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do-interventions
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Abstract

Most of the scientific literature on causal modeling considers the structural framework of Pearl and
the potential-outcome framework of Rubin to be formally equivalent, and therefore interchangeably
uses do-interventions and the potential-outcome framework to define counterfactual outcomes. In this
paper, we agnostically superimpose a structural causal model and a Rubin causal model compatible
with the same observations to specify under which mathematical conditions counterfactual outcomes
obtained via do-interventions and potential outcomes need to, do not need to, can, or cannot be
equal (almost surely or in law). Our comparison builds upon the fact that such causal models do
not have to produce the same counterfactuals outcomes, and highlights real-world problems where
they generally cannot correspond under classical causal-inference assumptions. Then, we examine
common claims and practices from the causality literature in the light of this comparison. In doing
so, we aim at clarifying the links between the two causal frameworks, and the interpretation of their
respective counterfactuals.

Keywords: structural causal models, Rubin causal models, equivalence of models, counterfactuals
MSC: 62A09, 62D20

1 Introduction

Understanding causation between phenomena rather than mere association is a fundamental scientific
challenge. Over the last decades, two mathematical frameworks using a terminology based on random
variables have become the gold standards to address this problem.

On the one hand, the structural account of Pearl [2009] rests on the knowledge of a structural causal
model (SCM) which specifies all cause-effect equations between observed random variables (often depicted
by a graph). The interest of such equations comes from the possibility of carrying out do-interventions :
forcing a variable to take a given value while keeping the rest of the mechanism untouched. More
concretely, let T and Y be observational variables of the model such that we would like to understand
the downstream effect of T onto Y . Replacing the formula generating T by T = t for a given possible
value t ∈ T and propagating this change through the other equations defines the altered variable YT=t,
representing Y had T been equal to t.

On the other hand, the potential-outcome account of Rubin [1974] mathematically formalizes causal
inference in clinical trials. Letting T denote a treatment status (e.g., taking a drug or not) and Y
an outcome of interest (e.g., recovering or not), a so-called Rubin causal model (RCM) postulates the
existence of potential outcomes (Yt)t∈T representing what the outcome would be were T equal to t for any
t ∈ T . The fundamental problem of causal inference [Holland, 1986] refers to the fact that in practice we
cannot observe simultaneously all the potential outcomes, rendering unidentifiable the causal effect of T
onto Y . Nevertheless, causal inference can still be achieved thanks to a mix of untestable assumptions and
statistical tools: adjusting on a set of available covariates X containing all possible confounders between
the treatment and the potential outcomes permits to identify the law of counterfactual outcomes.

Each of these causal theories enables one to carry out counterfactual reasoning, that is answering
contrary-to-fact questions such as “Had they taken the drug, would have they recovered?”: by applying
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do-interventions on an SCM, one can compute the outcome YT=t for every possible treatment status t ∈ T ;
using an RCM with appropriate hypotheses, one can infer the law of the every potential outcome Yt. Both
approaches involve variables describing counterfactual outcomes, more precisely outcomes had the variable
T taken a certain value. This naturally raises the question: are these outcome variables equal (almost
surely or in law) across frameworks? A plethora of scientific books and survey papers interchangeably use
Pearl’s do notation and the potential-outcome subscript notation to write outcomes after interventions,
suggesting that the corresponding definitions of counterfactuals are identical and differ only from theirs
perspectives [Imbens, 2020, Neal, 2020, Barocas et al., 2023, Colnet et al., 2024, Makhlouf et al., 2024].
To justify this, they often refer to Pearl, who argued that “the two frameworks can be used interchangeably
and symbiotically”.1 However, influential works on “equivalences” between the two causal frameworks have
mostly focused on translating graphical assumptions into conditional-independence restrictions instead
of actually proving whether counterfactual outcomes were equal across models, or implicitly addressed
specific cases. Notably, [Pearl, 2009, Chapter 7] and [Richardson and Robins, 2013] consider ex nihilo
the exchangeability of the two associated notations in their unifications of both causal frameworks.

In this paper, we essentially aim at clarifying in which sense using interchangeably two distinct causal
models is appropriate. To this end, we compare a potential-outcome model and a structural causal model
compatible with a same distribution of observations from an agnostic perspective. We introduce three
levels of comparisons, corresponding to different degrees of counterfactual reasoning, and neutrally ask
under which conditions two models are (un)distinguishable at these levels. This analysis crucially reminds
that the models are not mathematically bound to correspond, meaning that using them symbiotically
generally rests on a choice. Moreover, it classifies real-world scenarios where the models can(not) be
exchanged, depending on their respective assumptions. Then, we interpret the counterfactual statements
and causal effects respectively induced by (Yt)t∈T and (YT=t)t∈T when the models do not coincide, and
explain how such results relate to the so-called formal equivalence between causal frameworks accepted
by the causal-inference community.

In a similar vein, Ibeling and Icard [2024] recently provided an in-depth theoretical comparison of the
two frameworks by adopting a neutral viewpoint, notably proving that a well-behaved RCM can always
be represented by an SCM. Altogether, our contributions supplement their work by specifying graphical
assumptions that must generally satisfy such an SCM, and by giving a real-world interpretation to these
assumptions. In particular, analyzing theoretical representability results through the prism of practically
relevant problems enables us to point out overlooked paradoxes in the causal-inference literature. On the
basis of our results and discussions, we call the community to rigorously justify their exchanges of models
across frameworks, as it could lead to misleading conclusions. In doing so, we hope to further clarify the
role of each causal modeling in the past, current, and future causal-inference research.

1.1 Motivating example

To motivate this work, we illustrate on a concrete example how potential outcomes and structural coun-
terfactuals can be respectively used to address a specific causal-inference problem.

1.1.1 Problem

For simplicity and concision, this example uses informal definitions of causal models; Sections 2 and 3
introduce formal definitions. All generic notations are specified in Section 2.1.

We consider the following fairness-inspired problem. Let the treatment status T : Ω → {0, 1} be a
binary random variable indicating the gender, T (ω) = 0 standing for women and T (ω) = 1 standing for
men; let the covariate X : Ω → R be a random variable quantifying the level of work experience, a higher
score encoding a more adapted experience; let the outcome Y : Ω → R be a random variable evaluating a
candidate’s application for some position, a better score giving a higher probability of acceptance. Causal
analysts are tasked with assessing the fairness of the evaluation process, by answering the question “What
is the average outcome variation for individuals with a given profile had their gender changed?”. To do
so, analyst M relies on a structural causal model to compute the do-intervention outputs (YT=0, YT=1)
(called structural counterfactuals), and then estimates E[YT=1 − YT=0 | X = x]. For their part, analyst
R introduces potential outcomes (Y0, Y1) satisfying causal-inference assumptions, and then estimates
E[Y1 − Y0 | X = x]. The signs and intensities of the above estimands quantify (un)fairness. We ask

1http://causality.cs.ucla.edu/blog/index.php/2012/12/03/judea-pearl-on-potential-outcomes/
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whether analysts M and R reach the same conclusion, in other words if the two causal estimands are
equal.

Analyst M postulates that (T,X, Y ) is ruled by the following collection of structural assignments:

T = UT ,

X = αT + UX ,

Y = X + βT + UY ,

where α and β are deterministic parameters quantifying the causal influence of T onto respectively X
and Y , and UX represents the hidden merit or effort of an individual. Typically, a positive parameter
α describes the societal inequalities leading women to have a lower level of work experience than men
with equal merit UX . The variables UT , UX , and UY are exogenous noises such that UY ⊥⊥ (T,X). For
every t ∈ {0, 1}, the do-intervention denoted by do(T = t) enables one to compute the downstream
effect onto X and Y of fixing T to the value t. Concretely, it recursively defines XT=t = αt + UX and
YT=t = XT=t + βt+ UY = (α+ β)t+ UX + UY . Therefore,

E[YT=1 − YT=0 | X = x] = α+ β.

Analyst R postulates two potential outcomes Y0 and Y1, relating to the factual outcome Y via the
following consistency property: Y = (1− T ) · Y0 + T · Y1. To compute their estimand from observational
data, they suppose that P(T = 1 | X = x) > 0 and (Y0, Y1) ⊥⊥ T | X . These conditions are referred to as
the fundamental assumptions of causal inference. They imply that E[Y1−Y0 | X = x] = E[Y | X = x, T =
1] − E[Y | X = x, T = 0] (see Lemma 2). We emphasize that, while they leverage different techniques,
the two analysts work with the same (T,X, Y ). Therefore, E[Y | X = x, T = t] = x+ βt+ E[UY ] due to
UY ⊥⊥ (T,X). This leads to

E[Y1 − Y0 | X = x] = β.

Consequently, E[YT=1 − YT=0 | X = x] 6= E[Y1 − Y0 | X = x] if α 6= 0. This means that the two
analysts obtain distinct, possibly contradictory results.

1.1.2 Comments

This example shows that potential outcomes (Yt)t∈T equipped with the fundamental assumptions of causal
inference do not necessarily define the same causal effects as the post-intervention outcomes (YT=t)t∈T

obtained via do-interventions on T . As such, one cannot always interchangeably employ given potential
outcomes and structural counterfactuals. This illustration motivates a general comparison of the two
causal-inference approaches, which is precisely the goal of this paper. Let us summarize how the example’s
specifics connect to the broader results presented in this manuscript.

In Section 3, we propose to analyze the similarities and differences of the two approaches through
the prism of equivalence relations between causal models. These relations characterize which causal
estimands coincide across two models. For instance, in the above example E[YT=1 − YT=0 | X = x] 6=
E[Y1 − Y0 | X = x] means that the corresponding SCM and RCM were not single-outcome equivalent
(Definition 6).

In Section 4, we notably investigate under which conditions an RCM satisfying the fundamental
assumptions of causal inference and an SCM are equivalent or not. More precisely, we show that they are
generally single-outcome equivalent just in case T does not cause X (Theorem 1). Therefore, in typical
fairness problems where T is an immutable variable like sex or race, swapping potential outcomes and
structural counterfactuals in a mathematical formula commonly yields distinct estimands. This explains
the results of the above illustration. Our analysis also provides a general interpretation of the respective
counterfactual variables: a structural counterfactual YT=t of Y changes by do-intervention T into t and
X into XT=t while keeping UY equal; a potential outcome Yt of Y under the assumptions of causal
inference changes T into t while keeping X and UY equal. This difference in meanings justifies why
E[YT=1 − YT=0 | X = x] captured the total effect α+ β of T on Y , whereas E[Y1 − Y0 | X = x] captured
the direct effect β.

In Section 5, we detail how these results relate to the formal equivalence between causal frameworks.
Our discussion delineates two paradigms for defining and using potential-outcome variables. The first
is what analyst M does: defining potential outcomes via do-interventions on the latent SCM, so that
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the properties they satisfy stem from the SCM. The second is what analyst R does: defining potential
outcomes with a different causal interpretation than the one given by do-interventions, in their case by
directly placing assumptions upon them—regardless of what holds in the latent SCM. Crucially, only
analyst M relies on the formal equivalence. This is why we caution against unjustified exchanges of the
potential-outcome subscript notation and the do notation.

1.2 Outline of the paper

The rest of the paper proceeds as follows. Section 2 furnishes the basic knowledge on structural causal
models and potential-outcome models. Section 3 formalizes the problem we address by introducing
notions of equivalence between causal models. Section 4 clarifies under which conditions a structural
causal model and a potential-outcome model compatible with the same observational data need or need
not be equivalent. Section 5 discusses the relation between these results and the formal equivalence
between causal frameworks. Appendix A addresses a supplementary illustration. Proofs of intermediary
results are deferred to Appendix B.

2 Preliminaries

This section provides the necessary background on structural causal models and potential outcomes. It is
meant to keep the paper self-contained. Section 2.1 introduces generic mathematical notations; Section 2.2
presents Pearl’s causal framework; Section 2.3 explains Rubin’s causal framework.

2.1 Basic mathematical notations

Throughout, we consider a probability space (Ω,Σ,P) with Ω a sample space, Σ a σ-algebra, and P : Σ →
[0, 1] a probability measure. This space does not necessarily have a physical interpretation; it abstractly
represents the possible underlying states of the world. Crucially, it serves as the common mathematical
basis to define and compare random variables.

A random variable W (including random vectors) is a measurable function from Ω to a Borel subset of
an Euclidean space equipped with the Borel σ-algebra. It produces a probability distribution on its output
space: we write L(W ) := P ◦W−1 and E[W ] :=

∫

W (ω)dP(ω) for respectively the law and expectation
under P of a random variable W .2 We emphasize that the laws of univariate random variables can be
completely general in this paper; we do not suppose them to be either Lebesgue-absolutely continuous
or discrete. For any Borel set F , we use the common probability-textbook notation {W ∈ F} for the set
{ω ∈ Ω |W (ω) ∈ F} ∈ Σ. Two variables W1 and W2 are P-almost surely equal, denoted by W1

a.s.
= W2, if

P(W1 =W2) = 1; they are equal in law under P, denoted by L(W1) = L(W2), if P(W1 ∈ F ) = P(W2 ∈ F )
for every Borel set F . The notation W1 ⊥⊥ W2 means that W1 and W2 are independent under P, that is
P(W1 ∈ F1,W2 ∈ F2) = P(W1 ∈ F1) · P(W2 ∈ F2) for all Borel sets F1, F2.

We denote by P(· | W = w) the regular conditional probability measure with respect to {W = w},
which exists and is unique for L (W )-almost every w. Then, whenever they are well-defined, we write
L(W2 | W1 = w1) := P(· | W1 = w1) ◦W2

−1 and E[W2 | W1 = w1] :=
∫

W2(ω)dP(ω | W1 = w1) for
respectively the law and expectation of W2 conditional to W1 = w1. The expression W1 ⊥⊥W2 |W3 means
that W1 and W2 are independent conditional to W3 under P, namely that W1 and W2 are independent
under P(· |W3 = w3) for L (W3)-almost every w3.

Moreover, for any tuple w := (wi)i∈I indexed by a finite index set I and any subset I ⊆ I we write
wI := (wi)i∈I . Then, for any index set J we abusively write wJ for wJ∩I and use the notation wJ = ∅
whenever J ∩ I = ∅. Similarly, we define the Cartesian product WI :=

∏

i∈I Wi for any collection of
spaces (Wi)i∈I .

2.2 Pearl’s causal framework

Pearl’s causal modeling mathematically formalizes associations that standard probability calculus cannot
describe through the notions of structural causal models and do-interventions [Pearl, 2009]. This section

2To fix ideas, one can consider that Ω = [0, 1] and that P is the uniform distribution on Ω so that for any Borel probability
distribution P there exists W such that P = P ◦ W−1 (as reminded in the proof of Proposition 3). As such, this choice
allows one to define random variables or vectors with any laws.
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recalls the basics on this topic, borrowing the introduction proposed in [Blom et al., 2020, Bongers et al.,
2021].

2.2.1 Structural causal models

A structural causal model (SCM) represents the causal relationships between the studied variables. It is
the cornerstone of Pearl’s causal framework.

Definition 1 (Structural causal model). Let I and J be two disjoint finite index sets, and write V :=
∏

i∈I Vi ⊆ R
|I|, U :=

∏

j∈J Uj ⊆ R
|J | for two Borel product spaces. A structural causal model M is a

couple 〈U, g〉 where:

1. U := (Uj)j∈J is a collection of mutually independent random variables called the random noises,
such that Uj is from Ω to Uj for every j ∈ J ;

2. g := (gi)i∈I is a collection of measurable R-valued functions, where for every i ∈ I there exist two
subsets of indices Endo(i) ⊆ I and Exo(i) ⊆ J , respectively called the endogenous and exogenous
parents of i, such that gi is from VEndo(i) × UExo(i) to Vi.3

A random vector V : Ω → V is a solution of M if for every i ∈ I,

Vi
a.s.
= gi(VEndo(i), UExo(i)). (1)

The equations defined by (1) and characterized by g and U are called the structural equations.4

Such a model explains how some endogenous variables V , representing observed data, are generated
from exogenous variables U , describing background factors. The structural equations quantify the causal
dependencies between all these variables and are frequently illustrated by the directed graph GM with
nodes I∪J , and such that a directed edge points from node k to node l if and only if k ∈ Endo(l)∪Exo(l)
(we say in this case that k is a parent of l). For convenience, we make the common assumption that the
studied models are acyclic, which means that their associated graphs do not contain any cycles.

Assumption 1 (Acyclicity). M is such that GM is a directed acyclic graph.

Not only acyclicity simplifies the interpretation of causal dependencies, but it entails unique solvability
of the SCM: according to [Bongers et al., 2021, Proposition 3.4], Equation (1) admits a unique solution
up to P-negligible sets. We will abusively refer to such a solution as the solution of the SCM. Also, on
the basis of this well-posedness of the solution V , we will often replace the indices i ∈ I and j ∈ J by
the associated random variables Vi and Uj in the relevant notations. For example we may write Endo(Vi)
instead of Endo(i).

The purpose of causal structures is to capture the assumption that variables are not independently
manipulable. As we detail next, they enable to understand the downstream effect of fixing some variables
to certain values onto nonintervened variables.

2.2.2 The do-intervention

A perfect do-intervention is an operation forcing a set of endogenous variables to take predefined values
while keeping all the rest of the causal mechanism equal.

Definition 2 (Perfect do-intervention). Let M = 〈U, g〉 be an SCM, I ⊆ I a subset of endogenous
variables, and ṽI ∈ VI a value. The action do(I, ṽI) defines the modified model Mdo(I,ṽI) = 〈U, g̃〉 where
g̃ is given by: for any (v, u) ∈ V × U and i ∈ I,

g̃i(vEndo(i), uExo(i)) :=

{

ṽi if i ∈ I,

gi(vEndo(i), uExo(i)) if i ∈ I \ I.
3This definition tolerates that distinct endogenous variables share the same exogenous parents, that is Exo(i)∩Exo(i′) 6= ∅

for some i 6= i′. Therefore, the variables in (UExo(i))i∈I are not necessarily mutually independent.
4In the paper, we will often informally define an SCM by specifying the structural equations rather than g.
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A do-intervention preserves acyclicity, and therefore unique solvability. As a consequence, if V is
the solution of an acyclic M, one can define (up to P-negligible sets) its post-intervention counterpart
Vdo(I,vI) solution to Mdo(I,vI). It describes an alternative world where every Vi for i ∈ I is set to value
vi while U is preserved. In the rest of the paper, we simply write do(VI = vI) for the operation do(I, vI),
and use the subscript VI = vI to indicate results of this operation. For instance, we write MVI=vI for
Mdo(I,vI) and VVI=vI for Vdo(I,vI). Crucially, intervening does not amount to conditioning in general,
that is L(V | VI = vI) 6= L(VVI=vI ).

The next proposition provides a general expression of the solution before and after intervention,
and will play a key role throughout this paper. For any I ⊆ I we write Endo(I) = ∪i∈I Endo(i),
Exo(I) = ∪i∈I Exo(i), and Ic = I \ I.

Lemma 1 (do-intervention on variables). Let M = 〈U, g〉 be an SCM satisfying acyclicity (Assumption 1)
with solution V , and consider I ⊆ I. There exists a deterministic measurable function fIc such that

VIc
a.s.
= fIc(VEndo(Ic)\Ic , UExo(Ic)).

Moreover, for any intervention do(VI = vI) the solution Ṽ of MVI=vI satisfies

ṼIc
a.s.
= fIc(vEndo(Ic)\Ic , UExo(Ic)),

ṼI
a.s.
= vI .

Importantly, this is the same deterministic function fIc and the same random noises UExo(Ic) that
generate VIc and its post-intervention counterpart ṼIc , the only change being the assignment VI = vI .
Slightly abusing notations, we will often artificially extend the input variables of fIc to write VIc

a.s.
=

fIc(VI , UExo(Ic)) and ṼIc
a.s.
= fIc(vI , UExo(Ic)) using the fact that Endo(Ic) \ Ic ⊆ I. Lemma 1 can be

seen as a “vectorization” of the structural equations.

2.2.3 Counterfactual inference with structural causal models

Counterfactual inference aims at predicting outcomes had a certain event occurred given some factual
observations. Typically, it addresses what-if questions such as “Had they been a woman, would have they
gotten the position?”. Perfect interventions combined with conditioning provides a natural probabilistic
framework to address counterfactual queries. Let for instance V := (T,X, Y ) be the solution to an
acyclical SCM M := 〈U, g〉. Pearl answers the question “had T been equal to t, what would have been
the law of Y given the factual context X = x?” by using the so-called three-step procedure [Pearl, 2009]:

1. (Abduction) compute L(U | X = x), the posterior distribution of U -values compatible with the
context {X = x};

2. (Action) carry out a do-intervention on M to obtain the intervened causal mechanism gT=t of
MT=t;

3. (Prediction) pass the posterior distribution L(U | X = x) through gT=t to generate the distribu-
tion L(YT=t | X = x) of counterfactual outcomes.

More generally, an SCM enables one to sample from probability distributions of counterfactual outcomes
for any choices of context, variables to alter by do-intervention, and outcomes of interest. Note that,
while a fully specified SCM permits to compute any counterfactual distributions via the above algorithm,
some distributions can also be identified from only the observational distribution L (V ) and the causal
graph GM (that is without completely knowing g or the law of U) under specific graphical assumptions
(see for example the counterfactual intrepetation of the backdoor criterion [Pearl et al., 2016, Theorem
4.3.1]). Before turning to the potential-outcome framework, let us precise our notations and definitions
related to the “do”.

Remark 1 (do-interventions versus the do-operator). Some readers may be familiar with the do-operator
and the associated notations [Pearl, 2009, Equation 1.37], which do not exactly correspond to the do-
intervention operation from Definition 2. This operator serves to distinguish between probability dis-
tributions of endogenous variables after distinct do-interventions, similarly to how conditioning distin-
guishes between probability distributions given distinct realizations of random variables. The respective
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notations of the do-operator and the conditioning operation are similar (but the do-operator respects
different rules). Typically, one writes E[V | do(VI = vI)] for the expectation of the solution of MVI=vI ,
and E[Y | do(T = t), X = x] for the conditional expectation in MT=t of the outcome given the covari-
ates. These quantities can be expressed with the subscript-variable notations we introduced as follows:
E[V | do(VI = vI)] = E[VVI=vI ] and E[Y | do(T = t), X = x] = E[YT=t | XT=t = x]. We refer to
[Pearl et al., 2016, Chapter 4] for more details.

The do-operator along with the rules of do-calculus enable one to reframe post-intervention probabili-
ties in terms of standard (conditional) probabilities [Pearl, 2009, Theorem 3.4.1], making them useful for
conducting interventional inference. However, as explained by Pearl [Pearl et al., 2016, Section 4.1], they
do not fully allow counterfactual inference. Notably, the do-operator distinguishes between probability
distributions entailed by distinct interventions but not between random variables entailed by distinct
interventions, and thereby fails to represent cross-world dependencies. For example, a quantity like
E[YT=t | X = x], which involves variables defined across MT=t and M, cannot always be captured by
the do-operator. In particular, E[YT=t | X = x] 6= E[Y | do(T = t), X = x] in general [Pearl et al., 2016,
Equation 4.8].

All in all, the do-operator does not provide a sufficient vocabulary for the problem we address: de-
termining under which conditions one can substitute in causal estimands the counterfactual variables
(Yt)t∈T of Rubin’s framework with the post-intervention variables (YT=t)t∈T of Pearl’s framework. This
is why we do not to use notations as E[ · | do(X = x)] in this paper. We see a do-intervention as a
transformation of a random variable (instead of a distribution), and indicate post-intervention variables
by a subscript as commonly done in the structural-counterfactual literature [Pearl et al., 2016, Chapter
4]. Moreover, we only employ classical operators from probability theory, like E[ · | X = x] (as defined in
Section 2.1).

2.3 Rubin’s causal framework

The potential-outcome framework, also known as Neyman-Rubin causal modeling [Neyman, 1923, Rubin,
1974], was designed to understand the causal effect of a treatment onto an outcome of interest, for instance
when one aims at assessing the contribution of a drug to recovering from some disease in clinical trials.
In this section, we introduce this framework in the specific case of a binary treatment.

2.3.1 Potential outcomes

Let T : Ω → {0, 1} represent a binary treatment status, typically such that T (ω) = 0 indicates the absence
of treatment and T (ω) = 1 indicates a treatment. More generally, it can encode any distinction between
some groups (e.g., men and women). Assuming no interference between units,5 this framework postulates
two potential outcomes Y0 : Ω → R and Y1 : Ω → R, one for each treatment status. These potential
outcomes as well as the treatment may depend on some covariates X : Ω → R

d (such as the patient’s
weight, height, or historical data in clinical trials). Critically, we cannot observe simultaneously Y0(ω) and
Y1(ω) for a same ω: a problem referred as the fundamental problem of causal inference [Holland, 1986].
We only have access to the realized outcome variable Y : Ω → R which is supposed to be consistent
with (Y0, Y1), that is satisfying Y = (1 − T ) · Y0 + T · Y1. Concretely, if T (ω) = 1 for some ω ∈ Ω,
then Y (ω) = Y1(ω), and Y0(ω) becomes unidentifiable by mere observations. We refer to the random
vector (T,X, Y0, Y1) as the Rubin causal model (RCM), which is an augmented version of (T,X, Y ) due
to consistency.

Understanding the causal relationship between the treatment and the outcome in this framework
ideally consists in answering counterfactual questions such as “What would have been the value of Y (ω)
had T (ω) been equal to 1 instead of 0 for a specific ω (such that X(ω) = x)?”. This cannot be answered
since the value of either Y0(ω) or Y1(ω) will always be missing. Instead, in practice, one estimates and
compares under some assumptions features of L(Y1) and L(Y0), or L(Y1 | X = x) and L(Y0 | X = x).
People commonly focus on computing the average treatment effect E[Y1 − Y0] or the conditional average
treatment effect (CATE) E[Y1 − Y0 | X = x]. The main challenge lies in the fact that association is
not causation in general. In particular, the quantity E[Y | T = t] does not necessarily coincide with the
quantity E[Yt] for t ∈ {0, 1}. Typically, if some medical treatment is more likely to be taken by weaker

5Paraphrasing Rubin Rubin [2010], a unit refers to a study object (like a person). This assumption excludes cases where
the treatment of one unit may affect the outcome of another.
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patients, we may observe a lower rate of recovery among the treated group compared to the nontreated
group due to the health condition even though the medicine does increase recovery all other things being
kept equal: we would observe E[Y | T = 1] < E[Y | T = 0] while E[Y1] > E[Y0] (a phenomenon that
can be seen as a consequence of Simpson’s paradox [Blyth, 1972]). In this case, the health condition is
called a confounder : a variable associated with both the distribution of the treatment and the outcome.
However, causal inference from observational data is still possible, as explained next.

2.3.2 Counterfactual inference with fundamental assumptions

Estimating a feature of L ((T,X, Y0, Y1)), like a treatment effect, requires expressing it in terms of features
of L ((T,X, Y )) which generates the empirical observations. Such identifications can be achieved under
two fundamental assumptions. The first one goes by many names through the literature: conditional ig-
norability, conditional exchangeability, conditional exogeneity, and conditional unconfoundedness (among
others). Originally formulated by Rosenbaum and Rubin [1983], it states that the potential outcomes
are independent of the treatment conditional to the covariates, that is (Y0, Y1) ⊥⊥ T | X . Said differently,
it ensures that all confounders between the treatment and the potential outcomes are included in the
covariates. Note that this assumption is untestable, as it would require to observe simultaneously the
two potential outcomes. The second key hypothesis is positivity, which ensures that all units can be
exposed to both treatment statuses, that is 0 < P(T = 1 | X = x) < 1 for L (X)-almost every x ∈ R

d. It
readily follows from positivity that the probability distribution L(Y | X = x, T = t) is well defined for
L(X)-almost every x ∈ R

d and every t ∈ {0, 1}, and from conditional ignorability that it coincides with
L(Yt | X = x), meaning that association-based outcomes have a causal interpretation. Several statistical
methods coexist to estimate the (conditional) average causal effect, all building upon this implication (see
for instance [Imbens, 2004, Yao et al., 2021]). We do not detail them for concision and clarity since it is
not the topic of this paper. We only point out that, similarly to SCMs, the potential-outcome framework
enables one to infer distributions of counterfactual outcomes.

3 Problem setup

This section precises the problem we address: analyzing the mathematical similarities and differences
between two models respectively derived from the two causal frameworks. Section 3.1 introduces a
potential-outcome model and a structural causal model compatible with a same dataset, and formalizes
the assumptions we may place upon them. Section 3.2 defines notions of equivalence between the two
models, corresponding to different levels of comparison.

3.1 Causal models and assumptions

The next definition formalizes the notion of observational data in a causal-inference experiment. It
generalizes Section 2 by considering a nonbinary treatment and a multivariate outcome.

Definition 3 (Observational vector). Let N, d, p ≥ 1 be integers, and T := {0, 1, . . . , N}. An observa-
tional vector O is a random vector (T,X, Y ) where T : Ω → T is the treatment status, X : Ω → R

d the
covariates, Y : Ω → R

p the outcome, and such that 0 < P(T = t) for all t ∈ T .

In order to compare the two causal frameworks, we consider in what follows a superimposed construc-
tion where an observational vector O := (T,X, Y ) is concurrently governed by an RCM and an SCM.
Figure 1 illustrates this construction. We emphasize that we adopt an agnostic approach where there is
no presumed relation between the two causal models except their compatibility with O. This is meant
to highlight when equality (possibly in law) between potential and structural counterfactual outcomes is
a mathematical necessity or the result of specific assumptions.

3.1.1 Potential-outcome model

On the one hand, we assume that T is the treatment status, X some covariates, and Y the outcome of
interest in a potential-outcome model in the sense of the definition below.
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Definition 4 (Rubin causal model). Let O := (T,X, Y ) be an observational vector. A Rubin causal
model (or potential-outcome model) compatible with O is a random vector R := (T,X, (Yt)t∈T ) such that
the tuple (Yt)t∈T : Ω → (Rp)N+1 meets the consistency rule:

Y
a.s.
=

∑

t∈T

1{T=t}Yt.

For any t ∈ T , Yt is referred to as the potential outcome had the treatment been equal to t. We denote
by RO the class of Rubin causal models compatible with O.

A generic RCM R := (T,X, (Yt)t∈T ) ∈ RO is basically an augmented version of O by N + 1 random
vectors (Yt)t∈T satisfying the consistency rule. The variable Y is not explicit in R as it can be recovered
from T and (Yt)t∈T via consistency. In this setting, the first fundamental assumption for causal inference
can be written as follows.

Assumption 2 (Positivity). O is such that for all t ∈ T and L (X)-almost every x, 0 < P(T = t | X =
x) < 1.

Remark that, strictly speaking, positivity in an hypothesis on the observational vector rather than
the RCM. But people typically suppose it in the context of potential outcomes. We distinguish two
formulations for the second fundamental assumption, namely conditional ignorability.

Assumption 3 (Cross-outcome conditional ignorability). R is such that (Yt)t∈T ⊥⊥ T | X.

Assumption 4 (Single-outcome conditional ignorability). R is such that for all t ∈ T , Yt ⊥⊥ T | X .

The stronger version (Assumption 3) is the original one, but most causal-inference methods only
require the weaker version (Assumption 4). In our main results, we will clearly specify which form of
conditional ignorability is required. Crucially, Assumptions 2 and 4 permit to fully identify the law of
(T,X, Yt) by the law of (T,X, Y ) for any t ∈ T , as recalled below.

Lemma 2 (Single-outcome identification of potential outcomes). Let O := (T,X, Y ) be an observational
vector satisfying positivity (Assumption 2). For any R := (T,X, (Yt)t∈T ) ∈ RO, if R meets single-
outcome conditional ignorability (Assumption 4) then for every t ∈ T and L (X)-almost any x ∈ R

d:

L(Yt | X = x) = L(Y | X = x, T = t).

Thereby, for any Borel set F ⊆ T × R
d × R

p,

P((T,X, Yt) ∈ F ) =

∫

P(Y ∈ F (t′, x) | X = x, T = t)dP(X = x, T = t′),

where F (t′, x) := {y ∈ R
p | (t′, x, y) ∈ F} for every (t′, x) ∈ T × R

d.

3.1.2 Structural causal model

On the other hand, we assume that the variables in O are generated by a latent SCM M, as specified
below.

Definition 5 (Compatible structural causal model). Let O be an observational vector. An SCM M :=
〈U, g〉 is compatible with O if it admits a unique solution V equal to O. We denote by MO the class of
SCMs satisfying acyclicity (Assumption 1) and compatible with O.

The latent model M defines for every t ∈ T the post-intervention outcome YT=t under do(T = t)
using Definition 2. We refer to YT=t as the structural counterfactual outcome had the treatment been
equal to t. Similarly to potential outcomes, structural counterfactuals satisfy the consistency rule, and
therefore induce an RCM.

Lemma 3 (Consistency rule for structural counterfactuals). Let O := (T,X, Y ) be an observational
vector. For any M ∈ MO, the tuple (YT=t)t∈T obtained via do-interventions in M meets the consistency
rule,

Y
a.s.
=

∑

t∈T

1{T=t}YT=t.

Therefore, RM := (T,X, (YT=t)t∈T ) belongs to RO. We call RM the entailed RCM of M.
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U

(Yt)t∈T T,X, Y (YT=t)t∈T

g do(T = t) ∀t ∈ T

R RM

M

O

properties are
assumptions

properties are
derived from M

Figure 1: Superimposed construction of an RCM R and an SCM M compatible with a same observational
vector O.

The notion of entailed RCM bridges SCMs to RCMs, thereby enables one to compare these two classes
of models which differ fundamentally in their constructions of counterfactual outcomes (see Remark 2).
Contrasting RM := (T,X, (YT=t)t∈T ) against R := (T,X, (Yt)t∈T ) almost surely or in law is precisely
the goal of this paper, as formalized next in Section 3.2.

Remark 2 (Primitives versus derivatives). As noted by Pearl Pearl [2010], the potential outcomes
(Yt)t∈T are “undefined primitives” of the RCM, not related to any formal of measurable quantities, while
the post-intervention outcomes (YT=t)t∈T are “derivatives” of the SCM by application of do-interventions.
Said differently, the firsts are inputs defining the causal model, whereas the seconds are post-intervention
outputs defined by the causal model. Figure 1 illustrates this aspect. As such, consistency is a theorem
for structural counterfactuals and a constitutive assumption for potential outcomes. This holds more
generally for any conceivable properties on counterfactual outcomes: in R they usually are assumptions;
in RM they are derived from M.

3.2 Notions of equivalence between causal models

We aim at studying the mathematical similarities and differences between potential outcomes and struc-
tural counterfactuals from a theoretically neutral perspective. We consider three levels of comparison
that will guide our analysis throughout the paper.

Definition 6 (Equivalences between causal models). Let O be an observational vector, and R1 :=

(T,X, (Y
(1)
t )t∈T ),R2 := (T,X, (Y

(2)
t )t∈T ) be two models in RO. We say that R1 and R2 are:

(i) almost-surely equivalent if Y (1)
t

a.s.
= Y

(2)
t for any t ∈ T ;

(ii) cross-outcome equivalent if L
(

(T,X, (Y
(1)
t )t∈T )

)

= L
(

(T,X, (Y
(2)
t )t∈T )

)

;

(iii) single-outcome equivalent if L
(

(T,X, Y
(1)
t )

)

= L
(

(T,X, Y
(2)
t )

)

for every t ∈ T .

By overloading terminology, for M ∈ MO and R ∈ RO, we analogously say that M is equivalent to R
in one of the above senses if RM is equivalent to R in this sense.

These types of equivalence focus on (entailed) RCMs in contrast to the notions proposed in [Bongers et al.,
2021, Beckers, 2021] which are specifically tailored to SCMs. Remark that (i) =⇒ (ii) =⇒ (iii). Math-
ematically, each relation characterizes a class of RCM-based estimands that are invariant under the swap
of two equivalent models R1 and R2, which amounts to exchanging their potential outcomes. If the
models are almost-surely equivalent, then all estimands are invariant under the swap. If the models are
cross-outcome equivalent, then any estimands based on their cross-outcome distributions are invariant

under the swap: for instance, E
[

‖Y
(1)
1 − Y

(1)
0 ‖2 | X = x

]

= E

[

‖Y
(2)
1 − Y

(2)
0 ‖2 | X = x

]

. If the models

are single-outcome equivalent, then any estimands based on their single-outcome distributions are invari-

ant under the swap: for example, E
[

Y
(1)
1 − Y

(1)
0 | X = x

]

= E

[

Y
(2)
1 − Y

(2)
0 | X = x

]

. When equivalence
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does not hold, some causal effects of the corresponding relation may vary under the swap. Less formally,
the motivation for the three ladders in Definition 6 comes from different levels at which people reason
counterfactually. Let us detail them with an RCM and an SCM.

The almost-sure level focuses on counterfactual questions at the scale of ω ∈ Ω. It asks (for example)
“What would have been the value of Y (ω) had T (ω) been equal to 1 instead of 0?”. The answer is
deterministic in both the potential-outcome approach and the structural approach, given by Y1(ω) in the
RCM and by YT=1(ω) in the SCM. Should the models be almost-surely equivalent, the answer would be
identical for almost-every ω ∈ Ω. We emphasize that this level is methodologically inessential: in practice,
one does not have access to the random variables of the models themselves but to some realizations of
their laws. Nevertheless, comparing causal models on this almost-sure baseline is theoretically important
to completely understand their mathematical differences.

We now turn to the cross-outcome level. Because counterfactual questions at the scale of ω cannot be
answered, people rather address surrogate queries like “What would have been the law of Y had T been
equal to 1 instead of 0 given that X = x?”. In both causal approaches, the answer is generally not deter-
ministic (that is uniquely determined). Possible answers along with their probabilities are respectively
described by L (Y1 | X = x) (which can be estimated using the techniques mentioned in Section 2.3.2)
in the potential-outcome framework and by L (YT=1 | X = x) (which can be inferred via the three-step
procedure from Section 2.2.3) in the SCM. More generally, most answers to counterfactual questions in
the structural framework and in the potential-outcome framework are respectively characterized by the
joint probability distributions L((T,X, (YT=t)t∈T )) and L((T,X, (Yt)t∈T )). Therefore, should the models
be cross-outcome equivalent, they would yield the same conclusions when reasoning counterfactually at
this level.

The single-outcome level resembles the cross-outcome level in the sense that it also focuses on dis-
tributions of outcomes; it differs by being mathematically weaker. It is motivated by the fact that
researchers and practitioners predominantly ask counterfactual questions involving single counterfactual
outcomes instead of joint counterfactual outcomes, as in the above paragraph. As such, knowing only the
marginal laws L((T,X, Yt)) and L((T,X, YT=t)) for every t ∈ T suffices to compute most of the practi-
cally relevant counterfactual estimands. This is why it is arguably the most critical level in practice. For
illustration, consider average treatment effects like E[Y1 − Y0] or E[Y1 − Y0 | X = x] (as in Section 1.1.1),
distributional treatment effects like D(L (Y1) ,L (Y0)) or D(L (Y1 | X = x) ,L (Y0 | X = x)) where D is
a discrepancy between probability measures [Muandet et al., 2021, Park et al., 2021], or the standard
counterfactual-fairness condition on Y : L (YT=t′ | X = x, T = t) = L (YT=t | X = x, T = t) for every
t ∈ T [Kusner et al., 2017]. They all concern the single-outcome level.6 Therefore, should the models be
single-outcome equivalent, they would yield the same results in these state-of-the-art methodologies.

Remark 3 (At which level do the fundamental assumptions matter?). According to Lemma 2, positivity
(Assumption 2) and single-outcome conditional ignorability (Assumption 4) uniquely determines the
single-outcome level of RCMs in RO by L (O). As such, these assumptions allow the estimation of most
practically-relevant causal effects. However, we point out that even cross-outcome conditional ignorability
(Assumption 3) does not uniquely determines the cross-outcome level. In Remark 4 from Section 4.2, we

study two RCMs R1 := (T,X, (Y
(1)
t )t∈T ) and R2 := (T,X, (Y

(2)
t )t∈T ) satisfying positivity and cross-

outcome conditional ignorability such that L
(

(T,X, (Y
(1)
t )t∈T )

)

6= L
(

(T,X, (Y
(2)
t )t∈T )

)

. All in all,

the scope of the fundamental assumptions of causal inference is limited to the single-outcome level of
counterfactual reasoning. Identifying a cross-outcome effect such as E[Y1 | Y = 0, T = 0] requires stronger
assumptions.

To summarize, when two causal models compatible with a same observational vector meet an equiv-
alence condition from Definition 6, they can be used interchangeably at a certain level of counterfactual
reasoning. This mathematically signifies that a certain class of causal effects is invariant under exchanges
of their counterfactual outcomes (e.g., the CATE for single-outcome equivalent models). In the next
section, we study whether M ∈ MO and R ∈ RO need to, do not need to, can, or cannot be equivalent
under different degrees of assumptions.

6There also exists a notion of strong counterfactual fairness [Kusner et al., 2017, Equation 4]. It demands P(YT=t =
YT=t′ | X = x, T = t) = 1 for every t, t′ ∈ T , and is thereby a proper cross-outcome condition.
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4 Main results

In this section, we compare the generic RCM and SCM introduced in Section 3.1 according to the three
levels presented in Section 3.2. More precisely, Section 4.1 firstly reminds that equivalence does not nec-
essarily hold whatever the level, then Section 4.2 identifies and studies cases where equivalence does (not)
hold at the single-outcome level. Finally, Section 4.3 proposes conceptual and practical interpretations
of these mathematical results.

4.1 Equivalence does not generally hold

We start by a crucial reminder justifying why it is relevant to compare the models at the aforementioned
levels: an RCM and an SCM compatible with a same observational vector are not necessarily equivalent.

4.1.1 General case

The proposition below formalizes this claim in the most general scenario.

Proposition 1 (Equivalence is not necessary). Let O be an observational vector. For any M ∈ MO,
there exists R ∈ RO such that M and R are equivalent in none of the senses from Definition 6.

This result rests on a simple remark: the consistency rule does not suffice to characterize potential
outcomes P-almost surely.7 More precisely, while necessarily Yt(ω) = Y (ω) = YT=t(ω) on {T = t} for
t ∈ T (up to P-negligible subsets) due to Lemma 3, there is no constraint on Yt(ω) over Ω \ {T = t}; it
could take any value over it without violating the consistency rule. In contrast, YT=t is defined (almost)
everywhere through the altered SCM MT=t. The proof of Proposition 1 exploits this specification issue
of potential outcomes: for any t ∈ T , Yt can be any function on {T 6= t}, thereby can be chosen distinct
to YT=t.
Proof of Proposition 1 Let (YT=t)t∈T be the structural counterfactuals of M, and define potential
outcomes (Yt)t∈T as follows. For any t ∈ T ,

Yt := 1{T=t}YT=t + 1{T 6=t}(YT=t + y),

where y ∈ R
p is not the null vector. The tuple (Yt)t∈T satisfies the consistency rule according to Lemma 3.

Moreover, for any t ∈ T , Yt is not almost-surely equal nor equal in law to YT=t due to P(T 6= t) > 0 and
YT=t + y 6= YT=t.

It may seem counter-intuitive to design oneself the potential outcomes (as done in the proof and in
upcoming examples), since people frequently consider them as externally imposed. We emphasize that
Proposition 1 is theoretically neutral, and only serves to remind that equality between counterfactual
outcomes across causal models does not necessarily hold.

4.1.2 Causal-inference setting

Proposition 1 focuses on the most general setting where the potential outcomes meet only consistency.
Said differently, it simply shows that consistency alone is not enough to guarantee equality (almost-surely
or in law) between counterfactual outcomes. Nevertheless, people suppose most often that the potential
outcomes also satisfy conditional ignorability in order to apply causal-inference techniques. This raises
the question whether such an additional hypothesis could render the causal models equivalent. The next
theorem ensures that equivalence does not always hold even under the fundamental assumptions of causal
inference.

Proposition 2 (Equivalence is not necessary under the fundamental assumptions of causal inference).
Let O be an observational vector satisfying positivity (Assumption 2). There exist M ∈ MO and R ∈ RO

satisfying conditional ignorability (Assumption 3 or 4) such that M and R are equivalent in none of the
senses from Definition 6.

7This formally means that the set RO is not reduced to one class of almost-surely equivalent RCMs.
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This results comes from the fact that conditional ignorability fully determines the single-outcome
distributions of an RCM (Lemma 2) and does not hold by design in an entailed RCM.
Proof of Proposition 2 We address the specific case where T := {0, 1} and bothX and Y are R-valued;
one can readily generalize the proof. Consider the following SCM:

T
a.s.
= UT ,

X
a.s.
= T + UX

Y
a.s.
= T +X + UY ,

where UT follows a Bernoulli distribution with parameter 1/2, while UX and UY both follow the centered
Gaussian distribution with unit variance, such that UT , UX and UY are mutually independent.

By do-interventions, XT=t
a.s.
= t + UX and YT=t

a.s.
= t + XT=t + UY for any t ∈ T . Therefore,

by substituting the expression of XT=t in the expression of YT=t we obtain YT=0
a.s.
= UX + UY and

YT=1
a.s.
= 2 + UX + UY . Then, we define potential outcomes as:

Y0 := (1 − T ) · (X + UY ) + T · (X − UY ), (2)

Y1 := (1 − T ) · (1 +X − UY ) + T · (1 +X + UY ). (3)

A key property of this construction is that L (UY ) = L (−UY ) by symmetry of UY ’s distribution, while
P(UY = −UY ) = 0. After simplification,

Y0 = (1− T ) · (T + UX + UY ) + T · (T + UX − UY ) = T + (1− 2T ) · UY + UX , (4)

Y1 = (1− T ) · (1 + T + UX − UY ) + T · (1 + T + UX + UY ) = (1 + T )− (1− 2T ) · UY + UX . (5)

Let us check the required assumptions using Equations (2) and (3). Firstly, the pair (Y0, Y1) clearly sat-
isfies Y

a.s.
= (1−T )·Y0+T ·Y1. Secondly, for L (X)-almost every x ∈ R and any t ∈ T , P(T = t | X = x) =

ϕ(x−t)
ϕ(x)+ϕ(x−1) > 0 where ϕ is the density function of the centered Gaussian distribution with unit variance.
Therefore, positivity holds. Thirdly, L ((Y0, Y1) | X = x, T = 0) = L ((x+ UY , 1 + x− UY ) | X = x, T = 0)
by definition. Next, Lemma 4 ensures that UY ⊥⊥ (T,X), thereby L ((Y0, Y1) | X = x, T = 0) = L ((x+ UY , 1 + x− UY )) =
L ((x− UY , 1 + x+ UY )) since L (UY ) = L (−UY ). Then, notice that

L ((Y0, Y1) | X = x, T = 1)) = L ((x− UY , 1 + x+ UY )) = L ((Y0, Y1) | X = x, T = 0)

using once again UY ⊥⊥ (T,X). Therefore, cross-outcome conditional ignorability holds. To conclude,
verify from Equations (4) and (5) that E[Y0] = 1/2 while E[YT=0] = 0, and E[Y1] = 3/2 while E[YT=1] = 2.
Therefore, L (Yt) 6= L (YT=t) for any t ∈ T .

This proves the result with an R that satisfies cross-outcome conditional ignorability (Assumption 3).
We now show that the same holds when only single-outcome conditional ignorability (Assumption 4) is
true. To do so, we slightly modify the definition of Y0 in the above example while keeping Y1 identical.
Set Y0 := X+UY = T +UX +UY , so that E[Y0] = 1/2 again. Hence, we still have that L (Yt) 6= L (YT=t)
for any t ∈ T . Moreover, note that the consistency rule still holds. It remains to verify conditional
ignorability.

Let us check that single-outcome conditional ignorability does hold. For t ∈ T ,

L (Y0 | X = x, T = t) = L (x+ UY )

L (Y1 | X = x, T = t) = (1 − t) · L (1 + x− UY ) + t · L (1 + x+ UY ) = L (1 + x+ UY ) ,

due to UY ⊥⊥ (T,X) and L (UY ) = L (−UY ). From the above expressions and the fact that UY ⊥⊥ T , it
follows that Yt ⊥⊥ T | X for t ∈ T . We turn to proving that cross-outcome conditional ignorability does
not hold. By a similar calculus to before,

L ((Y0, Y1) | X = x, T = 0) = L ((x + UY , 1 + x− UY ))

L ((Y0, Y1) | X = x, T = 1) = L ((x + UY , 1 + x+ UY )) .

Therefore, L ((Y0, Y1) | X = x, T = 0) 6= L ((Y0, Y1) | X = x, T = 1). This concludes the proof.
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To summarize Section 4.1: whether it be at the variable or distributional level, with or without
the fundamental assumptions of causal inference, potential outcomes and structural counterfactuals are
not necessarily equal. Therefore, whatever the level of counterfactual reasoning, using (T,X, (Yt)t∈T )
and (T,X, (YT=t)t∈T ) interchangeably (as commonly done in the scientific literature) must be either the
manifestation of an arbitrary choice—a selection among all the pairs of equivalent causal models—or the
mathematical consequence of further assumptions. Notably, Proposition 2 demands strong hypotheses
on the potential outcomes but let the latent SCM almost unrestrained. This motivates a sharper analysis
of the conditions (in particular on the SCM) that could imply equivalence or on the contrary make it
impossible. This is precisely what the following subsection proposes.

4.2 Comparison of causal models in the causal-inference setting

In what follows, we aim at providing from a purely mathematical perspective a better understanding of
what renders (or not) an SCM and an RCM equivalent.

4.2.1 Structural assumptions

We start by introducing additional assumptions on the underlying SCM that will simplify the comparison
with an RCM. Let us denote by UT := UExo(T ), UX := UExo(X) and UY := UExo(Y ) the exogenous parents
of respectively T , X , and Y in the latent SCM M := 〈g, U〉. These notations have already been used
in the SCMs from the introductory example of Section 1.1.1 and from the proof of Proposition 2 (in the
specific case where T , X , and Y were all univariate). Then, we consider the following graphical conditions
on M:

Assumption 5 (Outcome). M is such that YEndo(T ) = YEndo(X) = ∅.

Assumption 6 (Independent random noises). M is such that Exo(Y )∩ (Exo(T ) ∪ Exo(X)) = ∅, which
means that UY ⊥⊥ (UT , UX).

Assumption 5 structurally defines the variable Y as the outcome; it changes in response to X and T
but not the contrary. Through Lemma 1, it permits to write











T
a.s.
= fT (X,UT ),

X
a.s.
= fX(T, UX),

Y
a.s.
= fY (T,X,UY ),

and











TT=t
a.s.
= t,

XT=t
a.s.
= fX(t, UX),

YT=t
a.s.
= fY (t,XT=t, UY ),

for any t ∈ T , where fT , fX and fY are measurable functions derived from g. The artificial cycle in these
formulas (i.e., X and T are both functions of each other) merely serves to consider all configurations of
causal links between T and X (see Figure 2); strictly, M satisfies Assumption 1.

Assumption 6 is a random-noise condition that notably holds in the widely-used class of SCMs referred
to as Markovian, where all the noises in (UExo(i))i∈I are mutually independent. As clarified by the
following lemma, this item guarantees that all potential confounders between T and Y—except T itself—
are included in X .

Lemma 4 (No hidden confounder). Let O := (T,X, Y ) be an observational vector. For any M ∈ MO

satisfying Assumptions 5 and 6, if UT , UX and UY denote the exogenous parents of respectively T,X and
Y in M, then UY ⊥⊥ (T,X).

Altogether, Assumptions 5 and 6 mean that the randomness of the outcome Y
a.s.
= fY (T,X,UY ) can

be causally interpreted by three sources: the direct effect of the treatment status T , the direct effect of
the covariates X , and any other possible effects UY independent to T and X .

4.2.2 Single-outcome comparison

Supposing that the underlying SCM satisfies the above assumptions, we derive theoretical results on the
single-outcome level of equivalence between causal models. To contrast at this level an RCM with the
SCM, we need a common basis to compare laws across them. The theorem below characterizes the law
of (T,X, Yt) for any t ∈ T through the latent SCM M under the fundamental assumptions of causal
inference, thereby enabling us to compare L ((T,X, Yt)) with L ((T,X, YT=t)).
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Theorem 1 (Single-outcome structural expression of potential outcomes). Let O := (T,X, Y ) be an ob-
servational vector satisfying positivity (Assumption 2), and M ∈ MO meet Assumptions 5 plus 6. Accord-
ing to Lemma 4, UY ⊥⊥ (T,X) where UY denotes the exogenous parents of Y in M. According to Lemma 1,

there exists a measurable function fY such that Y
a.s.
= fY (T,X,UY ) and YT=t

a.s.
= fY (t,XT=t, UY ) for any

t ∈ T . Then, for any R := (T,X, (Yt)t∈T ) ∈ RO satisfying conditional ignorability (Assumption 4),

L ((T,X, Yt)) = L ((T,X, fY (t,X, UY ))) ,

for any t ∈ T .

The proof combines the RCM single-outcome identification from Lemma 2 with the SCM expression
of Y from Lemma 1 to connect the two causal models at the single-outcome level.
Proof of Theorem 1 Let t ∈ T . Let F ⊆ T × R

d × R
p be a Borel set, and define the sets F (t′, x) :=

{y ∈ R
p | (t′, x, y) ∈ F} for every (t′, x) ∈ T × R

d. According to Lemma 2,

P((T,X, Yt) ∈ F ) =

∫

P(Y ∈ F (t′, x) | X = x, T = t)dP(X = x, T = t′). (6)

Additionally, according to Lemma 1 the pre-intervention and post-intervention outcomes can be written
as Y

a.s.
= fY (T,X,UY ) and YT=t

a.s.
= fY (t,XT=t, UY ). Therefore, for any t′ ∈ T and L (X)-almost any

x ∈ R
d,

L(Y | X = x, T = t) = L(fY (T,X,UY ) | X = x, T = t) = L(fY (t, x, UY ) | X = x, T = t).

Also, it follows from Assumptions 5 and 6 through Lemma 4 that UY ⊥⊥ (T,X), hence that L(fY (t, x, UY ) |
X = x, T = t) = L(fY (t, x, UY ) | X = x, T = t′). By continuing the above computation we therefore
have for any t′ ∈ T :

L(Y | X = x, T = t) = L(fY (t, x, UY ) | X = x, T = t′). (7)

Combining (6) with (7) leads to

P((T,X, Yt) ∈ F ) =

∫

P(fY (t, x, UY ) ∈ F (t′, x) | X = x, T = t′)dP(X = x, T = t′).

Finally,

P((T,X, Yt) ∈ F ) =

∫

P((T,X, fY (t,X, UY )) ∈ F | X = x, T = t′)dP(X = x, T = t′)

= P((T,X, fY (t,X, UY )) ∈ F ).

This means that L((T,X, Yt)) = L((T,X, fY (t,X, UY ))), which concludes the proof.

Remark 4 (Single-outcome expression vs. cross-outcome expression). Theorem 1 expresses for any
t ∈ T the marginal distribution L ((T,X, Yt)) with SCM-based quantities under single-outcome con-
ditional ignorability (Assumption 4), but does not provide a similar formula for the whole joint distri-
bution L ((T,X, (Yt)t∈T )). There is an explanation: L ((T,X, (Yt)t∈T )) 6= L ((T,X, (fY (t,X, UY ))t∈T ))
in general—even under cross-outcome conditional ignorability (Assumption 3). To prove this point, we
consider the same setting as the proof of Proposition 2, in which Assumptions 2, 3, 5 and 6 hold.

Using the SCM notations, fY (0, X, UY ) = X + UY and fY (1, X, UY ) = 1 + X + UY . It then fol-
lows from L (−UY ) = L (UY ) and Equations (2) and (3) that L (Y0) = L (fY (0, X, UY )) and L (Y1) =
L (fY (1, X, UY )), as anticipated by Theorem 1. However, L ((Y0, Y1)) 6= L ((fY (0, X, UY ), fY (1, X, UY ))).
It suffices to remark that L (fY (1, X, UY )− fY (0, X, UY )) = δ1 (the Dirac measure at 1) whereas L (Y1 − Y0) =
L (1 + 2(2T − 1) · UY ) 6= δ1 using Equations (4) and (5).

This remark is consistent with the point made in Remark 3 that we shall prove now. Continu-
ing the same example, we define the potential outcomes (Y

(1)
0 , Y

(1)
1 ) := (Y0, Y1) and (Y

(2)
0 , Y

(2)
1 ) :=

(fY (0, X, UY ), fY (1, X, UY )) along with their associated RCMs R(1) and R(2) in RO. Note that the pair
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(Y
(2)
0 , Y

(2)
1 ) clearly satisfies the consistency rule. Moreover,

L
(

(Y
(2)
0 , Y

(2)
1 ) | X = x, T = 0

)

= L ((x+ UY , 1 + x+ UY ) | X = x, T = 0)

= L ((x+ UY , 1 + x+ UY ) | X = x, T = 1)

= L
(

(Y
(2)
0 , Y

(2)
1 ) | X = x, T = 1

)

,

due to UY ⊥⊥ (T,X). Therefore, R(1) and R(2) both meet positivity and cross-outcome conditional
ignorability, but are not cross-outcome equivalent.

As such, Theorem 1 enables one to compare potential outcomes and structural counterfactuals at the
single-outcome level. It critically implies under the fundamental assumptions of causal inference that for
any t ∈ T :

L(Yt) = L(fY (t,X, UY )) and L(YT=t) = L(fY (t,XT=t, UY )). (8)

This result sheds light on Proposition 2: Yt and YT=t are not necessarily equal in law since L(X) 6=
L(XT=t) in general. Moreover, it furnishes sufficient conditions on the latent SCM for single-outcome
equivalence to hold. Observe that the probability distributions from Equation (8) are equal if: (1) X is
not altered by do-interventions on T , or (2) Y is not impacted by X . The following assumption captures
scenario (1), which is the most relevant in causal inference.

Assumption 7 (No posttreatment covariate). M is such that, TEndo(X) = ∅.

Assumption 7 together with Assumption 5 mean that X contains no descendant of T in M. It implies
that XT=t

a.s.
= X for any t ∈ T , which guarantees single-outcome equivalence under the assumptions of

Theorem 1.

Corollary 1 (Single-outcome equivalence under no posttreatment covariate). Let O be an observational
vector satisfying positivity (Assumption 2), M ∈ MO meet Assumptions 5 plus 6, and R ∈ RO satisfy
single-outcome conditional ignorability (Assumption 4). If Assumption 7 holds, then M and R are single-
outcome equivalent but not necessarily cross-outcome equivalent, even under cross-outcome conditional
ignorability (Assumption 3).

Proof of Corollary 1 Let t ∈ T . Under the considered assumptions, we have according to Theorem 1:
L ((T,X, Yt)) = L ((T,X, fY (t,X, UY ))). Moreover, recall that YT=t

a.s.
= fY (t,XT=t, UY ). If X contains

no descendant of T in M, then XT=t
a.s.
= X , leading to L ((T,X, Yt)) = L ((T,X, YT=t)).

We now turn to proving that cross-outcome equivalence does not necessarily hold, even under cross-
outcome conditional ignorability. To this end, we consider the following SCM:

T
a.s.
= UT ,

X
a.s.
= UX ,

Y
a.s.
= T +X + UY ,

where UT follows a Bernoulli distribution with parameter 1/2, UX is any R-valued random variable,
and UY follows a centered Gaussian distribution with unit variance, such that UT , UX and UY are
mutually independent. This model satisfies Assumptions 5, 6 and 7 by construction. By do-interventions,
YT=0

a.s.
= UX + UY and YT=1 = 1 + UX + UY . Next, define the potential outcomes as follows:

Y0 := (1 − T ) · (X + UY ) + T · (X − UY ) = UX + (1 − 2T ) · UY ,

Y1 := (1 − T ) · (1 +X − UY ) + T · (1 +X + UY ) = 1 + UX − (1− 2T ) · UY .

Let us verify the required assumptions. Firstly, the potential outcomes clearly satisfy consistency, that is
Y = (1− T ) · Y0 + T · Y1. Secondly, since T ⊥⊥ X , we have P(T = 1 | X) = P(T = 1) = 1/2 which entails
positivity. Thirdly, L((Y0, Y1) | X = x, T = 1) = L((Y0, Y1) | T = 1) because UY ⊥⊥ (T,X)

a.s.
= (UT , UX).

Additionally, L((Y0, Y1) | T = 1) = L((UX − UY , 1 + UX + UY )) = L((UX + UY , 1 + UX − UY )) since
L(UY ) = L(−UY ), and L((UX + UY , 1 + UX − UY )) = L((Y0, Y1) | T = 0) = L((Y0, Y1) | X = x, T = 0)
using again UY ⊥⊥ (T,X). Wrapping up: L((Y0, Y1) | X = x, T = 1) = L((Y0, Y1) | X = x, T = 0),
meaning that cross-outcome conditional ignorability holds according to the first part of the proof.
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Therefore, the causal models are single-outcome equivalent. To conclude that they are not cross-
outcome equivalent, note that L (Y1 − Y0) = L (1 + 2(2T − 1) · UY ) whereas L (YT=1 − YT=0) = δ1.

This result specifies a large class of SCMs that are single-outcome equivalent to an RCM meeting
positivity and conditional ignorability: those in which Y is a conditionally unconfounded outcome (As-
sumptions 5 plus 6) and T does not impact X (Assumption 7). If one of the these two sets of hypotheses
does not hold, then single-outcome equivalence is not guaranteed. We emphasize that Assumption 7 is
the most critical; Assumptions 5 plus 6 mainly serve to simplify the analysis (see Remark 6). Notably,
if Assumptions 5 and 6 hold but not Assumption 7, then P(XT=t 6= X) > 0 for some t ∈ T , and it
follows from Equation (8) that the invariance L (Yt) = L (YT=t) for any t ∈ T basically occurs in the
useless scenarios where fY does not really change in response to its X-input. Therefore, excluding these
pathological cases, Assumption 7 through Theorem 1 fully classifies single-outcome equivalence between
an SCM satisfying Assumptions 5 plus 6 and an RCM under the standard causal-inference regime.8 We
now turn to contextualizing this abstract comparison within real-world problems.

4.3 Interpretation

Section 4.2 explained under which mathematical conditions potential outcomes (Yt)t∈T in the causal-
inference setting and structural counterfactuals (YT=t)t∈T define—or not—the same single-outcome
causal estimands. In this section, we discuss these formal results from practical and conceptual per-
spectives, and exemplify the meaning of reasoning counterfactually with nonequivalent models.

4.3.1 A practical perspective on cases of (non)equivalence

Up until now, we adopted an analytical viewpoint where the models where abstract mathematical objects.
However, an SCM is not a mere detached tool; it is meant to genuinely capture the world’s functioning.
As such, practitioners do not decide the graphical relationships between endogenous variables themselves,
they are imposed by Nature. In contrast, an RCM introduces hypothetical counterfactual variables whose
interpretation may depend on the assumptions placed upon them. This critically signifies that single-
outcome equivalence between the true latent SCM and a potential-outcome model satisfying conditional
ignorability does not generically holds in many real-world problems, due to the dichotomy ruled by
Assumption 7.

To clarify this point, consider a problem where one relies on an RCM R ∈ RO equipped with positivity
and conditional ignorability to apply standard causal-inference techniques. They wonder whether this
model is equivalent to the underlying SCM M ∈ MO, which is supposed to meet Assumptions 5 and 6.
Answering this question amounts to translating the pivotal causal-ordering assumption between T and
X (Assumption 7) and its negation into common language.

Assumption 7 basically signifies that the covariates are not altered by the treatment, as illustrated in
Figure 2a. Notably, this configuration encompasses various typical causal-inference scenarios: in clinical
trials, the covariatesX (sometimes called pretreatment variables) may influence the treatment allocation T
but never the contrary. In these common situations, both the RCM and the SCM produce the same single-
outcome counterfactuals due to Corollary 1. In particular, E[Y1 − Y0 | X = x] = E[YT=1 − YT=0 | X = x].
We crucially remind that equivalence does not necessarily hold at the cross-outcome level (as also stated
in Corollary 1).

Importantly, the negation of Assumption 7—which states that T is a parent of several (or even all)
covariates in M—is also mathematically possible. Figures 2b and 2c illustrate the possible causal graphs.
In these situations, Theorem 1 does not guarantee single-outcome equivalence. Consequently, confusion
between the two causal approaches can lead to misleading results: according to Equation (8), the RCM
considers counterfactual outcomes at fixed X , whereas the SCM alters the covariates into XT=t. These
cases are empirically relevant, since people also rely on causal inference outside the scope of clinical
trials, in settings where the treatment impacts the covariates. For example, T drives X but not the
contrary (as in Figure 2c) in emblematic causal problems such as the Berkeley’s admission paradox
where T represents the sex and X the course choice [Bickel et al., 1975]. This is more generally true

8A similar “almost-true” equivalence between a graphical condition like Assumption 7 and its structural implications
was already discussed in [Pearl, 2009, Section 7.4], where the so-called graphical and counterfactual criteria of exogeneity
coincide after excluding incidental cases.
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X

YT

(a) No posttreatment covariate

Xen

Xex

YT

(b) Pre and posttreatment covariates

X

YT

(c) No pretreatment covariate

Figure 2: Three possible configurations of the treatment in M under Assumption 5. Xex := XEndo(T )

denotes the parents of T in X while Xen are the remaining covariates. Exogenous variables are not
represented but Assumption 6 holds. A single node can represent several variables. In (a), T does not
impact X (Assumption 7); in (b), T may impact some X-variables and some X-variables may impact T ;
in (c), X does not impact T .

in the causal-fairness literature, where the variable to alter typically encodes an intrinsic feature like
the sex, the race, or the age of individuals (see for instance [Kusner et al., 2017, Chiappa and Isaac,
2019, Plecko and Meinshausen, 2020, Nilforoshan et al., 2022, Barocas et al., 2023] for machine-learning-
related research). Other scenarios, notably motivated by epidemiological research, include both pre and
posttreatment covariates (as in Figure 2b) [VanderWeele et al., 2014]. In these cases, the treatment often
represents an unstable characteristic of individuals like a habit (smoking) or a fluctuating biological factor
(obesity). Section 4.3.3 and Appendix A provide detailed illustrations of real-world-inspired problems
where Assumption 7 does not hold.

Remark 5 (No causation without manipulation). The “no causation without manipulation” principle
of Holland Holland [1986] states that the causal influence of immutable variables like a person’s race is
ill-defined since we cannot conceptualize an assignment mechanism for such a nonmanipulable status (in
contrast, for example, to allocating a medical treatment). There is a long-standing debate among causality
scholars on this topic. Some agree that this principle should be a general rule [Winship and Morgan, 1999,
Freedman, 2004, Berk, 2004, Greiner and Rubin, 2011], other argue that addressing nonmanipulable
causes is scientifically relevant and proposed interpretations of this practice [VanderWeele and Robinson,
2014, Glymour and Spiegelman, 2017, Pearl, 2018, 2019]. This question relates to the current discussion
around Assumption 7, illustrated by Figure 2, at two levels.

The first level is independent of the employed causal models. Manipulability is an experimental
concept that does not have a definite formal translation. In contrast, Assumption 7 is a formal condition
on the causal ordering between endogenous variables. As such manipulability and causal ordering do
not overlap, but they may intersect when approaching problems from a real-world standpoint, since
manipulable and immutable causes usually conform to different graphical configurations in practice. As
aforementioned, a manipulable medical treatment commonly corresponds to Figure 2a, an immutable
attribute like race commonly corresponds to Figure 2c, an unstable characteristic like being a smoker
commonly corresponds to Figure 2b.9 As such, some people consider that the “no causation without
manipulation” maxim implies that the covariates must be fixed, pretreatment variables only [Imbens,
2020, Section 4.1]. According to someone who follows this implication, it does not make sense to tackle
problems corresponding to Figures 2b and 2c, regardless of whether they work with an RCM or an SCM.

The second level opposes RCMs and SCMs. From a purely mathematical perspective, both causal ap-
proaches accept immutable causes: an RCM poses no formal constraints on its treatment variable, and any
endogenous variable of an SCM—whatever its graphical position—is eligible to do-interventions. However,
RCM analysts have traditionally precluded pretreatment covariates from their models [Imbens and Rubin,
2015], while SCM analysts have frequently applied do-interventions on variables with no endogenous par-

9It is usual but not necessary: an arguably nonmanipulable feature like height can be positioned as T in Figure 2a for
being a responder of sex; an arguably manipulable feature like chocolate consumption can be placed as T in Figure 2a for
having no determinant among the other studied endogenous variables.
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ents [Kusner et al., 2017, Chiappa, 2019, Plecko and Meinshausen, 2020]. According to someone who
deems that “no posttreatment covariate” specifically constrains RCMs, it does not make sense to compare
(as we did) an RCM with the latent SCM in the settings of Figures 2b and 2c.

We emphasize that our work does not focus on philosophical arguments: it neutrally analyzes the
literature. In particular, we do not contribute to the general debate on manipulability and do not argue
in favor or against including implications of Holland’s principle specifically in Rubin’s framework. From
this angle, we justify studying situations with posttreatment covariates and even comparing RCMs and
SCMs in such cases for theoretical and empirical reasons. Firstly, as aforementioned, there is nothing
that mathematically forbids to study these cases, be it with an RCM or an RCM. Therefore, address-
ing them is necessary to completely compare the two causal approaches. Secondly, many researchers
have actually relied on (or referred to) the potential-outcome framework to understand the influence of
immutable variables like sex, race, or biological factors [Li et al., 2017, Glymour and Spiegelman, 2017,
Khademi et al., 2019, Khademi and Honavar, 2020, Qureshi et al., 2020], typically placed like the treat-
ment in Figure 2c.10 Moreover, some references have presented side by side Rubin’s approach and Pearl’s
approach specifically in such contexts, notably in fairness problems [Barocas et al., 2023, Makhlouf et al.,
2024]. If we consider this corpus of the causal-inference literature to be admissible, then for the sake of
empirical relevance we must also compare RCMs and SCMs in cases possibly disobeying “no causation
without manipulation” or Assumption 7.

All in all, under the fundamental assumptions of causal inference, equivalence of single-outcome
counterfactuals across the two causal models depends on the relationships between the treatment and the
covariates, as described in Figure 2. What typically distinguishes the different configurations is the nature
of the so-called treatment. If the treatment can be assigned a posteriori (as in Figure 2a), then the two
notions of counterfactuals coincide. Otherwise (as in Figures 2b and 2c) structural counterfactuals and
potential-outcome counterfactuals are generically not equal. The concrete example from Section 1.1.1,
where the SCM fits Figure 2c and the potential outcomes of the RCM produce different causal estimands
than structural counterfactuals, epitomizes this point.

4.3.2 A conceptual perspective on cases of (non)equivalence

We now advance from the practical standpoint to a conceptual perspective. The fact that R and RM

are not necessarily single-outcome equivalent under the assumptions of Theorem 1 can be interpreted
as follows: (Yt)t∈T meeting conditional ignorability and (YT=t)t∈T obtained by do-interventions of T do
not carry the same counterfactual semantic. Said differently, their “had T been equal to t” do not mean
the same thing. This can similarly be understood as: (Yt)t∈T results from formally distinct interventions
than do-interventions on T . Beyond simply observing that these two approaches may produce distinct
outcomes, understanding their respective significations is crucial, since practitioners must be able to
explain and justify the estimands they aim to compute. We address this point by reminding some basics
of counterfactual reasoning in a broad sense.

Counterfactual reasoning can be defined as thinking about outcomes in hypothetical worlds where
some circumstances change from what factually happened while others are kept equal. Crucially, there is
not a single way of reasoning counterfactually.11 Each way notably depends on what is kept equal across
worlds. Theorem 1 outlines the difference in this regard between the potential-outcome framework under
the fundamental assumptions of causal inference and the structural account of counterfactuals. Recall
that under the required assumptions, for every t ∈ T

Y
a.s.
= fY (T,X,UY )

a.s.
= fY (T, fX(T, UX), UY ),

YT=t
a.s.
= fY (t,XT=t, UY )

a.s.
= fY (t, fX(t, UX), UY ),

L ((T,X, Yt)) = L ((T,X, fY (t,X, UY )) .

Compared to the factual outcome Y , structural counterfactuals differ in T but share the same back-
ground factors (UX , UY ) in an almost-sure sense, while potential outcomes differ in T but share the same

10Other articles, for instance [Bertrand and Mullainathan, 2004, Ridgeway, 2006, Gaebler et al., 2022], explicitly focus
on sex and race as perceived by a decider. Such a perception could depend on the covariates and not be immutable.

11This nonuniqueness can be appreciated through the seminal work of Lewis on counterfactual conditionals [Lewis, 1973a,b,
1979]. According to Lewis, the verification of counterfactual statements depends on the arbitrary choice of a similarity
relation.
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input variables (X,UY ) in a distributional sense. Said differently, up to measure-theoretic technicali-
ties, potential-outcome counterfactuals are ceteris paribus counterfactuals (i.e., all other things being
kept equal) with respect to all input variables—notably the covariates—whereas structural counterfac-
tuals are ceteris paribus counterfactuals with respect to all background factors—but mutatis mutandis
(i.e., after changing what must be changed) with respect to the covariates. According to Corollary 1,
these two conceptions of counterfactuals happen to coincide in settings like Figure 2a where there is no
posttreatment covariate. But essentially, they are different.

We emphasize that both definitions of counterfactuals are perfectly legitimate and bear causal inter-
pretations. However, they convey distinct meanings and thereby correspond to different causal effects.
Therefore, they should not be employed for the same purpose. Let us illustrate this aspect on a concrete
case.

4.3.3 Illustration: an immutable treatment and two different kinds of counterfactuals

We conclude Section 4 by exemplifying the mathematical, practical, and conceptual considerations of
the (non)equivalence results from Section 4.2.2. To do so, we compare RCMs and SCMs under the
assumptions of Theorem 1 in concrete examples that do not satisfy Assumption 7 so that single-outcome
equivalence does not hold. More precisely, in what follows we further study the motivating example from
Section 1.1.1 which corresponds to Figure 2c. For concision, we defer to Appendix A the analysis of a
scenario adapted to Figure 2b.

We firstly remind the example’s setting while properly defining the considered causal models. The
treatment status T indicates the gender; the covariate X quantifies the level of work experience; the out-
come Y evaluates a candidate’s application for some position. Suppose that the associated observational
vector O := (T,X, Y ) is ruled by the following SCM M ∈ MO:

T
a.s.
= UT ,

X
a.s.
= αT + UX ,

Y
a.s.
= X + βT + UY ,

where α and β are deterministic parameters. This model satisfies Assumption 5 and the negation of
Assumption 7 by design. Moreover, we suppose that positivity (Assumption 2) is true (for instance by
choosing UX inducing a Gaussian distribution), and that UY ⊥⊥ (UT , UX) so that Assumption 6 holds.
Finally, we set two potential outcomes (Y0, Y1) meeting the consistency rule, that is Y

a.s.
= (1−T )·Y0+T ·Y1,

and single-outcome conditional ignorability (Assumption 4). This defines R := (T,X, Y0, Y1) ∈ RO. Note
that all the assumptions of Theorem 1 are satisfied, and that the SCM fits Figure 2c.

We recall the estimands that an analyst working with R and an analyst working with RM respectively
obtain for the average causal effect of T onto Y conditional to X = x. The former analyst gets the
following CATE based on potential outcomes:

CATER(x) := E[Y1 − Y0 | X = x]

= E[(X + β + UY )− (X + UY ) | X = x]

= β.

This time, we applied Theorem 1 in the first step of the above calculus to illustrate that it gives the same
results as using Lemma 2 plus UY ⊥⊥ (T,X) like in Section 1.1.1. The latter analyst gets the following
CATE based on structural counterfactuals:

CATERM
(x) := E[YT=1 − YT=0 | X = x]

= E[(α + UX + β + UY )− (UX + UY ) | X = x]

= α+ β.

As noticed in Section 1.1.1, CATER 6= CATERM
if α 6= 0. Because these estimands are single-outcome

effects, we conclude that R and M are not single-outcome equivalent, as expected by the graphical
discussion from Section 4.3.1. Similar conclusions hold in settings with pre and posttreatment covariates
(Figure 2b), as demonstrated in Appendix A.
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Let us interpret in more details the obtained CATEs through the conceptual lens of Section 4.3.2.
Observe that CATER measures only the direct effect of the treatment in M: it completely ignores the
dependence of Y on T through X , as it involves only β. In contrast, remark that CATERM

measures the
total effect of the treatment: it takes into account the whole path of influence of T onto Y , involving both α
and β. This is due to the ceteris paribus/mutatis mutandis significations of the associated counterfactual
variables: by holding X fixed, (Y0, Y1) blocks information that does not flow directly from T ; by letting X
change, (YT=0, YT=1) captures also information that flows indirectly from T through X . From a fairness
perspective, CATER says that if β = 0, that is if T is not a direct cause of Y , then the application
process if fair; whether it is unfair towards men or women when β 6= 0 depends on the sign of β. In
contrast, CATERM

says that if β = −α, that is if the decision rule Y compensates the discrepancy of work
experiences X across genders T , then the application process is fair. Each analysis points out a different
notion of fairness: considering CATERM

as a fairness criterion suggests that recruiters should correct
societal inequalities by preferring women with potentially lower work experience but higher merit whereas
relying on the CATER suggests it is only explicitly including the gender in the decision-rule pipeline that is
unfair.12 Critically, if α 6= 0, practitioners mixing potential outcomes with structural counterfactuals could
reach contradictory conclusions on fairness. This is why having a clear understanding of the semantic
carried by the employed counterfactual outcomes is crucial. We conclude the section with additional
remarks raised by this example.

Remark 6 (About the structural assumptions). At the end of Section 4.2.2, we argued that the equiv-
alence between an RCM satisfying the fundamental assumptions of causal inference and the latent SCM
was mostly governed by Assumption 7 (no posttreatment covariate), while Assumptions 5 and 6 mainly
served to derive general results. Let us illustrate this point on the above example.

To emphasize the respective roles of Assumptions 5, 6 and 7, we consider the same setting but we
do not assume UY ⊥⊥ (UX , UT ) anymore. Consequently, Assumption 6 does not necessarily hold and UY

may depend on (T,X). This relaxation does not affect CATERM
which remains equal to α + β. As

Theorem 1 cannot be employed, we compute CATER via Lemma 2. This gives:

CATER(x) := E[Y1 − Y0 | X = x]

= E[Y | X = x, T = 1]− E[Y | X = x, T = 0]

= E[x+ β + UY | X = x, T = 1]− E[x + UY | X = x, T = 0]

= β + E[UY | X = x, T = 1]− E[UY | X = x, T = 0].

In comparison to before, the difference E[UY | X = x, T = 1] − E[UY | X = x, T = 0] can be nonzero.
Remark that, except in the very specific case where E[UY | X = x, T = 1] − E[UY | X = x, T = 0] = α
for L (X)-almost every x, we still have CATER 6= CATERM

. This means that R and RM are not
single-outcome equivalent when even when Assumptions 5 and 6 do not hold.

Remark 7 (Computing direct effects from an SCM). One can still define and compute CATER, that is
the direct effect, using an SCM M. We propose two different expressions of this quantity with structural
terms in the setup of the fairness illustration,

CATER(x) = E[(x + β + UY )− (x+ UY )],

= E[YT=1,X=x − YT=0,X=x], (9)

= E[YT=1 | XT=1 = x]− E[YT=0 | XT=0 = x]. (10)

Leveraging R instead of M permits to compute the direct effect without specifying M. In contrast, one
cannot always define and compute the total effect CATERM

from R. More generally, by expressing the
single-outcome expression of R in terms of M, Theorem 1 enables one to find SCM-based formulas of
effects derived from R under the fundamental assumptions of causal inference.

This remark also serves to precise a key message of the paper. Note that Equation (9) employs
interventions on (T,X), while Equation (10) employs interventions solely on T but involves the post-
intervention covariates. Critically, CATER cannot be written with (T,X, YT=0, YT=1) only. This means
that CATER is identifiable in M but not in RM. Therefore, one should not conclude from our results
that the effects derived from an RCM R in the causal-inference setting are in general incompatible with

12Such a differentiation is closely related to the notion of path-specific counterfactual fairness [Chiappa, 2019].
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the ones derived from the latent SCM M. What we show is that swapping the respective counterfactual-
outcome variables relative to T of these models, which amounts to exchanging R and RM, generally
defines distinct estimands. In other words, our work highlights a difference between potential outcomes
meeting classical assumptions and do-interventions on T in M, rather than between RCMs and SCMs
(see also Remark 10).

To sum-up, each each type of counterfactual variables has a different causal signification in this
immutable-treatment configuration, and therefore produces different causal estimands. This signifies
that the difference between frameworks does not amount to methodological considerations only. Analysts
and researchers should also justify the chosen model and its assumptions depending on the kind of causal
effects they want to compute. In the final section, we include the conceptual and practical divergences
between models pointed out by this illustration into a more comprehensive reflection.

5 Discussion

This section examines common practices in the causal-inference literature in light of the mathematical
differences between models explained in Section 4. Firstly, Section 5.1 clarifies the relation between
our contribution and the notorious formal equivalence between frameworks, unveiling a fundamental
dichotomy in the applications of potential outcomes. Secondly, Section 5.2 leverages this discussion to
provide recommendations on the exchange of potential-outcome and do notations.

5.1 On the formal equivalence between frameworks

As mentioned in the introduction, many articles interchangeably use the potential-outcome notation and
the do notation, invoking an “equivalence” between causal frameworks. This may seem paradoxical after
reading Section 4. In the following, we clarify this aspect. Then, we explain what a conflict between
models like Section 4.3.3 signifies to the relationship between SCMs and RCMs, and to how people
generally manipulate these models.

5.1.1 Structural representation and graphical translation

Recall that every M ∈ MO entails an RCM RM ∈ RO according to Lemma 3. Conversely, any R ∈ RO

can be represented by an SCM.

Proposition 3 (Structural representation). Let O be an observational vector. For any R ∈ RO, there
exists MR ∈ MO such that MR and R are almost-surely equivalent. We say that MR is a structural
representation of R.

This result can be seen as a variant of [Ibeling and Icard, 2024, Proposition 1] in our specific setting.
The expression structural representation is inspired from it.

Interestingly, if one chooses to define potential outcomes as structural counterfactuals from a struc-
tural representation, then Rubin’s causal framework and Pearl’s causal framework become two different
languages to talk about the same objects. In the RCM, assumptions for causal inference are generally
framed as conditional-independence restrictions on counterfactual variables (like Assumptions 3 and 4);
in Pearl’s causal framework, assumptions on causal relationships are generally framed in terms of graph-
ical conditions on factual variables (like Assumptions 5, 6 and 7). Both [Pearl, 2009, Chapter 7] and
[Richardson and Robins, 2013] focus on unifying these two mathematical languages by providing rules
for translating assumptions and theorems from one viewpoint to the other. This ensures what people
often refer as the logical or formal equivalence between frameworks. We crucially emphasize that, in con-
trast to the notions in Definition 6, this corresponds to an equivalence between formalisms—not between
given causal models. This formal equivalence notably allows analysts to work symbiotically with an RCM
R and a structural representation MR, or with an SCM M and its entailed RCM RM.

Remark 8 (Graphical interpretation of conditional ignorability). A classic translation rule is [Pearl et al.,
2016, Theorem 4.3.1], which states that if X meets the backdoor criterion relative to (T, Y ) in M [Pearl,
2009, Definition 3.3.1], then YT=t ⊥⊥ T | X for all t ∈ T : said differently, single-outcome conditional
ignorability holds in RM. This counterfactual interpretation of graphical conditions echoes Corollary 1.
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Our result states that if an SCM satisfies Assumptions 5, 6 and 7, then it is single-outcome equivalent
to an RCM such that Yt ⊥⊥ T | X for all t ∈ T (Assumption 4). The connection between [Pearl et al.,
2016, Theorem 4.3.1] and Corollary 1 follows from the fact that Assumptions 5, 6 and 7 (illustrated by
Figure 2a) entail that X meets the backdoor criterion relative to (T, Y ) in M.

Interestingly, the two results differ from their perspectives. Corollary 1 reframes Pearl’s translation
rule in terms of equivalence between presumably separated SCMs and RCMs. This change of viewpoint
helps understanding some unappreciated aspects of the formal equivalence, as discussed below.

5.1.2 Two aspects of the formal equivalence

There is no logical contradiction between the results from Section 4 and this formal equivalence. Never-
theless, our contribution highlights two overlooked features.

Firstly, Proposition 3 or [Ibeling and Icard, 2024, Proposition 1] simply allow to represent an RCM by
an SCM. Ultimately, defining potential outcomes as structural counterfactuals is a choice—it does not rest
on any proof. When Pearl writes Yt := YT=t in [Pearl, 2009, Equation 3.51], claiming that the operation
do(T = t) on the SCM gives a physical meaning to the vague “had T been t” of the potential outcome,
this is an arbitrary choice. As demonstrated by Propositions 1 and 2, naively looking at the definitions
of the Rubin’s causal framework and of Pearl’s causal framework, there is nothing that mathematically
constrains potential outcomes to coincide at any level with the structural counterfactuals of a chosen
SCM.13 What [Pearl, 2009, Chapter 7] and [Richardson and Robins, 2013] really show is that if potential
outcomes are chosen to be structural counterfactuals, then one can translate the assumptions made on
an underlying causal graph into assumptions on potential outcomes—not that they must be chosen as
such.

Secondly, even though there always exist theoretical structural representations of a given RCM R,
nothing guarantees that they correctly capture the real-world causal dependencies. In other words, the
true SCM M may not represent R. Notably, Section 4.3.1 specifies situations where an RCM R tailored
to causal inference is not single-outcome equivalent to the true SCM M (as illustrated in Section 4.3.3),
which implies that it cannot be represented by M.

The fact that (1) using the formal equivalence is a choice and (2) applying the formal equivalence on
a predefined RCM may produce an SCM conflicting with the true one has important consequences on its
practicality that we discuss next.

5.1.3 Two fundamentally distinct paradigms for potential outcomes

An SCM is meant to correctly capture the cause-effect links between the variables of interest. This is why
no analyst deliberately works with an SCM that is apparently wrong. In particular, it does not make
sense to use an RCM R in synergy with a structural representation if the true SCM M itself does not
represent R. Who would axiomatize potential outcomes via do-interventions in a fake SCM? Under this
principle, two paradigms for defining and applying a potential-outcome model R coexist.

On the one hand, Pearl has firmly advocated for long to always use the potential-outcome framework
in symbiosis with an SCM. This rule induces a first paradigm which amounts to defining the RCM as R :=
RM where M is the true SCM. This means letting (Yt)t∈T = (YT=t)t∈T . In this approach, properties
of the potential outcomes (like conditional ignorability) do not come from fundamental assumptions but
follow from hypotheses made on M, generally framed as graphical conditions (recall Remark 8). Note
that this forbids the practice from Section 4.3.3 where we employed R satisfying conditional ignorability
whereas Assumption 7 did not hold in M. According to Pearl, a key interest of this approach comes
from the fact that conditional-independence assumptions of RCMs are hard to interpret, while the causal
graph and structural equations of an SCM form an intelligible formalization of scientific knowledge from
which such assumptions can be derived and justified. We refer to [Pearl, 2009, Section 7.4] for his detailed
argumentation. Sections 4.3.2 and 5.1 underline that following this paradigm consists in making a specific
choice regarding the hypothetical interventions defining the potential outcomes, thereby regarding their
counterfactual semantics: it formally defines their “had T been t” as the operation do(T = t) in M which
changes the remaining endogenous variables accordingly.

13From a more philosophical angle, [Markus, 2021, Section 2.1] made a similar remark to argue that the two frameworks
were weakly equivalent rather than strongly equivalent.
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On the other hand, defining an RCM differently than by do-interventions on the true SCM is mathe-
matically doable, as shown several times throughout Section 4. Adopting this second paradigm does not
mean denying the formal equivalence between frameworks; it means not applying it. In this approach,
potential outcomes (Yt)t∈T are typically primitives of the model not necessarily derived from M (recall
Remark 2 and Figure 1): the analyst may directly place assumptions on R (like conditional ignorability)
regardless of what holds in RM. But they can also be derivatives of M (or of another type of models)
by other actions than do-interventions (see Remark 10). What characterizes the paradigm is essentially
not a matter of “primitive versus derivative”, rather the fact that potential outcomes are not axiomatized
by do-interventions on T in M. This construction implies that the structural representations of R may
differ from M and should thereby be ignored. The chosen (or derived) assumptions define the semantics
of the counterfactual statements associated to R. Recall that Section 4.3.2 notably showed that dressing
potential outcomes with conditional ignorability defines their “had T been t” as switching T into t while
keeping all remaining variables unchanged (at the single-outcome level). Other assumptions could give
other semantics. A methodological interest of this paradigm notably comes from the possibility to com-
pute the direct causal effects of treatments breaking Assumption 7 through statistical methods without
knowing M (as explained in Remark 7). This practice is perhaps controversial and philosophically debat-
able. Nevertheless, we point out that (even though it is generally implicitly done) not defining potential
outcomes as the true structural counterfactuals is actually something common in the scientific literature.
In Remark 5, we mentioned a series of articles leveraging the potential-outcome framework equipped
with the fundamental assumptions of causal inference to compute the effects of immutable characteris-
tics [Li et al., 2017, Glymour and Spiegelman, 2017, Khademi et al., 2019, Khademi and Honavar, 2020,
Qureshi et al., 2020, Makhlouf et al., 2024]. As explained in Section 4.3, in such cases R is generally not
even single-world equivalent to RM. This positions these works in the second paradigms. Therefore, if we
acknowledge them, then we must accept that unifying potential outcomes and structural counterfactuals
is not an obligation.

Remark 9 (About Holland’s principle in the second paradigm). Consider a practitioner who thinks that
“no causation without manipulation” applies to RCMs but not to SCMs, and thereby only follows the
second paradigm with no posttreatment covariate (Assumption 7). To them, Corollary 1 ensures that
whenever the potential-outcome framework can be applied, the employed RCM is at least single-outcome
equivalent to the latent SCM under Assumptions 5 and 6. This appear to rule out situations where
potential outcomes may not coincide with structural counterfactuals in the second paradigm, such as
the one from Sections 1.1.1 and 4.3.3 (and the one from Appendix A). Let us comment on this. Firstly,
even in cases like Figure 2a, cross-world or almost-sure equivalence is not guaranteed. This means that
substituting R by RM is generally incorrect at stronger counterfactual-reasoning levels. This is why
such a practitioner should still be careful. Secondly, as mentioned above, addressing a treatment not
satisfying Assumption 7 with an RCM meeting the fundamental assumptions of causal inference is both
theoretically possible and empirically done. This is why we discuss the implications of such a choice.

Remark 10 (About interventions and the true SCM in the second paradigm). We emphasize that adopt-
ing the second paradigm does not mean abandoning the true SCM M; it means ignoring the structural
representations of the RCM. The sole consequence of this approach is that the causal interpretation of
(Yt)t∈T possibly differs from the one of (YT=t)t∈T (as exemplified in Section 4.3.2). Said differently, the
second paradigm marks a tension between potential outcomes and do-interventions on T in M rather
than between potential outcomes and the model M itself. This echoes the conclusion of Remark 7.

Notably, one could define (Yt)t∈T through other types of interventions in M than do-interventions.
In particular, Theorem 1 shows that the single-outcome laws of R under the fundamental assumption of
causal inference do not necessarily result from a do-intervention on T in M, but rather from an action
that fixes T to t only in the equations corresponding to Y in M. We could for instance define the entailed
RCM of M via such an intervention to reconcile the two causal models at this level.

In the motivating example from Section 1.1.1, analyst M and analyst R respectively adopt the first
and second paradigms to define their counterfactual outcomes. As such, analyst M exploits the formal
equivalence between frameworks—not analyst R. It feels that Pearl’s rule to always leverage an SCM
as the axiomatic characterization of potential outcomes through do-interventions possibly made unclear
the existence of these two paradigms. We emphasize that we do not discuss which paradigm people
should follow. Instead, we neutrally classify what people actually do, and explain the implicit meaning

24



of these practices. All in all, each approach can be legitimate; what crucially matters is having a clear
understanding of the produced counterfactuals and being transparent about the choices made. If an analyst
aims to compute counterfactual estimands carrying a mutatis mutandis signification as defined by do-
interventions, then they should explicitly mention that they follow the first paradigm, and specify the
true SCM with at least the key graphical relationships. If an analyst aims to compute counterfactual
estimands carrying another signification, then they should explicitly mention that they follow the second
paradigm, and be clear about the counterfactual interpretation of their assumptions (e.g., ceteris paribus
via conditional ignorability). The following case must be avoided: an RCM analyst does not explicitly
define their model via a partially specified SCM, misinterprets the formal equivalence and hence wrongly
believes that their potential outcomes necessarily derive from do-interventions on the true SCM, therefore
computes distinct causal estimands than what they expected. In this sense, we conclude this article by
defending a more cautious use of notations.

5.2 On the exchange of notations

Following the conclusion of Section 5.1, this subsection discusses what researchers and practitioners should
do. More specifically, our suggestions do not concern the methods people use, but how they present their
approaches and their results. Concretely, we argue that exchanging the do notation and the potential-
outcome notation should be done with greater care than what is commonly done in the literature. A
notation is the identification of a mathematical object. Therefore, a same notation can be used for two
differently-defined objects just in case they are mathematically equal. In the first paradigm, where the
potential outcomes are chosen as the true structural counterfactuals, the notational exchange with the
do is valid; not in the second paradigm. In what follows, we examine books and articles referring to
the formal equivalence between causal frameworks in a confusing way, to underline the importance of
specifying and justifying the adopted paradigm as well as using adequate notations.14

For example, [Colnet et al., 2024, Section 5] commences with a potential-outcome model, and then
invoke the formal equivalence to substitute its notations by do notations. Because writing a “do” only
makes sense when there is an SCM involved, this exchange implicitly engages a structural representation
of their RCM. But recall that nothing guarantees that this structural representation corresponds at the
single-outcome level to the true SCM. In their case, everything works fine precisely because only settings
with no posttreatment covariate are considered, only single-outcome causal effects are studied, and their
RCM satisfies conditional ignorability. However, they never explicitly state Assumption 7 and even less
explain its crucial role. While this may seem harmless in practice, this could mislead people to wrongly
believe that this equivalence holds in general: it would generally not hold with posttreatment covariates
or at stronger counterfactual-reasoning levels. Even from a purely logical viewpoint, working in this
favorable scenario should not obviate proper justification to why L ((T,X, Yt)) = L ((T,X, YT=t)) for
every t ∈ T . We suggest two options to clarify [Colnet et al., 2024, Section 5]. The first is specifying
that the first paradigm is adopted to define the RCM, and explaining how its assumptions (conditional
ignorability) are derived from the true SCM (backdoor criterion). The second is specifying that the
second paradigm is adopted to define the RCM, and justifying why the RCM and the true SCM happen
to be single-outcome equivalent (Corollary 1). Replacing the potential-outcome notations of the RCM
with do notations only makes sense in the first option.

The case of [Barocas et al., 2023, Chapter 5] and Makhlouf et al. [2024] also demands caution. These
surveys introduce the two causal frameworks specifically in the context of fairness with identical no-
tations on counterfactual variables and suggest that the appropriate choice of framework is mostly a
matter of methodological considerations because of the formal equivalence. Additionally, they present
RCM-based inference techniques specifically relying on conditional ignorability. This feels pedagogically
dangerous. As repeated, in settings with posttreatment covariates—fairness problems typically—one can
generally not interchangeably manipulate the counterfactual outcomes of an RCM under the fundamental
assumptions for causal inference and the ones of the true SCM. Section 4.3.3 notably exemplified how
mixing the notations could lead to contradictory results. In such settings, SCM counterfactuals and RCM
counterfactuals correspond to different paradigms. Leveraging both paradigms in a same work requires
distinct notations to prevent confusion. This is particularly critical when the treatment may impact the
covariates.

14We do not suggest that these references contain erroneous claims, only that the presentation of specific aspects can be
misleading. Beyond that, we strongly recommend reading them.
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These examples underline that the formal equivalence in itself is not a correct justification for exchang-
ing do notations and potential-outcome notations in an RCM: the key argument is the paradigm followed
to define the RCM. Writing a “do” exclusively makes sense in studies clearly following the first paradigm.
Writing a potential-outcome notation is acceptable in both paradigms (since structural counterfactuals
are potential outcomes) but distinct notations are needed when relying on both paradigms for a same
problem.

To summarize Section 5, we think that the scope and implications of the formal equivalence be-
tween causal frameworks can be misleading. In particular, it does not mean that L((T,X, (Yt)t∈T )) =
L((T,X, (YT=t)t∈T )) in general; it means that such an exchange can hold if equivalent assumptions are
made across models. Supposing distinct axioms across models means giving distinct interpretations to
their respective counterfactual outcomes, which thereby relate to distinct causal interventions and causal
effects. This is why we recommend to present Rubin’s causal models and Pearl’s causal models as distinct
mechanisms for reasoning counterfactually that coincide under specific assumptions and choices, rather
than merely different perspectives.

6 Conclusion

In this paper, we superimposed Pearl’s causal framework and Rubin’s causal framework without presuppo-
sitions to show that structural counterfactual outcomes and potential outcomes do not necessarily coincide
at any levels of counterfactual reasoning. To furnish a thorough comparison at the most relevant level,
we expressed the laws of potential outcomes in terms of the latent SCM under classical causal-inference
assumptions. On the basis of this result, we gave a detailed interpretation of counterfactuals in each
causal framework, specifying when they entailed different conclusions. More specifically, counterfactual
inference with potential outcomes under conditional ignorability yields ceteris paribus counterfactuals
with respect to the covariates, whereas counterfactual inference with a do-intervention on an SCM yields
mutatis mutandis counterfactuals with respect to the covariates. If the cause of interest affects the co-
variates, these constructions are generally not equal in law. For these reasons, we call the community to
not interchangeably use the potential-outcome framework and do-interventions to define counterfactual
outcomes, unless the justification is explicitly made.

We emphasize that our contribution is not an argument in favor of using one causal model rather than
the other, or against the formal equivalence between frameworks. Instead of taking position or addressing
philosophical arguments, it highlights some facts: theoretically, one can perfectly define potential out-
comes as distinct to the true structural counterfactuals; empirically, researchers have actually (implicitly)
worked with potential outcomes defined as distinct to the true structural counterfactuals. Our work is
meant to shed light on the different mathematical choices that analysts can make when working with
counterfactual outcomes, and to precise their implications in order to prevent incorrect or ambiguous
conclusions in causal studies. In doing this paper, we hope to clarify the similarities and differences
between the two major causal approaches.
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A Illustration with pre and posttreatment covariates

Section 4.3.3 compared causal effects obtained with respectively potential outcomes under the causal-
inference regime and structural counterfactuals in a problem corresponding to Figure 2c. This section
makes the same comparison in the context of Figure 2b. It is meant to propose a real-world illustration
of Figure 2b, and to prove that nonequivalence does not generally hold in this case as well.

The following example (more precisely its graph) is inspired by Li et al. [2022]. The treatment status
T : Ω → {0, 1} indicates whether an individual is a smoker or not; a first covariate X1 : Ω → R represents
the expression of a gene, which is higher when the gene is more active; a second covariate X2 : Ω → R

quantifies blood pressure; the outcome Y : Ω → R evaluates a person’s health, a higher score meaning
a better health. Suppose that these variables are observed in the context of a medical study. Causal
analysts are task with assessing the effect of smoking onto health. Assume that the observational vector
O := (T,X, Y ) is ruled by the following SCM M ∈ MO:

T
a.s.
= 1{X1+UT>0},

X1
a.s.
= U1,

X2
a.s.
= αT + U2,

Y
a.s.
= γX1 −X2 + βT + UY ,

where α, β, γ are again deterministic parameters. Typically, α > 0 encodes that smoking increases blood
pressure, β < 0 represents the direct negative impact of smoking onto health, and γ < 0 describes a gene
that deteriorates health (and makes people more inclined to smoke). Using the notations of the paper:
X := (X1, X2) and UX := (U1, U2). As in the fairness illustration, the model satisfies Assumption 5 and
the negation of Assumption 7 by design. Moreover, as before we suppose that positivity (Assumption 2)
is true and that UY ⊥⊥ (UT , UX) so that Assumption 6 holds. Note that the SCM fits Figure 2b; the exact
graph is more precisely depicted in Figure 3. Finally, we set two potential outcomes (Y0, Y1) meeting
the consistency rule, that is Y

a.s.
= (1 − T ) · Y0 + T · Y1, and single-outcome conditional ignorability

(Assumption 4). This defines R := (T,X, Y0, Y1) ∈ RO. All the assumptions of Theorem 1 are satisfied.
Let us compute the estimands that an analyst working with R and an analyst working with RM

respectively obtain for the average causal effect of T onto Y conditional to X = x:

CATER(x) := E[Y1 − Y0 | X = x]

= E[(γx1 − x2 + β + UY )− (γx1 − x2 + UY ) | X = x]

= β,

and

CATERM
(x) := E[YT=1 − YT=0 | X = x]

= E[(γ(XT=1)1 − (XT=1)2 + β + UY )− (γ(XT=0)1 − (XT=0)2 + UY ) | X = x]

= E[γ(XT=1 −XT=0)1 − (XT=1 −XT=0)2 | X = x] + β

= E[0 − (XT=1 −XT=0)2 | X = x] + β

= −E[(α + U2)− U2 | X = x] + β

= −α+ β.

In this configuration as well CATER recovers the direct effect of T in M, while CATERM
recovers

the total effect. This supports that CATER is a direct effect no matter the graph from Figure 2: it
comes from the counterfactual interpretation of fixing everything but the the treatment (Section 4.3.2).
Note that compared to the fairness illustration, there is a minus before α in the total effect due to X2

having a negative impact on Y . Additionally, both effects ignore the noncausal path from T to Y via
X1 quantified by γ. Most importantly, CATER 6= CATERM

if α 6= 0. As expected from the discussion
in Section 4.3.1, an RCM satisfying the fundamental assumptions of causal inference is generally not
single-world equivalent to the latent SCM when both pre and posttreatment covariates coexist.
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Figure 3: Causal graph of M in Appendix A. Linear coefficients are indicated on Figure 3b. Exogenous
variables are not represented but Assumption 6 holds.

B Remaining proofs

Proof of Lemma 1 Since M is acyclical, there exists a topological ordering on the indices in I with
respect to the parent-child relation, and therefore on the subset Ic. This means in particular that there
exist some indices j ∈ Ic such that gj takes only variables in VI as endogenous inputs. Starting from
these indices, and recursively substituting along the topological ordering produces a measurable fIc such
that

VIc
a.s.
= fIc(VEndo(Ic)\Ic , UExo(Ic)).

Note that Endo(Ic)\ Ic = Endo(Ic)∩I ⊆ I. Carrying out the same substitution on the intervened model
MVI=vI with solution Ṽ gives

ṼIc
a.s.
= fIc(vEndo(Ic)\Ic , UExo(Ic)),

while by definition ṼI
a.s.
= vI .

Proof of Lemma 2 Let t ∈ T . Positivity ensures that P(· | X = x, T = t′) is well-defined for L(X)-
almost every x ∈ R

d and any t′ ∈ T . Thereby, conditional ignorability entails that L(Yt | X = x, T = t) =
L(Yt | X = x, T = t′). Moreover, consistency implies that L(Y | X = x, T = t) = L(Yt | X = x, T = t).
All in all, for any t′ ∈ T :

L(Yt | X = x, T = t′) = L(Y | X = x, T = t). (11)

Next, we use the above expression involving conditional distributions to obtain an expression for the joint
distribution of (T,X, Yt). Let F ⊆ T × R

d × R
p be a Borel set. We have,

P((T,X, Yt) ∈ F ) =

∫

P((t′, x, Yt) ∈ F | X = x, T = t′)dP(X = x, T = t′).

Then, we define the sets F (t′, x) := {y ∈ R
p | (t′, x, y) ∈ F} for every (t′, x) ∈ T × R

d (which are Borel
sets) so that

P((T,X, Yt) ∈ F ) =

∫

P(Yt ∈ F (t′, x) | X = x, T = t′)dP(X = x, T = t′)

=

∫

P(Y ∈ F (t′, x) | X = x, T = t)dP(X = x, T = t′),

where the last equality follows from (11). This concludes the proof.

Proof of Lemma 3 Let t ∈ T . By assumption, the random vector O := (T,X, Y ) is the solution to
an acylical SCM. We write UX and UY the exogenous parents of respectively X and Y . Therefore, by
partitioning O into T and (X,Y ), Lemma 1 guarantees the existence of a measurable function fX,Y such
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that

(X,Y )
a.s.
= fX,Y (T, UX , UY ),

(XT=t, YT=t)
a.s.
= fX,Y (t, UX , UY ).

Therefore, selecting the coordinates corresponding to Y furnishes a measurable function f̃Y such that

Y
a.s.
= f̃Y (T, UX , UY ),

YT=t
a.s.
= f̃Y (t, UX , UY ).

These expressions hold on a measurable set Ω∗ ⊆ Ω such that P(Ω∗) = 1. To conclude, simply observe
that for any ω ∈ Ω∗ such that T (ω) = t, we have

Y (ω) = f̃Y (t, UX(ω), UY (ω)) = YT=t(ω).

Proof of Lemma 4 By assumption, the random vector O := (T,X, Y ) is the solution to an acylical
SCM where UT , UX and UY denote the exogenous parents of respectively T , X and Y . Since additionally
YEndo(T ) = YEndo(Xi) = ∅ for every i ∈ {1, . . . , d} (Assumption 5), Lemma 1 ensures the existence of

a measurable function fT,X such that (T,X)
a.s.
= fT,X(UT , UX). Therefore, if UY ⊥⊥ (UT , UX) (Assump-

tion 6), then UY ⊥⊥ (T,X).

Proof of Proposition 3 Throughout the proof, we write Xi, Yi, and Yt,i for the ith component of
respectively X , Y , and Yt for any t ∈ T .

We start by finding a generative model for the RCM R := (T,X, (Yt)t∈T ) using a standard result from
probability theory: any Borel probability measure on a Polish space can be obtained by push-forward
of the uniform measure on [0, 1] denoted by Unif . This follows from the existence of a measurable
bijection with measurable inverse between any Polish space and R [Kechris, 2012, Theorem 15.6], and
the fact that any Borel probability measure on R can always be obtained by push-forward of Unif by its
generalized-inverse probability distribution function. As a consequence, there always exists a measurable
function ψ : [0, 1] → T × R

d × (Rp)N+1 such that L ((T,X, (Yt)t∈T )) = Unif ◦ψ−1. Thereby, there
exists a random variable U such that L (U) = Unif and (T,X, (Yt)t∈T )

a.s.
= ψ(U). We divide ψ into

ψ = (ψT , (ψXi
)di=1, (ψY0,i

)pi=1, . . . , (ψYN,i
)pi=1) and define ψX := (ψXi

)di=1 and ψYt
:= (ψYt,i

)pi=1 for any

t ∈ T . This enables us to write T
a.s.
= ψT (U), X

a.s.
= ψX(U), and Yt

a.s.
= ψYt

(U) for any t ∈ T .
Then, on the basis of ψ and U , we construct an SCM M := 〈U, g〉 that satisfies two properties: (1) M

is acyclical with solution (T,X, Y ), (2) YT=t
a.s.
= Yt for any t ∈ T . We define g := (gT , (gXi

)di=1, (gYi
)pi=1)

where gT := ψT , gXi
= ψXi

, and gYi
is given by (t, u) 7→ ψYt,i

(u). The associated structural equations cor-
rectly define T and X by definition of ψT and ψX . They also correctly define Y since the fact that (Yt)t∈T

satisfies the consistency rule means that Y
a.s.
=

∑

t∈T 1{T=t}ψYt
(U) =

∑

t∈T 1{T=t}gY (t, U) = gY (T, U)
where gY := (gYi

)pi=1. Additionally, g clearly does not represent cyclic relationships between variables.
Therefore, M := 〈U, g〉 belongs to MO. Moreover, do-interventions in this model produces for any t ∈ T ,
YT=t

a.s.
= gY (t, U) = ψYt

(U)
a.s.
= Yt. Therefore, RM and R are almost-surely equivalent. This concludes

the proof.
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