

High wave vector non-reciprocal spin wave beams

Loic Temdie, Vincent Castel, Carsten Dubs, Gyandeep Pradhan, Jose Nicolas Solano, Hicham Majjad, Romain Bernard, Yves Henry, Daniel Stoeffler, Matthieu Bailleul, et al.

► To cite this version:

Loic Temdie, Vincent Castel, Carsten Dubs, Gyandeep Pradhan, Jose Nicolas Solano, et al.. High wave vector non-reciprocal spin wave beams. MMM 2022: 67th Annual Conference on Magnetism and Magnetic Materials, Oct 2022, Minneapolis, United States. . hal-04203035

HAL Id: hal-04203035 https://hal.science/hal-04203035

Submitted on 11 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

High wave vector non-reciprocal spin wave beams

Motivations

- Miniaturization of non-reciprocal devices Integrate circulators, isolators, and phase shifters in today's communication systems [1,2]
- **Shaping non-reciprocal spin wave beams** in a continuous thin YIG film using chiral coupling

Authors

Loic TEMDIE^{1,2} Vincent CASTEL^{1,2} C. Dubs³ G. Pradhan⁴ J. Solano⁴ H. MAJJAD⁴ R. BERNARD⁴ Yves HENRY⁴

Daniel STOEFFLER⁴ Matthieu BAILLEUL⁴ Vincent VLAMINCK^{1,2}

Affiliations

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

¹ IMT- Atlantique Département Micro Ondes, from nanowire arrays [3]

High k-vector magnon spectroscopy

t=55nm thin YIG film / Ni₈₀Fe₂₀ nanowires (NW): L=10µm, w=300nm, a=500nm / 80nm Au-antennas

 $S_{ij} \rightarrow Z_{ij} \rightarrow \Delta L_{ij}$: $\Delta L_{ij}(f,H) = \frac{1}{i2\pi f} (Z_{ij}(f,H) - Z_{ij}(f,H_{ref}))$

Chiral coupling between FMR-dynamic

dipolar field of Py-NW (h_d) and high k-vector magnon modes $(k_n = \frac{2n\pi}{a})$ in YIG: Chirality due to circular polarization of h_d

Perfect non-reciprocal transmission of spin wave beams

VNA SW Spectroscopy [4,5]

²Lab-STICC (UMR 6285), CNRS, Technopole Brest-Iroise CS83818, 29238 Brest Cedex 03

³ INNOVENT e.V Technologieentwicklung, Prussiangstrasse 27B, 07745 Jena, Germany,

⁴ IPCMS - UMR 7504 CNRS Institut de Physique et Chimie des Matériaux de Strasbourg,

Fundings

 $\frac{\gamma}{2\pi} = 27.7 \pm 0.2 \text{ GHz}$; $\mu_0 M_s = 185 \pm 1 \text{ mT}$ $A_{ex} = 3.85 \pm 0.1 \text{ pJ.m}^{-1}$

Ellipticity of CPW Oersted field \rightarrow Partial non-reciprocity

Separation between two adjacent modes k_a^I and $k_b^I < \frac{2\pi}{a}$ $(\Delta k = k_b^I - k_a^I = 5.3 \text{ rad/}\mu\text{m} < \frac{2\pi}{a} = 12.5 \text{ rad/}\mu\text{m})$

High wave vector spin wave spectroscopy

► Field dependence of modes features (A, f_{res}, f_{osc}) Fitting ΔL_{ij} with: $A \exp(\frac{(f-f_{res})^2}{\sigma^2}) \cos\left(\frac{2\pi}{f_{res}}(f-f_{res})+\varphi\right)$

Field dependence of the amplitude for k_{NW} -modes

- Non-monotonous coupling efficiency
- \rightarrow no estimation of L_{att}
 - $\gamma_{Py} > \gamma_{YIG} \rightarrow$ field dependence of the coupling efficiency all the stronger that $f(k_{NW}) \sim f(k_{PV})$

Group velocity

Marker : from spectra $V_g = D * f_{osc}$; Solid line : from $V_g = d\omega/dk$

Project "SOSMAG"

References

[1]W. Palmer, et al., IEEE Micro. Magazine **20**, 36 (2019) [2] M. Devoret, et al., Science **339**, 1169 (2013) [3] J. Chen, et al., Rev. B 100, 104427 (2019)

[4] V. Vlaminck, and M. Bailleul, Phys. Rev. B 81, 14425 (2010)

[5] N. Loayza, et al., Phys. Rev. B 98, 144430 (2018) [6] C. Dubs, et al.,

Phys. Rev. Materials 4, 024416 (2020)

Agreement at lower wavevector, but discrepancies for $V_a(k_{NW})$ due to possible inhomogeneous static field

Conclusions

- \blacktriangleright Unidirectional transmission of 10µm wide spin wave beams up to 77 rad.µm⁻¹ in [9,20] GHz frequency range
- Miniaturization of NWA complicates the SW spectroscopy analysis : modes selection, non-monotonous coupling efficiency, inhomogeneous static field

[Hd](