Sofiane Azogagh
email: azogagh.sofiane@courrier.uqam.ca

Victor Delfour
email: delfour.victor@courrier.uqam.ca

Sébastien Gambs
email: gambs.sebastien@uqam.ca

Marc-Olivier Killijian
email: killijian.marc-olivier2@uqam.ca

PROBONITE : PRivate One-Branch-Only Non-Interactive decision Tree Evaluation

Keywords: Security and privacy → Privacy-preserving protocols Private Decision Tree Evaluation, Homomorphic Encryption, Functional Bootstrapping, Blind Array Access

Decision trees are among the most widespread machine learning models used for data classification, in particular due to their interpretability that makes it easy to explain their prediction. In this paper, we propose a novel protocol for the private classification of a client request in a non-interactive manner. In contrast to existing solutions to this problem, which are either interactive or require evaluating all the branches of the decision tree, our approach only evaluates a single branch of the tree. Our protocol is based on two primitives that we also introduce in this paper and that may be of independent interest : Blind Node Selection and Blind Array Access. Those contributions are based on recent advances in homomorphic cryptography, such as the functional bootstrapping mechanism recently proposed for the Fully Homomorphic Encryption over the Torus scheme TFHE. Our private decision tree evaluation algorithm is highly efficient as it requires only one round of communication and 𝑑 comparisons, with 𝑑 being the depth of the tree, while other state-of-the-art non-interactive protocols need 2 𝑑 comparisons.

INTRODUCTION

Machine learning (ML) is becoming ubiquitous as it is used in many domains of our daily lives for tasks such as the attribution of a loan, recommendation of a restaurant or a place to visit matching the interest of a user, predicting the risk of recidivism if a conditional release from a prison sentence is granted, just to name a few. Most of these machine learning applications involve the use of private or personal information, both during the training phase and at inference time. Thus, the security and privacy of machine learning has grown as a major research domain that encompasses multiple issues ranging from the confidentiality of the inference data to integrity of the classification, through the protection of privacy of the model or of the data used to train it [START_REF] Papernot | SoK: Security and Privacy in Machine Learning[END_REF].

Decision trees are a specific type of machine learning model used in a wide range of applications such as medical diagnostics, insurance ruling or credit attributions. On one hand, those applications typically imply the use of sensitive data that users would prefer to keep private rather than sharing it with an untrusted classification server. On the other hand, the server might not want to share its model with the clients for reasons such as protecting this model against privacy attacks such as membership inference or model inversion attacks, or simply to preserve its intellectual property. Despite those privacy and confidentiality issues, both the clients and the server might wish to cooperate in order for the clients to get access to a valuable inference service provided by the server. A typical application is the Machine Learning as a Service (MLaaS) context in which allows a user to pay for interrogating machine learning models without dealing with complicated training or inference procedures.

Compare to so-called "black boxes models", such as deep neural networks, decision trees have several advantages. First, they are simpler to train and their predictions can easily be explained to a human. This makes them a good candidate for the field of explainable AI. Indeed, predictions made by ML algorithms can be of uttermost importance in the life of some individuals if they are put into action in decision-making systems impacting them. They can also be used as a surrogate model in post hoc explanation techniques to explain a more complicated model, such as a neural network for example. Decision trees are also a building block for random forest [START_REF] Breiman | Random Forests[END_REF], which is a classification model composed of several decision trees trained on different subsets of the training data. The result of the classification by the random forest consists in an aggregation of the predictions of the different trees. This approach can be used to mitigate the tendency of decision trees to overfit while boosting the accuracy. Private random forest evaluation naturally requires the capacity to privately evaluate each decision tree independently [START_REF] Wu | Privately Evaluating Decision Trees and Random Forests[END_REF].

In the literature, the issue of evaluating a decision tree on private data is addressed via three main approaches. The first approach, which is also the most trivial, consists in the client downloading the decision tree from the server and performing the evaluation locally on his own data. While this solution perfectly preserve the privacy of the clients' data, this comes at the cost of the confidentiality of the server's model. The second approach requires the client and the server to cooperate through an interactive protocol to securely evaluate the tree. This type of approach is based on secure two-party computing and advanced cryptographic primitives, such as oblivious transfer [START_REF] Michael | How To Exchange Secrets with Oblivious Transfer[END_REF], secret sharing [START_REF] Shamir | How to Share a Secret[END_REF] or oblivious RAM [START_REF] Goldreich | Software Protection and Simulation on Oblivious RAMs[END_REF]. With this approach, the privacy of the client's data and the confidentiality of the server's model are guaranteed at the cost of multiple rounds of communication, usually linear in the depth of the tree. This level of interactivity is not realistic for application scenarios, in which the client has very little or no connectivity after submitting its request. In the third approach, the server performs a homomorphic evaluation of the decision tree on ciphered data. The confidentiality of both the client and the server is ensured due to the properties of homomorphic cryptography and this type of approach typically implies the evaluation of all the branches of the decision tree, which computing cost is exponential in the depth of the tree. While this can be circumvented by evaluating several clients requests in parallel with ciphertext packing techniques, this is not always possible for all application settings.

To address this issue, in this paper we propose PROBONITE, which stands for PRivate One-Branch-Only (OBO) Non-Interactive decision Tree Evaluation. Evaluating privately a tree inherently implies that the server has to consider all the nodes, or else he would trivially learn which nodes were not used and so learn information on the client's attributes. All the previous non-interactive schemes for realizing this task have dealt with this issue by performing the comparisons between the thresholds and the attributes of profile considered for all the nodes. Our main contribution consists in reducing the number of comparisons to its bare minimum and managing the integration of all nodes in our evaluation differently. PROBONITE is, to the best of our knowledge, the first protocol that performs a private inference on a complete binary decision tree with both a single-round of communication between the client and the server and the evaluation of a single branch of the tree. To realize this, PROBONITE is based on homomorphic encryption and specifically on functional bootstrapping, a technique recently introduced in the Fully Homomorphic Encryption over the Torus scheme TFHE [START_REF] Chillotti | Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds[END_REF] to implement non-linear functions or lookuptables.

The outline of this paper is as follows. First in Section 2, we review the related work, which is either based on secure multi-party computation, thus requiring several rounds of communication, or based on homomorphic encryption, which implies, up to now, the evaluation of all the branches of the decision tree. Afterwards in Section 3, we introduce the notations, the fully homomorphic encryption scheme we use and its building blocks as well as some higher level primitives that we are going to use in PROBONITE protocol : the functional bootstrapping, private information retrieval and private comparison. Then, in Section 4 we detail the main contributions of this article : namely the two primitives for private computing, Blind Node Selection and Blind Array Access and the PROBONITE protocol, whose performance is evaluated in Section 5. Finally, we conclude by discussing future work in Section 6.

RELATED WORK

The problem of protecting the privacy of both inference data and model while performing a classification task using a decision tree is coined Private Decision Tree Evaluation (PDTE) and is addressed by several recent related work, such as [START_REF] Akavia | Privacy-Preserving Decision Trees Training and Prediction[END_REF][START_REF] Bost | Machine Learning Classification over Encrypted Data[END_REF][START_REF] Lu | Non-interactive and Output Expressive Private Comparison from Homomorphic Encryption[END_REF][START_REF] Tueno | Non-interactive Private Decision Tree Evaluation[END_REF][START_REF] Tueno | Private Evaluation of Decision Trees using Sublinear Cost[END_REF][START_REF] Wu | Privately Evaluating Decision Trees and Random Forests[END_REF]. Among these, we can distinguish interactive approaches from non-interactive ones. Typically, an interactive approach is based on secure multiparty computation techniques, such as secret-sharing, garbled circuits or oblivious transfer (OT), to be able to compare the attributes of the profile considered to the thresholds of the nodes and evaluate the appropriate branch of the tree.

Non-interactive approaches are usually based on homomorphic encryption and they require the server to obliviously and simultaneously evaluates all the branches of the decision tree to construct a private reply containing the inferred class. Interactive approaches are usually more computationally efficient than non-interactive ones, but imply much more communication. Hereafter, we review first the major interactive solutions of the state-of-the-art in PDTE and then the non-interactive ones.

In [START_REF] Bost | Machine Learning Classification over Encrypted Data[END_REF], the decision tree is represented as a multivariate polynomial, in which the variables are the decision bits resulting of the comparison, at each node, of the attribute of the client and the threshold of the server. Henceforth, for each node of the tree, the client and the server engage in an interactive comparison protocol to obtain the corresponding comparison bit. Afterwards, the multivariate polynomial is then homomorphically evaluated on the vector of the comparison bits to produce the model's prediction.

Wu and co-authors [START_REF] Wu | Privately Evaluating Decision Trees and Random Forests[END_REF] have designed an interactive protocol with a constant number of rounds in contrast to the previous works that were in O (𝑑), with 𝑑 the depth of the tree. This protocol only uses additive homomorphic operations. In a nutshell, the client first gets the class index and in a last round of communication performs an OT to obtain the predicted class.

In [START_REF] Tueno | Private Evaluation of Decision Trees using Sublinear Cost[END_REF], the server interactively evaluates the client's input using 𝑑 comparisons. Each comparison enables both the client and the server to obliviously select the next node to evaluate without any party gaining information on the selected node. This is done using either OT for small trees or ORAM for larger trees. The proposed solution is computationally efficient but requires 𝑑 rounds of communication, which might be impractical in some situations, especially for disconnected clients or those with limited bandwidth.

The first single-round protocol for evaluating a decision tree was designed by Lu and collaborators in [START_REF] Lu | Non-interactive and Output Expressive Private Comparison from Homomorphic Encryption[END_REF] and is related to a noninteractive comparison protocol called XCMP [START_REF] Lu | Non-interactive and output expressive private comparison from homomorphic encryption[END_REF]. This protocol is efficient for small inputs thanks to a small multiplicative depth. However, it suffers from several drawbacks. Indeed, the schemes cannot be expanded for larger inputs, the output length is exponential in the tree's depth, do not support Single Instruction Multiple Data (SIMD) operations. Another proposal [START_REF] Tueno | Non-interactive Private Decision Tree Evaluation[END_REF] evaluates a decision tree using fully homomorphic encryption with packing techniques. This enables to simultaneously evaluate the decision tree for several attribute vectors, resulting in a lower amortized time.

Akavia and collaborators in [START_REF] Akavia | Privacy-Preserving Decision Trees Training and Prediction[END_REF] also proposed a protocol tailored for training and classifying using a decision tree over homomorphic encryption (using the CKKS scheme) by introducing a polynomial dedicated to the approximation of the step function. Their work result in an efficient non-interactive prediction scheme and also a training phase with a small use of the client computational resources. Nonetheless, this method requires evaluating all the nodes of the tree and to build a reply in the form of an encrypted vector of the classes' scores. This vector has to be decrypted by the client before he selects the class with the highest score.

More recently, Cong and co-authors [START_REF] Cong | Efficient Privacy Preserving Tools based on Homomorphic Encryption[END_REF] have proposed a clever approach to reduce the cost of comparisons. More precisely, their protocol exploits the observation that the server knows the threshold values in the clear, and the ciphered values of attributes and that homomorphic comparisons between ciphertexts and plaintexts are cheaper than ciphertext-to-ciphertext comparisons. However, this protocol also requires evaluating all the nodes of the tree and henceforth leads to more comparisons than interactive solutions that evaluate only one branch of the tree.

In this work, we also propose to use homomorphic encryption, and more specifically we leverage a new mechanism introduced in TFHE and called Functional Bootstrapping, to provide a single-round protocol that evaluates a single branch of the decision tree, similarly to what would be done by a server accessing to the data in the clear. Private comparisons are usually the most expensive operation in oblivious computing, henceforth evaluating a single branch of the tree provides great benefits in terms of computation requirements. Interactive protocols imply usually a high communication costs that PROBONITE avoids by not requiring communication between the client and the server beyond the client sending its request composed of a vector of ciphered attributes and the server sending the ciphered inferred class.

PRELIMINARIES

In this section, we review the background notions and building blocks necessary to understand PROBONITE. Due to space constraint, our objective is not to dive deep into all the details for each building block but references are provided for the interested reader.

Notations

Let M be the set of messages, we denote the encryption in TFHE of a message 𝑚 ∈ M by ⟦𝑚⟧ and the size of M by 𝑝. For 𝑁 a power of 2, R is the quotient ring Z[𝑋]/(𝑋 𝑁 + 1) and R 𝑞 is the same ring but modulo 𝑞, i.e Z 𝑞 [𝑋]/(𝑋 𝑁 + 1). We note 0 R 𝑞 the polynome whose coefficients are all equal to 0. The set T = R/Z is denoted as the Real Torus and it represents the set of real numbers modulo 1.

In the remainder of this paper, the operations are performed in the ring R 𝑞 unless otherwise specified.

The TFHE Encryption Scheme

The TFHE encryption scheme was proposed in 2016 [START_REF] Chillotti | Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds[END_REF][START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF] and its security is based on the so-called Learning With Errors (LWE) problem on lattice and its ring version, the Ring-LWE (RLWE) problem. In TFHE, there exists three types of ciphertexts : LWE, RLWE and RGSW, which are defined hereafter.

Definition (General LWE -GLWE-ciphertexts).

A message 𝑚 ∈ M can be encrypted under the secret key 𝑠 = (𝑠 0 , . . . , 𝑠 𝑘-1) ← $ R 𝑘 𝑞 as a GLWE ciphertext (𝑎, 𝑏) if 𝑎 = (𝑎 0 , . . . , 𝑎 𝑘-1) ← $ R 𝑘 𝑞 and 𝑏 = 𝑘-1 𝑖=0 𝑎 𝑖 • 𝑠 𝑖 + Δ𝑚 + 𝑒, in which Δ = 𝑞/𝑝 and 𝑒 is sampled from a Gaussian Distribution. More specifically, when 𝑁 = 1 the ciphertext is called a LWE ciphertext and when 𝑘 = 1 and 𝑁 > 1 it is called a RLWE ciphertext. In other words, a LWE ciphertext encrypts a message in Z 𝑞 while a RLWE ciphertext encrypts a polynomial in

Z 𝑞 [𝑋] modulo 𝑋 𝑁 + 1.
Definition (General GSW -GGSW-ciphertexts). A message 𝑚 ∈ M can be encrypted under the secret key 𝑠 = (𝑠 0 , . . . , 𝑠 𝑘-1) ← $ R 𝑘 𝑞 as a GGSW [START_REF] Gentry | Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based[END_REF] ciphertext 𝐶 = (𝐶 1 , . . . , 𝐶 𝑘-1 , 𝐶 𝑘). In 𝐶 each 𝐶 𝑖 for 𝑖 ∈ {0, . . . , 𝑘 -1} has to be a decomposition vector of GLWE ciphertexts encrypting -𝑠 𝑖 𝑚 in a certain base (Δ 1 , . . . , Δ 𝑙) in which 𝑙 = 𝑂 (𝑙𝑜𝑔(𝑞)), while 𝐶 𝑘 is a decomposition vector of GLWE ciphertexts encrypting 𝑚 in the same base. Similarly, as the above GLWE definition, when 𝑁 = 1 the ciphertext is named a GSW ciphertext and when 𝑘 = 1 and 𝑁 > 1 it is called a Ring GSW (RGSW) ciphertext.

The TFHE cryptosystem uses several algorithms that we will briefly define here:

• Modulus Switching is used to convert a LWE ciphertext (𝑎, 𝑏) ∈ R 𝑘+1 𝑞 into a LWE ciphertext (𝑎 ′ , 𝑏 ′) ∈ R 𝑘+1 2𝑁 such that 𝑏 ′ = 𝑘-1 𝑖=0 𝑎 ′ 𝑖 • 𝑠 𝑖 + Δ ′ 𝑚 + 𝑒 ′ , in which Δ ′ = 2𝑁 /𝑝. • CMux
Gate is an operation used to select between two GLWE ciphertexts ⟦𝑑 0 ⟧ GLWE and ⟦𝑑 1 ⟧ GLWE depending on a GGSW ciphertext ⟦𝑏⟧ GGSW , which is a bit selector. The output of the CMux operation is a GLWE ciphertext ⟦𝑑 𝑏 ⟧ GLWE . • Blind Rotation is used to privately rotate by ⟦𝑖⟧ 𝐺𝐿𝑊 𝐸 the coefficients in the polynomial 𝑀 (𝑋) encrypted as a RLWE ciphertext. This is done by using a loop of CMux operations in which the bit selector at each step is a bit from the binary decomposition of 𝑖 encrypted as a GGSW ciphertext (cf., Algorithm 4 in [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF]). • Sample Extraction is used to extract a coefficient of a polynomial 𝑀 (𝑋) = 𝑁 -1 𝑖=0 𝑚 𝑖 𝑋 𝑖 encrypted as a RLWE ciphertext. The output of this operation is a LWE ciphertext ⟦𝑚 𝑗 ⟧ LWE . This operation consists in building the LWE ciphertext output by copying some coefficients of the RLWE ciphertext inputs.

• Key switching is used to blindly switch the current secret key to a different secret key. Intuitively, this is done by cancelling the secret key and homomorphically re-encrypting the result with another one. This operation can also be used to switch between different types of ciphertexts, for instance from LWE to RLWE or from many-LWE to one RLWE (cf. Algorithm 2 in [START_REF] Chillotti | TFHE: fast fully homomorphic encryption over the torus[END_REF] for more details).

All of these algorithms are used in the operation called bootstrapping. In a nutshell, bootstrapping enables to reduce the noise in a ciphertext. Indeed, after several operations (additions or multiplications) are performed on a ciphertext, the noise 𝑒, defined in the GLWE ciphertext definition, grows and may overlap with the encrypted message, which would then result in an incorrect decryption later. To remediate to this issue, bootstrapping is applied before the noise of a ciphertext grows too much, to be able to continue to compute on this refreshed ciphertext.

TFHE's Functional Bootstrapping

The TFHE bootstrapping operation is different from other bootstrapping existing in the literature on at least two main points: first it is fast, taking approximately 18 ms in the first release of the TFHE library [START_REF] Chillotti | August[END_REF], but most importantly for our concerns, it allows evaluating a function at the same time as it performs its initial role of noise reduction. This latter property is called functional bootstrapping, and the idea behind this technique is to rely on a Look Up Table (

⟦𝑚 ′ ⟧ LWE = (𝑎 ′ , 𝑏 ′).
Afterwards, a Blind Rotation is applied on the polynomial 𝐿 by using the ciphertext ⟦𝑚 ′ ⟧ LWE and the elements of the bootstrapping key 𝐵𝐾 as bit selectors of the loop of CMux gate. This operation outputs a GLWE ciphertext of 𝐿(𝑋) • 𝑋 -Δ ′ 𝑚+𝑒 ′ under a new secret key 𝑠 ′ (actually 𝑠 ′ is the secret key encrypting 𝑠 into 𝐵𝐾). Then, a Sample Extraction of the constant coefficient of ⟦𝐿(𝑋) • 𝑋 -Δ ′ 𝑚+𝑒 ′ ⟧ RLWE gives a LWE ciphertext of 𝑓 (𝑚) under a part of the secret key 𝑠 ′ . Finally, the Key Switching operation is used to get back to the original LWE secret key 𝑠. Note that in the basic bootstrapping case, whose goal is only the noise reduction of ⟦𝑚⟧ LWE , then the polynomial LUT 𝐿(𝑋) encodes the identity function (i.e, 𝑓 = 𝐼𝑑 R). The complete functional bootstrapping procedure is summarized in Algorithm 1. return 𝑐 9: end function Furthermore, the polynomial 𝐿(𝑋) is given unencrypted as a trivial GLWE ciphertext (i.e, (0 R 𝑞 , 𝐿(𝑋))), but we can encrypt it into a RLWE ciphertext to compute a private LUT with a minimal impact on the noise. We denote this operation as the private functional bootstrapping.

Algorithm 1 Functional Bootstrapping -FB

Input : A ciphertext ⟦𝑚⟧ LWE = (𝑎 0 , . . . , 𝑎 𝑘-1 , 𝑏) ∈ R 𝑘 𝑞 + 1 with 𝑚 ∈ R 𝑝 . 1: A LUT of 𝑓 encoded into a polynomial 𝐿(𝑋). 2: A bootstrapping key 𝐵𝐾 = (𝐵𝐾 𝑖) 𝑖 ∈ [0,𝑘-1] in which each 𝐵𝐾 𝑖 = ⟦𝑠 𝑖 ⟧ GGSW encrypted

Private Information Retrieval

Private Information Retrieval (PIR) is a protocol that allows a client to retrieve a record from a database without the server knowing which record is concerned [START_REF] Chor | Private Information Retrieval[END_REF]. Several approaches can be used to implement a PIR such as sharing the database among mutually distrustful servers to achieve information-theoretic PIRs [START_REF] Femi | Revisiting the Computational Practicality of Private Information Retrieval[END_REF], using trusted hardware [START_REF] Smith | Practical server privacy with secure coprocessors[END_REF] or based on homomorphic cryptography [START_REF] Aguilar Melchor | XPIR : Private Information Retrieval for Everyone[END_REF]. This latter category is referred to as computational PIR (cPIR). Typically, cPIR protocols use homomorphic encryption and require the server to process the entire database according to the client request, so that the server cannot learn a single bit of information on the request from this process. In a nutshell, the client sends a request composed of 𝑁 ciphertexts, all encoding 0 except for one ciphertext encoding a 1 at position 𝑖 to get the 𝑖 𝑡ℎ record. The server absorbs each record of the database into the client's request using a multiplication between a cipher and the record. This results in a new series of ciphertexts, all encoding 0 but one encoding the 𝑖 𝑡ℎ element. Then these ciphertexts are summed into what constitutes the reply sent to the client, who can then decrypt it and obtain the requested record.

Homomorphic Comparison Function

In the evaluation of a decision tree, the most important operation is the comparison function used to compare the value of an attribute of the client and the threshold. More precisely, since this information needs to be kept private, the comparison function has to be performed over encrypted data. In PDTE, this comparison is usually the most expansive homomorphic operation, as shown in several recent papers such as [START_REF] Chakraborty | Efficient and Accurate homomorphic comparisons[END_REF][START_REF] Cong | Efficient Privacy Preserving Tools based on Homomorphic Encryption[END_REF][START_REF] Lu | Non-interactive and Output Expressive Private Comparison from Homomorphic Encryption[END_REF].

In [START_REF] Lu | Non-interactive and Output Expressive Private Comparison from Homomorphic Encryption[END_REF], in order to compare two elements 𝑥, 𝑦 ∈ Z 𝑁 , those have to be encoded in the form of two polynomials, 𝑋 𝑥 and 𝑋 𝑦 , encrypted as RLWE ciphertexts. Afterwards, the computation to be performed is the following, ⟦𝑋 𝑥 ⟧ RLWE •⟦𝑋 -𝑦 ⟧ RLWE •(-

𝑇 (𝑋) 2)+ 1 2 in which 𝑇 (𝑋) = 𝑁 -1
𝑖=0 𝑋 𝑖 . The constant coefficient is the result of the comparison 𝑦 < 𝑥, that is 1 for true and 0 for 𝑓 𝑎𝑙𝑠𝑒.

The approach proposed in [START_REF] Cong | Efficient Privacy Preserving Tools based on Homomorphic Encryption[END_REF] is similar to [START_REF] Lu | Non-interactive and Output Expressive Private Comparison from Homomorphic Encryption[END_REF], with the difference that the assumption is made that one input is encrypted while the other is a plaintext. This results in a computationally less demanding algorithm, since the multiplication (ciphertext-ciphertext) is replaced with an absorption (ciphertext-plaintext).

Recently, Charkraborty and Zuber [START_REF] Chakraborty | Efficient and Accurate homomorphic comparisons[END_REF] have proposed two approaches to compute the min/argmin of two or more integers. One of these methods relies on the application of two consecutive functional bootstrapping. More precisely, one is used to compute the sign of the difference between the two integers, which is called Sign Bootstrapping 1 while the second functional bootstrapping takes as input the output of the previous one plus some constant to compute the min/argmin. The authors claim their method to be the fastest and have compared it to other state-of-the-art techniques [START_REF] Iliashenko | Faster homomorphic comparison operations for BGV and BFV[END_REF].

The method of Lu, Zhou and Sakuma [START_REF] Lu | Non-interactive and Output Expressive Private Comparison from Homomorphic Encryption[END_REF] requires the client to use a specific encoding of its attributes into the degrees of 𝑋 , as opposed as in the coefficients for other methods. This makes this method impractical for our setting in which the value of the attributes have to lie in Z 𝑁 as we put them in a LUT to apply our BlindArrayAccess algorithm (see Algorithm 3). Even if the server knows the thresholds used in the nodes of his decision tree, we need to hide the threshold that is compared with the encrypted attribute. Otherwise, the server could learn which node is currently being processed by observing this threshold. To realize this, the server gets the threshold value from a call to BlindNodeSelection (cf. Algorithm 5) which returns a ciphered value of the node attributes, including the threshold, similarly to PIR. Thus, we need a ciphertextto-ciphertext comparison function and the optimization proposed by [START_REF] Cong | Efficient Privacy Preserving Tools based on Homomorphic Encryption[END_REF] is not adequate for our setting.

For all these reasons, we use the Sign Bootstrapping algorithm from [START_REF] Bourse | Fast Homomorphic Evaluation of Deep Discretized Neural Networks[END_REF]. To apply it, both parties must first encode the integers that will be compared in T. Indeed, since the Sign Bootstrapping operation works with input in T and since the threshold and the value of the client's attribute belong to Z 𝑁 , we can represent them in the Real Torus T by partitioning its positive half in 𝑁 slices. These slices are separated by the distance between two consecutive integers in the Torus. This approach has been widely used in [START_REF] Bourse | Fast Homomorphic Evaluation of Deep Discretized Neural Networks[END_REF][START_REF] Carpov | New techniques for Multi-value input Homomorphic Evaluation and Applications[END_REF][START_REF] Izabachène | Practical Fully Homomorphic Encryption for Fully Masked Neural Networks[END_REF] to represent bounded integers in the Torus. Finally, the complete homomorphic comparison that we use is summarized in Algorithm 2.

Algorithm 2 Homomorphic comparison

Input : Two LWE ciphertext ⟦𝑥⟧ LWE ,⟦𝑦⟧ LWE . 𝑐 ← FB(𝑑, (0, -𝐿(𝑋)/2), 𝐵𝐾)

6: return 𝑐 + (0, 1 2)
7: end function

PRIVATE DECISION TREE EVALUATION

In the following section, we present the different algorithms that allow our Private Decision Tree Evaluation to have the One Branch Only (OBO) property. First, we will present the different challenges that this property meet and the data structure it implies. Then we describe the two main algorithms, namely Blind Node Selection and Blind Array Access, that are needed to satisfy the OBO property. Finally, we put things together by detailing our PDTE protocol.

OBO challenges

The main contribution of our protocol consists in reducing the number of comparisons to its minimum, (i.e., only evaluating one branch). However, doing the minimum of comparisons requires solving two problems that have not been addressed by previous works. First, we have to select the node to evaluate while being oblivious to the server. To realize this, we have designed a Blind Node Selection based on a PIR construction. This new primitive described in Algorithm 5 enable to obliviously interrogate the required node thanks to the properties of homomorphic encryption and because we use all the nodes of this level as illustrated in Figure 3.

The second challenge consists in selecting the attribute without the server obtaining any knowledge about it, neither its value or its position in the vector. The case in which only one attribute is used on all nodes of a level, as it is at the root level, is very specific and we discuss here the general case in which knowing which attribute is evaluated would enable the server to infer which node is currently active and henceforth it could learn the path that lead to this particular node, with all the implications on the attributes evaluated along the path according to the thresholds. We address this issue though our Blind Array Access primitive, described in Algorithm 3. In the next subsections, we will present these two primitives, which might be of independent interest on their own.

Impact of OBO on data structures

Given the attribute's vector of the client 𝐹 whose components are encrypted, evaluating the tree privately while taking only one path through the tree requires that the tree follows a specific structure, which we define in the following. Let us view the tree of depth 𝑑 as a database 𝑇 in which each level of 𝑇 is a sub-database 𝐵 𝑗 as illustrated in Figure 1. We assume that the tree is complete, as otherwise we can always add some dummy internal nodes to the tree to make it complete. Each level 𝐵 𝑗 contains 2 𝑗 elements corresponding to the nodes of the tree, which we denote by 𝐵 ℓ 𝑗 with ℓ ∈ {0, . . . , 2 𝑗 -1}. An element of 𝐵 ℓ 𝑗 is a data structure containing 3 elements (𝜃 ℓ 𝑗 , 𝑖 ℓ 𝑗 , 𝑎𝑐𝑐 ℓ 𝑗), in which 𝜃 ℓ 𝑗 is the threshold, 𝑖 ℓ 𝑗 is the index of the attribute value in the client's attribute vector that will be compared with the threshold and 𝑎𝑐𝑐 ℓ 𝑗 is a bit accumulator determining the next node to select during the evaluation. For the sake of simplicity, we sometimes denote those three elements 𝜃 ℓ 𝑗 , 𝑖 ℓ 𝑗 and 𝑎𝑐𝑐 ℓ 𝑗 respectively as 𝐵 ℓ 𝑗 .𝜃 , 𝐵 ℓ 𝑗 .𝑖𝑛𝑑𝑒𝑥 and 𝐵 ℓ 𝑗 .𝑎𝑐𝑐. This tree structure can be implemented by using an array of 𝑑 elements, in which the 𝑗 𝑡ℎ element is 𝐵 𝑗 instantiated as a vector of 2 𝑗 nodes. Each node is then linked to their children.

Blind Array Access

Given an array 𝐴 = [⟦𝑎 0 ⟧ RLWE , ..., ⟦𝑎 𝑝 ⟧ RLWE] in which all the elements are encrypted as LWE ciphertexts, we can use the private functional bootstrapping previously defined to privately get the ⟦𝑖⟧ RLWE -th element of 𝐴. This can be done by encoding all the elements of the array into a polynomial 𝐿(𝑋) encrypted as a RLWE ciphertext by using the Public Functional Key Switching presented in Algorithm 2 of [START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF]. In a nutshell, this algorithm takes the 𝑝 LWE ciphertext and fills a polynomial of degree 𝑁 with 𝑁 𝑝 of redundancy of each 𝑝 element. More formally, this algorithm homomorphically

∑︁ 𝑗=0 𝑋 𝑗 𝑁 𝑝 • 𝑁 𝑝 -1 ∑︁ 𝑘=0 𝑎 𝑗 𝑋 𝑘 .
The problem with this function is that the number of elements is limited because of the redundancy of the LUT. To avoid this, an improvement of BlindArrayAccess can be implemented by encoding the binary decomposition of the encrypted index in several RGSW ciphertexts, i.e., ⟦𝑖⟧ LWE → (⟦𝑖 0 ⟧ RGSW , . . . , ⟦𝑖 𝑙𝑜𝑔 (𝑁) ⟧) 2 instead of the bootstrapping key 𝐵𝐾. Then, during the bootstrapping operation, when the CMux loop is performed, it will take as selector those encrypted bits instead of the element of 𝐵𝐾. To realize this, the index 𝑖 is encoded as a polynomial 𝐼 (𝑋) = 𝑁 𝑗=0 𝑖 𝑗 𝑋 𝑗 , which is encrypted as a RLWE ciphertext ⟦𝐼 (𝑋)⟧ RLWE . Then, the homomorphic expansion algorithm homExpand presented in [START_REF] Hao Chen | Onion Ring ORAM: Efficient Constant Bandwidth Oblivious RAM from (Leveled) TFHE[END_REF] is applied to extract 𝑙𝑜𝑔(𝑁) RGSW ciphertexts encrypting each bit 𝑖 𝑗 . This improvement is summarized in Algorithm 4.

Blind Node Selection

In PROBONITE, we use a cPIR construction in order for the server to blindly select the next node of the decision tree based on the results of previous comparisons. By doing so, the server has no

⟦𝐿(𝑋)⟧ RLWE ← ⟦ 𝑛 𝑗=0 𝑎 𝑗 𝑋 𝑗 ⟧ RLWE ⊲ many-LWE to RLWE 5: (⟦𝑖 𝑗 ⟧ RGSW) 𝑗 ∈ [0,𝑁] ← homExpand(𝐼 (𝑋),𝐵𝐾)
⊲ Alg.4 of [START_REF] Hao Chen | Onion Ring ORAM: Efficient Constant Bandwidth Oblivious RAM from (Leveled) TFHE[END_REF] 6:

ACC ← ⟦𝐿(𝑋)⟧ RLWE return 𝑐 12: end function better option than randomly guessing with probability of 1 2 𝑗 which node is selected at stage 𝑗, which is the best we can hope for.

This algorithm is very similar to the baseline solution proposed to retrieve the label, which we detail later (cf. Section 5.2). Indeed, at each level of the decision tree, except for the root, we assign a bit to all the nodes at the level currently considered similarly to what the baseline does for the last (i.e., leaves) level. However, the bit associated to the node at level 𝑗 -1 is used to compute the bit assigned to nodes of level 𝑗, decreasing the cost of this association to 1 homomorphic AND per node. Afterwards, the nodes are absorbed with their associated bits (recall that only one bit is a 1 for the whole level). Finally, the absorbed nodes are summed up to obtain the node needed to evaluate the tree.

If 𝑁𝑜𝑑𝑒 𝑗 represents the node at level 𝑗, 𝑏 0,...,𝑗-1 are the resulting bits of previous comparisons, which results in : for 𝑖 = 0 𝑡𝑜 2 𝑗 -1 do 7:

• At level 1 : 𝑁𝑜𝑑𝑒 1 = (𝑏 0)𝐵 0 1 + (𝑏 0)𝐵 1 1 . • At level 2 : 𝑁𝑜𝑑𝑒 2 = (𝑏 0)(𝑏 1)𝐵 0 2 + (𝑏 0)(𝑏 1)𝐵 1 2 + (𝑏 0) (𝑏 1)𝐵 2 2 + (𝑏 0)(𝑏 1)𝐵 3 2 .
⟦𝑝𝑎𝑟𝑒𝑛𝑡⟧ LWE = ⟦𝐵 ⌊ 𝑖 2 ⌋ 𝑗-1 .𝑎𝑐𝑐⟧ LWE 8:
if 𝑖%2 == 0 then 9:

⟦𝑎𝑐𝑐⟧ LWE = ⟦𝑏 𝑗-1 ⟧ LWE ∧ ⟦𝑝𝑎𝑟𝑒𝑛𝑡⟧ LWE 10:
else 11:

⟦𝑎𝑐𝑐⟧ LWE = ⟦𝑏 𝑗-1 ⟧ LWE ∧ ⟦𝑝𝑎𝑟𝑒𝑛𝑡⟧ LWE 12:
end if return 𝑁𝑜𝑑𝑒 𝑗 18: end function

• In general, at level 𝑗 : 𝑁𝑜𝑑𝑒 𝑗 = 𝑖=2 𝑗 -1 𝑖=0 (𝐵 𝑖 𝑗 𝑘=𝑗-1 𝑘=0 𝑏 * 𝑘) in which 𝑏 * 𝑘 is equal to       
𝑏 𝑘 if the k-th bit of the binary decomposition of i is equal to 0 𝑏 𝑘 else This is the general formula of the bits associated to the nodes but, by doing it recursively in Algorithm 5, a lot of AND computations are saved, thus gaining in computational time and in memory cost. To further reduce the use of memory, an optimization trick would be to erase the bit information for nodes two levels above the one we are considering. More precisely, as those bits are homomorphic ciphertexts, the memory gain would be non-negligible, at the level 𝑗 it would save 2 𝑗 -1 bits compared to an evaluation without this enhancement. Fig. 3. An example of our BlindNodeSelection applied to level 𝐵 2 . In this scenario, the node 𝐵 1 2 is selected as the result of the comparisons 𝑏 0 is True and 𝑏 1 is False, so the AND operation between 𝑏 0 and 𝑏 1 is True.

The PROBONITE protocol

To evaluate the decision tree, the server is assumed to know the attribute it has to process at the root and we additionally assume without loss of generality that it is the first element of the attributes' vector sent by the client (i.e., formally it implies 𝑖 0 0 = 0). The server starts by homomorphically computing the bit comparison ⟦𝑏 0 ⟧ LWE between ⟦𝐹 [𝑖 0 0]⟧ LWE and 𝜃 0 0 (the latter is encrypted as a trivial LWE ciphertext, i.e, (0, 𝜃 0 0)). Afterwards, he gets the appropriate node of the next level 𝐵 1 by running the subroutine BlindNodeSelection described in Section 4.4 with the bit selector 𝑏 0 . This encrypted bit is kept to generate the next bit selector of the following level. Indeed, each internal node is associated with a bit accumulator 𝑎𝑐𝑐, which is an aggregation of the current bit comparison and the previous ones. To realize this, the server has to run an AND gate bootstrapping between the current bit comparison (or its negation depending on the child node) and the accumulator of the parent. This updating of the accumulator is performed after the node selection. More formally, when being at the level 𝐵 𝑗 for the selection of the next node, each node 𝐵 ℓ 𝑗 contains the encrypted accumulator 𝑎𝑐𝑐 ℓ that will be used for the children of the node 𝐵 ℓ 𝑗 . Let 𝑏 𝑗 be the result of the comparison of the current node. Then, the selection of the next node is done by computing the following formula:

𝑏 𝑗 ∧ 𝑎𝑐𝑐 0 𝑗 𝑎𝑐𝑐 0 𝑗 +1 𝐵 0 𝑗+1 + . . . + 𝑏 𝑗 ∧ 𝑎𝑐𝑐 2 𝑗 -1 𝑗 𝑎𝑐𝑐 2 𝑗 +1 -1 𝑗 +1 𝐵 2 𝑗 -
⟦𝑏 0 ⟧ LWE ← CMP(𝜃 0 0 , 𝐹 [𝑖 0 0]) 4:
𝑁 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ← BlindNodeSelection(𝑏 0 , 𝐵 0 , 𝐵 1)

5:

for 𝑗 = 1 to 𝑑 -1 do return 𝑁 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 11: end function This algorithm works in the following manner. For the root, as the server knows the decision tree and which attribute shall be compared to a fixed threshold, the server can do this comparison using a plaintext-ciphertext comparison that will generate the bit ⟦𝑏 0 ⟧ LWE . Thanks to this bit, the server obtains 𝐵 0 0 obliviously using the Blind Node Selection primitive (Algorithm 5).

For all the other nodes, the server will select the next node up to the label by repeating the following three steps. First, the server wants to get the attribute evaluated at the node value. To realize this, the server only has in his hand the attribute's encrypted index. This information is enough to apply the Blind Array Access primitive (Algorithm 4) and retrieve obliviously the encrypted attribute value. Then, the comparison between the encrypted threshold stored in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑁𝑜𝑑𝑒.𝜃 and the attribute resulting from the previous step can be performed. The output of this comparison is the encrypted bit 𝑏 𝑗 , which can be used to get the next node from the Blind Node Selection primitive (Algorithm 5). If the next node is the label (i.e., leaf node), the server sends it to the client. Otherwise, it is a regular node and the server repeats the previous steps to get the next node.

SECURITY MODEL AND PERFORMANCES COMPARISON 5.1 Security model

The adversary model we consider is the honest-but-curious [START_REF] Oded | Foundations of Cryptography[END_REF] model in which both the client and the server follow the protocol but try to gain as much information as possible from the observations they gather during the execution of the protocol. On the one hand, the client might be interested to learn information about the model, its parameters, its size or its thresholds. On the other hand, the server might want to obtain information about the client, which in this case would be the description of the attributes' vector. The honest-but-curious model is the one mainly used for all the previous PDTE protocols and to the best of our knowledge, there is no 2-party PDTE scheme that has been designed and proven to be secure against a malicious adversary without the use of universally composable secure protocols against malicious adversaries [START_REF] Jarecki | Efficient two-party secure computation on committed inputs[END_REF]. Note that for all PDTE schemes that are non-interactive, including ours, a malicious server cannot learn anything about the client's input. However, he could compromise the integrity of the output computed by sending back a random class (e.g., to decrease the use of his computational resources by not performing some computations or to mislead the client into a wrong inference).

Even an honest-but-curious client learns two information during a PDTE : (1) the tree depth (or at least an upper bound of it) as the computational time is directly related to it and (2) the output corresponding to the evaluation of the decision tree over his input, which precisely corresponds to the functionality provided by the PDTE. Note that possibly, the same client could reconstruct the decision tree by sending a lot of requests to the server, which would enable it to reverse-engineer the decision tree or to retrain it with the data acquired. Note that this leakage is inherent to the repeated use of PDTE and cannot be prevented unless there is a way to limit the number of queries that a particular client can perform.

PDTE ensuring security against malicious adversaries can be achieved by doing verifiable computation [START_REF] Fiore | Boosting Verifiable Computation on Encrypted Data[END_REF], which would put an additional stress on the decision tree security. Indeed, the verification phase must not reveal information on the tree to the client yet the client need to know the model to do verifiable computation, which are two antagonist yet not irreconcilable objectives.

Baseline : Full Tree Evaluation

In this subsection, we will describe one of the simplest and most intuitive method to perform a non-interactive full-tree PDTE by relying on homomorphic operation. In particular, this method has been used previously by Tueno, Boev and Kerschbaum [START_REF] Tueno | Non-interactive Private Decision Tree Evaluation[END_REF] to evaluate decision trees associated to a data structure adapted for ciphertext packing and SIMD evaluation. First, the client sends his attributes' vector to the server. Then, the server do the comparisons for all the nodes in the tree, obtaining an encrypted bit associated to each branch. Then, he computes the bits associated to each leaf by aggregating the bits along the path of the leaf (with bitwise AND). Finally, the server absorbs all the leaves containing the class with their associated bits and sum all of them into one ciphertext whose value is equal to the predicted class, since the others class have been absorbed by 0. He can then send the result back to the client, who will decrypt it and get the prediction wanted. The complexity of this protocol is 𝑂 (2 𝑑).

Performances

The following table compare several modern PDTE schemes and their performance. The first column shows the number of rounds used during the protocol, a protocol being non-interactive if and only if the number of rounds is 1. The second and third column are related to the computational complexity of the protocol, the third column shows the global computational complexity while the second only displays the number of comparisons, i.e. the most expensive operation. The fourth column represents the communication complexity, while the fifth gives the leakage from the time of execution of the protocol.

Scheme Rounds Compa-Compu-Communi-Leakage risons tation cations As shown in Table 1, PROBONITE achieves the lower bound of comparisons, and it is the first non-interactive PDTE protocol to achieve this. Nonetheless, all the PDTE schemes still have a computational cost of complexity O (2 𝑑), which is far from the complexity of a public decision tree evaluation (i.e., O (𝑑)). Unsurprisingly, communication costs are higher for interactive schemes than for non-interactive ones, but the latter usually have lower practical execution speed compared to their non-interactive counterparts. Most of the schemes leak the numbers of nodes |𝑇 |, while ours leak the depth 𝑑 of the tree. In all cases, the computational time is related to at least one of those parameters. In particular, the knowledge of Fig. 4. An example of the evaluation of a decision tree with PROBONITE. The client sends his encrypted attribute vector to the server, who can get blindly the attribute value he has to process to perform the evaluation by applying BlindArrayAccess. Then, the comparison between the attribute value encrypted and the encrypted threshold can be computed by using the CMP algorithm. The resulting comparison is used to blindly select the following node by applying BlindNodeSelection. Finally, the last node selected corresponds to the class predicted.

[35] O (𝑑) 𝑑 O (2 𝑑) O (2 𝑑) |𝑇 |, 𝑑 [3] O (𝑑) O (2 𝑑) O (2 𝑑) O (2 𝑑) |𝑇 | [36] 6 O (2 𝑑) O (2 𝑑) O (2 𝑑) |𝑇 | [25] 1 O (2 𝑑) O (2 𝑑) O (2 𝑑) |𝑇 | [34] 1 O (2 𝑑) O (2 𝑑) O (1) |𝑇 | [1] 1 O (2 𝑑) O (2 𝑑) O (|𝐿|) |𝑇 | Ours 1 𝑑 O (2 𝑑) O (1)
|𝑇 | reveals more information on the tree structure than the one of 𝑑 because it leaks the exact number of nodes while letting a user get a good approximation of 𝑑. However, the knowledge of 𝑑 also provides an upper bound on the maximum amount of nodes the tree have. Most previous non-interactive PDTE schemes can be adapted to an incomplete binary tree, which is the reason they leak the number of nodes of the tree instead of the depth. Our scheme has a number of nodes only related to 𝑑 with as many dummy nodes as necessary to fill the tree to make it complete. 2: Comparison of computational cost between the baseline non-interactive PDTE used in [START_REF] Tueno | Non-interactive Private Decision Tree Evaluation[END_REF] and our protocol.

Table 2 illustrates the computational trade-off between the baseline non-interactive PDTE used in [START_REF] Tueno | Non-interactive Private Decision Tree Evaluation[END_REF] and our protocol. More precisely, PROBONITE only do 𝑑 comparisons and 𝑑 -1 functional bootstrapping instead of 2 𝑑 comparisons. In practice, this translates in a huge improvement, as comparisons are the most expensive operations used in both protocol. Indeed, in the context of non-leveled TFHE, comparisons are 10𝑛 times more time-consuming than a bootstrap, for 𝑛 the number of bits to compare (see [START_REF] Iliashenko | Faster homomorphic comparison operations for BGV and BFV[END_REF] for more details). This trade-off leads to an overall lower computational cost while not increasing the communication one. Overall, it decreases the computational cost of comparisons to a linear complexity, only leaving additions, bitwise AND and absorption to an exponential complexity with respect to the tree depth. However, all of these operations are much cheaper than comparisons or bootstrapping.

CONCLUSION AND FUTURE WORKS

In this paper, our first main contribution is the proposition of PROBONITE, which to the best of our knowledge, is the first PDTE protocol, which is both non-interactive and that computes one branch only of the decision tree. More precisely, using PROBONITE, a server can classify the client's private data without learning anything about and also without the client gaining information about the decision tree. To build this protocol, our second main contribution is the introduction of two new primitives based on recent homomorphic encryption advances : (1) Blind Array Access, which enables a server to access an array of encrypted data using a private index, and (2) Blind Node Selection, which allows a server to get a ciphered element with a private index from a public database, similarly to PIR. We believe that these two new primitives can be of independent interest to construct other privacy protocols and applications as they enable a server to read arrays or other data structures privately, which make them quite generic. Furthermore, these primitives are much cheaper than ORAM protocols, which offer read-write access at the cost of being interactive and more intensive in terms of computation [START_REF] Goldreich | Towards a theory of software protection and simulation by oblivious RAMs[END_REF][START_REF] Goldreich | Software protection and simulation on oblivious RAMs[END_REF].

The comparison of our protocol with other previous works, demonstrates that in terms of rounds, communication and computational complexity, PROBONITE is more efficient than other state-of-the-art protocols, both interactive and non-interactive. This is mostly due to the fact that, by evaluating only one branch of the decision, our protocol only requires 𝑑 comparisons, whereas other non-interactive protocols require 2 𝑑 comparisons. As future works, we plan to implement PROBONITE to experimentally confirm those results. More precisely, we plan to perform this performance evaluation on real datasets from the UCI repository [START_REF] Dua | UCI Machine Learning Repository[END_REF], namely heart-disease, housing, spambase and artificial. To benefit from the functional bootstrapping capacities of the TFHE scheme [START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF], the implementation will be done in TFHE library [START_REF] Chillotti | August[END_REF] or on other recent libraries [START_REF] Al Badawi | OpenFHE: Open-Source Fully Homomorphic Encryption Library[END_REF][START_REF] Chillotti | CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE[END_REF].

PROBONITE could benefit from several improvements, that we plan to explore in the near future. For instance, batching could be used in several places of the protocol to boost the performance such as in the Blind Node Selection, to perform several absorptions or additions at the same time, or in the Blind Array Access to select several attributes, for multiples clients, in parallel. In the current version of the protocol, the attributes are encoded in the coefficient of the polynomials, but it would be possible also to encode them in the exponents, which would open the way to the use of more efficient homomorphic comparison algorithms such as XCMP [START_REF] Lu | Non-interactive and Output Expressive Private Comparison from Homomorphic Encryption[END_REF]. This encoding could also be beneficial more generally for the efficiency of the Blind Array Access primitive by increasing the maximum size of the arrays (i.e., the number of attributes), it can handle.

Fig. 1 .

 1 Fig. 1. Representation used for a decision tree of depth 𝑑. The level 𝑗 is named 𝐵 𝑗 and it contains 2 𝑗 elements since the decision tree is complete. Each element 𝐵 ℓ 𝑗 is a data structure containing 3 elements : the threshold 𝜃 ℓ 𝑗 , the index of the attribute to be processed 𝑖 ℓ 𝑗 and a bit accumulator 𝑎𝑐𝑐 ℓ 𝑗 used to select the next node. The last level 𝐵 𝑑 (i.e., the leaves of the tree) contains the different classes.

Fig. 2 .Algorithm 4

 24 Fig. 2. An illustration of the BlindArrayAccess algorithm applied to the ciphered vector of attributes to privately retrieve the value of the attribute at index 𝑖 ℓ 𝑗 . The components of the vector are rotated to the left until the first component is the encryption of 𝐹 [𝑖 ℓ 𝑗], then a sample extraction is performed to obtain this element.

7 :

 7 for 𝑗 = 0 to 𝑙𝑜𝑔(𝑁) do ⊲ Blind rotation adapted 8:ACC ← CMux(⟦𝑖 𝑗 ⟧ RGSW ,ACC,ACC •𝑋 -𝑖 𝑗 2 𝑗)

Algorithm 5 2 : 4 : 5 :

 5245 Blind Node Selection Input : The array of nodes at level 𝑗 called 𝐵 𝑗 . 1: The array of nodes at level 𝑗 -1 called 𝐵 𝑗-1 . The comparison bit 𝑏 𝑗-1 . Output : The 𝑗-th node as three encrypted ciphertexts (𝑁𝑜𝑑𝑒.𝜃 𝑗 , 𝑁𝑜𝑑𝑒.𝑖𝑛𝑑𝑒𝑥 𝑗 , 𝑁𝑜𝑑𝑒.𝑏𝑖𝑡 𝑗) 3: function BlindNodeSelection(𝑏 𝑗 , 𝐵 𝑗-1 , 𝐵 𝑗) 𝑁𝑜𝑑𝑒 𝑗 .𝜃 = 0 𝑁𝑜𝑑𝑒 𝑗 .𝑖𝑛𝑑𝑒𝑥 = 0 6:

1 𝑗+1Algorithm 6

 16 Private Decision Tree Evaluation -PDTE Input : An encrypted attribute vector 𝐹 = (𝐹 [𝑖]) 𝑖 ∈ [0,𝑁] . 1: A bootstrapping key 𝐵𝐾 = ⟦𝑠⟧ RGSW . A complete decision tree 𝑇 = {𝐵 0 , ..., 𝐵 𝑑 } such that 𝐵 𝑗 is the 𝑗-th level of 𝑇 . The levels {𝐵 𝑗 } 𝑗 ∈ [0,𝑑-1] are each composed by 2 𝑗 internal nodes 𝐵 𝑗 = {𝐵 ℓ 𝑗 } ℓ ∈ [0,2 𝑗 -1] and the last level 𝐵 𝑑 is composed by 2 𝑑 leaves 𝐵 𝑑 = {𝐶 𝑖 } 𝑖 ∈ [0,2 𝑑 -1] . Each internal node 𝐵 ℓ 𝑗 is a data structure containing the threshold 𝜃 ℓ 𝑗 and the associated attribute index 𝑖 ℓ 𝑗 . Output : A ciphertext ⟦𝐶 𝑝 ⟧ LWE corresponding to the predicted class 2: function PDTE(𝐹,𝑇 , 𝐵𝐾) 3:

6 : 7 : 8 :

 678 ⟦𝐹 [𝑖 𝑗]⟧ LWE ← BlindArrayAccess(𝐹 ,𝑁 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒.𝑖,𝐵𝐾) ⟦𝑏 𝑗 ⟧ LWE ← CMP(𝑁 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒.𝜃, ⟦𝐹 [𝑖 𝑗]⟧ LWE ,𝐵𝐾) 𝑁 𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ← BlindNodeSelection(𝑏 𝑗 ,𝐵 𝑗 ,𝐵 𝑗+1)

 LUT).Definition (Look Up Table). Let 𝑓 be a function from Z 𝑝 to Z 𝑝 , the Look Up Table of 𝑓 is an array defined as 𝐿𝑈𝑇 (𝑓) = (𝑖, 𝑓 (𝑖)) 𝑖 ∈ [0,𝑁 -1] . Moreover, a LUT may be encoded into a polynomial 𝐿(𝑋) by mapping each element of the LUT to a sequence of many consecutive coefficients of 𝐿, which is called the redundancy of the LUT. The bootstrapping operation in TFHE takes as input a LWE ciphertext ⟦𝑚⟧ LWE under a secret key 𝑠, a polynomial LUT 𝐿(𝑋) and a bootstrapping key 𝐵𝐾, which is a GGSW ciphertext of the secret key 𝑠. The first step of the bootstrapping operation consists in performing a Modulus Switching on ⟦𝑚⟧ LWE to switch ⟦𝑚⟧ LWE from modulo 𝑞 to modulo 2𝑁 , which produces a new ciphertext

 under a secret key 𝑠 ′ . Output : A ciphertext ⟦𝑓 (𝑚)⟧ LWE 3: function FB(⟦𝑚⟧ LWE , (0 R 𝑞 , 𝐿(𝑋)), 𝐵𝐾)

	4:	⟦𝑚⟧ LWE ← ModulusSwitching(⟦𝑚⟧ LWE)

5:

𝑎𝑐𝑐 ← BlindRotation((0 R 𝑞 , 𝐿(𝑋)),⟦𝑚⟧ LWE ,𝐵𝐾) 6: 𝑐 ′ ← SampleExtraction(𝑎𝑐𝑐) ⊲ Encrypted under 𝑠 ′ 7: 𝑐 ← KeySwitching 𝑠 ′ →𝑠 (⟦𝑓 (𝑚)⟧ LWE) ⊲ To go back to 𝑠 8:

 1: A bootstrapping key 𝐵𝐾 Output : A LWE ciphertext ⟦𝑏⟧ LWE such that 𝑏 = 1 if 𝑥 < 𝑦 and 0 otherwise 2: function CMP(⟦𝑥⟧ LWE ,⟦𝑦⟧ LWE ,𝐵𝐾)

	3:	𝐿(𝑋) ← 𝑁 𝑖=0 𝑋 𝑖

4:

𝑑 ← ⟦𝑦⟧ LWE -⟦𝑥⟧ LWE 5:

 𝑐 ← FB(⟦𝑖⟧ LWE ,⟦𝐴(𝑋)⟧ RLWE ,𝐵𝐾) (𝑎 0 , . . . , 𝑎 𝑝) →

	6:	return 𝑐
	7: end function
	computes the following function :
		many-LWE to RLWE : 𝑝-1

Algorithm 3 Blind Array Access Input : An encrypted array 𝐴 = [⟦𝑎 0 ⟧ LWE , ..., ⟦𝑎 𝑝 ⟧ LWE]. 1: An encrypted index ⟦𝑖⟧ LWE 2: A bootstrapping key 𝐵𝐾 Output : The LWE ciphertext ⟦𝑎 𝑖 ⟧ LWE 3: function BlindArrayAccess(𝐴,⟦𝑖⟧ LWE , 𝐵𝐾) 4: ⟦𝐴(𝑋)⟧ RLWE ← ⟦ 𝑝 𝑗=0 𝑎 𝑗 𝑋 𝑗 ⟧ RLWE ⊲ many-LWE to RLWE 5:

 ⟦𝑁𝑜𝑑𝑒 𝑗 .𝜃 ⟧ LWE + = 𝐵 𝑖 𝑗 .𝜃 • ⟦𝑎𝑐𝑐⟧ LWE 15: ⟦𝑁𝑜𝑑𝑒 𝑗 .𝑖𝑛𝑑𝑒𝑥⟧ LWE + = 𝐵 𝑖 𝑗 .𝑖𝑛𝑑𝑒𝑥 • ⟦𝑎𝑐𝑐⟧ LWE

	13:	⟦𝐵 𝑖 𝑗 .𝑎𝑐𝑐⟧ LWE = ⟦𝑎𝑐𝑐⟧ LWE
	14:	
	16:	end for
	17:	

Table 1 :

 1 𝑑 Comparison of PDTE protocols in which 𝑑 is the depth, |𝑇 | is the number of nodes and |𝐿| is the number of labels.

The Sign Bootstrapping operation was originally introduced in[START_REF] Bourse | Fast Homomorphic Evaluation of Deep Discretized Neural Networks[END_REF] to replace the activation function of a Deep Neural Network. Zuber and Sirdey have also used it in[START_REF] Zuber | Efficient homomorphic evaluation of k-NN classifiers[END_REF] to build a homomorphic 𝑘-nearest neighbours classifier.

ACKNOWLEDGMENTS

Sofiane Azogagh is funded through the NSERC-RDC DEEL project. Victor Delfour is funded through a Discovery Grant from NSERC. Sébastien Gambs is supported by the Canada Research Chair program, a Discovery Grant from NSERC as well as the NSERC-RDC DEEL project. Marc-Olivier Killijian is supported by a Discovery Grant from NSERC as well as the NSERC-RDC DEEL project.