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Introduction

Agriculture is facing great challenges to feed the world's population in the 21 th century, due to its exponential rising, an increase in natural disasters and the stabilization of farmland surfaces [START_REF] Hati | Smart indoor farms: Leveraging technological advancements to power a sustainable agricultural revolution[END_REF]. Some technologies such as greenhouses farms are becoming necessary for maximizing agricultural production and reducing resource usage [START_REF] Hati | Smart indoor farms: Leveraging technological advancements to power a sustainable agricultural revolution[END_REF]. Indeed, greenhouses aim at making grow the cultures in a regulated environment in which atmosphere gas contents, luminosity and temperature are controlled. As a consequence, the quality and quantity of crop productions can be improved since the plants are less stressed. In addition, harvest times can be increased, water consumption can be reduced and fungicides as well as insecticides are less used due to the protection provided by the greenhouse. However, some additional costs for construction and operation of greenhouses are induced. The challenge is then to control operating costs and carbon dioxide emissions compared to those of traditional crops [START_REF] Golzar | A novel integrated framework to evaluate greenhouse energy demand and crop yield production[END_REF]. Improving the climate of the greenhouse to maximize agricultural production and at the same time minimize energy consumption justifies more than ever the adoption of smart technologies [START_REF] Hati | Smart indoor farms: Leveraging technological advancements to power a sustainable agricultural revolution[END_REF].

Control of greenhouse climate systems and actuators has been investigated by many researchers using different control methods and algorithms. In [START_REF] Su | Parameter self-tuning pid control for greenhouse climate control problem[END_REF], an adaptive proportional-integral-derivative (PID) has been developed to control indoor temperature, moisture, and CO 2 concentration and to minimize tracking errors. In [START_REF] Chen | Sliding mode control based on disturbance observer for greenhouse climate systems[END_REF], a sliding mode control was employed for its ability to handle non-linearity, coupling, and disturbances to control the greenhouse climate. Fuzzy logic control is also employed in [START_REF] Lafont | Optimized fuzzy control of a greenhouse[END_REF]; the control formalizes and approaches the behavior of the person and does not require a pre-established physical model. In [START_REF] Nachidi | Takagi-sugeno control of nocturnal temperature in greenhouses using air heating[END_REF], a Takagi-Sugeno fuzzy modeling is employed to design a controller for greenhouse temperature control. The controller is tuned according to linear matrix inequalities, which ensures stability and performance in a closed loop and enables control of the greenhouse heating system, which provides good performance. Optimal control is also employed to control the actuators of a greenhouse and has been used in several studies to control the climate of an agricultural greenhouse. Optimal control is used in [START_REF] Van Beveren | Optimal control of greenhouse climate using minimal energy and grower defined bounds[END_REF] to control indoor temperature, moisture, and CO 2 concentration while minimizing energy consumption. In another study, heating and cooling are controlled to reduce energy consumption [START_REF] Van Beveren | Minimal heating and cooling in a modern rose greenhouse[END_REF]. The optimal control formalism by Hamilton Jacobi Bellman is also used in [START_REF] Ioslovich | Hamilton-jacobi-bellman formalism for optimal climate control of greenhouse crop[END_REF]. In addition, a multi-objective optimization is investigated to maximize plant production and fruit quality while minimizing water consumption in [START_REF] Ramírez-Arias | Multiobjective hierarchical control architecture for greenhouse crop growth[END_REF], and in [START_REF] Wang | Study on optimization model control method of light and temperature coordination of greenhouse crops with benefit priority[END_REF] a multi-objective optimization based on Pareto solution is investigated to control both light and temperature conditions. Among advanced control techniques, model predictive control (MPC) is often studied in academia [START_REF] Mayne | Model predictive control: Recent developments and future promise[END_REF] and has been used in several industrial applications [START_REF] Darby | Mpc: Current practice and challenges[END_REF] and agricultural greenhouse systems [START_REF] Bersani | Model predictive control of smart greenhouses as the path towards near zero energy consumption[END_REF] [15], [START_REF] Lin | Model predictive control of a venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption[END_REF]; it enables the consideration of constraints on the state variables of the process while modeling the process to control.

The use of MPC to control greenhouse climate and actuators is investigated in [START_REF] Piñón | Constrained predictive control of a greenhouse[END_REF] as it allows for taking into account constraints, non-linear processes and multi-inputs and outputs of the system. Other authors have compared the MPC performance to PID controllers and observed that the former increases temperature control performance [START_REF] Ghoumari | Non-linear constrained mpc: Real-time implementation of greenhouse air temperature control[END_REF].

A robust MPC to address uncertainties is also discussed in [START_REF] Chen | Robust model predictive control for greenhouse temperature based on particle swarm optimization[END_REF], and the results indicate that the controller regulates the temperature despite the uncertainties with a min-max optimization algorithm.

Hierarchical control is also considered to control greenhouse climate. In [START_REF] Ramírez-Arias | Multiobjective hierarchical control architecture for greenhouse crop growth[END_REF], a three-level control is depicted. The first level controls the fertilizers and the climate of the greenhouse on a time scale of one minute. The second level adjusts the setpoints on the time scale of the day. The third level, on the time scale of the month, controls the growth of the plant. In another work [e.g., [START_REF] Bozchalui | Optimal energy management of greenhouses in smart grids[END_REF]], a two-levels hierarchical control has been investigated. The upper level computes the setpoints by minimizing the economic cost of energy, while the lower level receives the setpoints and controls actuators with PID and bang-bang controllers. Besides, some works consider neural networks based solutions to control climate variables such as indoor temperature, moisture, CO 2 [START_REF] Jung | Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse[END_REF], [START_REF] Moon | Interpolation of greenhouse environment data using multilayer perceptron[END_REF], [START_REF] Mahmood | Datadriven robust model predictive control for greenhouse temperature control and energy utilisation assessment[END_REF], or even of the leaf and fruits growth as in [START_REF] López-Aguilar | Artificial neural network modeling of greenhouse tomato yield and aerial dry matter[END_REF].To the authors' knowledge, no paper take benefits from an ad hoc neural network to fully control the greenhouse indoor environment. They proceed by more targeted objectives as in [START_REF] Jung | Model predictive control via output feedback neural network for improved multi-window greenhouse ventilation control[END_REF] which uses a neural network based MPC for ventilation control.

The control of energy systems supporting agricultural greenhouses has been explored in few studies [START_REF] Ouammi | Optimal operation scheduling for a smart greenhouse integrated microgrid[END_REF][START_REF] Ouammi | Supervisory model predictive control for optimal energy management of networked smart greenhouses integrated microgrid[END_REF][START_REF] Achour | Supervisory model predictive control for optimal operation of a greenhouse indoor environment coping with foodenergy-water nexus[END_REF][START_REF] Van Beveren | Optimal utilization of a boiler, combined heat and power installation, and heat buffers in horticultural greenhouses[END_REF][START_REF] Van Beveren | Optimal utilization of energy equipment in a semi-closed greenhouse[END_REF] compared to climate control [START_REF] Su | Parameter self-tuning pid control for greenhouse climate control problem[END_REF][START_REF] Chen | Sliding mode control based on disturbance observer for greenhouse climate systems[END_REF][START_REF] Lafont | Optimized fuzzy control of a greenhouse[END_REF][START_REF] Nachidi | Takagi-sugeno control of nocturnal temperature in greenhouses using air heating[END_REF][START_REF] Van Beveren | Optimal control of greenhouse climate using minimal energy and grower defined bounds[END_REF][START_REF] Van Beveren | Minimal heating and cooling in a modern rose greenhouse[END_REF][START_REF] Ioslovich | Hamilton-jacobi-bellman formalism for optimal climate control of greenhouse crop[END_REF][START_REF] Ramírez-Arias | Multiobjective hierarchical control architecture for greenhouse crop growth[END_REF][START_REF] Piñón | Constrained predictive control of a greenhouse[END_REF][START_REF] Ghoumari | Non-linear constrained mpc: Real-time implementation of greenhouse air temperature control[END_REF][START_REF] Chen | Robust model predictive control for greenhouse temperature based on particle swarm optimization[END_REF][START_REF] Bozchalui | Optimal energy management of greenhouses in smart grids[END_REF]. In [START_REF] Ouammi | Optimal operation scheduling for a smart greenhouse integrated microgrid[END_REF], wind turbines, photovoltaic panels, battery storage, grid connection, and combined heat and power (CHP) are considered as part of the agricultural greenhouse. The control is based on MPC to effectively control energy and improve availability, flexibility, and efficiency. The same authors extended their work in [START_REF] Ouammi | Supervisory model predictive control for optimal energy management of networked smart greenhouses integrated microgrid[END_REF] by considering a network of several greenhouses interconnected in a microgrid. The modeling of the greenhouseThe study presented here follows our review of the literature. It focuses specifically on the optimized management of the (multi)energy system of the greenhouse to meet the energy needs of the greenhouse.

Therefore, the main ambitions and contributions of this work are: load is conducted by a nodal resistance-capacity model, and the growth process of the plant is not taken into account. In [START_REF] Achour | Supervisory model predictive control for optimal operation of a greenhouse indoor environment coping with foodenergy-water nexus[END_REF], the authors improved the greenhouse modeling, considering temperature, moisture, CO 2 , air circulation, artificial lighting, and energy support systems comprising wind turbines, photovoltaic panels, energy storage with battery units, and pumping and water storage systems. A centralized MPC scheme is depicted to control the greenhouse energy system and greenhouse environmental variables. However, wind turbines and photovoltaic panels considered in these papers ( [START_REF] Ouammi | Optimal operation scheduling for a smart greenhouse integrated microgrid[END_REF][START_REF] Ouammi | Supervisory model predictive control for optimal energy management of networked smart greenhouses integrated microgrid[END_REF][START_REF] Achour | Supervisory model predictive control for optimal operation of a greenhouse indoor environment coping with foodenergy-water nexus[END_REF]) as energy providers do not reflect current equipments available in high-tech greenhouse systems. The latter make use of heating systems such as a heat-pump [START_REF] Van Den Bulck | Monitoring and energetic performance analysis of an innovative ventilation concept in a belgian greenhouse[END_REF], boiler, CHP, and thermal storages [START_REF] Van Beveren | Optimal utilization of a boiler, combined heat and power installation, and heat buffers in horticultural greenhouses[END_REF]. One can speculate that agricultural areas are retained for crops instead of energy production via solar panels or wind turbines as the former is more profitable for the farmer. In [START_REF] Van Beveren | Optimal utilization of a boiler, combined heat and power installation, and heat buffers in horticultural greenhouses[END_REF] the study aims to minimize the energy (natural gas and electricity) cost while taking into account the system constraints. Results obtained illustrate an increase in profit as compared to conventional control. The study is extended in [START_REF] Van Beveren | Optimal utilization of energy equipment in a semi-closed greenhouse[END_REF] by adding a heat pump, seasonal thermal storage, and cooling towers.

The results show a cost reduction of 29 % over a year.

As it can be seen in the literature review, control of greenhouses is addressed in numerous studies, either to regulate their indoor environment (temperature, moisture and CO 2 contents, etc.) or to optimize their own energy systems from economical or energy points of view. Usually, linear and non linear predictive control are implemented. This is a logical choice regarding the nature of the problem considering time characteristics, the fact that exogenous phenomena that can be partly predicted are involved, and the need to constraint states or control signals.

The study presented here follows our review of the literature. It focuses specifically on the optimized management of the (multi)energy system to meet the energy needs of the greenhouse. Therefore, the main ambitions and contributions of this work are:

• To consider a realistic greenhouse equipped with a complete energy system, based on a combined heat and power unit, a gas boiler and a thermal energy storage (TES). In that view, we have to do with a real multi-energy system: the energy sources are electricity, and natural gas, and we also have to manage internally both high and low temperatures heating networks. The system can even be seen as being a multi-flow system, since we also seek to control the flow rate of CO 2 , in interaction with the energy system via the boiler.

• To propose a three levels hierarchical control architecture : a static optimization of the power flow at the third level thanks to an Economic MPC, a dynamic optimization of the Multi-Energy system at the second layer using a MPC (ME-MPC), to finally adress a classical low-level layer for the climate regulation of the greenhouse, based on rule-based or proportional-integral-derivative controllers. This hierarchical control law is innovative to the extent that the dynamic optimization with MPC of the second level is based on a dynamic model implemented thanks to an artificial neural network (ANN).

• To develop a systematic method for the second-level MPC control, which performs a data-based simplification of the fine model of the multi-energy system.

The proposed model based on an artificial neural network (ANN) and a limited number of state variables is an important contribution, in that it takes into account the multi-physics dynamics (CHP, boiler, etc.) of the energy system, for a reduced computational cost.

• And finally to propose a realistic validation of the global hierarchical control, by comparing its performances with those of a rule-based control, inspired by real practice.

To adress these issues, the article is organized as follows: section 2 presents the considered greenhouse energy system and its base-line controller. Section 3 details the proposed controller of the research work. Section 4 depicts multiphysics simulator, while the case study and associated results are introduced and discussed respectively in section 5 and 6. Finally, section 7 provides the conclusions of the work.

The studied energy system

Energy and ancillaries systems functionning

Temperature and the luminosity that fosters the photosynthesis of plants, as well as the moisture and the CO 2 contents of the atmosphere are the main ambient elements to be controlled in the greenhouse for the development of cultures. Energy systems and ancillaries are implemented in that view. Thus, the greenhouse is heated thanks to solar gains on one hand, and high and low temperatures heating networks on another hand. The high temperature heating network is fueled by thermal energy storage (TES) itself charged by heat from a gas combined heat and power unit (CHP) and a gas boiler.

The low temperature one valorized the heat of the exhaust fumes produced by the two energy units mentioned above. In case of overheating during the day, a solar screen allows limiting the solar gains and windows can be opened in order to force the air circulation in the greenhouse, inducing natural ventilation. These windows can be opened in case of too high moisture level, produced by the plants by evapotranspiration. Besides, a thermal screen can be deployed when outside temperature is very low, in order to limit the thermal losses from the greenhouse. The luminosity is guaranteed by the solar irradiance substituted or completed by artificial light when necessary. The lights consume electricity produced by the CHP or supplied by the grid. Thus, the electricity from the CHP is either consumed by ancillaries of the greenhouses, or sold and injected to the grid. Finally, the atmosphere in the greenhouse is enriched with CO 2 used as a fertilizer, through injectors to valorize CO 2 emitted by the energy units fed by gas, or through a CO 2 network. The greenhouse's energy system can be considered as a multi-energy system with gas, electricity and heat as carriers; the CHP and a gas boiler consume gas to produce locally heat and electricity. The greenhouse consumes heat and electricity produced locally or electricity from the grid. Also, the excess electricity can be sold to the grid. If we add the CO 2 flows, a matter flow, to the energy ones, we can consider the greenhouse as a multi-flow system. 

Base-line controller

The current controller of the multi-flow system is a rule-based one that mimics the farmer practices. The rules are not based on elaborate algorithms, but on choices of farmers derived from their experience. In fact, they control their energy system to optimize the energy production with reduced operating costs (electricity, natural gas, CO 2 ), and valorizing purchase contracts on the electricity selling. The rules can be summarized as follow (Fig. 2):

• The CHP is controlled according to the months of the year, with full load operation from the beginning of November to the end of March. After that, the power is zero for the rest of the year;

• The Boiler is regulated according to the CO 2 demand of the greenhouse and the SOC of the TES. When there is a demand for CO 2 , the boiler starts at low power and stops if the heat storage is full. Conversely, if the thermal storage reaches a low threshold, the boiler starts at full power.

• TES: Protection is needed in the management of the thermal storage unit. Heat is rejected in the agricultural greenhouse when the storage is full and the cogeneration produces heat. It can happen that the agricultural greenhouse is over-heated.

If the temperature in the agricultural greenhouse is too high (2 • C above the setpoint), then the windows of the greenhouse are open to evacuate the excess heat into the atmosphere.

• The Ancillary systems (Radiation, temperature, screens, humidity and CO 2 ) are controlled by PID or rule-based regulators. Thus, the greenhouse temperature is regulated by a PID that controls the flow of a pump to heat the greenhouse when required. The humidity is controlled by a PID that activates the opening of the windows when the humidity level is too high. The CO 2 concentration is controlled by a PID which operates CO 2 injectors. A rule-based regulator controls the artificial radiation in the greenhouse with several lamps. The Tomatoes' thermal comfort is guaranteed by a rule-based control applied to the thermal screen and sun screen. Finally, to protect the tomatoes, windows are open when excessive temperatures occur.

Our objective is to propose a control architecture and an associated tuning methodology that could handle most greenhouses' energy and CO 2 systems. Its complexity is rich enough to be both representative and challenging for the control methodology proposed.

Multi-energy model predictive control hierarchical control

The proposed control strategy is based on a three-level hierarchical architecture, taking advantage of what we call multi-energy model predictive control (ME-MPC). Such a hierarchical structure has the benefit of facilitating the design of commands. It makes it possible to dissociate the stages of planning and regulation, the automated regulation part itself being hierarchized according to significantly different time scales [START_REF] Tsay | 110th anniversary: using data to bridge the time and length scales of process systems[END_REF].

The first level comprises the low-level regulator; it introduces feedback control or rulebased control and is responsible for operating the actuators of the process regarding references received from the upper level. The second level enables dynamic optimization with process modeling, multiple inputs/outputs and constraints regarding references received from the upper level, and predictions (e.g., from the weather forecast).

The third level enables steady-state optimization regarding an economic cost function; it computes the optimal setpoints, which are sent to the lower level. A summary illustration of the controllers depicted in this work, with the three levels, is shown in Fig. 3.

Subsequently, each control level from top to bottom is described.

Third level: steady-state optimization via Economic-MPC

The third level performs a steady state optimization with the purpose of minimizing economic costs while taking the constraints into account. Constraints include process modeling with algebraic equations and operating constraints. The multi-energy process modeling is easily performed thanks to the energy hub framework and the power balance equations [START_REF] Parisio | A robust optimization approach to energy hub management[END_REF]. An illustration of the energy hub considered in this work is shown in Fig. 4, and the equations are detailed below. Power balance constraints:. The output vector L and the power balance associated with the energy hub are:

                      E gh H gh 0 G CO 2 ,gh                       L =                       0 H boiler 0 G CO 2 ,boiler                       P boiler +                       E chp H chp 0 0                       P chp +                       E grid 0 G ng,grid G CO 2 ,grid                       P grid +                       E ex 0 0 G CO 2 ,ex                       P ex +                       0 H ch 0 0                       P ch +                       0 H dis 0 0                       P dis (1)
E gh , H gh , and G CO 2 ,gh are the electricity power, heat, and CO 2 flow consumed by the greenhouse. H boiler and G CO 2 ,boiler define heat and CO 2 flow from the boiler. E chp and H chp represent the electric power and heat produced by the CHP. E grid , G ng,grid , and G CO 2 ,grid reflect the electric power, natural gas and CO 2 flow from the electrical, gas and CO 2 networks. E ex is the electric power injected into the grid, and G CO 2 ,ex is the CO 2 produced by the boiler that is not reused and is sent into the air. H ch and H dis are, respectively, the charging and discharging heat from the TES. P boiler , P chp and P grid are given by: 

P boiler =                          0 0 0 0 0 0 C boiler G to H 0 0 0 0 0 0 0 C boiler G to CO2 0                          D boiler                          0 0 G ng,boiler 0                          I boiler (2) 
P chp =                          0 0 C chp G to E 0 0 0 C chp G to H 0 0 0 0 0 0 0 0 0                          D chp                          0 0 G ng,chp 0                          I chp (3) 
P grid =                          C grid to E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C grid to CO 2                          D grid                          E grid 0 G ng grid G CO2 grid                          I grid (4 
I = I grid + I boiler + I chp (5) 
The recurrent equation associated with thermal storage is:

S OC tes [k + 1] = S OC tes [k] + ∆ k H ch [k] -∆ k H dis [k] (6) 
where S OC tes depicts the state of charge (SOC) of the thermal energy storage in MWh, k the discrete sampling time and ∆ k the sample time in hours.

Operational constraints:. Operational constraints are associated with the equipment (boiler, CHP, or storage element). They are extracted from the specificities of the energy devices, and they are filled in for the optimizer. Equipment powers are semicontinuous optimization variables that can take a value between a minimum and a maximum or zero. 

k i=k-minU p chp +1 on chp [i] ≤ S tate chp [k] ( 10 
)
where minU p • reflects the minimal operating time parameter (as a multiple of sampling time), on • is a continuous variable allowing the detection of the starting instants of the given equipment.

The minimal shutdown time (minimum time between two shut-ups) is provided by the following equation:

k i=k-minDown boiler +1 o f f boiler [i] ≤ 1 -S tate boiler [k] ( 11 
) k i=k-minDown chp +1 o f f chp [i] ≤ 1 -S tate chp [k] (12) 
where minDown • is the minimal shutdown time parameter (as a multiple of sampling time), o f f • is a continuous variable allowing the detection of the shut down instants of the given equipment.

The TES constraints related to energy stored is defined as such:

S OC min tes -S lack ≤ S OC tes ≤ S OC max tes + S urplus [START_REF] Darby | Mpc: Current practice and challenges[END_REF] with S OC min tes and S OC max tes are respectively the minimal and maximal state of charge of the TES. S lack and S urplus are the constraint relaxation variables: they allow a small violation of the constraints. Furthermore, terminal constraints are added to the final state of charge to avoid to discharge all the storage energy in its computing horizon, such as:

S OC min,ter tes -S lack[N eh ] ≤ S OC tes [N eh ] ≤ S OC ter tes + S urplus[N eh ] (14) 
with S OC min,ter tes and S OC max,ter tes terminal constraints parameters with minimum and maximum values and N eh the horizon length of the steady-state optimization.

Additional constraints are necessary when programming the optimization problem.

These constraints are not related to the physical limits of the equipment but contribute to the solution.

Firstly, all the decision variables (S lack, S urplus, P boiler , P chp , P grid , P ch , P dis , P ex , I, I chp , I boiler and I grid ) are constrained to be greater or equal to zeros. Then, a constraint is added on the on and o f f variables to force them to take 0 or 1 values as binary variables:

S tate boiler [k] -S tate boiler [k -1] = On boiler [k] -O f f boiler [k] ( 15 
)
S tate chp [k] -S tate chp [k -1] = On chp [k] -O f f chp [k] (16) 
Cost function:. The cost functions considered in this study are the startup cost (specifies the startup expense) and the production cost (specifies the operating expense).

Then the revenues are derived from the sale of electricity on the grid. The startup cost related to the equipment startup is detected with the on optimization variable, such as:

Cost 1 = on boiler start cost boiler + on chp start cost chp (17) 
where Cost 1 is the start up cost of the boiler and the CHP, on j is a continuous variable allowing the detection of the starting instants of the equipment, and start cost j the starting expenditure parameter of energy equipment related to the boiler or the CHP. The production cost is linked to the purchase price for each energy carrier as well as the gain from the energy sale, as follow:

Cost 2 =                  elec cost gas cost CO 2 cost                  I ( 18 
)
where Cost 2 is the operating expense, elec cost the electricity rate, gas cost the natural gas rate, CO 2 cost the CO 2 rate, and I the input vector of the EH. The revenue process comprises the sale of electricity, shown as:

Cost 3 =                  -elec cost 0 0                  P ex (19) 
with Cost 3 the sales gain of the EH, elec cost the electricity rate and P ex the exhaust vector.

It is preferable to keep a convex cost function to maintain the linear optimization problem with integers (mixed integer linear programming , MILP). The cost function include: Cost 1 , Cost 2 , Cost 3 , and the S lack and S urplus are added for the soft constraint relaxation variables; the horizon length is also taken into account. The cost function is defined as:

J = N eh -1 k=0 Cost 1 [k] + Cost 2 [k] + Cost 3 [k] + ρ N eh k=0 S lack[k] + S urplus[k] (20) 
with Cost 1 k from Eq. ( 18), Cost 2 from Eq. ( 19), Cost 3 k from Eq. ( 17), ρ the cost related to the S lack and S urplus variables.

Optimization problem:. The whole optimization problem based on MILP is to minimize the cost function J with the hitherto presented constraints. It is defined as:

min J (21) 
subject to (1), ( 2) -(4), ( 5)

-(16) (22) 
L[0] = L(t) (23) 
S OC tes [0] = S OC tes (t) [START_REF] López-Aguilar | Artificial neural network modeling of greenhouse tomato yield and aerial dry matter[END_REF] with Eq.( 23) the greenhouse loads initialization with the measure L(t) and prediction and Eq.( 24) the SOC initialization with the measure S OC tes (t).

Second level: dynamic optimization via Multi Energy-MPC

The dynamic optimization level is performed via MPC. Compared to the previous level, the control actions are computed here taking into account the dynamic behavior of the energy systems, thanks to an embedded model that makes some predictions possible on a receding time horizon. In this work, we consider that the state is known in real time, and the state predictor is defined by a recurrent equation of the form:

x[k + 1] = g nn ( x[k], ū[k], v[k]) ( 25 
)
One challenge is to find a suitable g nn ; it could be a linear physical model with state space representation [START_REF] Muske | Model predictive control with linear models[END_REF], a non-linear one [START_REF] Grüne | Nonlinear Model Predictive Control[END_REF] or a grey-box model identified from data [START_REF] De Araujo Passos | Model predictive control of a thermal chimney and dynamic solar shades for an all-glass facades building[END_REF].One challenge is to find a suitable g nn ; it could be a linear physical model with state space representation [START_REF] Muske | Model predictive control with linear models[END_REF] or a non-linear one [START_REF] Grüne | Nonlinear Model Predictive Control[END_REF]. PB The method explored in this work uses a black-box model following a methodology extracted from [START_REF] Blaud | From multi-physics models to neural network for predictive control synthesis[END_REF]. The main steps are summarized in Fig. 5. First, data are generated from the finescale modeling of the dynamical system to be controlled. In this work, the greenhouse system is modeled with a multi-physics implementation with Modelica programming language [START_REF] Mattsson | Physical system modeling with modelica[END_REF]. The language enables performing fine-scale multi-physics modeling such as electricity, thermal, or gas. In addition, a Modelica library implements the greenhouse system balance equations and other equipment' that forms the system [START_REF] Altes-Buch | Greenhouses: A modelica library for the simulation of greenhouse climate and energy systems[END_REF].

The equipment and materials encountered are tomato crops, canopies, soil, heating networks, air nodes, CO 2 nodes, lights, thermal screen, sun screen, covers, and windows opening. In addition, the physical flux between each piece of material is modeled. The greenhouse proposed in [START_REF] Altes-Buch | Greenhouses: A modelica library for the simulation of greenhouse climate and energy systems[END_REF] has been enhanced for this study. We added a separate heating pipe with a low-level and high-level temperature. The Multi-Energy System is modeled with a fine-scale multi-physics approach using the TransiEnt library [START_REF] Andresen | Status of the transient library: Transient simulation of coupled energy networks with high share of renewable energy[END_REF].

The library proposes the thermal storage with thermal stratification, the boiler, and the CHP. The boiler and the CHP are enhanced to take into account two heating networks with low and high temperatures.

Secondly, a neural network is trained to learn the recurrent equation (Eq.25). It represents only the MES part to be controlled, and not the whole greenhouse. Thirdly, the MPC is tuned with the neural state predictor. We chose in this paper to learn the model instead of the optimal policy, that is to say to use neural networks coupled with predictive control instead of other machine learning approaches such as deep reinforcement learning to handle the computational burden. This choice is motivated by results

provided in [START_REF] Recht | Reflections on the learning-to-control renaissance[END_REF] or [START_REF] Rawlings | Bringing new technologies and approaches to the operation and control of chemical process systems[END_REF], where pros and cons of both strategies for the control of industrial processes are analyzed. Finally, the neural network used in this work is residual network (ResNet) [START_REF] He | Identity mappings in deep residual networks[END_REF]. The ResNet network has been assessed to improve the generalizability of the network compared to more conventional neural networks [START_REF] Blaud | Resnet and polynet based identification and (mpc) control of dynamical systems: a promising way[END_REF][START_REF] Blaud | Pilotage distribué de systèmes multi-énergies en réseau[END_REF]. In this work, the state, input, and non-controllable inputs from Eq.( 25) are defined as:

x :=                                  S OC tes H boiler H chp E chp G CO 2 boiler                                  , ū :=           u boiler u chp           , v :=                  H gh E gh G CO 2 gh                  (26) 
The MPC selected in this work is contractive to ensure the stability and feasibility of the predictive control [START_REF] De Oliveira Kothare | Contractive model predictive control for constrained nonlinear systems[END_REF] due to contractive state constraints. The MPC formulation is:

min ũ, x N-1 i=0 xT i Q xi + ũT i Rũ i (27) s.c. xi+1 = g * nn ( xi , u i , vi ) (28) 
xi ∈ X (29)

u i ∈ U (30) x0 = x(t) (31) 
xN

P xN ≤ α x0 P x0 (32) xi = xi -x r i ( 33 
) ũi = u i -u r i ( 34 
)
with Eq. ( 27) the quadratic cost to minimize. ũ is the input deviation sequence from the optimal steady state u r , Eq. ( 34), such as ũ := ũ0 , . . . , ũN-1 . x is the state deviation sequence from the optimal steady state x r , Eq. ( 33), such as x := x0 , . . . , xN with N the horizon length. Eq. ( 28) is the time evolution constraint of the state, which is based on the artificial neural network. Eq. ( 29) is the state constraints and Eq. ( 30) is the input constraints. Eq. ( 31) is the plant state measure. Eq. ( 32) is the contractive constraint with α the contractive parameter, α ∈ [0, 1[ and P the contractive weighting matrix.

The contractive MPC is computed at each iteration, and the first sample of the input computed (u * ) is applied to the low-level references until the next sampling period.

First level: low-level control

The low-level control comprises several PID controller [START_REF] Åström | The future of pid control[END_REF], and rule-based ones that control specifically the ancillary systems. The controllers that are exposed in section 2.2 are kept.

Multiphysics simulator

The fine-scale Modelica model that has been used to tune the neural network embedded in the second-level controller is also used as a validation model in this paper. It was exported using a functional mock-up unit (FMU) for simulation and performed using Simulink. The third and second levels of the proposed controllers interact with the FMU, and then the low-level controllers are implemented within the fine-scale modeling in Modelica programming (Fig. 6). In addition, a co-simulation was chosen within the FMU, and the solver CVODE is used [START_REF] Cohen | Cvode, a stiff/nonstiff ode solver in c[END_REF]. At each sample time, the FMU simulation is paused and then the hierarchical control computed; the new input commands are sent to the low-level regulator, and the simulation continues until the next pause (Fig. 7). During the simulation, the data was saved to depict results.

Computing implementation

The hierarchical control levels are computed at a fixed time, and the third and second levels are computed in a receding horizon manner at different time scales. In addition, the third level sends references to the second level, and the second level sends reference to the first level when it governs the actuators (Fig. 7).

Implementation of the third level: steady-state optimization

The third level is implemented using modeling language specific to the field of optimization, namely JuMP [START_REF] Dunning | Jump: A modeling language for mathematical optimization[END_REF] on Julia programming [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]. Constraints on the CHP and 

Implementation of the second level: dynamic optimization

The neural network is implemented on computing machines using Flux [START_REF] Innes | Flux: Elegant machine learning with julia[END_REF], a package of the Julia programming language [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF] that provides highly competitive lan- The MPC is implemented on a modeling language specific to the field of optimization, namely JuMP [START_REF] Dunning | Jump: A modeling language for mathematical optimization[END_REF] on the Julia programming language [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]. The MPC predictor is defined with the JuMP user-defined function from the Flux object function. In this case, it allows us to compute the gradient with automatic differentiation [START_REF] Revels | Forward-mode automatic differentiation in julia[END_REF], and it is not required to rewrite the neural network since Flux and JuMP are both in Julia's ecosystem. The optimization problem is non-linear due to the activation function, and the selected solver is Knitro [START_REF] Byrd | Knitro: An integrated package for nonlinear optimization[END_REF]. The MPC is solved at each 300 s and the allowed optimization time is equal to 30 s. After 30 s of computation, if the solver does not stop the optimization, the sub-optimal computed value is selected. The horizon length and weighting matrices selected in this work are shown in Table 1. The MPC algorithm is depicted in Algorithm 2.

Algorithm 2 MPC computation 1: Measure the system states x0 ⇐ x(t)

2: Get the predictions of the non-controllable inputs v 3: Solve the optimization problem (MPC)

4: Send the first input command computed u * 0 to the low-level control 5: Wait until the next iteration t ⇐ t + 1 6: Go to step one

Implementation of the first level: low-level control

The low-level controllers are implemented within the Modelica program, according to the controllers and rules expressed in section 2.2.

Case study

The greenhouse considered in this study was inspired by those found in Nantes, Pays de la Loire region, France. Table 2 describes the main characteristics of its energy system. To remain standard, certain less commonly used energy equipment (geothermal heat pump, recovery of CO 2 from cogeneration, photovoltaic or thermal solar panels, etc.) is not taken into account. The proposed methodology is not, however, limited to this standard case. 

Parameters

Values

N 12 ∆T 300s Q                                  5 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 1                                  R           0.5 0 0 0.5           P                                  1 0 0 0 0 0 0.001 0 0 0 0 0 0.001 0 0 0 0 0 0.001 0 0 0 0 0 0.001                                  α 1 Optimization time t ≤ 30s Solver Knitro [55] State constraints [0, 1] Inputs constraints [0, 1]
The functioning parameters (sizes, operating powers, conversion factors and costs) of the greenhouse energy systems are depicted in Table 3:

The meteorological data from 2019 are considered for the simulation, and they were extracted from the database Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) [START_REF]nx:2d,1hourly,time-averaged,single-level,assimilation[END_REF]. The variables considered are outside temperature, sky temperature, sun radiation, wind speed and relative humidity. In addition, the outside CO 2 level is considered constant during all simulations with 400 ppm. TES temperatures:

S OC = 1 - 90 • C - S OC = 0 - 55 • C -
Energy demand predictions of greenhouse consumption are mandatory for the proposed controller in this work, more specifically for the third and second levels (steady state and dynamic optimization). In this study, the predictions are considered perfect, and they were taken from a dataset generated from a previous simulation with the 2019 meteorological data. Then the energy demands of the agricultural greenhouse were recorded (heat, electricity and CO 2 ). During the simulation only the boiler was controlled with a rule-based controller with the purpose of maintaining the heat storage from S OC = 0 to S OC = 1.

The low level (first level) controller set points are tuned as follows:

• Greenhouse temperature: The set points of the PID that control the pumps of the 

Results and discussion

The results are separated into two distinct sections. Section 6.1 discusses the results of system identification, and sub-section 6.2 presents the findings of the MES operation over a year of crop production.

Neural Network model identification

Table 4 shows the hyper-parameters ranges considered in this work, which were optimized during training using the BlackBoxOptim package [START_REF] Feldt | Blackboxoptim.jl[END_REF], according to the methodology proposed in [START_REF] Blaud | Resnet and polynet based identification and (mpc) control of dynamical systems: a promising way[END_REF]. The hyperparameters selected by the meta-heuristic algorithm can be seen in Table 4. The fidelity measure is equal to 1.01 × 10 -7 with the training data and 9.86 × 10 -7 with the test data. As a result, this network is chosen for the MPC tuning predictor.

Analysis of an operating year

The results of the simulations for the conventional controller and for the advanced controller are presented with duration curves. Other subfigures present exogenous variables (radiation, outside temperature) or system variables (greenhouse temperature, heat storage status, CO 2 injection rate, co-generation unit control, boiler control) with iso-contour probability density of the data values in ordinates. These subfigures are synchronized on the x-axis within the duration curves. Therefore, the subfigures al- Optimizer Adam [START_REF] Kingma | A method for stochastic optimization[END_REF], Radam [START_REF] Liu | On the variance of the adaptive learning rate and beyond[END_REF],

Nadam [START_REF] Dozat | Incorporating nesterov momentum into adam[END_REF], Oadam [START_REF] Daskalakis | Training gans with optimism[END_REF] 1

Radam

Learning rate 1 × 10 -7 to 0.001 9.71 × 10 -4

Momentum exponential decay 0.9 to 0.999 0.94 Momentum estimate 0.9 to 0.999 0.98 a Please note that Radam, Nadam and Oadam are all derived from Adam optimizer.

The punctual comparisons of the figures between the two controllers are limited by the fact that we do not consider the same instants, because the temporal arrangements of the duration curves can differ significantly, but the tendencies and patterns comparison remain informative.

This representation mode highlights recurrent behaviors of the system in a probabilistic way and explains these behaviors by the tendencies of the exogenous data. For example, we can observe the same pattern at the start of both duration curves: the heating load decreases from 11.3 MW at maximum to 5.1 MW at index equivalent on day 35. Thus, these indexes correspond to moments of intense heating of the greenhouse.

For the same indexes and in both cases, iso-contours of occurrences of the internal temperature of the greenhouse show the significant recurrence of values between 20 In addition, for in the rule-based case, we can observe that for the very first indexes, the CHP is frequently set at 0%. This means that, nonintuitively, the indexes of higher heating demands are not solely in winter but between March and November, which can be explained by the use or nonuse of the thermal screen during mid-season days.

Examples of times series of days that includes two of the higher heating loads are shown in Fig. 10. We can firstly note that these times series take place in April, and not in the heart of winter as we would intuitively expect. In both cases, we can observe the load peaks take place at 6 a.m. when the set point temperature changes, from 20 • C to 22 • C. The peaks last few tenth of minutes, until the temperature of the greenhouse exceeds the set point, when the sun sets. These time series illustrate and confirm the general observation above.

We can further note that the load duration curves pattern differs from one controller to another, specifically for temporal indexes from the equivalent day 35 to equivalent day 100. A plateau around 4.8 MW (between 5.1 MW and 4.4 MW) can be seen on the load duration curve of the rule-based controller that does not exist for the hierarchical one, which decreases monotonically.

In the rule-based controller case, the co-generation unit operates at its nominal load, and the boiler provides heat while the state of charge of the thermal storage is close to 1. For indexes of equivalent days 37.5 to 75, the highest present occurrences of solar radiation are above 0 W m -2 and achieve 300 W m -2 (Fig. 8.i), showing that the indexes correspond to specific moments during the day. At these times, the temperature in the greenhouse is frequently 22 • C, respecting the set point. The ambient temperature, usually lower than 10 • C, induces high heat losses that must be compensated for by the heat from the TES since the solar radiations is low. These moments represent the most favorable cases, when there is a balance between the heat produced and supplied to the storage and the heat supplied by the storage to the greenhouse to respect the set point temperature. In the least favorable scenarios, more heat is produced by the cogeneration unit and the boiler than what is needed to maintain the set point temperature of the greenhouse and is supplied by the TES. In these cases, the excess heat is dissipated in the greenhouse, the storage having been already saturated. As a consequence, the set point temperature is no longer respected. We can observe this phenomenon for indexes between equivalent days 75 and 100. For these times, the temperature in the greenhouse is often about 24 • C, 2 • C higher than the set point. The outdoor temperatures are higher than they were previously, between 8 • C and 20 • C (Fig. 8.h), and the solar radiation can achieve 1100 W m -2 (Fig. 8.i). In these conditions, the heat load is low, whereas the production remains high, leading to the greenhouse overheating.

An indirect consequence is that the windows of the greenhouse are open causing CO 2 losses that must be compensated for by the CO 2 from the source, explaining the fact that the CO 2 flow rates increase to 0.12 kg s -1 (Fig. 8.i).

In all cases, the role of the storage is limited because the energy only passes through it. In this respect, the energy system does not seem to be optimized.

Concerning the hierarchical controller, the heat load decreases almost linearly for the same indexes (Fig. 9.a). The greenhouse temperatures are mostly maintained at 20 • C but also frequently 22 • C (Fig. 9.b.), which are the respective set point temperatures at night and in the day. At the same times, the solar radiation also exhibits two tendencies: either it is around 0 W m -2 (nights), or it is above 0 W m -2 , and it increases nearly linearly as the indexes of the duration curve increase (Fig. 9.i) while, the outdoor temperature also increases linearly (Fig. 9.h). From these observations, we can deduce that these indexes correspond to moments when the greenhouse follows the set point temperatures in a steady state regime, out of transitions. In these cases, the heat is sup-plied only to compensate for the losses when solar radiation gains are not enough. The heat supplied here evolves with environmental conditions: when the losses decrease (as the outdoor temperature increases) and the solar gains increase, the load decreases.

Moreover, the SOC varies mostly between 0.2 and 0.6 (Fig. 9.h), showing that the TES is duly solicited: it is discharged to provide heat to the greenhouse, and it is charged back without ever having been saturated. It can be seen that the boiler does not operate while the CHP charges the TES, following the load duration curve tendency as it operates successively at its nominal load, then at half load, and finally it is off when the heat load decreases. It is, logically, less solicited when the heating load drops. We can thus conclude that there is an order of priority between the co-generation unit and the boiler, established by the fact that the electricity selling tariff is favorable, most frequently above 30 e MW -1 (Fig. 9.j) against a cost of 20 e MW -1 for the gas. As an indirect consequence, the CO 2 contribution to the greenhouse is provided by the source (Fig. 9.d).

It can be said that the operation of the systems is not energetically optimized with the rule-based controller: the co-generation unit operates by default, the boiler is requested to produce CO 2 , and, consequently, the S OC of the storage is usually saturated while the temperatures in the greenhouse regularly exceed the set points. In the case of the hierarchical controller, the systems are energetically optimized: they are used when necessary to recharge the storage, and the S OC varies between 0.4 and 0.6, while the set temperatures are respected, showing that the heat flows in the storage is well regulated. The CHP is preferred to the boiler due to the selling tariff of electricity, and then the source is solicited to supply CO 2 to the greenhouse.

The energy and economic statements for the two controllers are introduced in Table 5. We can observe that the hierarchical controller allows a global heat consumption saving of 28 %, leading to notable economic savings. This energy saving particularly impacts the use of the boiler, which generates only two-thirds of the heat generated in the rule-based controller case, whereas the CHP is used at approximatively the same level for both controllers. Consequently, the hierarchical controller resorts twice more to the CO 2 grid so that the fertilizer cost is multiplied by two. In addition, the electricity generated is comparable with both controllers. However, the incomes from selling electricity are 400 e higher with the hierarchical controller, whereby the CHP produces excess electricity when it is more profitable to be sold. This is not always the case with the rule-based controller. Conversely, the cost of electricity imported from the grid is lower with the hierarchical controller, showing that electricity is bought when the tariffs are the most attractive. In summary, the methodology presented in this article offers the following advantages:

Conclusion

• It is a systematic approach that ultimately provides a solution to complex problems by employing hierarchical decomposition of the optimization problem and utilizing a computationally efficient model based on neural networks.

• The level 2 control is applicable to multi-energy systems encountered in the general context of agricultural greenhouses

• Its implementation is likely to reduce engineering time on one hand, and on the other hand, improve the energy performance of agricultural greenhouses by consuming less primary energy and reducing CO 2 emissions. Some disadvantages have also been highlighted:

• It relies on model-based solutions for data generation, which requires the availability of specific libraries in Modelica that integrate greenhouse or component models. This dependence on specialized libraries can be a limitation.

• The process of calibration or continuous adaptation of the model requires adequate instrumentation of the greenhouses. Sufficient monitoring and measuring devices must be in place for accurate calibration, which may involve additional cost and effort.

Our future work will partly consist of consolidating the management of the CO 2 flow to further reduce the economic balance sheet. The interest (or not) of adding a level of dynamic optimization based on the entire greenhouse model (multi-energy system and climatic atmosphere) could be studied. Finally, applying the approach to an agricultural greenhouse and not to its digital twin is the logical next step.
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 1 Figure 1: Greenhouse considered in this study.

Figure 2 :

 2 Figure 2: Controller with low-level controller.
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 3 Figure 3: Proposed controller of the greenhouse and multi-energy process, with low-level, second and third level regulators.
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 4 Figure 4: Energy hub modeling associated to the studied multi-energy system.
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 5 Figure 5: Main steps of the MPC tuning.
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 6 Figure 6: Simulator, FMU and controller on Julia.

Figure 7 :Algorithm 1 G * CO 2 boiler 4 : 1 5:

 7141 Figure 7: Hierarchical control, reference transmission and horizon length of the three levels. Algorithm 1 Steady-state optimization computation 1: Initialize the optimization problem with SOC Measure S OC[0] ⇐ S OC(t) and load measure and prediction L[k] ⇐ L(t)2: Solve the MILP optimization problem 3: Send the optimization results computed to second level, S OC * tes , H * boiler , H * chp , E * chp

heating networks are: 22 ••

 22 C between 6 a.m. and 9 p.m. and 20 • C the rest of the day. Greenhouse humidity: the windows are open when the humidity relative to concentration exceeds 85 %; or opening the thermal screen is set with a sun radiation threshold of 35 W m -2 . The sun screen is controlled according to temperature and sun radiation by two hysteresis connected to an AND gate. The temperature hysteresis has a low threshold of 27 • C and a high threshold of 30 • C. The sun radiation hysteresis has a low threshold of 900 W m -2 and a high threshold of 1000 W m -2 . Finally, to protect the tomatoes, windows are open if the temperature in the greenhouse exceeds the set point temperature by 2 • C.

  ways have duration on the abscissa. Cold colors (blue) indicate a low probability of occurrence, and warm colors (red) indicate a high probability of occurrence of the values.
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 8 Figure 8: Process control results with the base-line controller : a) greenhouse heat load duration curve. b) greenhouse temperature. c) TES SOC. d) CO 2 flow rate from the source. e) CO 2 flow rate from the boiler. f) input command of the CHP. g) input command of the boiler. h) outside temperature. i) sun radiation.
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 9 Figure 9: Process control results with the proposed controller. : a) greenhouse heat load duration curve. b) greenhouse temperature. c) TES SOC. d) CO 2 flow rate from the source. e) CO 2 flow rate from the boiler. f) input command of the CHP. g) input command of the boiler. h) outside temperature. i) sun radiation.

Figure 10 :

 10 Figure 10: Times series of temperatures in the greenhouse T gh against the set point temperatures T c (left y-axis) and of the heat provided to the greenhouse H gh against the solar radiation G

A

  three-level hierarchical control law has been considered in this paper, applied to the multi-energy systems of an agricultural greenhouse. Our work focused more particularly on the second level controller, which must control the dynamics of the multi-energy (ME) systems. The design methodology proposed for level two is based on what we have called ME-MPC. It takes advantage of a dynamic model based on a neural network and captures the nonlinear behavior of energy systems and the greenhouse atmosphere.The characteristics of a greenhouse in the Pays de la Loire region in France were used for the proof of concept. It produces above-ground tomatoes using different energy flows: electricity, heat and natural gas. CO 2 fertilization was also considered as a flow (input) to be treated. A fine-scale Modelica model of the greenhouse and energy systems led to a very realistic simulator, even taking into account practical solutions to regulate the greenhouse atmosphere, such as thermal and solar screens, artificial lighting, etc. This simulator provides access to all the variables of interest (state of the fine model), allowing a detailed energy analysis. A typical rules-based approach has also been implemented in the simulator to replicate the way greenhouses are currently controlled. This constitutes a reference solution, which made possible a comparative evaluation of the proposed solution. The results obtained constitute a proof of concept of the hierarchical control proposal as a whole. In particular, they validate the ME-MPC level 2 solution as the means of significantly increased energy and economic efficiency.

  )where D boiler , D chp , and D grid are the conversion matrices related, respectively, to the boiler, the CHP, and the grid. C boiler G to H represents the natural gas to heat conversion from the boiler, C boiler G to CO2 the natural gas to CO 2 conversion from the boiler, C chp G to E the natural gas to electricity conversion from the CHP, C chp G to H the natural gas to heat conversion from the CHP, C grid to E the electricity grid to electricity carrier conversion inside the energy hub, and C grid to CO2 the CO 2 grid to CO 2 flow conversion inside the energy hub. I boiler , I chp , and I grid define the input vectors of the grid, the boiler, and the CHP. Furthermore, the input vectors (I) of the energy hub associated with the grids, boiler, and CHP are:

Table 1 :

 1 MPC parameters used during simulation.

Table 2 :

 2 Agricultural greenhouse system parameters.

	Parameters	Symbols Values per hectare	
	Area	A gh	60 000 m 2	6 ha
	Greenhouse height	h gh	4 m	-
	Crops	-	Tomatoes	-
	Lighting power	E gh	1.8 MW	0.3 MW ha -1
	Boiler power	H bl	6.6 MW	1.1 MW ha -1
	CHP heat power	H chp	4.4 MW	0.73 MW ha -1
	CHP electricity power E chp	4.4 MW	0.73 MW ha -1
	TES volume	V tes	1500 m 3	250 m 3 ha -1

Table 4 :

 4 Hyperparameters range and optimized values.

	Parameters	Range Values	Optimized value
	Activation function	Relu [58]	Relu
	Neurons	5 to 15	8
	Hidden layer	1 to 3	3
	ResNet layer	1	1
	Epoch number	100 to 500	200
	Batch size	1024	1024

Table 5 :

 5 Energy and economic statement

		Energy [MWh]	Cost (+) and incomes (-) [e]
		Base-line Hierarchical Base-line	Hierarchical
	Greenhouse heat consumption	312	270		
	Boiler heat generated	99.55	62.23		
	CHP heat generated	212.88	208.07		
	CHP electricity generated	212.88	208.07		
	Electrical energy exported	187.97	181.24	-8681.1	-9079.6
	Electrical energy imported	17.80	15.88	761.6	626.7
		Gas consumption [t] Cost (+) and incomes (-) [e]
	Natural gas consumption	80.79	76.03	1615.7	1520.6
	Total CO 2 consumption	27.22	24.12		
	CO 2 consumption (grid)	4.97	10.21	745.5	1531.9
	CO 2 consumption (boiler)	22.25	13.91		
	Economic statement			-5558.3	-5400.3
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• Greenhouse CO 2 : The set point CO 2 concentration is 1000 ppm between 6 a.m. and 9 p.m.. During the rest of the day, there is no set point concentration.

• Plant radiation: The lamps are allowed to operate between 6 a.m. and 9 p.m.

and are controlled by a hysteresis from sun radiation with a high threshold of 120 W m -2 and a low threshold of 40 W m -2 .

• Tomatoes' thermal comfort (thermal and sun screen): The set point for closing