well as insecticides are less used due to the protection

provided by the greenhouse. However, some additional costs for construction and op-

eration of greenhouses are induced. The challenge is then to control operating costs

and carbon dioxide emissions compared to those of traditional crops [2]. Improving

the climate of the greenhouse to maximize agricultural production and at the same

time minimize energy consumption justifies more than ever the adoption of smart tech-

nologies [1].

Control of greenhouse climate systems and actuators has been investigated by many

researchers using different control methods and algorithms. In [3], an adaptive pro-

portional–integral–derivative (PID) has been developed to control indoor temperature,

moisture, and CO2 concentration and to minimize tracking errors. In [4], a sliding

mode control was employed for its ability to handle non-linearity, coupling, and dis-

turbances to control the greenhouse climate. Fuzzy logic control is also employed

in [5]; the control formalizes and approaches the behavior of the person and does not

require a pre-established physical model. In [6], a Takagi–Sugeno fuzzy modeling is

employed to design a controller for greenhouse temperature control. The controller

is tuned according to linear matrix inequalities, which ensures stability and perfor-

mance in a closed loop and enables control of the greenhouse heating system, which

provides good performance. Optimal control is also employed to control the actua-

tors of a greenhouse and has been used in several studies to control the climate of an
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agricultural greenhouse. Optimal control is used in [7] to control indoor temperature,

moisture, and CO2 concentration while minimizing energy consumption. In another

study, heating and cooling are controlled to reduce energy consumption [8]. The op-

timal control formalism by Hamilton Jacobi Bellman is also used in [9]. In addition,

a multi-objective optimization is investigated to maximize plant production and fruit

quality while minimizing water consumption in [10], and in [11] a multi-objective

optimization based on Pareto solution is investigated to control both light and tempera-

ture conditions. Among advanced control techniques, model predictive control (MPC)

is often studied in academia [12] and has been used in several industrial applications

[13] and agricultural greenhouse systems [14] [15], [16]; it enables the consideration of

constraints on the state variables of the process while modeling the process to control.

The use of MPC to control greenhouse climate and actuators is investigated in [17] as

it allows for taking into account constraints, non-linear processes and multi-inputs and

outputs of the system. Other authors have compared the MPC performance to PID con-

trollers and observed that the former increases temperature control performance [18].

A robust MPC to address uncertainties is also discussed in [19], and the results indicate

that the controller regulates the temperature despite the uncertainties with a min-max

optimization algorithm.

Hierarchical control is also considered to control greenhouse climate. In [10], a

three-level control is depicted. The first level controls the fertilizers and the climate of

the greenhouse on a time scale of one minute. The second level adjusts the setpoints

on the time scale of the day. The third level, on the time scale of the month, controls

the growth of the plant. In another work [e.g., [20]], a two-levels hierarchical control

has been investigated. The upper level computes the setpoints by minimizing the eco-

nomic cost of energy, while the lower level receives the setpoints and controls actuators

with PID and bang-bang controllers. Besides, some works consider neural networks

based solutions to control climate variables such as indoor temperature, moisture, CO2

[21],[22], [23], or even of the leaf and fruits growth as in [24].To the authors’ knowl-

edge, no paper take benefits from an ad hoc neural network to fully control the green-

house indoor environment. They proceed by more targeted objectives as in [25] which

uses a neural network based MPC for ventilation control.
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The control of energy systems supporting agricultural greenhouses has been ex-

plored in few studies [26, 27, 28, 29, 30] compared to climate control [3, 4, 5, 6, 7,

8, 9, 10, 17, 18, 19, 20]. In [26], wind turbines, photovoltaic panels, battery stor-

age, grid connection, and combined heat and power (CHP) are considered as part of

the agricultural greenhouse. The control is based on MPC to effectively control en-

ergy and improve availability, flexibility, and efficiency. The same authors extended

their work in [27] by considering a network of several greenhouses interconnected in

a microgrid. The modeling of the greenhouseThe study presented here follows our

review of the literature. It focuses specifically on the optimized management of the

(multi)energy system of the greenhouse to meet the energy needs of the greenhouse.

Therefore, the main ambitions and contributions of this work are: load is conducted

by a nodal resistance-capacity model, and the growth process of the plant is not taken

into account. In [28], the authors improved the greenhouse modeling, considering tem-

perature, moisture, CO2, air circulation, artificial lighting, and energy support systems

comprising wind turbines, photovoltaic panels, energy storage with battery units, and

pumping and water storage systems. A centralized MPC scheme is depicted to con-

trol the greenhouse energy system and greenhouse environmental variables. However,

wind turbines and photovoltaic panels considered in these papers ([26, 27, 28]) as en-

ergy providers do not reflect current equipments available in high-tech greenhouse sys-

tems. The latter make use of heating systems such as a heat-pump [31], boiler, CHP,

and thermal storages [29]. One can speculate that agricultural areas are retained for

crops instead of energy production via solar panels or wind turbines as the former is

more profitable for the farmer. In [29] the study aims to minimize the energy (natural

gas and electricity) cost while taking into account the system constraints. Results ob-

tained illustrate an increase in profit as compared to conventional control. The study is

extended in [30] by adding a heat pump, seasonal thermal storage, and cooling towers.

The results show a cost reduction of 29 % over a year.

As it can be seen in the literature review, control of greenhouses is addressed in nu-

merous studies, either to regulate their indoor environment (temperature, moisture and

CO2 contents, etc.) or to optimize their own energy systems from economical or energy

points of view. Usually, linear and non linear predictive control are implemented. This
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is a logical choice regarding the nature of the problem considering time characteristics,

the fact that exogenous phenomena that can be partly predicted are involved, and the

need to constraint states or control signals.

The study presented here follows our review of the literature. It focuses specifically

on the optimized management of the (multi)energy system to meet the energy needs of

the greenhouse. Therefore, the main ambitions and contributions of this work are:

• To consider a realistic greenhouse equipped with a complete energy system,

based on a combined heat and power unit, a gas boiler and a thermal energy

storage (TES). In that view, we have to do with a real multi-energy system: the

energy sources are electricity, and natural gas, and we also have to manage inter-

nally both high and low temperatures heating networks. The system can even be

seen as being a multi-flow system, since we also seek to control the flow rate of

CO2, in interaction with the energy system via the boiler.

• To propose a three levels hierarchical control architecture : a static optimiza-

tion of the power flow at the third level thanks to an Economic MPC, a dy-

namic optimization of the Multi-Energy system at the second layer using a MPC

(ME-MPC), to finally adress a classical low-level layer for the climate regula-

tion of the greenhouse, based on rule-based or proportional-integral-derivative

controllers. This hierarchical control law is innovative to the extent that the dy-

namic optimization with MPC of the second level is based on a dynamic model

implemented thanks to an artificial neural network (ANN).

• To develop a systematic method for the second-level MPC control, which per-

forms a data-based simplification of the fine model of the multi-energy system.

The proposed model based on an artificial neural network (ANN) and a limited

number of state variables is an important contribution, in that it takes into ac-

count the multi-physics dynamics (CHP, boiler, etc.) of the energy system, for a

reduced computational cost.

• And finally to propose a realistic validation of the global hierarchical control, by

comparing its performances with those of a rule-based control, inspired by real
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practice.

To adress these issues, the article is organized as follows: section 2 presents the

considered greenhouse energy system and its base-line controller. Section 3 details the

proposed controller of the research work. Section 4 depicts multiphysics simulator,

while the case study and associated results are introduced and discussed respectively

in section 5 and 6. Finally, section 7 provides the conclusions of the work.

2. The studied energy system

2.1. Energy and ancillaries systems functionning

Temperature and the luminosity that fosters the photosynthesis of plants, as well as

the moisture and the CO2 contents of the atmosphere are the main ambient elements

to be controlled in the greenhouse for the development of cultures. Energy systems

and ancillaries are implemented in that view. Thus, the greenhouse is heated thanks to

solar gains on one hand, and high and low temperatures heating networks on another

hand. The high temperature heating network is fueled by thermal energy storage (TES)

itself charged by heat from a gas combined heat and power unit (CHP) and a gas boiler.

The low temperature one valorized the heat of the exhaust fumes produced by the

two energy units mentioned above. In case of overheating during the day, a solar

screen allows limiting the solar gains and windows can be opened in order to force

the air circulation in the greenhouse, inducing natural ventilation. These windows

can be opened in case of too high moisture level, produced by the plants by evapo-

transpiration. Besides, a thermal screen can be deployed when outside temperature is

very low, in order to limit the thermal losses from the greenhouse. The luminosity

is guaranteed by the solar irradiance substituted or completed by artificial light when

necessary. The lights consume electricity produced by the CHP or supplied by the grid.

Thus, the electricity from the CHP is either consumed by ancillaries of the greenhouses,

or sold and injected to the grid. Finally, the atmosphere in the greenhouse is enriched

with CO2 used as a fertilizer, through injectors to valorize CO2 emitted by the energy

units fed by gas, or through a CO2 network.
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The greenhouse’s energy system can be considered as a multi-energy system with

gas, electricity and heat as carriers; the CHP and a gas boiler consume gas to produce

locally heat and electricity. The greenhouse consumes heat and electricity produced

locally or electricity from the grid. Also, the excess electricity can be sold to the

grid. If we add the CO2 flows, a matter flow, to the energy ones, we can consider the

greenhouse as a multi-flow system.

Figure 1: Greenhouse considered in this study.

2.2. Base-line controller

The current controller of the multi-flow system is a rule-based one that mimics

the farmer practices. The rules are not based on elaborate algorithms, but on choices

of farmers derived from their experience. In fact, they control their energy system to

optimize the energy production with reduced operating costs (electricity, natural gas,

CO2), and valorizing purchase contracts on the electricity selling. The rules can be

summarized as follow (Fig.2):

• The CHP is controlled according to the months of the year, with full load opera-

tion from the beginning of November to the end of March. After that, the power
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is zero for the rest of the year;

• The Boiler is regulated according to the CO2 demand of the greenhouse and the

SOC of the TES. When there is a demand for CO2, the boiler starts at low power

and stops if the heat storage is full. Conversely, if the thermal storage reaches a

low threshold, the boiler starts at full power.

• TES: Protection is needed in the management of the thermal storage unit. Heat is

rejected in the agricultural greenhouse when the storage is full and the cogenera-

tion produces heat. It can happen that the agricultural greenhouse is over-heated.

If the temperature in the agricultural greenhouse is too high (2 ◦C above the set-

point), then the windows of the greenhouse are open to evacuate the excess heat

into the atmosphere.

• The Ancillary systems (Radiation, temperature, screens, humidity and CO2) are

controlled by PID or rule-based regulators. Thus, the greenhouse temperature

is regulated by a PID that controls the flow of a pump to heat the greenhouse

when required. The humidity is controlled by a PID that activates the open-

ing of the windows when the humidity level is too high. The CO2 concentra-

tion is controlled by a PID which operates CO2 injectors. A rule-based regu-

lator controls the artificial radiation in the greenhouse with several lamps. The

Tomatoes’ thermal comfort is guaranteed by a rule-based control applied to the

thermal screen and sun screen. Finally, to protect the tomatoes, windows are

open when excessive temperatures occur.

Our objective is to propose a control architecture and an associated tuning method-

ology that could handle most greenhouses’ energy and CO2 systems. Its complexity

is rich enough to be both representative and challenging for the control methodology

proposed.

3. Multi-energy model predictive control hierarchical control

The proposed control strategy is based on a three-level hierarchical architecture,

taking advantage of what we call multi-energy model predictive control (ME-MPC).
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Figure 2: Controller with low-level controller.

Such a hierarchical structure has the benefit of facilitating the design of commands. It

makes it possible to dissociate the stages of planning and regulation, the automated reg-

ulation part itself being hierarchized according to significantly different time scales [32].

The first level comprises the low-level regulator; it introduces feedback control or rule-

based control and is responsible for operating the actuators of the process regarding

references received from the upper level. The second level enables dynamic optimiza-

tion with process modeling, multiple inputs/outputs and constraints regarding refer-

ences received from the upper level, and predictions (e.g., from the weather forecast).

The third level enables steady-state optimization regarding an economic cost function;

it computes the optimal setpoints, which are sent to the lower level. A summary illus-

tration of the controllers depicted in this work, with the three levels, is shown in Fig.3.

Subsequently, each control level from top to bottom is described.

3.1. Third level: steady-state optimization via Economic-MPC

The third level performs a steady state optimization with the purpose of minimizing

economic costs while taking the constraints into account. Constraints include process

modeling with algebraic equations and operating constraints. The multi-energy pro-

cess modeling is easily performed thanks to the energy hub framework and the power

balance equations [33]. An illustration of the energy hub considered in this work is

shown in Fig.4, and the equations are detailed below.
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Figure 3: Proposed controller of the greenhouse and multi-energy process, with low-level, second and third

level regulators.

Power balance constraints:. The output vector L and the power balance associated

with the energy hub are:


Egh

Hgh

0

GCO2 ,gh

︸     ︷︷     ︸
L

=


0

Hboiler

0

GCO2 ,boiler

︸        ︷︷        ︸
Pboiler

+


Echp

Hchp

0

0

︸ ︷︷ ︸
Pchp

+


Egrid

0

Gng,grid

GCO2 ,grid

︸       ︷︷       ︸
Pgrid

+


Eex

0

0

GCO2 ,ex

︸     ︷︷     ︸
Pex

+


0

Hch

0

0

︸︷︷︸
Pch

+


0

Hdis

0

0

︸︷︷︸
Pdis

(1)

Egh, Hgh, and GCO2,gh are the electricity power, heat, and CO2 flow consumed by

the greenhouse. Hboiler and GCO2,boiler define heat and CO2 flow from the boiler. Echp

and Hchp represent the electric power and heat produced by the CHP. Egrid, Gng,grid, and

GCO2,grid reflect the electric power, natural gas and CO2 flow from the electrical, gas

and CO2 networks. Eex is the electric power injected into the grid, and GCO2,ex is the

CO2 produced by the boiler that is not reused and is sent into the air. Hch and Hdis are,

respectively, the charging and discharging heat from the TES.
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Figure 4: Energy hub modeling associated to the studied multi-energy system.

Pboiler, Pchp and Pgrid are given by:

Pboiler =



0 0 0 0

0 0 CboilerG to H 0

0 0 0 0

0 0 CboilerG to CO2 0

︸                         ︷︷                         ︸
Dboiler



0

0

Gng,boiler

0

︸      ︷︷      ︸
Iboiler

(2)

Pchp =



0 0 CchpG to E
0

0 0 CchpG to H
0

0 0 0 0

0 0 0 0

︸                     ︷︷                     ︸
Dchp



0

0

Gng,chp

0

︸    ︷︷    ︸
Ichp

(3)

Pgrid =



Cgridto E
0 0 0

0 0 0 0

0 0 0 0

0 0 0 Cgridto CO2

︸                              ︷︷                              ︸
Dgrid



Egrid

0

Gnggrid

GCO2grid

︸     ︷︷     ︸
Igrid

(4)

where Dboiler, Dchp, and Dgrid are the conversion matrices related, respectively, to

the boiler, the CHP, and the grid. CboilerG to H represents the natural gas to heat conversion
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from the boiler, CboilerG to CO2 the natural gas to CO2 conversion from the boiler, CchpG to E

the natural gas to electricity conversion from the CHP, CchpG to H
the natural gas to heat

conversion from the CHP, Cgridto E
the electricity grid to electricity carrier conversion

inside the energy hub, and Cgridto CO2
the CO2 grid to CO2 flow conversion inside the

energy hub. Iboiler, Ichp, and Igrid define the input vectors of the grid, the boiler, and the

CHP. Furthermore, the input vectors (I) of the energy hub associated with the grids,

boiler, and CHP are:

I = Igrid + Iboiler + Ichp (5)

The recurrent equation associated with thermal storage is:

S OCtes[k + 1] = S OCtes[k] + ∆kHch[k] − ∆kHdis[k] (6)

where S OCtes depicts the state of charge (SOC) of the thermal energy storage in

MWh, k the discrete sampling time and ∆k the sample time in hours.

Operational constraints:. Operational constraints are associated with the equipment

(boiler, CHP, or storage element). They are extracted from the specificities of the en-

ergy devices, and they are filled in for the optimizer. Equipment powers are semi-

continuous optimization variables that can take a value between a minimum and a

maximum or zero. To program these variables into the optimization problem, integer

variables are used, such as:

Pmin
boiler S tateboiler ≤ Pboiler ≤ Pmax

boiler S tateboiler (7)

Pmin
chp S tatechp ≤ Pchp ≤ Pmax

chp S tatechp (8)

where Pmin
• and Pmax

• are respectively the minimal and maximal powers of the boiler

or the CHP. S tate• is a binary variable of the operating state (0 or 1) of the energy

systems.

The minimal operating time (minimum time between two shutdowns) is provided

by the following equation:
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k∑
i=k−minU pboiler+1

onboiler[i] ≤ S tateboiler[k] (9)

k∑
i=k−minU pchp+1

onchp[i] ≤ S tatechp[k] (10)

where minU p• reflects the minimal operating time parameter (as a multiple of sam-

pling time), on• is a continuous variable allowing the detection of the starting instants

of the given equipment.

The minimal shutdown time (minimum time between two shut-ups) is provided by

the following equation:

k∑
i=k−minDownboiler+1

o f fboiler[i] ≤ 1 − S tateboiler[k] (11)

k∑
i=k−minDownchp+1

o f fchp[i] ≤ 1 − S tatechp[k] (12)

where minDown• is the minimal shutdown time parameter (as a multiple of sam-

pling time), o f f• is a continuous variable allowing the detection of the shut down

instants of the given equipment.

The TES constraints related to energy stored is defined as such:

S OCmin
tes − S lack ≤ S OCtes ≤ S OCmax

tes + S urplus (13)

with S OCmin
tes and S OCmax

tes are respectively the minimal and maximal state of charge of

the TES. S lack and S urplus are the constraint relaxation variables: they allow a small

violation of the constraints.

Furthermore, terminal constraints are added to the final state of charge to avoid to

discharge all the storage energy in its computing horizon, such as:

S OCmin,ter
tes − S lack[Neh] ≤ S OCtes[Neh] ≤ S OCter

tes + S urplus[Neh] (14)

with S OCmin,ter
tes and S OCmax,ter

tes terminal constraints parameters with minimum and

maximum values and Neh the horizon length of the steady-state optimization.
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Additional constraints are necessary when programming the optimization problem.

These constraints are not related to the physical limits of the equipment but contribute

to the solution.

Firstly, all the decision variables (S lack, S urplus, Pboiler, Pchp, Pgrid, Pch, Pdis,

Pex, I, Ichp, Iboiler and Igrid) are constrained to be greater or equal to zeros. Then, a

constraint is added on the on and o f f variables to force them to take 0 or 1 values as

binary variables:

S tateboiler[k] − S tateboiler[k − 1] = Onboiler[k] − O f fboiler[k] (15)

S tatechp[k] − S tatechp[k − 1] = Onchp[k] − O f fchp[k] (16)

Cost function:. The cost functions considered in this study are the startup cost (spec-

ifies the startup expense) and the production cost (specifies the operating expense).

Then the revenues are derived from the sale of electricity on the grid. The startup cost

related to the equipment startup is detected with the on optimization variable, such as:

Cost1 = onboiler startcost
boiler + onchp startcost

chp (17)

where Cost1 is the start up cost of the boiler and the CHP, on j is a continuous variable

allowing the detection of the starting instants of the equipment, and startcost
j the start-

ing expenditure parameter of energy equipment related to the boiler or the CHP. The

production cost is linked to the purchase price for each energy carrier as well as the

gain from the energy sale, as follow:

Cost2 =


eleccost

gascost

CO2cost

 I (18)

where Cost2 is the operating expense, eleccost the electricity rate, gascost the natural

gas rate, CO2cost the CO2 rate, and I the input vector of the EH. The revenue process

comprises the sale of electricity, shown as:

Cost3 =


−eleccost

0

0

 Pex (19)
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with Cost3 the sales gain of the EH, eleccost the electricity rate and Pex the exhaust

vector.

It is preferable to keep a convex cost function to maintain the linear optimization

problem with integers (mixed integer linear programming , MILP). The cost function

include: Cost1, Cost2, Cost3, and the S lack and S urplus are added for the soft con-

straint relaxation variables; the horizon length is also taken into account. The cost

function is defined as:

J =

Neh−1∑
k=0

Cost1[k] +Cost2[k] +Cost3[k] + ρ
Neh∑
k=0

S lack[k] + S urplus[k] (20)

with Cost1k from Eq. (18), Cost2 from Eq. (19), Cost3k from Eq. (17), ρ the cost

related to the S lack and S urplus variables.

Optimization problem:. The whole optimization problem based on MILP is to mini-

mize the cost function J with the hitherto presented constraints. It is defined as:

min J (21)

subject to (1), (2) − (4), (5) − (16) (22)

L[0] = L̄(t) (23)

S OCtes[0] = ¯S OCtes(t) (24)

with Eq.(23) the greenhouse loads initialization with the measure L̄(t) and prediction

and Eq.(24) the SOC initialization with the measure ¯S OCtes(t).

3.2. Second level: dynamic optimization via Multi Energy-MPC

The dynamic optimization level is performed via MPC. Compared to the previous

level, the control actions are computed here taking into account the dynamic behavior

of the energy systems, thanks to an embedded model that makes some predictions

possible on a receding time horizon. In this work, we consider that the state is known

in real time, and the state predictor is defined by a recurrent equation of the form:

x̂[k + 1] = gnn(x̄[k], ū[k], v̄[k]) (25)
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One challenge is to find a suitable gnn; it could be a linear physical model with state

space representation [34], a non-linear one [35] or a grey-box model identified from

data [36].One challenge is to find a suitable gnn; it could be a linear physical model

with state space representation [34] or a non-linear one [35].PB The method explored

in this work uses a black-box model following a methodology extracted from [37].

Figure 5: Main steps of the MPC tuning.

The main steps are summarized in Fig.5. First, data are generated from the fine-

scale modeling of the dynamical system to be controlled. In this work, the greenhouse

system is modeled with a multi-physics implementation with Modelica programming

language [38]. The language enables performing fine-scale multi-physics modeling

such as electricity, thermal, or gas. In addition, a Modelica library implements the

greenhouse system balance equations and other equipment’ that forms the system [39].

The equipment and materials encountered are tomato crops, canopies, soil, heating net-

works, air nodes, CO2 nodes, lights, thermal screen, sun screen, covers, and windows

opening. In addition, the physical flux between each piece of material is modeled. The

greenhouse proposed in [39] has been enhanced for this study. We added a separate

heating pipe with a low-level and high-level temperature. The Multi-Energy System

is modeled with a fine-scale multi-physics approach using the TransiEnt library [40].

The library proposes the thermal storage with thermal stratification, the boiler, and the

CHP. The boiler and the CHP are enhanced to take into account two heating networks

with low and high temperatures.

Secondly, a neural network is trained to learn the recurrent equation (Eq.25). It

represents only the MES part to be controlled, and not the whole greenhouse. Thirdly,

the MPC is tuned with the neural state predictor. We chose in this paper to learn the

model instead of the optimal policy, that is to say to use neural networks coupled with
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predictive control instead of other machine learning approaches such as deep reinforce-

ment learning to handle the computational burden. This choice is motivated by results

provided in [41] or [42], where pros and cons of both strategies for the control of indus-

trial processes are analyzed. Finally, the neural network used in this work is residual

network (ResNet) [43]. The ResNet network has been assessed to improve the gener-

alizability of the network compared to more conventional neural networks [44, 45]. In

this work, the state, input, and non-controllable inputs from Eq.(25) are defined as:

x̄ :=



S OCtes

Hboiler

Hchp

Echp

GCO2boiler


, ū :=

uboiler

uchp

 , v̄ :=


Hgh

Egh

GCO2gh

 (26)

The MPC selected in this work is contractive to ensure the stability and feasibility

of the predictive control [46] due to contractive state constraints. The MPC formulation

is:

min
ũ,x̃

N−1∑
i=0

x̃T
i Qx̃i + ũT

i Rũi (27)

s.c. x̂i+1 = g∗nn(x̂i, ui, v̄i) (28)

x̂i ∈ X (29)

ui ∈ U (30)

x̂0 = x̄(t) (31)

x̃N Px̃N ≤ αx̃0Px̃0 (32)

x̃i = x̂i − xr
i (33)

ũi = ui − ur
i (34)

with Eq. (27) the quadratic cost to minimize. ũ is the input deviation sequence from

the optimal steady state ur, Eq. (34), such as ũ := ũ0, . . . , ũN−1. x̃ is the state deviation

sequence from the optimal steady state xr, Eq. (33), such as x̃ := x̃0, . . . , x̃N with N the

horizon length. Eq. (28) is the time evolution constraint of the state, which is based on

the artificial neural network. Eq. (29) is the state constraints and Eq. (30) is the input

17



constraints. Eq. (31) is the plant state measure. Eq. (32) is the contractive constraint

with α the contractive parameter, α ∈ [0, 1[ and P the contractive weighting matrix.

The contractive MPC is computed at each iteration, and the first sample of the input

computed (u∗) is applied to the low-level references until the next sampling period.

3.3. First level: low-level control

The low-level control comprises several PID controller [47], and rule-based ones

that control specifically the ancillary systems. The controllers that are exposed in sec-

tion 2.2 are kept.

4. Multiphysics simulator

The fine-scale Modelica model that has been used to tune the neural network em-

bedded in the second-level controller is also used as a validation model in this paper. It

was exported using a functional mock-up unit (FMU) for simulation and performed us-

ing Simulink. The third and second levels of the proposed controllers interact with the

FMU, and then the low-level controllers are implemented within the fine-scale model-

ing in Modelica programming (Fig.6). In addition, a co-simulation was chosen within

the FMU, and the solver CVODE is used [48]. At each sample time, the FMU simu-

lation is paused and then the hierarchical control computed; the new input commands

are sent to the low-level regulator, and the simulation continues until the next pause

(Fig.7). During the simulation, the data was saved to depict results.

4.1. Computing implementation

The hierarchical control levels are computed at a fixed time, and the third and sec-

ond levels are computed in a receding horizon manner at different time scales. In

addition, the third level sends references to the second level, and the second level sends

reference to the first level when it governs the actuators (Fig.7).

4.2. Implementation of the third level: steady-state optimization

The third level is implemented using modeling language specific to the field of op-

timization, namely JuMP [49] on Julia programming [50]. Constraints on the CHP and
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Figure 6: Simulator, FMU and controller on Julia.

the boiler generate integer variables; as a result, the optimization problem becomes an

MILP. Several solvers are available such as Coin-or branch and cut (CBC) with the

linear solver Coin-or linear programming (CLP) [51] or CPLEX from IBM. In this

work, we use the latter one as it allows for a result equivalent to CBC while reducing

the computation time. This reduction is obtained by automatic simplification methods

of the optimization problem: reduction of the number of integer variables, normal-

ization, heuristics of reduction of the optimization problem with the branch and cut

algorithm, and a computation on several CPU cores. The time horizon is equal to 96

sampling steps of 15 minutes, i.e. 24 hours or a day, hence an optimized compution

time of approximately 5 seconds. The steady-state optimization algorithm is depicted

in Algorithm 1.

4.3. Implementation of the second level: dynamic optimization

The neural network is implemented on computing machines using Flux [52], a

package of the Julia programming language [50] that provides highly competitive lan-
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Figure 7: Hierarchical control, reference transmission and horizon length of the three levels.

Algorithm 1 Steady-state optimization computation
1: Initialize the optimization problem with SOC Measure S OC[0] ⇐ ¯S OC(t) and

load measure and prediction L[k]⇐ L̄(t)

2: Solve the MILP optimization problem

3: Send the optimization results computed to second level, S OC∗tes, H∗boiler, H∗chp, E∗chp

and G∗CO2boiler

4: Wait until the next iteration t ⇐ t + 1

5: Go to step one

guage for data science and scientific computing [53]. The package allows the imple-

mentation of the neural networks, training, and identification of performance measures.

The MPC is implemented on a modeling language specific to the field of optimiza-

tion, namely JuMP [49] on the Julia programming language [50]. The MPC predictor
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is defined with the JuMP user-defined function from the Flux object function. In this

case, it allows us to compute the gradient with automatic differentiation [54], and it

is not required to rewrite the neural network since Flux and JuMP are both in Julia’s

ecosystem. The optimization problem is non-linear due to the activation function, and

the selected solver is Knitro [55]. The MPC is solved at each 300 s and the allowed

optimization time is equal to 30 s. After 30 s of computation, if the solver does not stop

the optimization, the sub-optimal computed value is selected. The horizon length and

weighting matrices selected in this work are shown in Table 1. The MPC algorithm is

depicted in Algorithm 2.

Algorithm 2 MPC computation
1: Measure the system states x̂0 ⇐ x̄(t)

2: Get the predictions of the non-controllable inputs v̄

3: Solve the optimization problem (MPC)

4: Send the first input command computed u∗0 to the low-level control

5: Wait until the next iteration t ⇐ t + 1

6: Go to step one

4.4. Implementation of the first level: low-level control

The low-level controllers are implemented within the Modelica program, according

to the controllers and rules expressed in section 2.2.

5. Case study

The greenhouse considered in this study was inspired by those found in Nantes,

Pays de la Loire region, France. Table 2 describes the main characteristics of its energy

system. To remain standard, certain less commonly used energy equipment (geother-

mal heat pump, recovery of CO2 from cogeneration, photovoltaic or thermal solar pan-

els, etc.) is not taken into account. The proposed methodology is not, however, limited

to this standard case.
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Table 1: MPC parameters used during simulation.

Parameters Values

N 12

∆T 300s

Q



5 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1


R

0.5 0

0 0.5



P



1 0 0 0 0

0 0.001 0 0 0

0 0 0.001 0 0

0 0 0 0.001 0

0 0 0 0 0.001


α 1

Optimization time t ≤ 30s

Solver Knitro [55]

State constraints [0, 1]

Inputs constraints [0, 1]

The functioning parameters (sizes, operating powers, conversion factors and costs)

of the greenhouse energy systems are depicted in Table 3:

The meteorological data from 2019 are considered for the simulation, and they

were extracted from the database Modern-Era Retrospective analysis for Research and

Applications version 2 (MERRA-2) [56]. The variables considered are outside temper-

ature, sky temperature, sun radiation, wind speed and relative humidity. In addition,

the outside CO2 level is considered constant during all simulations with 400 ppm.
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Table 2: Agricultural greenhouse system parameters.

Parameters Symbols Values per hectare

Area Agh 60 000 m2 6 ha

Greenhouse height hgh 4 m -

Crops - Tomatoes -

Lighting power Egh 1.8 MW 0.3 MW ha−1

Boiler power Hbl 6.6 MW 1.1 MW ha−1

CHP heat power Hchp 4.4 MW 0.73 MW ha−1

CHP electricity power Echp 4.4 MW 0.73 MW ha−1

TES volume Vtes 1500 m3 250 m3 ha−1

TES temperatures:

S OC = 1 - 90 ◦C -

S OC = 0 - 55 ◦C -

Energy demand predictions of greenhouse consumption are mandatory for the pro-

posed controller in this work, more specifically for the third and second levels (steady

state and dynamic optimization). In this study, the predictions are considered perfect,

and they were taken from a dataset generated from a previous simulation with the 2019

meteorological data. Then the energy demands of the agricultural greenhouse were

recorded (heat, electricity and CO2). During the simulation only the boiler was con-

trolled with a rule-based controller with the purpose of maintaining the heat storage

from S OC = 0 to S OC = 1.

The low level (first level) controller set points are tuned as follows:

• Greenhouse temperature: The set points of the PID that control the pumps of the

heating networks are: 22 ◦C between 6 a.m. and 9 p.m. and 20 ◦C the rest of the

day.

• Greenhouse humidity: the windows are open when the humidity relative to con-

centration exceeds 85 %;
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Table 3: Steady state optimization constraints and costs parameters.

Parameters Boiler CHP Storage Grids

Stopping power 0 MW 0 MW -

Minimum operating power 0.5 MW 2.2 MW -

Maximum operating power 6.5 MW 4.4 MW -

Minimum operating time 1 h 5 h -

Minimum downtime 1 h 10 h -

Maximum load power - - 9.9 MWh

C•,G to H 0.92 0.35 - -

C•,G to CO2 5.7 × 10−8 - - 1

C•,G to E - 0.35 - 1

Discharging maximal power - - +∞

Minimum storage - - 102 MWh

Maximum storage - - 150.8 MWh

Minimal terminal constraint - - 121 MWh

Maximal terminal constraint - - 131 MWh

Start-up cost - 200e

Natural gas cost - - - 20eMWh−1

CO2 cost - - - 150e t−1

Electrical cost - - - Day ahead

price of 2019

• Greenhouse CO2: The set point CO2 concentration is 1000 ppm between 6 a.m.

and 9 p.m.. During the rest of the day, there is no set point concentration.

• Plant radiation: The lamps are allowed to operate between 6 a.m. and 9 p.m.

and are controlled by a hysteresis from sun radiation with a high threshold of

120 W m−2 and a low threshold of 40 W m−2.

• Tomatoes’ thermal comfort (thermal and sun screen): The set point for closing
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or opening the thermal screen is set with a sun radiation threshold of 35 W m−2.

The sun screen is controlled according to temperature and sun radiation by two

hysteresis connected to an AND gate. The temperature hysteresis has a low

threshold of 27 ◦C and a high threshold of 30 ◦C. The sun radiation hysteresis

has a low threshold of 900 W m−2 and a high threshold of 1000 W m−2. Finally,

to protect the tomatoes, windows are open if the temperature in the greenhouse

exceeds the set point temperature by 2 ◦C.

6. Results and discussion

The results are separated into two distinct sections. Section 6.1 discusses the results

of system identification, and sub-section 6.2 presents the findings of the MES operation

over a year of crop production.

6.1. Neural Network model identification

Table 4 shows the hyper-parameters ranges considered in this work, which were

optimized during training using the BlackBoxOptim package [57], according to the

methodology proposed in [44]. The hyperparameters selected by the meta-heuristic

algorithm can be seen in Table 4. The fidelity measure is equal to 1.01 × 10−7 with the

training data and 9.86 × 10−7 with the test data. As a result, this network is chosen for

the MPC tuning predictor.

6.2. Analysis of an operating year

The results of the simulations for the conventional controller and for the advanced

controller are presented with duration curves. Other subfigures present exogenous vari-

ables (radiation, outside temperature) or system variables (greenhouse temperature,

heat storage status, CO2 injection rate, co-generation unit control, boiler control) with

iso-contour probability density of the data values in ordinates. These subfigures are

synchronized on the x-axis within the duration curves. Therefore, the subfigures al-

ways have duration on the abscissa. Cold colors (blue) indicate a low probability of

occurrence, and warm colors (red) indicate a high probability of occurrence of the val-

ues.
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Figure 8: Process control results with the base-line controller : a) greenhouse heat load duration curve. b)

greenhouse temperature. c) TES SOC. d) CO2 flow rate from the source. e) CO2 flow rate from the boiler.

f) input command of the CHP. g) input command of the boiler. h) outside temperature. i) sun radiation.
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Figure 9: Process control results with the proposed controller. : a) greenhouse heat load duration curve. b)

greenhouse temperature. c) TES SOC. d) CO2 flow rate from the source. e) CO2 flow rate from the boiler.

f) input command of the CHP. g) input command of the boiler. h) outside temperature. i) sun radiation.
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Table 4: Hyperparameters range and optimized values.

Parameters Range Values Optimized value

Activation function Relu [58] Relu

Neurons 5 to 15 8

Hidden layer 1 to 3 3

ResNet layer 1 1

Epoch number 100 to 500 200

Batch size 1024 1024

Optimizer Adam [59], Radam [60],

Nadam [61], Oadam [62]1

Radam

Learning rate 1 × 10−7 to 0.001 9.71 × 10−4

Momentum exponential decay 0.9 to 0.999 0.94

Momentum estimate 0.9 to 0.999 0.98

aPlease note that Radam, Nadam and Oadam are all derived from Adam optimizer.

The punctual comparisons of the figures between the two controllers are limited by

the fact that we do not consider the same instants, because the temporal arrangements of

the duration curves can differ significantly, but the tendencies and patterns comparison

remain informative.

This representation mode highlights recurrent behaviors of the system in a proba-

bilistic way and explains these behaviors by the tendencies of the exogenous data. For

example, we can observe the same pattern at the start of both duration curves: the heat-

ing load decreases from 11.3 MW at maximum to 5.1 MW at index equivalent on day

35. Thus, these indexes correspond to moments of intense heating of the greenhouse.

For the same indexes and in both cases, iso-contours of occurrences of the internal

temperature of the greenhouse show the significant recurrence of values between 20 ◦C

and 22 ◦C (Figs.8.b 9.b). The iso-contours illustrate occurrences of solar radiation

below 250 W m−2 (Figs.8.i 9.i) and, most often, low greenhouse outdoor temperatures,

less than 10 ◦C (Figs.8.h 9.h). We can deduce from these observations that the indexes
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Figure 10: Times series of temperatures in the greenhouse Tgh against the set point temperatures Tc (left

y-axis) and of the heat provided to the greenhouse Hgh against the solar radiation G

correspond to times at the beginning of the day, when the greenhouse temperature set

point increases from 20 ◦C to 22 ◦C and causes a substantial and instantaneous heat

demand.

In addition, for in the rule-based case, we can observe that for the very first indexes,

the CHP is frequently set at 0%. This means that, nonintuitively, the indexes of higher

heating demands are not solely in winter but between March and November, which can

be explained by the use or nonuse of the thermal screen during mid-season days.

Examples of times series of days that includes two of the higher heating loads are

shown in Fig.10. We can firstly note that these times series take place in April, and not

in the heart of winter as we would intuitively expect. In both cases, we can observe

the load peaks take place at 6 a.m. when the set point temperature changes, from 20 ◦C

to 22 ◦C. The peaks last few tenth of minutes, until the temperature of the greenhouse

exceeds the set point, when the sun sets. These time series illustrate and confirm the

general observation above.

We can further note that the load duration curves pattern differs from one controller

to another, specifically for temporal indexes from the equivalent day 35 to equivalent

day 100. A plateau around 4.8 MW (between 5.1 MW and 4.4 MW) can be seen on the

load duration curve of the rule-based controller that does not exist for the hierarchical

one, which decreases monotonically.

In the rule-based controller case, the co-generation unit operates at its nominal load,

and the boiler provides heat while the state of charge of the thermal storage is close to

1. For indexes of equivalent days 37.5 to 75, the highest present occurrences of solar

29



radiation are above 0 W m−2 and achieve 300 W m−2 (Fig.8.i), showing that the indexes

correspond to specific moments during the day. At these times, the temperature in

the greenhouse is frequently 22 ◦C, respecting the set point. The ambient temperature,

usually lower than 10 ◦C, induces high heat losses that must be compensated for by

the heat from the TES since the solar radiations is low. These moments represent the

most favorable cases, when there is a balance between the heat produced and supplied

to the storage and the heat supplied by the storage to the greenhouse to respect the set

point temperature. In the least favorable scenarios, more heat is produced by the co-

generation unit and the boiler than what is needed to maintain the set point temperature

of the greenhouse and is supplied by the TES. In these cases, the excess heat is dissi-

pated in the greenhouse, the storage having been already saturated. As a consequence,

the set point temperature is no longer respected. We can observe this phenomenon for

indexes between equivalent days 75 and 100. For these times, the temperature in the

greenhouse is often about 24◦C, 2◦C higher than the set point. The outdoor tempera-

tures are higher than they were previously, between 8 ◦C and 20 ◦C (Fig.8.h), and the

solar radiation can achieve 1100 W m−2 (Fig.8.i). In these conditions, the heat load

is low, whereas the production remains high, leading to the greenhouse overheating.

An indirect consequence is that the windows of the greenhouse are open causing CO2

losses that must be compensated for by the CO2 from the source, explaining the fact

that the CO2 flow rates increase to 0.12 kg s−1 (Fig.8.i).

In all cases, the role of the storage is limited because the energy only passes through

it. In this respect, the energy system does not seem to be optimized.

Concerning the hierarchical controller, the heat load decreases almost linearly for

the same indexes (Fig.9.a). The greenhouse temperatures are mostly maintained at

20 ◦C but also frequently 22 ◦C (Fig.9.b.), which are the respective set point tempera-

tures at night and in the day. At the same times, the solar radiation also exhibits two

tendencies: either it is around 0 W m−2 (nights), or it is above 0 W m−2, and it increases

nearly linearly as the indexes of the duration curve increase (Fig.9.i) while, the outdoor

temperature also increases linearly (Fig.9.h). From these observations, we can deduce

that these indexes correspond to moments when the greenhouse follows the set point

temperatures in a steady state regime, out of transitions. In these cases, the heat is sup-
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plied only to compensate for the losses when solar radiation gains are not enough. The

heat supplied here evolves with environmental conditions: when the losses decrease

(as the outdoor temperature increases) and the solar gains increase, the load decreases.

Moreover, the SOC varies mostly between 0.2 and 0.6 (Fig.9.h), showing that the

TES is duly solicited: it is discharged to provide heat to the greenhouse, and it is

charged back without ever having been saturated. It can be seen that the boiler does not

operate while the CHP charges the TES, following the load duration curve tendency as

it operates successively at its nominal load, then at half load, and finally it is off when

the heat load decreases. It is, logically, less solicited when the heating load drops. We

can thus conclude that there is an order of priority between the co-generation unit and

the boiler, established by the fact that the electricity selling tariff is favorable, most

frequently above 30eMW−1 (Fig.9.j) against a cost of 20eMW−1 for the gas. As an

indirect consequence, the CO2 contribution to the greenhouse is provided by the source

(Fig.9.d).

It can be said that the operation of the systems is not energetically optimized with

the rule-based controller: the co-generation unit operates by default, the boiler is re-

quested to produce CO2, and, consequently, the S OC of the storage is usually saturated

while the temperatures in the greenhouse regularly exceed the set points. In the case of

the hierarchical controller, the systems are energetically optimized: they are used when

necessary to recharge the storage, and the S OC varies between 0.4 and 0.6, while the

set temperatures are respected, showing that the heat flows in the storage is well regu-

lated. The CHP is preferred to the boiler due to the selling tariff of electricity, and then

the source is solicited to supply CO2 to the greenhouse.

The energy and economic statements for the two controllers are introduced in Table

5. We can observe that the hierarchical controller allows a global heat consumption

saving of 28 %, leading to notable economic savings. This energy saving particularly

impacts the use of the boiler, which generates only two-thirds of the heat generated in

the rule-based controller case, whereas the CHP is used at approximatively the same

level for both controllers. Consequently, the hierarchical controller resorts twice more

to the CO2 grid so that the fertilizer cost is multiplied by two. In addition, the electricity

generated is comparable with both controllers. However, the incomes from selling
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Table 5: Energy and economic statement

Energy [MWh] Cost (+) and incomes (-) [e]

Base-line Hierarchical Base-line Hierarchical

Greenhouse heat consumption 312 270

Boiler heat generated 99.55 62.23

CHP heat generated 212.88 208.07

CHP electricity generated 212.88 208.07

Electrical energy exported 187.97 181.24 -8681.1 -9079.6

Electrical energy imported 17.80 15.88 761.6 626.7

Gas consumption [t] Cost (+) and incomes (-) [e ]

Natural gas consumption 80.79 76.03 1615.7 1520.6

Total CO2 consumption 27.22 24.12

CO2 consumption (grid) 4.97 10.21 745.5 1531.9

CO2 consumption (boiler) 22.25 13.91

Economic statement -5558.3 -5400.3
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electricity are 400e higher with the hierarchical controller, whereby the CHP produces

excess electricity when it is more profitable to be sold. This is not always the case with

the rule-based controller. Conversely, the cost of electricity imported from the grid

is lower with the hierarchical controller, showing that electricity is bought when the

tariffs are the most attractive.

7. Conclusion

A three-level hierarchical control law has been considered in this paper, applied

to the multi-energy systems of an agricultural greenhouse. Our work focused more

particularly on the second level controller, which must control the dynamics of the

multi-energy (ME) systems. The design methodology proposed for level two is based

on what we have called ME-MPC. It takes advantage of a dynamic model based on a

neural network and captures the nonlinear behavior of energy systems and the green-

house atmosphere.

The characteristics of a greenhouse in the Pays de la Loire region in France were

used for the proof of concept. It produces above-ground tomatoes using different en-

ergy flows: electricity, heat and natural gas. CO2 fertilization was also considered as a

flow (input) to be treated. A fine-scale Modelica model of the greenhouse and energy

systems led to a very realistic simulator, even taking into account practical solutions to

regulate the greenhouse atmosphere, such as thermal and solar screens, artificial light-

ing, etc. This simulator provides access to all the variables of interest (state of the

fine model), allowing a detailed energy analysis. A typical rules-based approach has

also been implemented in the simulator to replicate the way greenhouses are currently

controlled. This constitutes a reference solution, which made possible a comparative

evaluation of the proposed solution. The results obtained constitute a proof of con-

cept of the hierarchical control proposal as a whole. In particular, they validate the

ME-MPC level 2 solution as the means of significantly increased energy and economic

efficiency.

In summary, the methodology presented in this article offers the following advan-

tages:
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• It is a systematic approach that ultimately provides a solution to complex prob-

lems by employing hierarchical decomposition of the optimization problem and

utilizing a computationally efficient model based on neural networks.

• The level 2 control is applicable to multi-energy systems encountered in the gen-

eral context of agricultural greenhouses

• Its implementation is likely to reduce engineering time on one hand, and on

the other hand, improve the energy performance of agricultural greenhouses by

consuming less primary energy and reducing CO2 emissions.

Some disadvantages have also been highlighted:

• It relies on model-based solutions for data generation, which requires the avail-

ability of specific libraries in Modelica that integrate greenhouse or component

models. This dependence on specialized libraries can be a limitation.

• The process of calibration or continuous adaptation of the model requires ade-

quate instrumentation of the greenhouses. Sufficient monitoring and measuring

devices must be in place for accurate calibration, which may involve additional

cost and effort.

Our future work will partly consist of consolidating the management of the CO2

flow to further reduce the economic balance sheet. The interest (or not) of adding

a level of dynamic optimization based on the entire greenhouse model (multi-energy

system and climatic atmosphere) could be studied. Finally, applying the approach to

an agricultural greenhouse and not to its digital twin is the logical next step.
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