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ABSTRACT
Decision trees are among the most widespread machine learning
models used for data classification, in particular due to their inter-
pretability that makes it easy to explain their prediction. In this
paper, we propose a novel protocol for the private classification of
a client request in a non-interactive manner. In contrast to existing
solutions to this problem, which are either interactive or require
evaluating all the branches of the decision tree, our approach only
evaluates a single branch of the tree. Our protocol is based on two
primitives that we also introduce in this paper and that may be of
independent interest : Blind Node Selection and Blind Array Access.
Those contributions are based on recent advances in homomorphic
cryptography, such as the functional bootstrapping mechanism
recently proposed for the Fully Homomorphic Encryption over the
Torus scheme TFHE. Our private decision tree evaluation algorithm
is highly efficient as it requires only one round of communication
and 𝑑 comparisons, with 𝑑 being the depth of the tree, while other
state-of-the-art non-interactive protocols need 2𝑑 comparisons.
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• Security and privacy→ Privacy-preserving protocols.
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1 INTRODUCTION
Machine learning (ML) is becoming ubiquitous as it is used in many
domains of our daily lives for tasks such as the attribution of a loan,
recommendation of a restaurant or a place to visit matching the
interest of a user, predicting the risk of recidivism if a conditional
release from a prison sentence is granted, just to name a few. Most
of these machine learning applications involve the use of private
or personal information, both during the training phase and at
inference time. Thus, the security and privacy of machine learning
has grown as a major research domain that encompasses multiple
issues ranging from the confidentiality of the inference data to
integrity of the classification, through the protection of privacy of
the model or of the data used to train it [30].

Decision trees are a specific type of machine learning model
used in a wide range of applications such as medical diagnostics,
insurance ruling or credit attributions. On one hand, those appli-
cations typically imply the use of sensitive data that users would
prefer to keep private rather than sharing it with an untrusted
classification server. On the other hand, the server might not want
to share its model with the clients for reasons such as protecting
this model against privacy attacks such as membership inference
or model inversion attacks, or simply to preserve its intellectual
property. Despite those privacy and confidentiality issues, both
the clients and the server might wish to cooperate in order for the
clients to get access to a valuable inference service provided by the
server. A typical application is the Machine Learning as a Service
(MLaaS) context in which allows a user to pay for interrogating ma-
chine learning models without dealing with complicated training
or inference procedures.

Compare to so-called “black boxes models”, such as deep neural
networks, decision trees have several advantages. First, they are
simpler to train and their predictions can easily be explained to a hu-
man. This makes them a good candidate for the field of explainable
AI. Indeed, predictions made by ML algorithms can be of uttermost
importance in the life of some individuals if they are put into action
in decision-making systems impacting them. They can also be used
as a surrogate model in post hoc explanation techniques to explain a
more complicated model, such as a neural network for example. De-
cision trees are also a building block for random forest [5], which is
a classification model composed of several decision trees trained on
different subsets of the training data. The result of the classification
by the random forest consists in an aggregation of the predictions
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of the different trees. This approach can be used to mitigate the
tendency of decision trees to overfit while boosting the accuracy.
Private random forest evaluation naturally requires the capacity to
privately evaluate each decision tree independently [36].

In the literature, the issue of evaluating a decision tree on private
data is addressed via three main approaches. The first approach,
which is also the most trivial, consists in the client downloading
the decision tree from the server and performing the evaluation
locally on his own data. While this solution perfectly preserve the
privacy of the clients’ data, this comes at the cost of the confiden-
tiality of the server’s model. The second approach requires the
client and the server to cooperate through an interactive protocol
to securely evaluate the tree. This type of approach is based on
secure two-party computing and advanced cryptographic primi-
tives, such as oblivious transfer [31], secret sharing [32] or oblivious
RAM [20]. With this approach, the privacy of the client’s data and
the confidentiality of the server’s model are guaranteed at the cost
of multiple rounds of communication, usually linear in the depth
of the tree. This level of interactivity is not realistic for application
scenarios, in which the client has very little or no connectivity after
submitting its request. In the third approach, the server performs
a homomorphic evaluation of the decision tree on ciphered data.
The confidentiality of both the client and the server is ensured due
to the properties of homomorphic cryptography and this type of
approach typically implies the evaluation of all the branches of the
decision tree, which computing cost is exponential in the depth
of the tree. While this can be circumvented by evaluating several
clients requests in parallel with ciphertext packing techniques, this
is not always possible for all application settings.

To address this issue, in this paper we propose PROBONITE,
which stands for PRivate One-Branch-Only (OBO) Non-Interactive
decision Tree Evaluation. Evaluating privately a tree inherently
implies that the server has to consider all the nodes, or else he would
trivially learn which nodes were not used and so learn information
on the client’s attributes. All the previous non-interactive schemes
for realizing this task have dealt with this issue by performing the
comparisons between the thresholds and the attributes of profile
considered for all the nodes. Our main contribution consists in
reducing the number of comparisons to its bare minimum and
managing the integration of all nodes in our evaluation differently.
PROBONITE is, to the best of our knowledge, the first protocol
that performs a private inference on a complete binary decision
tree with both a single-round of communication between the client
and the server and the evaluation of a single branch of the tree.
To realize this, PROBONITE is based on homomorphic encryption
and specifically on functional bootstrapping, a technique recently
introduced in the Fully Homomorphic Encryption over the Torus
scheme TFHE [9] to implement non-linear functions or lookup-
tables.

The outline of this paper is as follows. First in Section 2, we re-
view the related work, which is either based on secure multi-party
computation, thus requiring several rounds of communication, or
based on homomorphic encryption, which implies, up to now, the
evaluation of all the branches of the decision tree. Afterwards in
Section 3, we introduce the notations, the fully homomorphic en-
cryption scheme we use and its building blocks as well as some

higher level primitives that we are going to use in PROBONITE pro-
tocol : the functional bootstrapping, private information retrieval
and private comparison. Then, in Section 4 we detail the main
contributions of this article : namely the two primitives for pri-
vate computing, Blind Node Selection and Blind Array Access and the
PROBONITE protocol, whose performance is evaluated in Section 5.
Finally, we conclude by discussing future work in Section 6.

2 RELATEDWORK
The problem of protecting the privacy of both inference data and
model while performing a classification task using a decision tree is
coined Private Decision Tree Evaluation (PDTE) and is addressed by
several recent related work, such as [1, 3, 25, 34–36]. Among these,
we can distinguish interactive approaches from non-interactive
ones. Typically, an interactive approach is based on secure mul-
tiparty computation techniques, such as secret-sharing, garbled
circuits or oblivious transfer (OT), to be able to compare the at-
tributes of the profile considered to the thresholds of the nodes and
evaluate the appropriate branch of the tree.

Non-interactive approaches are usually based on homomorphic
encryption and they require the server to obliviously and simulta-
neously evaluates all the branches of the decision tree to construct
a private reply containing the inferred class. Interactive approaches
are usually more computationally efficient than non-interactive
ones, but imply much more communication. Hereafter, we review
first the major interactive solutions of the state-of-the-art in PDTE
and then the non-interactive ones.

In [3], the decision tree is represented as a multivariate poly-
nomial, in which the variables are the decision bits resulting of
the comparison, at each node, of the attribute of the client and the
threshold of the server. Henceforth, for each node of the tree, the
client and the server engage in an interactive comparison proto-
col to obtain the corresponding comparison bit. Afterwards, the
multivariate polynomial is then homomorphically evaluated on the
vector of the comparison bits to produce the model’s prediction.

Wu and co-authors [36] have designed an interactive protocol
with a constant number of rounds in contrast to the previous works
that were in O(𝑑), with 𝑑 the depth of the tree. This protocol only
uses additive homomorphic operations. In a nutshell, the client first
gets the class index and in a last round of communication performs
an OT to obtain the predicted class.

In [35], the server interactively evaluates the client’s input us-
ing 𝑑 comparisons. Each comparison enables both the client and
the server to obliviously select the next node to evaluate without
any party gaining information on the selected node. This is done
using either OT for small trees or ORAM for larger trees. The pro-
posed solution is computationally efficient but requires 𝑑 rounds
of communication, which might be impractical in some situations,
especially for disconnected clients or those with limited bandwidth.

The first single-round protocol for evaluating a decision tree was
designed by Lu and collaborators in [25] and is related to a non-
interactive comparison protocol called XCMP [26]. This protocol
is efficient for small inputs thanks to a small multiplicative depth.
However, it suffers from several drawbacks. Indeed, the schemes
cannot be expanded for larger inputs, the output length is exponen-
tial in the tree’s depth, do not support Single Instruction Multiple
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Data (SIMD) operations. Another proposal [34] evaluates a decision
tree using fully homomorphic encryption with packing techniques.
This enables to simultaneously evaluate the decision tree for several
attribute vectors, resulting in a lower amortized time.

Akavia and collaborators in [1] also proposed a protocol tailored
for training and classifying using a decision tree over homomorphic
encryption (using the CKKS scheme) by introducing a polynomial
dedicated to the approximation of the step function. Their work
result in an efficient non-interactive prediction scheme and also
a training phase with a small use of the client computational re-
sources. Nonetheless, this method requires evaluating all the nodes
of the tree and to build a reply in the form of an encrypted vector
of the classes’ scores. This vector has to be decrypted by the client
before he selects the class with the highest score.

More recently, Cong and co-authors [15] have proposed a clever
approach to reduce the cost of comparisons. More precisely, their
protocol exploits the observation that the server knows the thresh-
old values in the clear, and the ciphered values of attributes and
that homomorphic comparisons between ciphertexts and plaintexts
are cheaper than ciphertext-to-ciphertext comparisons. However,
this protocol also requires evaluating all the nodes of the tree and
henceforth leads to more comparisons than interactive solutions
that evaluate only one branch of the tree.

In this work, we also propose to use homomorphic encryption,
and more specifically we leverage a new mechanism introduced in
TFHE and called Functional Bootstrapping, to provide a single-round
protocol that evaluates a single branch of the decision tree, similarly
to what would be done by a server accessing to the data in the clear.
Private comparisons are usually the most expensive operation in
oblivious computing, henceforth evaluating a single branch of the
tree provides great benefits in terms of computation requirements.
Interactive protocols imply usually a high communication costs
that PROBONITE avoids by not requiring communication between
the client and the server beyond the client sending its request
composed of a vector of ciphered attributes and the server sending
the ciphered inferred class.

3 PRELIMINARIES
In this section, we review the background notions and building
blocks necessary to understand PROBONITE. Due to space con-
straint, our objective is not to dive deep into all the details for each
building block but references are provided for the interested reader.

3.1 Notations
LetM be the set of messages, we denote the encryption in TFHE of
a message𝑚 ∈ M by ⟦𝑚⟧ and the size ofM by 𝑝 . For 𝑁 a power
of 2, R is the quotient ring Z[𝑋 ]/(𝑋𝑁 + 1) and R𝑞 is the same
ring but modulo 𝑞, i.e Z𝑞 [𝑋 ]/(𝑋𝑁 + 1). We note 0R𝑞 the polynome
whose coefficients are all equal to 0. The set T = R/Z is denoted as
the Real Torus and it represents the set of real numbers modulo 1.
In the remainder of this paper, the operations are performed in the
ring R𝑞 unless otherwise specified.

3.2 The TFHE Encryption Scheme
The TFHE encryption scheme was proposed in 2016 [9, 10] and
its security is based on the so-called Learning With Errors (LWE)

problem on lattice and its ring version, the Ring-LWE (RLWE)
problem. In TFHE, there exists three types of ciphertexts : LWE,
RLWE and RGSW, which are defined hereafter.

Definition (General LWE -GLWE- ciphertexts). Amessage𝑚 ∈ M
can be encrypted under the secret key 𝑠 = (𝑠0, . . . , 𝑠𝑘−1) ←$ R𝑘𝑞
as a GLWE ciphertext (𝑎, 𝑏) if 𝑎 = (𝑎0, . . . , 𝑎𝑘−1) ←$ R𝑘𝑞 and
𝑏 =

∑𝑘−1
𝑖=0 𝑎𝑖 · 𝑠𝑖 +Δ𝑚 + 𝑒 , in which Δ = 𝑞/𝑝 and 𝑒 is sampled from a

Gaussian Distribution. More specifically, when𝑁 = 1 the ciphertext
is called a LWE ciphertext and when 𝑘 = 1 and 𝑁 > 1 it is called
a RLWE ciphertext. In other words, a LWE ciphertext encrypts a
message in Z𝑞 while a RLWE ciphertext encrypts a polynomial in
Z𝑞 [𝑋 ] modulo 𝑋𝑁 + 1.

Definition (General GSW -GGSW- ciphertexts). A message𝑚 ∈
M can be encrypted under the secret key 𝑠 = (𝑠0, . . . , 𝑠𝑘−1) ←$ R𝑘𝑞
as a GGSW [18] ciphertext 𝐶 = (𝐶1, . . . ,𝐶𝑘−1,𝐶𝑘 ). In 𝐶 each 𝐶𝑖
for 𝑖 ∈ {0, . . . , 𝑘 − 1} has to be a decomposition vector of GLWE
ciphertexts encrypting −𝑠𝑖𝑚 in a certain base (Δ1, . . . ,Δ𝑙 ) in which
𝑙 = 𝑂 (𝑙𝑜𝑔(𝑞)), while 𝐶𝑘 is a decomposition vector of GLWE ci-
phertexts encrypting𝑚 in the same base. Similarly, as the above
GLWE definition, when 𝑁 = 1 the ciphertext is named a GSW
ciphertext and when 𝑘 = 1 and 𝑁 > 1 it is called a Ring GSW
(RGSW) ciphertext.

The TFHE cryptosystem uses several algorithms that we will
briefly define here:
• Modulus Switching is used to convert a LWE ciphertext (𝑎, 𝑏) ∈
R𝑘+1𝑞 into a LWE ciphertext (𝑎′, 𝑏 ′) ∈ R𝑘+12𝑁 such that 𝑏 ′ =∑𝑘−1
𝑖=0 𝑎

′
𝑖
· 𝑠𝑖 + Δ′𝑚 + 𝑒 ′, in which Δ′ = 2𝑁 /𝑝 .

• CMux Gate is an operation used to select between two GLWE
ciphertexts ⟦𝑑0⟧GLWE and ⟦𝑑1⟧GLWE depending on a GGSW
ciphertext ⟦𝑏⟧GGSW, which is a bit selector. The output of the
CMux operation is a GLWE ciphertext ⟦𝑑𝑏⟧GLWE.
• Blind Rotation is used to privately rotate by ⟦𝑖⟧𝐺𝐿𝑊𝐸 the coef-
ficients in the polynomial𝑀 (𝑋 ) encrypted as a RLWE ciphertext.
This is done by using a loop of CMux operations in which the
bit selector at each step is a bit from the binary decomposition
of 𝑖 encrypted as a GGSW ciphertext (cf., Algorithm 4 in [11]).
• Sample Extraction is used to extract a coefficient of a polyno-
mial𝑀 (𝑋 ) = ∑𝑁−1

𝑖=0 𝑚𝑖𝑋
𝑖 encrypted as a RLWE ciphertext. The

output of this operation is a LWE ciphertext ⟦𝑚 𝑗⟧LWE. This oper-
ation consists in building the LWE ciphertext output by copying
some coefficients of the RLWE ciphertext inputs.
• Key switching is used to blindly switch the current secret key
to a different secret key. Intuitively, this is done by cancelling the
secret key and homomorphically re-encrypting the result with
another one. This operation can also be used to switch between
different types of ciphertexts, for instance from LWE to RLWE or
from many-LWE to one RLWE (cf. Algorithm 2 in [11] for more
details).

All of these algorithms are used in the operation called bootstrap-
ping. In a nutshell, bootstrapping enables to reduce the noise in
a ciphertext. Indeed, after several operations (additions or multi-
plications) are performed on a ciphertext, the noise 𝑒 , defined in
the GLWE ciphertext definition, grows and may overlap with the
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encrypted message, which would then result in an incorrect decryp-
tion later. To remediate to this issue, bootstrapping is applied before
the noise of a ciphertext grows too much, to be able to continue to
compute on this refreshed ciphertext.

3.3 TFHE’s Functional Bootstrapping
The TFHE bootstrapping operation is different from other boot-
strapping existing in the literature on at least two main points:
first it is fast, taking approximately 18 ms in the first release of the
TFHE library [12], but most importantly for our concerns, it allows
evaluating a function at the same time as it performs its initial role
of noise reduction. This latter property is called functional boot-
strapping, and the idea behind this technique is to rely on a Look
Up Table (LUT).

Definition (Look Up Table). Let 𝑓 be a function from Z𝑝 to Z𝑝 , the
LookUpTable of 𝑓 is an array defined as𝐿𝑈𝑇 (𝑓 ) = (𝑖, 𝑓 (𝑖))𝑖∈[0,𝑁−1] .
Moreover, a LUT may be encoded into a polynomial 𝐿(𝑋 ) by map-
ping each element of the LUT to a sequence of many consecutive
coefficients of 𝐿, which is called the redundancy of the LUT.

The bootstrapping operation in TFHE takes as input a LWE
ciphertext ⟦𝑚⟧LWE under a secret key 𝑠 , a polynomial LUT 𝐿(𝑋 )
and a bootstrapping key 𝐵𝐾 , which is a GGSW ciphertext of the
secret key 𝑠 . The first step of the bootstrapping operation consists
in performing a Modulus Switching on ⟦𝑚⟧LWE to switch ⟦𝑚⟧LWE
from modulo 𝑞 to modulo 2𝑁 , which produces a new ciphertext
⟦𝑚′⟧LWE = (𝑎′, 𝑏 ′). Afterwards, a Blind Rotation is applied on the
polynomial 𝐿 by using the ciphertext ⟦𝑚′⟧LWE and the elements
of the bootstrapping key 𝐵𝐾 as bit selectors of the loop of CMux
gate. This operation outputs a GLWE ciphertext of 𝐿(𝑋 ) ·𝑋−Δ′𝑚+𝑒′

under a new secret key 𝑠 ′ (actually 𝑠 ′ is the secret key encrypting
𝑠 into 𝐵𝐾). Then, a Sample Extraction of the constant coefficient
of ⟦𝐿(𝑋 ) · 𝑋−Δ′𝑚+𝑒′⟧RLWE gives a LWE ciphertext of 𝑓 (𝑚) under
a part of the secret key 𝑠 ′. Finally, the Key Switching operation is
used to get back to the original LWE secret key 𝑠 . Note that in the
basic bootstrapping case, whose goal is only the noise reduction
of ⟦𝑚⟧LWE, then the polynomial LUT 𝐿(𝑋 ) encodes the identity
function (i.e, 𝑓 = 𝐼𝑑R ). The complete functional bootstrapping
procedure is summarized in Algorithm 1.

Algorithm 1 Functional Bootstrapping - FB

Input : A ciphertext ⟦𝑚⟧LWE = (𝑎0, . . . , 𝑎𝑘−1, 𝑏) ∈ R𝑘𝑞 + 1 with
𝑚 ∈ R𝑝 .

1: A LUT of 𝑓 encoded into a polynomial 𝐿(𝑋 ).
2: A bootstrapping key 𝐵𝐾 = (𝐵𝐾𝑖 )𝑖∈[0,𝑘−1] in which each 𝐵𝐾𝑖 =
⟦𝑠𝑖⟧GGSW encrypted under a secret key 𝑠 ′.

Output : A ciphertext ⟦𝑓 (𝑚)⟧LWE
3: function FB(⟦𝑚⟧LWE, (0R𝑞 , 𝐿(𝑋 )), 𝐵𝐾 )
4: ⟦𝑚⟧LWE ← ModulusSwitching(⟦𝑚⟧LWE)
5: 𝑎𝑐𝑐 ← BlindRotation((0R𝑞 , 𝐿(𝑋 )),⟦𝑚⟧LWE,𝐵𝐾)
6: 𝑐 ′ ← SampleExtraction(𝑎𝑐𝑐) ⊲ Encrypted under 𝑠 ′
7: 𝑐 ← KeySwitching𝑠′→𝑠(⟦𝑓 (𝑚)⟧LWE) ⊲ To go back to 𝑠
8: return 𝑐
9: end function

Furthermore, the polynomial 𝐿(𝑋 ) is given unencrypted as a
trivial GLWE ciphertext (i.e, (0R𝑞 , 𝐿(𝑋 ))), but we can encrypt it into
a RLWE ciphertext to compute a private LUTwith a minimal impact
on the noise. We denote this operation as the private functional
bootstrapping.

3.4 Private Information Retrieval
Private Information Retrieval (PIR) is a protocol that allows a client
to retrieve a record from a database without the server knowing
which record is concerned [14]. Several approaches can be used
to implement a PIR such as sharing the database among mutually
distrustful servers to achieve information-theoretic PIRs [29], using
trusted hardware [33] or based on homomorphic cryptography [27].
This latter category is referred to as computational PIR (cPIR). Typ-
ically, cPIR protocols use homomorphic encryption and require
the server to process the entire database according to the client
request, so that the server cannot learn a single bit of information
on the request from this process. In a nutshell, the client sends a
request composed of 𝑁 ciphertexts, all encoding 0 except for one
ciphertext encoding a 1 at position 𝑖 to get the 𝑖𝑡ℎ record. The server
absorbs each record of the database into the client’s request using
a multiplication between a cipher and the record. This results in a
new series of ciphertexts, all encoding 0 but one encoding the 𝑖𝑡ℎ
element. Then these ciphertexts are summed into what constitutes
the reply sent to the client, who can then decrypt it and obtain the
requested record.

3.5 Homomorphic Comparison Function
In the evaluation of a decision tree, the most important operation is
the comparison function used to compare the value of an attribute
of the client and the threshold. More precisely, since this informa-
tion needs to be kept private, the comparison function has to be
performed over encrypted data. In PDTE, this comparison is usually
the most expansive homomorphic operation, as shown in several
recent papers such as [7, 15, 25].

In [25], in order to compare two elements 𝑥,𝑦 ∈ Z𝑁 , those
have to be encoded in the form of two polynomials, 𝑋𝑥 and 𝑋 𝑦 ,
encrypted as RLWE ciphertexts. Afterwards, the computation to be
performed is the following, ⟦𝑋𝑥⟧RLWE ·⟦𝑋−𝑦⟧RLWE · (−𝑇 (𝑋 )2 )+

1
2 in

which 𝑇 (𝑋 ) = ∑𝑁−1
𝑖=0 𝑋 𝑖 . The constant coefficient is the result of

the comparison 𝑦 < 𝑥 , that is 1 for true and 0 for 𝑓 𝑎𝑙𝑠𝑒 .
The approach proposed in [15] is similar to [25], with the differ-

ence that the assumption is made that one input is encrypted while
the other is a plaintext. This results in a computationally less de-
manding algorithm, since the multiplication (ciphertext-ciphertext)
is replaced with an absorption (ciphertext-plaintext).

Recently, Charkraborty and Zuber [7] have proposed two ap-
proaches to compute the min/argmin of two or more integers. One
of these methods relies on the application of two consecutive func-
tional bootstrapping. More precisely, one is used to compute the
sign of the difference between the two integers, which is called Sign
Bootstrapping1 while the second functional bootstrapping takes as
input the output of the previous one plus some constant to compute
1The Sign Bootstrapping operation was originally introduced in [4] to replace the
activation function of a Deep Neural Network. Zuber and Sirdey have also used it
in [37] to build a homomorphic 𝑘-nearest neighbours classifier.
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the min/argmin. The authors claim their method to be the fastest
and have compared it to other state-of-the-art techniques [22].

The method of Lu, Zhou and Sakuma [25] requires the client
to use a specific encoding of its attributes into the degrees of 𝑋 ,
as opposed as in the coefficients for other methods. This makes
this method impractical for our setting in which the value of the
attributes have to lie in Z𝑁 as we put them in a LUT to apply our
BlindArrayAccess algorithm (see Algorithm 3). Even if the server
knows the thresholds used in the nodes of his decision tree, we need
to hide the threshold that is compared with the encrypted attribute.
Otherwise, the server could learn which node is currently being
processed by observing this threshold. To realize this, the server
gets the threshold value from a call to BlindNodeSelection (cf.
Algorithm 5) which returns a ciphered value of the node attributes,
including the threshold, similarly to PIR. Thus, we need a ciphertext-
to-ciphertext comparison function and the optimization proposed
by [15] is not adequate for our setting.

For all these reasons, we use the Sign Bootstrapping algorithm
from [4]. To apply it, both parties must first encode the integers
that will be compared in T. Indeed, since the Sign Bootstrapping
operation works with input in T and since the threshold and the
value of the client’s attribute belong to Z𝑁 , we can represent them
in the Real Torus T by partitioning its positive half in 𝑁 slices.
These slices are separated by the distance between two consec-
utive integers in the Torus. This approach has been widely used
in [4, 6, 23] to represent bounded integers in the Torus. Finally, the
complete homomorphic comparison that we use is summarized in
Algorithm 2.

Algorithm 2 Homomorphic comparison
Input : Two LWE ciphertext ⟦𝑥⟧LWE,⟦𝑦⟧LWE.
1: A bootstrapping key 𝐵𝐾

Output : A LWE ciphertext ⟦𝑏⟧LWE such that 𝑏 = 1 if 𝑥 < 𝑦 and
0 otherwise

2: function CMP(⟦𝑥⟧LWE,⟦𝑦⟧LWE,𝐵𝐾 )
3: 𝐿(𝑋 ) ← ∑𝑁

𝑖=0 𝑋
𝑖

4: 𝑑 ← ⟦𝑦⟧LWE − ⟦𝑥⟧LWE
5: 𝑐 ← FB(𝑑, (0,−𝐿(𝑋 )/2), 𝐵𝐾)
6: return 𝑐 + (0, 12 )
7: end function

4 PRIVATE DECISION TREE EVALUATION
In the following section, we present the different algorithms that
allow our Private Decision Tree Evaluation to have the One Branch
Only (OBO) property. First, we will present the different challenges
that this property meet and the data structure it implies. Then we
describe the two main algorithms, namely Blind Node Selection and
Blind Array Access, that are needed to satisfy the OBO property.
Finally, we put things together by detailing our PDTE protocol.

4.1 OBO challenges
The main contribution of our protocol consists in reducing the
number of comparisons to its minimum, (i.e., only evaluating one
branch). However, doing the minimum of comparisons requires

solving two problems that have not been addressed by previous
works. First, we have to select the node to evaluate while being
oblivious to the server. To realize this, we have designed a Blind
Node Selection based on a PIR construction. This new primitive
described in Algorithm 5 enable to obliviously interrogate the re-
quired node thanks to the properties of homomorphic encryption
and because we use all the nodes of this level as illustrated in
Figure 3.

The second challenge consists in selecting the attribute without
the server obtaining any knowledge about it, neither its value or
its position in the vector. The case in which only one attribute is
used on all nodes of a level, as it is at the root level, is very specific
and we discuss here the general case in which knowing which
attribute is evaluated would enable the server to infer which node
is currently active and henceforth it could learn the path that lead
to this particular node, with all the implications on the attributes
evaluated along the path according to the thresholds. We address
this issue though our Blind Array Access primitive, described in
Algorithm 3. In the next subsections, we will present these two
primitives, which might be of independent interest on their own.

4.2 Impact of OBO on data structures
Given the attribute’s vector of the client 𝐹 whose components are
encrypted, evaluating the tree privately while taking only one path
through the tree requires that the tree follows a specific structure,
which we define in the following. Let us view the tree of depth
𝑑 as a database 𝑇 in which each level of 𝑇 is a sub-database 𝐵 𝑗
as illustrated in Figure 1. We assume that the tree is complete, as
otherwise we can always add some dummy internal nodes to the
tree to make it complete. Each level 𝐵 𝑗 contains 2𝑗 elements cor-
responding to the nodes of the tree, which we denote by 𝐵ℓ

𝑗
with

ℓ ∈ {0, . . . , 2𝑗 − 1}. An element of 𝐵ℓ
𝑗
is a data structure containing

3 elements (𝜃 ℓ
𝑗
, 𝑖ℓ
𝑗
, 𝑎𝑐𝑐ℓ

𝑗
), in which 𝜃 ℓ

𝑗
is the threshold, 𝑖ℓ

𝑗
is the index

of the attribute value in the client’s attribute vector that will be
compared with the threshold and 𝑎𝑐𝑐ℓ

𝑗
is a bit accumulator deter-

mining the next node to select during the evaluation. For the sake
of simplicity, we sometimes denote those three elements 𝜃 ℓ

𝑗
, 𝑖ℓ
𝑗
and

𝑎𝑐𝑐ℓ
𝑗
respectively as 𝐵ℓ

𝑗
.𝜃 , 𝐵ℓ

𝑗
.𝑖𝑛𝑑𝑒𝑥 and 𝐵ℓ

𝑗
.𝑎𝑐𝑐 . This tree structure

can be implemented by using an array of 𝑑 elements, in which the
𝑗𝑡ℎ element is 𝐵 𝑗 instantiated as a vector of 2𝑗 nodes. Each node is
then linked to their children.

4.3 Blind Array Access
Given an array 𝐴 = [⟦𝑎0⟧RLWE, ..., ⟦𝑎𝑝⟧RLWE] in which all the
elements are encrypted as LWE ciphertexts, we can use the private
functional bootstrapping previously defined to privately get the
⟦𝑖⟧RLWE-th element of 𝐴. This can be done by encoding all the
elements of the array into a polynomial 𝐿(𝑋 ) encrypted as a RLWE
ciphertext by using the Public Functional Key Switching presented
in Algorithm 2 of [10]. In a nutshell, this algorithm takes the 𝑝 LWE
ciphertext and fills a polynomial of degree 𝑁 with 𝑁

𝑝 of redundancy
of each 𝑝 element. More formally, this algorithm homomorphically
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Fig. 1. Representation used for a decision tree of depth 𝑑 . The level 𝑗 is
named 𝐵 𝑗 and it contains 2𝑗 elements since the decision tree is complete.
Each element 𝐵ℓ

𝑗
is a data structure containing 3 elements : the threshold

𝜃 ℓ
𝑗
, the index of the attribute to be processed 𝑖ℓ

𝑗
and a bit accumulator 𝑎𝑐𝑐ℓ

𝑗

used to select the next node. The last level 𝐵𝑑 (i.e., the leaves of the tree)
contains the different classes.

Algorithm 3 Blind Array Access
Input : An encrypted array 𝐴 = [⟦𝑎0⟧LWE, ..., ⟦𝑎𝑝⟧LWE].
1: An encrypted index ⟦𝑖⟧LWE
2: A bootstrapping key 𝐵𝐾

Output : The LWE ciphertext ⟦𝑎𝑖⟧LWE
3: function BlindArrayAccess(𝐴,⟦𝑖⟧LWE, 𝐵𝐾 )
4: ⟦𝐴(𝑋 )⟧RLWE ← ⟦

∑𝑝

𝑗=0 𝑎 𝑗𝑋
𝑗⟧RLWE ⊲ many-LWE to

RLWE
5: 𝑐 ← FB(⟦𝑖⟧LWE,⟦𝐴(𝑋 )⟧RLWE,𝐵𝐾)
6: return 𝑐
7: end function

computes the following function :

many-LWE to RLWE : (𝑎0, . . . , 𝑎𝑝 ) →
𝑝−1∑︁
𝑗=0

𝑋
𝑗 𝑁
𝑝 ·

𝑁
𝑝
−1∑︁

𝑘=0
𝑎 𝑗𝑋

𝑘 .

The problem with this function is that the number of elements
is limited because of the redundancy of the LUT. To avoid this, an
improvement of BlindArrayAccess can be implemented by en-
coding the binary decomposition of the encrypted index in several
RGSW ciphertexts, i.e., ⟦𝑖⟧LWE → (⟦𝑖0⟧RGSW, . . . , ⟦𝑖𝑙𝑜𝑔 (𝑁 )⟧)2 in-
stead of the bootstrapping key 𝐵𝐾 . Then, during the bootstrapping
operation, when the CMux loop is performed, it will take as selector
those encrypted bits instead of the element of 𝐵𝐾 . To realize this,
the index 𝑖 is encoded as a polynomial 𝐼 (𝑋 ) = ∑𝑁

𝑗=0 𝑖 𝑗𝑋
𝑗 , which is

encrypted as a RLWE ciphertext ⟦𝐼 (𝑋 )⟧RLWE. Then, the homomor-
phic expansion algorithm homExpand presented in [8] is applied
to extract 𝑙𝑜𝑔(𝑁 ) RGSW ciphertexts encrypting each bit 𝑖 𝑗 . This
improvement is summarized in Algorithm 4.

4.4 Blind Node Selection
In PROBONITE, we use a cPIR construction in order for the server
to blindly select the next node of the decision tree based on the
results of previous comparisons. By doing so, the server has no

Fig. 2. An illustration of the BlindArrayAccess algorithm applied to the
ciphered vector of attributes to privately retrieve the value of the attribute
at index 𝑖ℓ

𝑗
. The components of the vector are rotated to the left until the

first component is the encryption of 𝐹 [𝑖ℓ
𝑗
], then a sample extraction is

performed to obtain this element.

Algorithm 4 An improvement of Blind Array Access
Input : An encrypted array 𝐴 = [⟦𝑎0⟧LWE, ..., ⟦𝑎𝑁 ⟧LWE].
1: A RLWE ciphertext encrypting the index 𝑖 as a polynomial
𝐼 (𝑋 ) = ∑𝑁

𝑗=0 𝑖 𝑗𝑋
𝑗 in which 𝑖 = (𝑖0, . . . , 𝑖𝑙𝑜𝑔 (𝑁 ) )2

2: A bootstrapping key 𝐵𝐾
Output : The LWE ciphertext ⟦𝑎𝑖⟧LWE
3: function BlindArrayAccess2(𝐴,⟦𝐼 (𝑋 )⟧RLWE, 𝐵𝐾 )
4: ⟦𝐿(𝑋 )⟧RLWE ← ⟦

∑𝑛
𝑗=0 𝑎 𝑗𝑋

𝑗⟧RLWE ⊲ many-LWE to
RLWE

5: (⟦𝑖 𝑗⟧RGSW) 𝑗 ∈[0,𝑁 ] ← homExpand(𝐼 (𝑋 ),𝐵𝐾) ⊲ Alg.4
of [8]

6: ACC← ⟦𝐿(𝑋 )⟧RLWE
7: for 𝑗 = 0 to 𝑙𝑜𝑔(𝑁 ) do ⊲ Blind rotation adapted
8: ACC← CMux(⟦𝑖 𝑗⟧RGSW,ACC,ACC ·𝑋−𝑖 𝑗 2𝑗 )
9: end for
10: 𝑐 ← SampleExtraction(ACC)
11: return 𝑐
12: end function

better option than randomly guessing with probability of 1
2𝑗 which

node is selected at stage 𝑗 , which is the best we can hope for.
This algorithm is very similar to the baseline solution proposed

to retrieve the label, which we detail later (cf. Section 5.2). Indeed,
at each level of the decision tree, except for the root, we assign a
bit to all the nodes at the level currently considered similarly to
what the baseline does for the last (i.e., leaves) level. However, the
bit associated to the node at level 𝑗 − 1 is used to compute the bit
assigned to nodes of level 𝑗 , decreasing the cost of this association to
1 homomorphic AND per node. Afterwards, the nodes are absorbed
with their associated bits (recall that only one bit is a 1 for the
whole level). Finally, the absorbed nodes are summed up to obtain
the node needed to evaluate the tree.

If 𝑁𝑜𝑑𝑒 𝑗 represents the node at level 𝑗 , 𝑏0,..., 𝑗−1 are the resulting
bits of previous comparisons, which results in :

• At level 1 : 𝑁𝑜𝑑𝑒1 = (𝑏0)𝐵01 + (𝑏0)𝐵
1
1.

• At level 2 : 𝑁𝑜𝑑𝑒2 = (𝑏0) (𝑏1)𝐵02 + (𝑏0) (𝑏1)𝐵
1
2 + (𝑏0) (𝑏1)𝐵

2
2 +

(𝑏0) (𝑏1)𝐵32.
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Algorithm 5 Blind Node Selection
Input : The array of nodes at level 𝑗 called 𝐵 𝑗 .
1: The array of nodes at level 𝑗 − 1 called 𝐵 𝑗−1.
2: The comparison bit 𝑏 𝑗−1.

Output : The 𝑗-th node as three encrypted ciphertexts
(𝑁𝑜𝑑𝑒.𝜃 𝑗 , 𝑁𝑜𝑑𝑒.𝑖𝑛𝑑𝑒𝑥 𝑗 , 𝑁𝑜𝑑𝑒.𝑏𝑖𝑡 𝑗 )

3: function BlindNodeSelection(𝑏 𝑗 , 𝐵 𝑗−1, 𝐵 𝑗 )
4: 𝑁𝑜𝑑𝑒 𝑗 .𝜃 = 0
5: 𝑁𝑜𝑑𝑒 𝑗 .𝑖𝑛𝑑𝑒𝑥 = 0
6: for 𝑖 = 0 𝑡𝑜 2𝑗 − 1 do
7: ⟦𝑝𝑎𝑟𝑒𝑛𝑡⟧LWE = ⟦𝐵 ⌊

𝑖
2 ⌋

𝑗−1 .𝑎𝑐𝑐⟧LWE
8: if 𝑖%2 == 0 then
9: ⟦𝑎𝑐𝑐⟧LWE = ⟦𝑏 𝑗−1⟧LWE ∧ ⟦𝑝𝑎𝑟𝑒𝑛𝑡⟧LWE
10: else
11: ⟦𝑎𝑐𝑐⟧LWE = ⟦𝑏 𝑗−1⟧LWE ∧ ⟦𝑝𝑎𝑟𝑒𝑛𝑡⟧LWE
12: end if
13: ⟦𝐵𝑖

𝑗
.𝑎𝑐𝑐⟧LWE = ⟦𝑎𝑐𝑐⟧LWE

14: ⟦𝑁𝑜𝑑𝑒 𝑗 .𝜃⟧LWE+ = 𝐵𝑖𝑗 .𝜃 · ⟦𝑎𝑐𝑐⟧LWE
15: ⟦𝑁𝑜𝑑𝑒 𝑗 .𝑖𝑛𝑑𝑒𝑥⟧LWE+ = 𝐵𝑖𝑗 .𝑖𝑛𝑑𝑒𝑥 · ⟦𝑎𝑐𝑐⟧LWE
16: end for
17: return 𝑁𝑜𝑑𝑒 𝑗
18: end function

• In general, at level 𝑗 : 𝑁𝑜𝑑𝑒 𝑗 =
𝑖=2𝑗−1∑
𝑖=0
(𝐵𝑖

𝑗

𝑘=𝑗−1∏
𝑘=0

𝑏∗
𝑘
)

in which 𝑏∗
𝑘
is equal to


𝑏𝑘 if the k-th bit of the binary
decomposition of i is equal to 0
𝑏𝑘 else

This is the general formula of the bits associated to the nodes but,
by doing it recursively in Algorithm 5, a lot of AND computations
are saved, thus gaining in computational time and in memory cost.
To further reduce the use of memory, an optimization trick would
be to erase the bit information for nodes two levels above the one
we are considering. More precisely, as those bits are homomorphic
ciphertexts, the memory gain would be non-negligible, at the level
𝑗 it would save 2𝑗 − 1 bits compared to an evaluation without this
enhancement.

Fig. 3. An example of our BlindNodeSelection applied to level 𝐵2. In this
scenario, the node 𝐵1

2 is selected as the result of the comparisons 𝑏0 is True
and 𝑏1 is False, so the AND operation between 𝑏0 and 𝑏1 is True.

4.5 The PROBONITE protocol
To evaluate the decision tree, the server is assumed to know the
attribute it has to process at the root and we additionally assume
without loss of generality that it is the first element of the attributes’
vector sent by the client (i.e., formally it implies 𝑖00 = 0). The server
starts by homomorphically computing the bit comparison ⟦𝑏0⟧LWE
between ⟦𝐹 [𝑖00]⟧LWE and 𝜃00 (the latter is encrypted as a trivial LWE
ciphertext, i.e, (0, 𝜃00 )). Afterwards, he gets the appropriate node of
the next level 𝐵1 by running the subroutine BlindNodeSelection
described in Section 4.4 with the bit selector𝑏0. This encrypted bit is
kept to generate the next bit selector of the following level. Indeed,
each internal node is associated with a bit accumulator 𝑎𝑐𝑐 , which is
an aggregation of the current bit comparison and the previous ones.
To realize this, the server has to run an AND gate bootstrapping
between the current bit comparison (or its negation depending on
the child node) and the accumulator of the parent. This updating
of the accumulator is performed after the node selection. More
formally, when being at the level 𝐵 𝑗 for the selection of the next
node, each node 𝐵ℓ

𝑗
contains the encrypted accumulator 𝑎𝑐𝑐ℓ that

will be used for the children of the node 𝐵ℓ
𝑗
. Let 𝑏 𝑗 be the result of

the comparison of the current node. Then, the selection of the next
node is done by computing the following formula:

𝑏 𝑗 ∧ 𝑎𝑐𝑐0𝑗︸     ︷︷     ︸
𝑎𝑐𝑐0

𝑗+1

𝐵0𝑗+1 + . . . + 𝑏 𝑗 ∧ 𝑎𝑐𝑐2
𝑗−1
𝑗︸         ︷︷         ︸

𝑎𝑐𝑐2
𝑗+1−1
𝑗+1

𝐵2
𝑗−1
𝑗+1

Algorithm 6 Private Decision Tree Evaluation - PDTE
Input : An encrypted attribute vector 𝐹 = (𝐹 [𝑖])𝑖∈[0,𝑁 ] .
1: A bootstrapping key 𝐵𝐾 = ⟦𝑠⟧RGSW. A complete decision tree
𝑇 = {𝐵0, ..., 𝐵𝑑 } such that 𝐵 𝑗 is the 𝑗-th level of 𝑇 . The levels
{𝐵 𝑗 } 𝑗 ∈[0,𝑑−1] are each composed by 2𝑗 internal nodes 𝐵 𝑗 =

{𝐵ℓ
𝑗
}ℓ∈[0,2𝑗−1] and the last level 𝐵𝑑 is composed by 2𝑑 leaves

𝐵𝑑 = {𝐶𝑖 }𝑖∈[0,2𝑑−1] . Each internal node 𝐵ℓ
𝑗
is a data structure

containing the threshold 𝜃 ℓ
𝑗
and the associated attribute index

𝑖ℓ
𝑗
.

Output : A ciphertext ⟦𝐶𝑝⟧LWE corresponding to the predicted
class

2: function PDTE(𝐹,𝑇 , 𝐵𝐾 )
3: ⟦𝑏0⟧LWE ← CMP(𝜃00 , 𝐹 [𝑖

0
0])

4: 𝑁𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ← BlindNodeSelection(𝑏0, 𝐵0, 𝐵1)
5: for 𝑗 = 1 to 𝑑 − 1 do
6: ⟦𝐹 [𝑖 𝑗 ]⟧LWE ← BlindArrayAccess(𝐹,𝑁𝑒𝑥𝑡_𝑛𝑜𝑑𝑒.𝑖,𝐵𝐾)
7: ⟦𝑏 𝑗⟧LWE ← CMP(𝑁𝑒𝑥𝑡_𝑛𝑜𝑑𝑒.𝜃, ⟦𝐹 [𝑖 𝑗 ]⟧LWE,𝐵𝐾)
8: 𝑁𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ← BlindNodeSelection(𝑏 𝑗,𝐵 𝑗,𝐵 𝑗+1)
9: end for
10: return 𝑁𝑒𝑥𝑡_𝑛𝑜𝑑𝑒
11: end function

This algorithm works in the following manner. For the root, as
the server knows the decision tree and which attribute shall be
compared to a fixed threshold, the server can do this comparison
using a plaintext-ciphertext comparison that will generate the bit
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⟦𝑏0⟧LWE. Thanks to this bit, the server obtains 𝐵00 obliviously using
the Blind Node Selection primitive (Algorithm 5).

For all the other nodes, the server will select the next node up
to the label by repeating the following three steps. First, the server
wants to get the attribute evaluated at the node value. To realize this,
the server only has in his hand the attribute’s encrypted index. This
information is enough to apply the Blind Array Access primitive
(Algorithm 4) and retrieve obliviously the encrypted attribute value.
Then, the comparison between the encrypted threshold stored in
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑁𝑜𝑑𝑒.𝜃 and the attribute resulting from the previous step
can be performed. The output of this comparison is the encrypted
bit 𝑏 𝑗 , which can be used to get the next node from the Blind Node
Selection primitive (Algorithm 5). If the next node is the label (i.e.,
leaf node), the server sends it to the client. Otherwise, it is a regular
node and the server repeats the previous steps to get the next node.

5 SECURITY MODEL AND PERFORMANCES
COMPARISON

5.1 Security model
The adversary model we consider is the honest-but-curious [28]
model in which both the client and the server follow the protocol
but try to gain as much information as possible from the obser-
vations they gather during the execution of the protocol. On the
one hand, the client might be interested to learn information about
the model, its parameters, its size or its thresholds. On the other
hand, the server might want to obtain information about the client,
which in this case would be the description of the attributes’ vector.
The honest-but-curious model is the one mainly used for all the
previous PDTE protocols and to the best of our knowledge, there
is no 2-party PDTE scheme that has been designed and proven to
be secure against a malicious adversary without the use of univer-
sally composable secure protocols against malicious adversaries
[24]. Note that for all PDTE schemes that are non-interactive, in-
cluding ours, a malicious server cannot learn anything about the
client’s input. However, he could compromise the integrity of the
output computed by sending back a random class (e.g., to decrease
the use of his computational resources by not performing some
computations or to mislead the client into a wrong inference).

Even an honest-but-curious client learns two information during
a PDTE : (1) the tree depth (or at least an upper bound of it) as
the computational time is directly related to it and (2) the output
corresponding to the evaluation of the decision tree over his input,
which precisely corresponds to the functionality provided by the
PDTE. Note that possibly, the same client could reconstruct the
decision tree by sending a lot of requests to the server, which would
enable it to reverse-engineer the decision tree or to retrain it with
the data acquired. Note that this leakage is inherent to the repeated
use of PDTE and cannot be prevented unless there is a way to limit
the number of queries that a particular client can perform.

PDTE ensuring security against malicious adversaries can be
achieved by doing verifiable computation [17], which would put
an additional stress on the decision tree security. Indeed, the verifi-
cation phase must not reveal information on the tree to the client
yet the client need to know the model to do verifiable computation,
which are two antagonist yet not irreconcilable objectives.

5.2 Baseline : Full Tree Evaluation
In this subsection, we will describe one of the simplest and most
intuitive method to perform a non-interactive full-tree PDTE by
relying on homomorphic operation. In particular, this method has
been used previously by Tueno, Boev and Kerschbaum [34] to
evaluate decision trees associated to a data structure adapted for
ciphertext packing and SIMD evaluation. First, the client sends his
attributes’ vector to the server. Then, the server do the comparisons
for all the nodes in the tree, obtaining an encrypted bit associated to
each branch. Then, he computes the bits associated to each leaf by
aggregating the bits along the path of the leaf (with bitwise AND).
Finally, the server absorbs all the leaves containing the class with
their associated bits and sum all of them into one ciphertext whose
value is equal to the predicted class, since the others class have
been absorbed by 0. He can then send the result back to the client,
who will decrypt it and get the prediction wanted. The complexity
of this protocol is 𝑂 (2𝑑 ).

5.3 Performances
The following table compare several modern PDTE schemes and
their performance. The first column shows the number of rounds
used during the protocol, a protocol being non-interactive if and
only if the number of rounds is 1. The second and third column
are related to the computational complexity of the protocol, the
third column shows the global computational complexity while
the second only displays the number of comparisons, i.e. the most
expensive operation. The fourth column represents the communi-
cation complexity, while the fifth gives the leakage from the time
of execution of the protocol.

Scheme Rounds Compa- Compu- Communi- Leakage
risons tation cations

[35] O(𝑑) 𝑑 O(2𝑑 ) O(2𝑑 ) |𝑇 |, 𝑑
[3] O(𝑑) O(2𝑑 ) O(2𝑑 ) O(2𝑑 ) |𝑇 |
[36] 6 O(2𝑑 ) O(2𝑑 ) O(2𝑑 ) |𝑇 |
[25] 1 O(2𝑑 ) O(2𝑑 ) O(2𝑑 ) |𝑇 |
[34] 1 O(2𝑑 ) O(2𝑑 ) O(1) |𝑇 |
[1] 1 O(2𝑑 ) O(2𝑑 ) O(|𝐿 |) |𝑇 |

Ours 1 𝑑 O(2𝑑 ) O(1) 𝑑

Table 1: Comparison of PDTE protocols in which 𝑑 is the
depth, |𝑇 | is the number of nodes and |𝐿 | is the number of
labels.

As shown in Table 1, PROBONITE achieves the lower bound of
comparisons, and it is the first non-interactive PDTE protocol to
achieve this. Nonetheless, all the PDTE schemes still have a compu-
tational cost of complexity O(2𝑑 ), which is far from the complexity
of a public decision tree evaluation (i.e., O(𝑑)). Unsurprisingly,
communication costs are higher for interactive schemes than for
non-interactive ones, but the latter usually have lower practical
execution speed compared to their non-interactive counterparts.
Most of the schemes leak the numbers of nodes |𝑇 |, while ours leak
the depth 𝑑 of the tree. In all cases, the computational time is related
to at least one of those parameters. In particular, the knowledge of
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Fig. 4. An example of the evaluation of a decision tree with PROBONITE. The client sends his encrypted attribute vector to the server, who can get blindly
the attribute value he has to process to perform the evaluation by applying BlindArrayAccess. Then, the comparison between the attribute value encrypted
and the encrypted threshold can be computed by using the CMP algorithm. The resulting comparison is used to blindly select the following node by applying
BlindNodeSelection. Finally, the last node selected corresponds to the class predicted.

|𝑇 | reveals more information on the tree structure than the one of
𝑑 because it leaks the exact number of nodes while letting a user
get a good approximation of 𝑑 . However, the knowledge of 𝑑 also
provides an upper bound on the maximum amount of nodes the
tree have. Most previous non-interactive PDTE schemes can be
adapted to an incomplete binary tree, which is the reason they leak
the number of nodes of the tree instead of the depth. Our scheme
has a number of nodes only related to𝑑 with as many dummy nodes
as necessary to fill the tree to make it complete.

Scheme Compa- Absorp- Bitwise Addi- FB
risons tions AND tions

[34] 2𝑑 2𝑑 2𝑑 2𝑑 0
Ours 𝑑 2𝑑 2𝑑 2𝑑 𝑑 − 1

Table 2: Comparison of computational cost between the base-
line non-interactive PDTE used in [34] and our protocol.

Table 2 illustrates the computational trade-off between the base-
line non-interactive PDTE used in [34] and our protocol. More
precisely, PROBONITE only do 𝑑 comparisons and 𝑑 − 1 functional
bootstrapping instead of 2𝑑 comparisons. In practice, this translates
in a huge improvement, as comparisons are themost expensive oper-
ations used in both protocol. Indeed, in the context of non-leveled

TFHE, comparisons are 10𝑛 times more time-consuming than a
bootstrap, for 𝑛 the number of bits to compare (see [22] for more
details). This trade-off leads to an overall lower computational cost
while not increasing the communication one. Overall, it decreases
the computational cost of comparisons to a linear complexity, only
leaving additions, bitwise AND and absorption to an exponential
complexity with respect to the tree depth. However, all of these
operations are much cheaper than comparisons or bootstrapping.

6 CONCLUSION AND FUTUREWORKS
In this paper, our first main contribution is the proposition of
PROBONITE, which to the best of our knowledge, is the first PDTE
protocol, which is both non-interactive and that computes one
branch only of the decision tree. More precisely, using PROBONITE,
a server can classify the client’s private data without learning any-
thing about and also without the client gaining information about
the decision tree. To build this protocol, our second main contri-
bution is the introduction of two new primitives based on recent
homomorphic encryption advances : (1) Blind Array Access, which
enables a server to access an array of encrypted data using a private
index, and (2) Blind Node Selection, which allows a server to get
a ciphered element with a private index from a public database,
similarly to PIR. We believe that these two new primitives can be
of independent interest to construct other privacy protocols and
applications as they enable a server to read arrays or other data
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structures privately, which make them quite generic. Furthermore,
these primitives are much cheaper than ORAM protocols, which
offer read-write access at the cost of being interactive and more
intensive in terms of computation [19, 21].

The comparison of our protocol with other previous works,
demonstrates that in terms of rounds, communication and com-
putational complexity, PROBONITE is more efficient than other
state-of-the-art protocols, both interactive and non-interactive. This
is mostly due to the fact that, by evaluating only one branch of the
decision, our protocol only requires 𝑑 comparisons, whereas other
non-interactive protocols require 2𝑑 comparisons. As future works,
we plan to implement PROBONITE to experimentally confirm
those results. More precisely, we plan to perform this performance
evaluation on real datasets from the UCI repository [16], namely
heart-disease, housing, spambase and artificial. To benefit from
the functional bootstrapping capacities of the TFHE scheme [10],
the implementation will be done in TFHE library [12] or on other
recent libraries [2, 13].

PROBONITE could benefit from several improvements, that we
plan to explore in the near future. For instance, batching could be
used in several places of the protocol to boost the performance
such as in the Blind Node Selection, to perform several absorptions
or additions at the same time, or in the Blind Array Access to
select several attributes, for multiples clients, in parallel. In the
current version of the protocol, the attributes are encoded in the
coefficient of the polynomials, but it would be possible also to
encode them in the exponents, which would open the way to the
use of more efficient homomorphic comparison algorithms such as
XCMP [25]. This encoding could also be beneficial more generally
for the efficiency of the Blind Array Access primitive by increasing
the maximum size of the arrays (i.e., the number of attributes), it
can handle.
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