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On the (in)compatibility between potential outcomes and

structural causal models and its signification in counterfactual

inference

Lucas De Lara∗

Institut de Mathématiques de Toulouse, Université Paul Sabatier

Abstract

Most of the scientific literature on causal modeling considers the structural framework of Pearl and
the potential-outcome framework of Rubin to be formally equivalent, and therefore interchangeably
uses the do-notation and the potential-outcome subscript notation to write counterfactual outcomes.
In this paper, we agnostically superimpose the two causal models to specify under which mathematical
conditions structural counterfactual outcomes and potential outcomes need to, do not need to, can,
or cannot be equal (almost surely or law). Our comparison reminds that a structural causal model
and a Rubin causal model compatible with the same observations do not have to coincide, and
highlights real-world problems where they even cannot correspond. Then, we examine common
claims and practices from the causal-inference literature in the light of these results. In doing so, we
aim at clarifying the relationship between the two causal frameworks, and the interpretation of their
respective counterfactuals.

Keywords: causality, structural causal models, potential outcomes

1 Introduction

Understanding causation between phenomena rather than mere association is a fundamental scientific
challenge. Over the last decades, two mathematical frameworks using a terminology based on random
variables have become the gold standards to address this problem.

On the one hand, the notorious structural account of Pearl [2009] rests on the knowledge of a structural
causal model (SCM) which specifies all cause-effect equations between observed random variables (often
depicted by a graph). The interest of such equations comes from the possibility of carrying out do-
interventions : forcing a variable to take a given value while keeping the rest of the mechanism untouched.
More concretely, let T and Y be observed variables of the model such that we would like to understand
the downstream effect of T onto Y . Replacing the formula generating T by T = t for a given possible
value t ∈ T and propagating this change through the other equations defines the altered variable YT=t,
representing Y had T been equal to t.

On the other hand, the widely-used potential-outcome account of Rubin [1974] mathematically for-
malizes causal inference in clinical trials. Letting T denote a treatment status (e.g., taking a drug or not)
and Y an outcome of interest (e.g., recovering or not), a so-called Rubin causal model (RCM) postulates
the existence of potential outcomes (Yt)t∈T representing what the outcome would be were T equal to t
for any t ∈ T . The fundamental problem of causal inference [Holland, 1986] refers to the fact that in
practice we cannot observe simultaneously all the potential outcomes, rendering unidentifiable the causal
effect of T onto Y . Nevertheless, causal inference can still be achieved thanks to a mix of untestable
assumptions and statistical tools: adjusting on a set of available covariates X containing all possible
confounders between the treatment and the potential outcomes notoriously permits to identify the law
of counterfactual outcomes.
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Each of these causal theories enables one to carry out counterfactual reasoning, that is answering
contrary-to-fact questions such as “Had they taken the drug, would have they recovered?”: by applying
do-interventions on an SCM, one can compute the outcomes YT=t for all possible treatment statuses
t ∈ T ; using an RCM with appropriate hypotheses, one can infer the law of the every potential outcome
Yt. Both approaches involve variables describing counterfactual outcomes, more precisely outcomes had
the variable T taken a certain value. This naturally raises the question: are these outcome variables
equal (almost surely or in law) across frameworks? We believe the literature on causal inference to be
strongly misleading on this matter. A plethora of scientific books and survey papers interchangeably use
Pearl’s do-notation and the potential-outcome subscript notation to write outcomes after interventions,
suggesting that the corresponding definitions of counterfactuals are identical and differ only from theirs
perspectives [Imbens, 2020, Makhlouf et al., 2020, Neal, 2020, Barocas et al., 2023, Colnet et al., 2024].
To justify this, they often refer to Pearl, who argued that “the two frameworks can be used interchangeably
and symbiotically”.1 However, influential works on equivalences between the two causal frameworks have
mostly focused on translating conditional-independence restrictions into graphical assumptions instead
of actually proving whether counterfactual outcomes were strictly equal across models, or implicitly
addressed specific cases. Notably, both [Pearl, 2009, Chapter 7] and [Richardson and Robins, 2013]—
acclaimed references unifying both causal frameworks—consider ex nihilo the exchangeability of the two
notations.

In this paper, we essentially aim at clarifying in which sense using interchangeably two distinct
causal models is appropriate. To this end, we compare a potential-outcome model and a structural
causal model compatible with a same distribution of observations from an agnostic perspective. We
introduce three levels of comparisons, corresponding to different degrees of counterfactual reasoning, and
neutrally ask under which conditions the models are (un)distinguishable at these levels. This analysis
crucially reminds that the models are not mathematically bound to correspond, meaning that using them
symbiotically generally rests on a choice. Moreover, it classifies real-world scenarios where the models
can(not) be considered equivalent, depending on their respective assumptions. Then, we interpret the
counterfactual statements and causal effects respectively induced by (Yt)t∈T and (YT=t)t∈T when the
models do not coincide, and explain how such results relate to the formal equivalence between causal
frameworks accepted by the causal-inference community. Proofs of intermediary results are deferred to
Appendix B.

In a similar vein, Ibeling and Icard [2024] recently provided a in-depth theoretical comparison of the
two frameworks by adopting a neutral viewpoint, notably proving that a well-behaved RCM can always be
represented by structural causal model. Altogether, our contributions supplement their work by specifying
graphical assumptions that must satisfy an equivalent structural causal model, and by giving a real-world
interpretation to these assumptions. In particular, analyzing theoretical equivalence results through the
prism of practically relevant problems enables us to point out overlooked paradoxes in the causal inference
literature. On the basis of our results and discussions, we call the community to rigorously justify their
exchanges of notations across frameworks, as it could lead to misleading conclusions. In doing so, we
hope to further clarify the role of each causal modeling in the past, current, and future causal-inference
research.

2 Preliminaries

This section provides the necessary background on structural causal models and potential outcomes. It is
meant to keep the paper self-contained. Section 2.1 introduces generic mathematical notations; Section 2.2
presents Pearl’s causal framework; Section 2.3 explains Rubin’s causal framework.

2.1 Basic mathematical notations

Throughout, we consider a probability space (Ω,Σ,P) with Ω a sample space, Σ a σ-algebra, and P : Σ →
[0, 1] a probability measure. This space does not necessarily have a physical interpretation; it abstractly
represents the possible underlying states of the world. Crucially, it serves as the common mathematical
basis to define and compare random variables.

1http://causality.cs.ucla.edu/blog/index.php/2012/12/03/judea-pearl-on-potential-outcomes/
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A random variable W (including random vectors) is a measurable function from Ω to an Euclidean
space equipped with the Borel σ-algebra. It produces a probability distribution on its output space: we
write L(W ) := P ◦ W−1 and E[W ] :=

∫

W (ω)dP(ω) for respectively the law and expectation under P

of a random variable W . We emphasize that the laws of R-valued random variables can be completely
general in this paper; we do not suppose them to be either Lebesgue-absolutely continuous or discrete.
For any Borel set F , we use the common probability-textbook notation {W ∈ F} for the set {ω ∈

Ω | W (ω) ∈ F} ∈ Σ. Two variables W1 and W2 are P-almost surely equal, denoted by W1
a.s.
= W2, if

P(W1 = W2) = 1; they are equal in law under P, denoted by L(W1) = L(W2), if P(W1 ∈ F ) = P(W2 ∈ F )
for every Borel set F . The notation W1 ⊥⊥ W2 means that W1 and W2 are independent under P, that is
P(W1 ∈ F1,W2 ∈ F2) = P(W1 ∈ F1) · P(W2 ∈ F2) for all Borel sets F1, F2.

We denote by P(· | W = w) the regular conditional probability measure with respect to {W = w},
which exists and is unique for L (W )-almost every w. Then, whenever they are well-defined, we write
L(W2 | W1 = w1) := P(· | W1 = w1) ◦ W2

−1 and E[W2 | W1 = w1] :=
∫

W2(ω)dP(ω | W1 = w1) for
respectively the law and expectation of W2 conditional to W1 = w1. The expression W1 ⊥⊥ W2 | W3 means
that W1 and W2 are independent conditional to W3 under P, namely that W1 and W2 are independent
under P(· | W3 = w3) for L (W3)-almost every w3.

Moreover, for any tuple w := (wi)i∈I indexed by a finite index set I and any subset I ⊆ I we write
wI := (wi)i∈I . Similarly, we define the Cartesian product WI :=

∏

i∈I Wi for any collection of spaces
(Wi)i∈I .

2.2 Pearl’s causal framework

Pearl’s causal modeling mathematically formalizes associations that standard probability calculus cannot
describe through the notions of structural causal models and do-interventions [Pearl, 2009]. This section
recalls the basics on this topic, borrowing the introduction proposed in [Blom et al., 2020, Bongers et al.,
2021].

2.2.1 Structural causal models

A structural causal model (SCM) represents the causal relationships between the studied variables. It is
the cornerstone of Pearl’s causal framework.

Definition 1 (Structural causal model). Let I and J be two disjoint finite index sets, and write V :=
∏

i∈I Vi ⊆ R
|I|, U :=

∏

i∈J Ui ⊆ R
|J | for two measurable product spaces. A structural causal model M

is a couple 〈U,G〉 where:

1. U : Ω → U is a vector of mutually independent random variables, sometimes called the random
noise;

2. G = {Gi}i∈I is a collection of measurable R-valued functions, where for every i ∈ I there exist two
subsets of indices Endo(i) ⊆ I and Exo(i) ⊆ J , respectively called the endogenous and exogenous
parents of i, such that Gi is from VEndo(i) × UExo(i) to Vi.

2

A random vector V : Ω → V is a solution of M if for every i ∈ I,

Vi
a.s.
= Gi(VEndo(i), UExo(i)). (1)

The collection of equations defined by (1) and characterized by G and U are called the structural equations.

Such a model explains how some endogenous variables V , representing observed data, are generated
from exogenous variables U , describing background factors. The structural equations quantify the causal
dependencies between all these variables and are frequently illustrated by the directed graph with nodes
I ∪ J , and such that a directed edge points from node k to node l if and only if k ∈ Endo(l) ∪ Exo(l)
(we say in this case that k is a parent of l). For convenience, we make the common assumption that the
studied models are acyclic, which means that their associated graphs do not contain any cycles.

Assumption 1 (Acyclicity). M induces a directed acyclic graph.

2This definition tolerates that distinct endogenous variables share the same exogenous parents, that is Exo(i)∩Exo(i′) 6= ∅
for some i 6= i′. Therefore, the (UExo(i))i∈I are not necessarily mutually independent.
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Not only acyclicity simplifies the interpretation of causal dependencies, but it entails unique solvability
of the SCM: according to [Bongers et al., 2021, Proposition 3.4], Equation (1) admits a unique solution
up to P-negligible sets. We will abusively refer to such a solution as the solution of the SCM.

The purpose of causal structures is to capture the assumption that features are not independently
manipulable. As we detail next, they enable to understand the downstream effect of fixing some variables
to certain values onto nonintervened variables.

2.2.2 Do-intervention

A perfect (or deterministic) do-intervention is an operation forcing a set of endogenous variables to take
predefined values while keeping all the rest of the causal mechanism equal.

Definition 2 (Perfect do-intervention). Let M = 〈U,G〉 be an SCM, I ⊆ I a subset of endogenous
variables, and vI ∈ VI a value. The action do(I, vI) defines the modified model Mdo(I,vI) = 〈U, G̃〉 where

G̃ is given by

G̃i :=

{

((v′, u′) 7→ vi) if i ∈ I,

Gi if i ∈ I \ I.

Do-interventions preserve acyclicity, and therefore unique solvability. As a consequence, if V is the
solution of an acyclic M, one can define (up to P-negligible sets) its post-intervention counterpart Vdo(I,vI)

solution to Mdo(I,vI). It describes an alternative world where every Vi for i ∈ I is set to value vi. In the
rest if the paper, we simply write do(VI = vI) for the operation do(I, vI), and use the subscript VI = vI
to indicate results of this operation. For instance, we write MVI=vI for Mdo(I,vI) and VVI=vI for Vdo(I,vI).
Crucially, intervening does not amount to conditioning in general, that is L(V | VI = vI) 6= L(VVI=vI ).

The next proposition provides a general expression of the solution before and after intervention, and
will play a key role throughout this paper.

Lemma 1 (Do-calculus on variables). Let M = 〈U,G〉 be an SCM satisfying acyclicity (Assumption 1)
with solution V , and consider a partition {I, J} of I. There exists a deterministic measurable function
FJ such that

VJ
a.s.
= FJ (VEndo(J)\J , UExo(J)).

Moreover, for any intervention do(VI = vI) the solution Ṽ of MVI=vI verifies

ṼJ
a.s.
= FJ (vEndo(J)\J , UExo(J)),

ṼI
a.s.
= vI .

Importantly, this is the same deterministic function FJ that generates VJ and its post-intervention
counterpart ṼJ , the only change being the assignment VI = vI . Slightly abusing notations, we will
sometimes artificially extend the input variables of FJ to write VJ

a.s.
= FJ(VI , UExo(J)) and ṼJ

a.s.
=

FJ(vI , UExo(J)).

2.2.3 Counterfactual inference with structural causal models

Counterfactual inference aims at predicting outcomes had a certain event occurred given some factual
observations. Typically, it addresses what-if questions such as “Would I have been cured had I taken
medicine?”. Do-calculus combined with conditioning provide a natural probabilistic framework to address
counterfactual queries. Let for instance V := (T,X, Y ) be the solution to an acyclical SCM M :=
〈U,G〉.Pearl [2009] answers the question “had T been equal to t, what would have been the value of Y
given the factual context X = x?” by using the so-called three-step procedure:

1. (Abduction) compute L(U | X = x), the posterior distribution of U -values compatible with the
context {X = x};

2. (Action) carry out do-calculus on M to obtain the intervened causal mechanism GT=t of MT=t;

3. (Prediction) pass the posterior distribution L(U | X = x) through GT=t to generate the distribu-
tion L(YT=t | X = x) of counterfactual outcomes.

More generally, an SCM enables one to sample from probability distributions of counterfactual outcomes
for any choices of context, variables to alter by do-intervention, and outcomes of interest.
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2.3 Rubin’s causal framework

The potential-outcome framework, also known as Neyman-Rubin causal modeling [Neyman, 1923, Rubin,
1974], was designed to understand the causal effect of a treatment onto an outcome of interest, for instance
when one aims at assessing the contribution of a drug to recovering from some disease in clinical trials.
In this section, we introduce this widely-used framework in the specific case of a binary treatment.

2.3.1 Potential outcomes

Let T : Ω → {0, 1} represent a binary treatment status, typically such that T (ω) = 0 indicates the absence
of treatment and T (ω) = 1 indicates a treatment. More generally, it can encode any distinction between
some groups (e.g., men and women). Assuming no interference between units,3 this framework postulates
two potential outcomes Y0 : Ω → R and Y1 : Ω → R, one for each treatment status. These potential
outcomes as well as the treatment may depend on some covariates X : Ω → R

d (such as the patient’s
weight, height, or historical data in clinical trials). Critically, we cannot observe simultaneously Y0(ω)
and Y1(ω) for a same ω: a problem referred as the fundamental problem of causal inference [Holland,
1986]. We only have access to the realized outcome variable Y : Ω → R which is supposed to be consistent
with (Y0, Y1), that is satisfying Y = (1 − T ) · Y0 + T · Y1. Concretely, if T (ω) = 1 for some ω ∈ Ω, then
Y (ω) = Y1(ω), and Y0(ω) becomes unidentifiable by mere observations. In this case, Y1(ω) is called
the factual outcome while Y0(ω) is called the counterfactual outcome. We refer to the random vector
(T,X, Y0, Y1) as the Rubin causal model (RCM), which is an augmented version of (T,X, Y ) due to
consistency.

Understanding the causal relationship between the treatment and the outcome in this framework
consists in answering counterfactual questions such as “What would have been the value of Y (ω) had
T (ω) been equal to 1 instead of 0 for a specific ω (such that X(ω) = x)?”. This cannot be answered
since the value of either Y0(ω) or Y1(ω) will always be missing. Instead, in practice, one estimates and
compares under some assumptions features of L(Y1) and L(Y0), or L(Y1 | X = x) and L(Y0 | X = x).
People commonly focus on computing the average treatment effect E[Y1 − Y0] or the conditional average
treatment effect E[Y1 − Y0 | X = x]. The main challenge lies in the fact that association is not causation
in general. In particular, the quantity E[Y | T = t] does not necessarily coincide with the quantity
E[Yt] for t ∈ {0, 1}. Typically, if some medical treatment is more likely to be taken by weaker patients,
we may observe a lower rate of recovery among the treated group compared to the nontreated group
due to the health condition even though the medicine does increase recovery all other things being kept
equal: we would observe E[Y | T = 1] < E[Y | T = 0] while E[Y1] > E[Y0] (a phenomenon that can be
seen as a consequence of Simpson’s paradox [Blyth, 1972]). In this case, the health condition is called a
confounder : a variable associated with both the distribution of the treatment and the outcome. However,
causal inference from observational data is still possible, as explained next.

2.3.2 Counterfactual inference with fundamental assumptions

Estimating a feature of (T,X, Y0, Y1) under P, like a treatment effect, can be achieved by expressing it
in terms of (T,X, Y ) whose law generates the empirical observations. This requires two fundamental as-
sumptions. The first one goes by many names through the literature: conditional ignorability, conditional
exchangeability, conditional exogeneity, and conditional unconfoundedness (among others). Originally for-
mulated by Rosenbaum and Rubin [1983], it states that the potential outcomes are independent of the
treatment conditional to the covariates, that is Yt ⊥⊥ T | X for t ∈ {0, 1}.4 Said differently, it ensures
that all confounders between the treatment and the potential outcomes are included in the covariates.
Note that this assumption is untestable, as it would require to observe simultaneously the two potential
outcomes. The second key hypothesis is positivity, which ensures that all units can be exposed to both
treatment statuses, that is 0 < P(T = 1 | X = x) < 1 for L (X)-almost every x ∈ R

d. It readily follows
from positivity that the probability distribution L(Y | X = x, T = t) is well defined for L(X)-almost
every x ∈ R

d and every t ∈ {0, 1}, and from conditional ignorability that it coincides with L(Yt | X = x),

3Paraphrasing Rubin [2010], a unit refers to a study object (like a person). This assumption excludes cases where the
treatment of one unit may affect the outcome of another.

4There exist several versions of the conditional-ignorability assumption with slightly different implications. The original
formulation actually demands (Y0, Y1) ⊥⊥ T | X, which is stronger than Yt ⊥⊥ T | X for all t ∈ {0, 1}. Nevertheless, most
causal-inference methods only require the weaker form.
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meaning that association-based outcomes have a causal interpretation. Several statistical methods coexist
to estimate the (conditional) average causal effect, all building upon this implication (see for instance
[Imbens, 2004, Yao et al., 2021]). We do not detail them for concision and clarity since it is not the topic
of this paper. We only point out that, similarly to SCMs, the potential-outcome framework enables one
to carry out counterfactual inference.

3 Problem setup

This section precises the problem we address: analyzing the mathematical similarities and differences
between two models respectively derived from the two causal frameworks. Section 3.1 introduces a
potential-outcome model and a structural causal model compatible with a same dataset, and formalizes
the assumptions we may place upon them. Section 3.2 defines notions of equivalence between the two
models, corresponding to different levels of comparison.

3.1 Causal models and assumptions

Let N, d, p ≥ 1 be integers, and define three random variables T : Ω → T := {0, 1, . . . , N}, X : Ω → R
d,

and Y : Ω → R
p. We refer to the random vector (T,X, Y ) as the observational vector. In order to compare

the frameworks, we consider a superimposed construction where the observational vector concurrently
governed by an RCM and an SCM. We emphasize that we adopt an agnostic approach where there is no
presumed equivalence between the two causal models. This is meant to highlight when equality (possibly
in law) between potential and structural counterfactual outcomes is a mathematical necessity or the result
of specific assumptions.

3.1.1 Potential-outcome model

On the one hand, we assume that Y is the outcome of interest, T the treatment status, and X some
covariates in a potential-outcome framework. This amounts to postulating N +1 random vectors (Yt)t∈T

satisfying the consistency rule:

Y
a.s.
=

∑

t∈T

1{T=t}Yt.

For any t ∈ T , Yt is referred as the potential outcome had the treatment been equal to t. The random
vector (T,X, (Yt)t∈T ) characterizes the Rubin (or potential-outcome) model. Note that we address a more
general framework than in Section 2, considering a nonbinary treatment and a multivariate outcome. In
this setting, the first fundamental assumptions for causal inference can be written as follows.

Assumption 2 (Positivity). For all t ∈ T , and L (X)-almost every x, 0 < P(T = t | X = x) < 1.

Note that, strictly speaking, positivity in an hypothesis on the observational vector rather than
the RCM. But people typically suppose it in the context of potential outcomes. We distinguish two
formulations for the second fundamental assumption, namely conditional ignorability.

Assumption 3 (Cross-world conditional ignorability). (Yt)t∈T ⊥⊥ T | X.

Assumption 4 (Single-world conditional ignorability). For all t ∈ T , Yt ⊥⊥ T | X .

The single-world/cross-world vocabulary is inspired from [Richardson and Robins, 2013]. Note that
Assumption 3 implies Assumption 4. In our main results, we will clearly specify which form of conditional
ignorability is required.

3.1.2 Structural causal model

On the other hand, we assume that these variables are generated by a latent, unknown SCM: the random
vector V := (T,X, Y ) is the solution to an acyclical SCM M = 〈U,G〉 where UT , UX and UY denote the
exogenous parents of respectively T , X , and Y . Moreover, we suppose that M satisfies:

Assumption 5 (Outcome). G and U are such that:

(i) For all i ∈ {1, . . . , d}, YEndo(T ) = YEndo(Xi) = ∅;

6



(ii) UY ⊥⊥ (UT , UX).

The first item of Assumption 5 is a graphical condition that formally defines the variable Y as the
outcome; it changes in response to X and T but not the contrary. Through Lemma 1, it permits to write

T
a.s.
= FT (X,UT ),

X
a.s.
= FX(T, UX),

Y
a.s.
= FY (T,X,UY ),

where FX , FT and FY are deterministic measurable functions derived from G. The artificial cycle in these
formulas (i.e., X and T are both functions of each other) merely serves to consider all configurations of
causal links between T and X (see Figure 1); strictly, M satisfies Assumption 1. The following lemma
clarifies the role of second item in Assumption 5.

Lemma 2 (Random noise). Let V := (T,X, Y ) be the solution of an SCM M satisfying acyclicity
(Assumptions 1) and 5 where UT , UX and UY denote the exogenous parents of respectively T,X and Y .
Then UY ⊥⊥ (T,X).

It guarantees that all potential confounders between T and Y —except T itself—are included in X .
All in all, Assumption 5 simply means through Lemma 2 that the randomness of the outcome Y

a.s.
=

FY (T,X,UY ) can be divided into three sources: the direct effect of the treatment status T , the direct
effect of the covariates X , and any other possible effects UY independent to T and X .

To conclude this setup, recall that Lemma 1 also enables one to define for every t ∈ T the post-
intervention outcome under do(T = t) as

YT=t
a.s.
= FY (t,XT=t, UY ),

where the altered covariates are XT=t
a.s.
= FX(t, UX). We to refer to YT=t as the structural counterfactual

outcome had the treatment been equal to t. Similarly to potential outcomes, structural counterfactuals
satisfy the consistency rule.5

Lemma 3 (Consistency rule for structural counterfactuals). Let V := (T,X, Y ) be the solution of an
SCM M satisfying acyclicity (Assumptions 1).6 Then, (YT=t)t∈T verifies the consistency rule,

Y
a.s.
=

∑

t∈T

1{T=t}YT=t.

As a direct consequence of Lemma 3, structural counterfactuals form an RCM (T,X, (YT=t)t∈T ), since
the only requirement to be admissible potential outcomes is to follow the consistency rule. However, this
does not signify that (T,X, (YT=t)t∈T ) necessarily coincide (almost surely or in law) with (T,X, (Yt)t∈T ).
Addressing such comparisons between causal models is precisely the goal of this paper, as formalized
next.

3.2 Notions of equivalence between causal models

We aim at studying the mathematical similarities and differences between potential outcomes and struc-
tural counterfactuals from a theoretically neutral perspective. We consider three levels of comparison
that will guide our analysis throughout the paper.

Definition 3 (Equivalences between causal models). Let M := 〈U,G〉 be an SCM satisfying acyclicity
(Assumption 1) with solution V := (T,X, Y ). It induces via do-calculus the structural counterfactuals

(YT=t)t∈T . Additionally, let (Yt)t∈T be random variables verifying Y
a.s.
=

∑

t∈T 1{T=t}Yt. They define
the potential-outcome model (T,X, (Yt)t∈T ). We say that:

(i) the models are almost-surely equivalent if YT=t
a.s.
= Yt for any t ∈ T ;

5As explained by Pearl [2010], consistency is theorem for structural counterfactuals and a constitutive assumption for
potential outcomes.

6We point out that Assumption 5 is not required.

7



(ii) the models are cross-world equivalent if L ((T,X, (YT=t)t∈T )) = L ((T,X, (Yt)t∈T ));

(iii) the models are single-world equivalent if L ((T,X, YT=t)) = L ((T,X, Yt)) for every t ∈ T .

Remark that (i) =⇒ (ii) =⇒ (iii). The motivation for Definition 3 comes from different levels at
which people reason counterfactually.

The almost-sure level focuses on counterfactual questions at the scale of ω ∈ Ω. It asks (for example)
“What would have been the value of Y (ω) had T (ω) been equal to 1 instead of 0?”. The answer is
deterministic in both causal approaches, given by Y1(ω) in the potential-outcome framework and by
YT=1(ω) in the SCM. Should the models be almost-surely equivalent, the answer would be identical
for almost-every ω ∈ Ω. We emphasize that this level is methodologically inessential: in practice, one
does not have access to the random variables of the models themselves but to some realizations of their
laws. Nevertheless, comparing causal models on this almost-sure baseline is theoretically important to
completely understand their mathematical differences.

We now turn to the cross-world level. Because counterfactual questions at the scale of ω cannot be
answered, people rather address surrogate queries like “What would have been the value of Y had T
been equal to 1 instead of 0 given that X = x?”. In both causal approaches, the answer is generally
not deterministic (that is uniquely determined). Possible answers along with their probabilities are
respectively described by L (Y1 | X = x) (which can be estimated using the techniques mentioned in
Section 2.3.2) in the potential-outcome framework and by L (YT=1 | X = x) (which can be inferred via
the three-step procedure) in the SCM. More generally, all answers to imaginable counterfactual questions
in the structural framework and in the potential-outcome framework are respectively characterized by the
joint probability distributions L((T,X, (YT=t)t∈T )) and L((T,X, (Yt)t∈T )). Therefore, should the models
be cross-world equivalent, they would yield the same conclusions when reasoning counterfactually at this
level.

The single-world level resembles the cross-world level in the sense that it also focuses on distributions
of outcomes; it differs by being mathematically weaker. It is motivated by the fact that researchers
and practitioners predominantly ask counterfactual questions involving single counterfactual outcomes
instead of joint counterfactual outcomes, as in the above paragraph. As such, knowing only the marginal
laws {L((T,X, Yt))}t∈T and {L((T,X, YT=t))}t∈T suffices to answers most of the practically relevant
counterfactual queries. This is why it is arguably the most critical level in practice. For illustration,
consider average treatment effects like E[Y1 − Y0] or E[Y1 − Y0 | X = x], distributional treatment
effects like D(L (Y1) ,L (Y0)) or D(L (Y1 | X = x) ,L (Y0 | X = x)) where D is a discrepancy between
probability measures [Muandet et al., 2021, Park et al., 2021], or the counterfactual-fairness condition:
L (YT=t′ | X = x, T = t) = L (YT=t | X = x, T = t) for every t ∈ T [Kusner et al., 2017]. They all con-
cern the single-world level. Therefore, should the models be single-world equivalent, they would yield the
same results in these state-of-the-art methodologies.

To summarize, when two causal models compatible with a same observational vector verify an equiv-
alence condition from Definition 3, they can be used interchangeably at a certain level of counterfactual
reasoning. In the next section, we study from a purely mathematical perspective whether structural coun-
terfactuals and potential outcomes need to, do not need to, can, or cannot be equivalent under different
degrees of assumptions.

4 Main results

In this section, we compare the generic RCM and SCM introduced in Section 3.1 according to the three
levels presented in Section 3.2. More precisely, Section 4.1 firstly reminds that equivalence does not
necessarily hold whatever the level, then Section 4.2 identifies and studies cases where equivalence does
(not) hold at the single-world level.

4.1 Equivalence does not generally hold

We start by a crucial reminder justifying why it is relevant to compare the models at the aforementioned
levels: an RCM and an SCM compatible with a same observational vector (T,X, Y ) are not necessarily
equivalent.
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4.1.1 General case

The proposition below formalizes this claim in the most general scenario.

Proposition 1 (Equivalence is not necessary). Consider any SCM M := 〈U,G〉 satisfying acyclicity
(Assumption 1) with solution V := (T,X, Y ) such that 0 < P(T = t) for all t ∈ T . It defines via do-
calculus the structural counterfactual outcomes (YT=t)t∈T . Then, there exists random variables (Yt)t∈T

verifying Y
a.s.
=

∑

t∈T 1{T=t}Yt
a.s.
=

∑

t∈T 1{T=t}YT=t such that for any t ∈ T :

P(YT=t 6= Yt) > 0 and L (YT=t) 6= L (Yt) .

Therefore, M and (T,X, (Yt)t∈T ) are equivalent in none of the senses from Definition 3.

To introduce the proof of this result, we trace back to how potential outcomes and structural coun-
terfactuals are respectively defined. As noted by Pearl [2010], the two considered causal models differ
fundamentally in their constructions of counterfactual outcomes. The potential outcomes (Yt)t∈T are
“undefined primitives” of the RCM, not related to any formal of measurable quantities, while the inter-
vened outcomes (YT=t)t∈T are “derivatives” of the SCM by application of do-calculus. Said differently,
the firsts are inputs defining the causal model, whereas the seconds are post-intervention outputs defined
by the causal model.

Critically, this input/output difference is more than just conceptual. Because an input can be arbi-
trarily chosen whereas an output is a necessary consequence, it feels that we could easily find settings
where they are not equal. Of course, potential outcomes are not completely arbitrary: they must follow
the consistency rule, that is Y

a.s.
=

∑

t∈T 1{T=t}Yt. But this property does not fully characterize the
outcomes as there is no unique choice of (Yt)t∈T satisfying the consistency rule. More precisely, while
necessarily Yt(ω) = Y (ω) = YT=t(ω) on {T = t} for t ∈ T (up to P-negligible subsets) due to Lemma 3,
there is no constraint on Yt(ω) over Ω \ {T = t}; it could take any value over it without violating the
consistency rule. In contrast, YT=t is defined (almost) everywhere through the altered SCM MT=t. The
proof of Proposition 1 exploits this identification issue of potential outcomes: for any t ∈ T , Yt can be
any function on {T 6= t}, thereby can be chosen distinct to YT=t.
Proof of Proposition 1 Define the potential outcomes (Yt)t∈T as follows. For any t ∈ T ,

Yt := 1{T=t}YT=t + 1{T 6=t}(YT=t + y),

where y ∈ R
p is not the null vector. The tuple (Yt)t∈T satisfies the consistency rule according to Lemma 3.

Moreover, for any t ∈ T , Yt is not almost-surely equal nor equal in law to YT=t due to P(T 6= t) > 0 and
YT=t + y 6= YT=t.

It may seem counter-intuitive to design oneself the potential outcomes (as done in the proof and in
upcoming examples), since in practice they are externally imposed. We emphasize that Proposition 1 is
theoretically neutral, and only serves to remind that equality between counterfactual outcomes across
causal frameworks does not necessarily hold.

4.1.2 Causal-inference setting

Proposition 1 focuses on the most general setting where the potential outcomes verify only consistency.
Said differently, it simply shows that consistency alone is not enough to guarantee equality (almost-surely
or in law) between counterfactual outcomes. Nevertheless, people suppose most often that the potential
outcomes also satisfy conditional ignorability in order to apply causal-inference techniques. This raises
the question whether such an additional hypothesis could render the causal models equivalent. The next
theorem ensures that equivalence does not always hold even under the fundamental assumptions of causal
inference.

Proposition 2 (Equivalence is not necessary under the fundamental assumptions of causal inference).
There exists an SCM verifying acyclicity (Assumption 1) with solution V := (T,X, Y ) satisfying positivity
(Assumption 2), defining via do-calculus the structural counterfactual outcomes (YT=t)t∈T , and there exist

random variables (Yt)t∈T satisfying Y
a.s.
=

∑

t∈T 1{T=t}Yt and conditional ignorability (Assumption 3 or
Assumption 4) such that for any t ∈ T :

P(YT=t 6= Yt) > 0 and L (YT=t) 6= L (Yt) .

Therefore, M and (T,X, (Yt)t∈T ) are equivalent in none of the senses from Definition 3.
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One can readily understand why positivity and conditional ignorability cannot completely remedy the
identification issue of potential outcomes: they do not constrain the potential outcomes almost surely
but only in law. Therefore, an SCM is not necessarily almost-surely equivalent to an RCM in the causal-
inference setting. This advances us to comparing causal models at the single-world and cross-world levels.
Note that the fundamental assumptions of causal inference permit to fully determine the law of each
potential outcome: they entail that L(Yt | X = x) = L(Y | X = x, T = t) for any t ∈ T . But closer
examination of this distributional constraint shows that it does not suffice to make the two causal models
cross-world equivalent nor single-world equivalent.
Proof of Proposition 2 We address the specific case where T := {0, 1} and both X and Y are R-valued;
one can readily generalize the proof. Consider the following SCM:

T
a.s.
= UT ,

X
a.s.
= T + UX

Y
a.s.
= T +X + UY ,

where UT follows a Bernoulli distribution with parameter 1/2, while UX and UY both follow the centered
Gaussian distribution with unit variance, such that UT , UX and UY are mutually independent.

According to the rules of do-calculus, XT=t
a.s.
= t and YT=t

a.s.
= t+XT=t+UY for any t ∈ T . Therefore,

YT=0
a.s.
= UX +UY and YT=1

a.s.
= 2+UX +UY . Then, we write U ′

Y = −UY and define potential outcomes
as:

Y0 := (1 − T ) · (X + UY ) + T · (X + U ′
Y ),

Y1 := (1 − T ) · (1 +X + U ′
Y ) + T · (1 +X + UY ).

After simplification,

Y0 = (1− T ) · (T + UX + UY ) + T · (T + UX + U ′
Y ) = T + (1− 2T ) · UY + UX ,

Y1 = (1− T ) · (1 + T + UX + U ′
Y ) + T · (1 + T + UX + UY ) = (1 + T )− (1− 2T ) · UY + UX .

Let us check the required assumptions. Firstly, (Y0, Y1) clearly satisfy Y
a.s.
= (1−T )·Y0+T ·Y1. Secondly,

for L (X)-almost every x ∈ R and any t ∈ T , P(T = t | X = x) = 1
2
ϕ(x−t)
ϕ(x) > 0 where ϕ is the density

function of the centered Gaussian distribution with unit variance. Therefore, positivity holds. Thridly,
L ((Y0, Y1) | X = x, T = 0) = L ((x+ UY , 1 + x− UY ) | X = x, T = 0) by definition. Next, Lemma 2 en-
sures that UY ⊥⊥ (T,X), thereby L ((Y0, Y1) | X = x, T = 0) = L ((x+ UY , 1 + x− UY )) = L ((x+ U ′

Y , 1 + x− U ′
Y ))

since L (UY ) = L (U ′
Y ). Then, notice that

L ((Y0, Y1) | X = x, T = 1)) = L ((x+ U ′
Y , 1 + x− UY )) = L ((Y0, Y1) | X = x, T = 0)

using once again UY ⊥⊥ (T,X). Therefore, cross-world conditional ignorability holds.
To conclude the proof, note that:

L (Y0 | T = 0) = L (YT=0 | T = 0) ,

L (Y0 | T = 1) = L (1− UY + UX) 6= L (UY + UX) = L (YT=0 | T = 1) ,

L (Y1 | T = 1) = L (YT=1 | T = 1) ,

L (Y1 | T = 0) = L (1− UY + UX) 6= L (2 + UY + UX) = L (YT=1 | T = 0) .

Therefore, L (Yt) 6= L (YT=t) for any t ∈ T .

To summarize Section 4.1: whether it be at the variable or distributional level, with or without
the fundamental assumptions of causal inference, potential outcomes and structural counterfactuals are
not necessarily equal. Therefore, whatever the level of counterfactual reasoning, using (T,X, (Yt)t∈T )
and (T,X, (YT=t)t∈T ) interchangeably (as commonly done in the scientific literature) must be either the
manifestation of an arbitrary choice—a selection among all the pairs of equivalent causal models—or the
mathematical consequence of further assumptions. Notably, Proposition 2 demands strong hypotheses
on the potential outcomes but let the latent SCM almost unrestrained. This motivates a sharper analysis
of the conditions (in particular on the SCM) that could imply equivalence or on the contrary make it
impossible. This is precisely what the following subsection proposes.
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4.2 Comparison of causal models in the causal-inference setting

In what follows, we aim at providing through mathematical results and concrete illustrations a better
understanding of what renders (or not) an SCM and an RCM equivalent. In addition, we exemplify the
meaning of reasoning counterfactually with nonequivalent models.

4.2.1 Single-world identification

Let us start with some theoretical results focusing on the single-world level. To contrast two causal models
at this level, we need a common basis to compare laws across them. The theorem below characterizes the
law of every potential outcome through the latent SCM M under the fundamental assumptions of causal
inference, thereby enabling us to compare L (Yt) with L (YT=t) for any t ∈ T .

Theorem 1 (Single-world structural identification of potential outcomes). Let M = 〈U,G〉 be an SCM
satisfying acyclicity (Assumption 1) and Assumption 5 with solution V := (T,X, Y ) such that positivity
(Assumption 2) holds. Denoting by UY the exogenous parents of Y , there notably exists a deterministic

function FY such that Y
a.s.
= FY (T,X,UY ) where UY ⊥⊥ (T,X). Additionally, let (Yt)t∈T be random

variables such that Y
a.s.
=

∑

t∈T 1{T=t}Yt, and suppose that they verify single-world conditional ignorability
(Assumption 4). Then, for any t ∈ T ,

L ((T,X, Yt)) = L ((T,X, FY (t,X, UY ))) .

The key idea of the proof is leveraging the consistency rule, as it connects the potential outcomes and
the SCM through the variable Y which belongs to both causal models.
Proof of Theorem 1 We aim at expressing the conditional distribution L(Yt | X = x) in terms of
the latent SCM. Before all, recall that positivity ensures that L(Yt | X = x, T = t) is well-defined for
L(X)-almost every x ∈ R

d, and thereby conditional ignorability entails that L(Yt | X = x) = L(Yt | X =
x, T = t). Then, consistency implies that

L(Yt | X = x) = L(Y | X = x, T = t).

Moreover, according to M the observed outcome can be written as Y
a.s.
= FY (T,X,UY ), leading to

L(Yt | X = x) = L(FY (T,X,UY ) | X = x, T = t) = L(FY (t, x, UY ) | X = x, T = t). (2)

Also, it follows from Assumption 5 and Lemma 2 that UY ⊥⊥ (T,X). Therefore,

L(Yt | X = x) = L(FY (t, x, UY ))dP(X = x, T = t).

Next, let F ⊆ T × R
d × R

p be a Borel set. We have,

P((T,X, Yt) ∈ F ) =

∫

P((t, x, Yt) ∈ F | X = x, T = t).

By defining the Borel set F (x, t) := {y ∈ R
p | (t, x, y) ∈ F} we can write

P((T,X, Yt) ∈ F ) =

∫

P(Yt ∈ F (x, t) | X = x, T = t)dP(X = x, T = t)

=

∫

P(FY (t, x, UY ) ∈ F (x, t) | X = x, T = t)dP(X = x, T = t),

where the last equality follows from Equation (2). Finally,

P((T,X, Yt) ∈ F ) =

∫

P((T,X, FY (T,X,UY )) ∈ F | X = x, T = t)dP(X = x, T = t)

= P((T,X, FY (T,X,UY )) ∈ F ).

This means that L((T,X, Yt)) = L((T,X, FY (t,X, UY ))), which concludes the proof.
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Remark 1 (Single-world identification v.s. cross-world identification). Theorem 1 expresses for any
t ∈ T the marginal distribution L ((T,X, Yt)) with SCM-based quantities under single-world condi-
tional ignorability (Assumption 4), but does not provide a similar formula for the whole joint distri-
bution L ((T,X, (Yt)t∈T )). There is an explanation: L ((T,X, (Yt)t∈T )) 6= L ((T,X, (FY (t,X, UY ))t∈T ))
in general—even under cross-world conditional ignorability (Assumption 3). To prove this point, we
consider the same setting as the proof of Proposition 2, in which cross-world conditional ignorability
hold.

Using the SCM notations, FY (0, X, UY ) = X + UY and FY (1, X, UY ) = 1 +X + UY . It then follows
from L (U ′

Y ) = L (UY ) that L (Y0) = L (FY (0, X, UY )) and L (Y1) = L (FY (1, X, UY )), as anticipated
by Theorem 1. However, L ((Y0, Y1)) 6= L ((FY (0, X, UY ), FY (1, X, UY ))). It suffices to remark that
L (Y1 − Y0) = L (1 + 2(2T − 1) · UY ) whereas L (FY (1, X, UY )− FY (0, X, UY )) = δ1 (the Dirac measure
at 1).

As such, Theorem 1 enables one to compare potential outcomes and structural counterfactuals at the
single-world level. It critically implies under the fundamental assumptions of causal inference that for
any t ∈ T :

L(Yt) = L(FY (t,X, UY )) and L(YT=t) = L(FY (t,XT=t, UY )). (3)

This result illuminates Proposition 2: Yt and YT=t are not necessarily equal in law since L(X) 6= L(XT=t)
in general. Moreover, it furnishes sufficient conditions on the latent SCM for single-world equivalence to
hold. Observe that the probability distributions from Equation (3) are equal if: (1) X is not altered by
do-interventions on T , or (2) Y is not impacted by X . The following assumption captures scenario (1),
which is the most relevant in causal inference.

Assumption 6 (Fully controllable treatment). G and U are such that for all i ∈ {1, . . . , d}, TEndo(Y ) =
TEndo(Xi) = ∅.

Assumption 6 means that T has no endogenous parents. It implies that XT=t
a.s.
= X for any t ∈ T ,

which guarantees single-world equivalence under the assumptions of Theorem 1.

Corollary 1 (Single-world equivalence under fully controllable treatment). Let M = 〈U,G〉 be an SCM
satisfying acyclicity (Assumption 1) and Assumption 5 with solution V := (T,X, Y ) such that positivity

(Assumption 2) holds. Additionally, let (Yt)t∈T be random variables such that Y
a.s.
=

∑

t∈T 1{T=t}Yt, and
suppose that they verify single-world conditional ignorability (Assumption 4). If Assumption 6 holds then
M and (T,X, (Yt)t∈T ) are single-world equivalent but not necessarily cross-world equivalent, even under
cross-world conditional ignorability (Assumption 3).

Proof of Corollary 1 Let t ∈ T . Under the considered assumptions, L ((T,X, Yt)) = L ((T,X, FY (t,X, UY )))

according to Theorem 1. Moreover, recall that YT=t
a.s.
= FY (t,XT=t, UY ). If T is not a parent of X in

M, then XT=t
a.s.
= X , leading to L ((T,X, Yt)) = L ((T,X, YT=t)).

We now turn to proving that cross-world equivalence does not necessarily hold, even under cross-world
conditional ignorability. To this end, we consider the following SCM:

T
a.s.
= UT ,

X
a.s.
= UX ,

Y
a.s.
= T +X + UY ,

where UT follows a Bernoulli distribution with parameter 1/2, UX is any R-valued random variable, and
UY follows a centered Gaussian distribution with unit variance, such that UT , UX and UY are mutually
independent. According to the rules of do-calculus, YT=0

a.s.
= UX + UY and YT=1 = 1 + UX + UY . Next,

set U ′
Y := −UY and define the potential outcomes as follows:

Y0 := (1 − T ) · (X + UY ) + T · (X + U ′
Y ) = UX + (1 − 2T ) · UY ,

Y1 := (1 − T ) · (1 +X + U ′
Y ) + T · (1 +X + UY ) = 1 + UX − (1− 2T ) · UY .

Let us verify the required assumptions. Firstly, the potential outcomes clearly satisfy consistency, that is
Y = (1− T ) · Y0 + T · Y1. Secondly, since T ⊥⊥ X , we have P(T = 1 | X) = P(T = 1) = 1/2 which entails

positivity. Thirdly, L((Y0, Y1) | X = x, T = 1) = L((Y0, Y1) | T = 1) because UY ⊥⊥ (T,X)
a.s.
= (UT , UX).
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Additionally, L((Y0, Y1) | T = 1) = L((UX − UY , 1 + UX + UY )) = L((UX + UY , 1 + UX − UY )) since
L(UY ) = L(−UY ), and L((UX + UY , 1 + UX − UY )) = L((Y0, Y1) | T = 0) = L((Y0, Y1) | X = x, T = 0)
using again UY ⊥⊥ (T,X). Wrapping up: L((Y0, Y1) | X = x, T = 1) = L((Y0, Y1) | X = x, T = 0),
meaning that cross-world conditional ignorability holds.

Therefore, the causal models are single-world equivalent. To conclude that they are not cross-world
equivalent, simply note that L (Y1 − Y0) = L (1 + 2(2T − 1) · UY ) whereas L (YT=1 − YT=0) = δ1.

This result identifies a large class of SCMs that are single-world equivalent to an RCM verifying
positivity and conditional ignorability: those in which T does not impact X . This raises the question of
whether this graphical condition is necessary. Said differently: are there SCMs not satisfying Assump-
tion 6 but also single-world equivalent to such a potential-outcome model? The answer is yes, but in
actually useless configurations. Note that if T impacts X , then P(XT=t 6= X) > 0 for some t ∈ T ,
and it follows from Equation (3) that the invariance L (Yt) = L (YT=t) basically occurs if FY does not
really change in response to its X-input. Therefore, excluding these pathological cases, Assumption 6
through Theorem 1 fully classifies single-world equivalence under the standard causal-inference regime
of the potential-outcome framework. For simplicity, we will abusively say in the rest of the paper that
single-world equivalence holds with such an RCM only if Assumption 6 holds. 7 We now turn to injecting
this abstract comparison into real-world problems.

4.2.2 A practical perspective on cases of (non)equivalence

Up until now, we adopted a theoretical viewpoint where the models where abstract mathematical objects.
However, an SCM is not a mere impartial tool; it is meant to genuinely capture the world’s functioning.
As such, practitioners do not decide the graphical relationships between endogenous variables themselves,
they are imposed by nature. In contrast, an RCM introduces hypothetical counterfactual variables whose
interpretation may depend on the assumptions placed upon them. This critically signifies that single-
world equivalence between the true latent SCM and a potential-outcome model satisfying conditional
ignorability is impossible in many real-world problems, due to the dichotomy ruled by Assumption 6.

To clarify this point, consider a problem where one relies on an RCM equipped with positivity and con-
ditional ignorability to apply standard causal-inference techniques. They wonder whether this model is
equivalent to the underlying SCM (always supposed to verify Assumptions 1 and 5). Answering this ques-
tion amounts to translating the pivotal causal-dependency assumption between T and X (Assumption 6)
and its negation into common language.

X

YT

(a) Fully controllable treatment

Xen

Xex

YT

(b) Partially controllable treatment

X

YT

(c) Noncontrollable treatment

Figure 1: Three possible configurations of the treatment under Assumption 5. Xex := XEndo(T ) denotes
the parents of T in X while Xen are the remaining covariates. Exogenous variables are not represented.
A single node can represent several variables. In (a), T does not impact X ; in (b), T may impact some
X-variables and some X-variables may impact T ; in (c), X does not impact T .

Assumption 6 basically signifies that the covariates are not altered by the treatment, as illustrated in

7The “almost-true” equivalence between a graphical condition like Assumption 6 and its structural implications was
already discussed in [Pearl, 2009, Section 7.4], where the so-called graphical and counterfactual criteria of exogeneity
coincide after excluding incidental cases.
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Figure 1a. Notably, this configuration encompasses various typical causal-inference scenarios: in clinical
trials, the covariates X may influence the treatment allocation T but never the contrary. In these common
situations, both the RCM and the SCM produce the same single-world counterfactuals due to Corollary 1.
Nevertheless, recall that cross-world equivalence does not necessarily hold.

Importantly, the negation of Assumption 6—which states that T is a parent of several (or even all)
covariates in M—is also mathematically possible. Figures 1b and 1c illustrate the possible causal graphs.
In these situations, Theorem 1 does not guarantee single-world equivalence. Consequently, confusion
between the two causal approaches can lead to misleading results: according to Equation (3), the RCM
considers counterfactual outcomes at fixed X , whereas the SCM alters the covariates into XT=t. These
cases are empirically relevant, since people also rely on causal inference outside the scope of clinical trials,
in settings where the treatment cannot be completely manipulated and thereby impacts the covariates.
For example, T drives X but not the contrary (as in Figure 1c) in emblematic causal problems such as
the Berkeley’s admission paradox where T represents the sex and X the course choice [Bickel et al., 1975].
This is more generally true in the whole causal-fairness literature, where the variable to alter typically
encodes the sex, the race, or the age of individuals (see for instance [Kusner et al., 2017, Barocas et al.,
2023, Nilforoshan et al., 2022] for machine-learning-related research).

All in all, under the fundamental assumptions of causal inference, equivalence of single-world counter-
factuals across causal frameworks depends on the relationships between the treatment and the covariates,
as described in Figure 1. What distinguishes the different configurations is the nature of the so-called
treatment. In particular, if the treatment can be assigned a posteriori (as in Figure 1a), then the two
notions of counterfactuals coincide. If the treatment is an intrinsic feature (as in Figure 1c), such as indi-
viduals’ race or sex, then structural counterfactuals and potential-outcomes counterfactuals are generally
not equal. Section 4.2.3 below concretely exemplifies this point by studying an SCM corresponding to
Figure 1c.

4.2.3 Illustration: an immutable treatment and two different kinds of counterfactuals

Counterfactual reasoning can be defined as thinking about outcomes in hypothetical worlds where some
circumstances changes from what factually happened while others are kept equal. Crucially, there is not a
single way of reasoning counterfactually. Theorem 1 clearly shows that the potential-outcome framework
compares worlds sharing the same observed covariates X but differing in T , while the structural account
compares worlds sharing the same background factors U but differing in T . Said differently, potential-
outcome counterfactuals are ceteris paribus counterfactuals (i.e., all other things being kept equal) with
respect to the covariates, whereas structural counterfactuals are mutatis mutandis counterfactuals (i.e.,
after changing what must be changed) with respect to the covariates—but ceteris paribus with respect to
the background factors. We emphasize that both definitions are perfectly legitimate, but convey distinct
meanings and thereby correspond to different causal effects. Therefore, they should not be employed for
the same purpose. Let us illustrate their implications on a concrete case.

The following fairness-inspired example generalizes and circumstantiates the discussion from [Kusner et al.,
2017, Appendix S1]. The treatment status T indicates the gender, T (ω) = 0 standing for women and
T (ω) = 1 standing for men; the covariate X quantifies the level of work experience, a higher score en-
coding a richer experience; the outcome Y evaluates a candidate’s application for some position, a better
score giving a higher probability of acceptance. Suppose that these three variables are ruled by the
following SCM fitting Figure 1c:

T
a.s.
= UT ,

X
a.s.
= αT + UX ,

Y
a.s.
= X + βT + UY ,

where α and β are deterministic parameters quantifying the causal influence of T onto respectively X
and Y , and UX represents the hidden merit or effort of an individual. Typically, a positive parameter α
describes the societal inequalities leading women to have a lower level of work experience than men with
equal merit UX . Moreover, we suppose that positivity (Assumption 2) is true (for instance by choosing
UX inducing a Gaussian distribution), and that UY ⊥⊥ (UT , UX) so that Assumption 5 holds. Finally, we

set two potential outcomes (Y0, Y1) verifying the consistency rule, that is Y
a.s.
= (1− T ) · Y0 + T · Y1, and

single-world conditional ignorability (Assumption 4). Note the analogy with the proof of Proposition 2.
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We consider the problem of assessing the causal effect of T onto Y conditional to X = x. In the
potential-outcome approach this amounts to computing the conditional average treatment effect:

CATE(x) := E[Y1 − Y0 | X = x]

= E[(x + β + UY )− (x + UY )]

= β,

where one can either directly use Theorem 1 or go through L (Yt | X = x) = L (Y | X = x, T = t) and
UY ⊥⊥ (T,X) again. Observe that this first quantity measures only the direct effect of the treatment: it
completely ignores the dependence of Y on T through X , as it involves only β. This is due to the fact
that the CATE keeps the covariate X fixed, comparing two distinct levels of background factors with
identical profiles but different genders. In contrast, Pearl’s approach assesses the following structural
counterfactual effect:

SCE(x) := E[YT=1 − YT=0 | X = x]

= E[(XT=1 + β + UY )− (XT=0 + UY ) | X = x]

= E[XT=1 −XT=0 | X = x] + β

= E[(α + UX)− UX | X = x] + β

= α+ β.

Remark that this second quantity measures the total effect of the treatment: it takes into account the
whole path of influence of T onto Y , involving both α and β. This comes from the fact that the SCE
fixes the random seed U and not the covariates, comparing a same level of background factors in two
alternative realities where the gender is switched. Most importantly, CATE 6= SCE if α 6= 0: as expected
the causal models are not single-world equivalent.

From a fairness perspective, the CATE says that if β = 0, that is if T is not a direct cause of Y ,
then the application process if fair; whether it is unfair towards men or women when β 6= 0 depends
on the sign of β. In contrast, the SCE says that if β = −α, that is if the decision rule Y compensates
the discrepancy of work experiences X across genders T , then the application process is fair. Each
analysis points out a different notion of fairness: considering the SCE as a fairness criterion suggests that
recruiters should correct societal inequalities by preferring women with potentially lower work experience
but higher merit whereas relying on the CATE suggests it is only explicitly including the gender in the
decision-rule pipeline that is unfair. Critically, if α 6= 0, practitioners mixing potential outcomes with
structural counterfactuals could reach contradictory conclusions on fairness.

Remark 2 (Computing direct effects from an SCM). One can still compute the CATE, that is the direct
effect, using do-interventions on the SCM. Under the same assumptions as above,

E[YT=1,X=x − YT=0,X=x] = E[(x + β + UY )− (x+ UY )],

= β,

= CATE(x).

This is due to the fact that, more generally, L(YT=t,X=x) = L(Yt | X = x) under the fundamental
assumptions of causal inference. In contrast, one cannot always compute the SCE, that is the total
effect from potential outcomes. Besides, we point out that even though the CATE can be theoretically
derived from both a potential-outcome model and an SCM, the practical methods to estimate them from
data differ between approaches. In Rubin’s causal framework, one only needs to estimate E[Y | X =
x, T = t] (as it equals E[Yt | X = x]); in Pearl’s causal framework, one typically needs to learn the full
SCM beforehand (which is a notoriously difficult task), and then to apply the three-step procedure with
do(T = t,X = x). Further practical distinctions specific to positivity (Assumption 2) are discussed in
Appendix A.

To sum-up, each approach has a different signification in this immutable-treatment configuration, and
therefore corresponds to a specific way of reasoning counterfactually. This signifies that the difference
between frameworks does not amount to practical considerations only. Analysts and researchers should
also justify the chosen model depending on the kind of causal effects they want to compute. In the final
section, we include the conceptual and methodological divergences between models pointed out by this
illustration into a more comprehensive reflection.
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5 Discussion

This section examines common practices in the causal-inference literature in light of the mathematical
differences between models explained in Section 4. Firstly, Section 5.1 clarifies the relation between
our contribution and the notorious formal equivalence between frameworks, unveiling a fundamental
dichotomy in the applications of potential outcomes. Secondly, Section 5.2 leverages this discussion to
provide recommendations on the exchange of potential-outcome and do notations.

5.1 On the formal equivalence between frameworks

As mentioned in the introduction, many articles interchangeably use the potential-outcome notation
and the do notation, invoking an “equivalence” between causal frameworks. This may seem paradoxical
after reading Section 4. In the following, we explain what an example like Section 4.2.3 signifies to the
relationship between SCMs and RCMs, and to how people generally manipulate these models.

5.1.1 Structural representation and graphical translation

Recall that an acyclical SCM with solution (T,X, Y ) always defines an RCM (T,X, (YT=t)t∈T ) according
to Lemma 3. Conversely, any potential-outcome model (T,X, (Yt)t∈T ) as defined in Section 3.1 can be
represented by an SCM in the following sense: there exists an SCM with solution V = (T,X, Y ) such
that L ((T,X, (YT=t)t∈T )) = L ((T,X, (Yt)t∈T )) [Ibeling and Icard, 2024, Proposition 1]. In other words,
there always exists a cross-world equivalent SCM, referred to as a structural representation.

Interestingly, if one chooses to define potential outcomes as structural counterfactuals, then Rubin’s
causal framework and Pearl’s causal framework become two different languages to talk about the same ob-
jects. In the RCM, assumptions for causal inference are generally framed as conditional-independence re-
strictions on counterfactual variables (e.g., conditional ignorability); in Pearl’s causal framework, assump-
tions on causal relationships are generally framed in terms of graphical conditions on observational vari-
ables (e.g., backdoor criterion, see Remark 3). Both [Pearl, 2009, Chapter 7] and [Richardson and Robins,
2013] focus on unifying these two mathematical languages by providing rules for translating assumptions
and theorems from one viewpoint to the other. This ensures what people often refer as the logical or
formal equivalence between frameworks (not between models, in contrast to the notions in Definition 3).
It notably allows analysts to work symbiotically with an RCM and an SCM, as long as equivalent as-
sumptions are made across the models.

Remark 3 (Graphical interpretation of conditional ignorability). One of the most notorious translation
rule is [Pearl et al., 2016, Theorem 4.3.1], which states that if X verifies the so-called backdoor criterion
relative to (T, Y ) in M [Pearl, 2009, Definition 3.3.1], then YT=t ⊥⊥ T | X for all t ∈ T : said differ-
ently, single-world conditional ignorability holds for the structural counterfactuals. This counterfactual
interpretation of graphical conditions echoes Corollary 1. Our result states that if an SCM satisfies As-
sumptions 5 and 6, then it is single-world equivalent to an RCM such that Yt ⊥⊥ T | X for all t ∈ T
(Assumption 4). The connection follows the fact that the graphical conditions in Assumptions 5 plus 6
(illustrated by Figure 1a) entail that X verifies the so-called backdoor criterion relative to (T, Y ) in M.

Interestingly, the perspective offered by Corollary 1 reframes Pearl’s translation rules in terms of
equivalence between presumably separated SCMs and RCMs. This change of angle helps understanding
some grey areas of the formal equivalence, as discussed below.

5.1.2 Using the formal equivalence is a choice

There is no logical contradiction between the results from Section 4 and this formal equivalence. Never-
theless, our contribution highlights two overlooked features.

Firstly, [Ibeling and Icard, 2024, Proposition 1] simply allows to represent an RCM by an SCM.
Ultimately, defining potential outcomes as structural counterfactuals is a choice—it does not rest on any
proof. When Pearl writes Yt := YT=t in [Pearl, 2009, Equation 3.51], claiming that the operation do(T = t)
on the SCM gives a physical meaning to the vague “had T been t” of the potential outcome, this is nothing
more than an arbitrary choice. As demonstrated by Propositions 1 and 2, naively looking at the definitions
of the Rubin’s causal framework and of Pearl’s causal framework, there is nothing that mathematically
constrains potential outcomes to coincide at any level with the structural counterfactuals of a chosen
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SCM.8 We emphasize that [Pearl, 2009, Chapter 7] and [Richardson and Robins, 2013] show that if
potential outcomes are chosen to be structural counterfactuals, then one can translate the assumptions
made on potential outcomes into assumptions on the underlying causal graph and vice versa—not that
they must be chosen as such.

Secondly, even though there always exist theoretical structural representations of a given RCM, nothing
guarantees that they tangibly represent the real world. In particular, they could fail to describe the true
causal dependencies within (T,X, Y ). Notably, Section 4.2.2 reveals through the lens of Theorem 1
cases of incompatibility between an RCM tailored to causal inference and the true SCM. Basically—after
excluding the aforementioned useless configurations—the structural representation of a potential-outcome
model under the fundamental assumptions of causal inference must encode a fully controllable treatment
(Assumption 6).

5.1.3 Two fundamentally distinct paradigms for potential outcomes

We submit that the graph of an SCM is meant to correctly capture the cause-effect link between endoge-
nous variables. This notably requires ignoring the structural representation of an RCM whenever it does
not correspond to the true SCM. Under this principle, two paradigms for defining and applying potential
outcomes coexist (in the sense that there is no mathematical obstacle): in synergy with the true latent
SCM; as hypothetical outcomes whose structural representations may differ from the true latent SCM.
Before explaining them more precisely, we crucially emphasize that we do not discuss what people should
or should not do in this regard. Instead, we neutrally classify what people actually do, and explain the
implicit meaning of these practices.

On the one hand, Pearl has firmly advocated for long to always use the potential-outcome framework in
symbiosis with an SCM, as the latter enables to formulate its conditional-independence conditions deemed
nebulous in the intelligible language of causal graphs. We refer to [Pearl, 2009, Section 7.4] for a detailed
argumentation. In this paradigm, a condition on the potential outcomes like conditional ignorability does
not come from a fundamental assumption but possibly follows from a graphical condition on the SCM
(see Remark 3). In particular, this forbids the approach from Section 4.2.3 where the potential outcomes
satisfy conditional ignorability while Assumption 6 does not hold for the SCM. Semantically, modeling
potential outcomes through an SCM formally defines their “had T been t” as the operation do(T = t)
which changes the remaining endogenous variables accordingly.

On the other hand, disconnecting the two causal frameworks is mathematically doable, as detailed
in Section 4.2.3. In this paradigm, fundamental assumptions placed upon potential outcomes define the
semantics of their associated counterfactual statements. Recall that Theorem 1 notably showed through
Equation (3) that dressing potential outcomes with conditional ignorability defines their “had T been t” as
switching T into t while keeping the remaining endogenous variables unchanged. In problems where the
treatment is fully controllable, this interpretation happens to coincide at the single-world level with the do-
operator (due to Corollary 1). The methodological interest of this approach comes from the possibility
to compute the direct causal effects of noncontrollable treatments through statistical methods while
completely disregarding the latent SCM (like in Section 4.2.3). This practice is perhaps controversial
and philosophically debatable. Nevertheless, we point out that (even though it is generally implicitly
done) not defining potential outcomes as structural counterfactuals is actually something common in
the scientific literature. In particular, [Li et al., 2017, Glymour and Spiegelman, 2017, Khademi et al.,
2019, Khademi and Honavar, 2020, Makhlouf et al., 2020, Qureshi et al., 2020] rely on (or refer to) the
potential-outcome framework equipped the fundamental assumptions of causal inference to understand
the influence of a noncontrollable treatment like sex, race, and biological factors.9 Therefore, if we
consider this corpus of the causal-inference literature to be admissible and nonparadoxical, then we must
accept that unifying potential outcomes and structural counterfactuals is not an obligation. Finally, we
emphasize that even in this paradigm, the potential outcomes are not completely unaligned with the
true SCM. Theorem 1 literally interprets at the single-world level potential outcomes under conditional
ignorability through the structural equations. Such outcomes just do not necessarily result from a do-
intervention.

8From a more philosophical angle, [Markus, 2021, Section 2.1] made a similar remark to argue that the two frameworks
were weakly equivalent rather than strongly equivalent.

9Other articles, for instance [Ridgeway, 2006] and [Gaebler et al., 2022], explicitly focus on sex and race as perceived by
a decider. Such a perception could depend on the covariates, hence not be immutable.
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Remark 4 (No manipulation without causation). The “no causation without manipulation” principle of
Holland [1986] states that the causal influence of immutable variables like a person’s race is ill-defined
since we cannot conceptualize an assignment mechanism for such a nonmanipulable status (in contrast,
for example, to allocating a medical treatment). This notably led some researchers to consider full
controllability of the treatment to be a fundamental assumption of RCMs [Imbens and Rubin, 2010].
Adopting this rule, Corollary 1 ensures that whenever the potential-outcome framework can be applied,
the employed RCM is at least single-world equivalent to the latent SCM. This would mechanically rule
out several of the contentious points between frameworks that we discuss in this paper. However, we
recall that our work does not focus on philosophical arguments: it neutrally analyzes the literature. In
particular, we do not argue in favor or against including Holland’s principle in Rubin’s framework. Rather,
we acknowledge that many researchers actually study noncontrollable treatments using RCMs equipped
with the fundamental assumptions of causal inference, and discuss the implications of such a choice.

It feels that Pearl’s rule to always leverage an SCM as the axiomatic characterization of potential
outcomes through the do-operator possibly made unclear the existence of these two paradigms. Each
approach can be legitimate; what crucially matters is having a clear understanding of the produced coun-
terfactuals and being transparent about the choices made. In this sense, we conclude this article by
defending a more cautious use of notations.

5.2 On the exchange of notations

In contrast to Section 5.1, this subsection discusses what researchers and practitioners should do. More
specifically, our suggestions do not concern the methods people use, but how they present their approaches
and their results. Concretely, we argue that exchanging the do-notation and the potential-outcome
notation should be done with greater care that what is commonly done in the literature. A notation is
the identification of a mathematical object. Therefore, a same notation can be used for two differently-
defined objects just in case they are mathematically equal. In the first paradigm, where the potential
outcomes are chosen as the true structural counterfactuals, the notational exchange with the do is valid;
not in the second paradigm. In what follows, we examine books and articles referring to the formal
equivalence between causal frameworks in a confusing way, to underline the importance of specifying and
justifying the adopted paradigm.10

For example, [Colnet et al., 2024, Section 5] commences with potential-outcome notations and then
invoke the formal equivalence to substitute them by do notations. Implicitly, this exchange engages a
structural representation of their RCM which satisfies conditional ignorability. But recall that nothing
guarantees that this structural representation corresponds at the single-world level to the true SCM. In
their case, everything works fine precisely because only settings where the treatment is fully controllable
are considered. However, they never explicitly state Assumption 6 and even less explain its crucial
role. While this may seem harmless in practice, this could mislead people to wrongly believe that this
equivalence holds in general: it would would not hold with a noncontrollable treatment. Even from
a purely logical viewpoint, working in this favorable scenario should not obviate the need for proper
justification to why L ((T,X, Yt)) = L ((T,X, YT=t)) for every t ∈ T .

Another critical point concerns fairness settings where the treatment typically encodes sex or race. As
repeated, in these cases one cannot interchangeably manipulate an RCM under the fundamental assump-
tions for causal inference and the true SCM. Therefore, introducing the two causal frameworks specifically
in the context of fairness with identical notations and suggesting that the appropriate choice of frame-
work is mostly a matter of practical considerations, as done in Makhlouf et al. [2020] and [Barocas et al.,
2023, Chapter 5], feels pedagogically dangerous. Section 4.2.3 notably exemplifies how mixing the nota-
tions could lead to contradictory results. If one wants to exploit the practical convenience of the RCM
equipped with conditional ignorability in such fairness problems, then they must specify that they follow
the second paradigm, and that they are interested in computing direct causal effects. In contrast, if one
defines potential outcomes as the true structural counterfactuals in the same context, then E[Y1 − Y0]
and E[Y1 − Y0 | X = x] do not represent direct effects. This illustrates how critical it is to understand
the two paradigms.

To summarize Section 5, we think that the scope and implications of the formal equivalence be-
tween causal frameworks can be misleading. In particular, it does not mean that L((T,X, (Yt)t∈T )) =

10We do not suggest that these references contain erroneous claims, only that the presentation of specific aspects can be
misleading. Beyond that, we strongly recommend reading them.
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L((T,X, (YT=t)t∈T )) in general; it means that such an equality in law can hold if equivalent assumptions
are made on the counterfactual outcomes across models. Supposing distinct axioms across models means
giving distinct interpretations to their respective counterfactual outcomes, which thereby relate to distinct
causal effects. Critically, using an RCM to estimate direct causal effects (as commonly done) requires
assuming conditional ignorability, which cannot always be assumed in the true latent SCM due to the
possibly immutable nature of the treatment. This is why we recommend to present Rubin’s causal frame-
work and Pearl’s causal framework as distinct mechanisms for reasoning counterfactually that coincide
under specific assumptions and choices, rather than merely different perspectives.

6 Conclusion

In this paper, we superimposed Pearl’s causal framework and Rubin’s causal framework without presuppo-
sitions to show that structural counterfactual outcomes and potential outcomes do not necessarily coincide
at any levels of counterfactual reasoning. To furnish a thorough comparison at the most relevant level,
we expressed the laws of potential outcomes in terms of the latent SCM under classical causal-inference
assumptions. On the basis of this result, we gave a detailed interpretation of counterfactuals in each
causal framework, specifying when they entailed different conclusions. More specifically, counterfactual
inference with potential outcomes under conditional ignorability yields ceteris paribus counterfactuals
with respect to the covariates, whereas counterfactual inference with a do-intervention on an SCM yields
mutatis mutandis counterfactuals with respect to the covariates. If the cause of interest is immutable,
these constructions are generally not equal in law. For these reasons, we call the community to not inter-
changeably use the do-notation and the potential-outcome notation, unless the justification is explicitly
made.

We emphasize that our contribution is not an argument in favor of using one causal model rather than
the other, or against the formal equivalence between frameworks. Instead of taking position or addressing
philosophical arguments, it highlights some facts: theoretically, one can perfectly define potential out-
comes as distinct to the true structural counterfactuals; empirically, researchers have actually (implicitly)
worked with potential outcomes defined as distinct to the true structural counterfactuals. Thereby, our
work is meant to shed light on the different mathematical choices that analysts can make when working
with counterfactual outcomes, and to precise their implications in order to prevent incorrect or ambigu-
ous conclusions in causal studies. In doing this paper, we hope to clarify the similarities and differences
between the two major causal approaches.

A Nonequivalence in applicability

In this appendix, we further compare the two causal approach from a practical viewpoint. Summing-up: to
apply Pearl’s causal framework, one must postulate a plausible SCM or infer it from data to then carry out
do-calculus; to apply the Rubin’s causal framework, one must find a set of covariates believed to satisfy
conditional ignorability and then use statistical methods (e.g., matching, stratification, re-weighting,
regression) to estimate observable quantities with causal meanings. As such, the two approaches are
different in how they are applied; but there also exists a critical difference in when they can be applied
due to the positivity assumption. Let us detail this point, as it also concerns a distinction between
counterfactuals across frameworks.

Causal inference with an RCM requires two fundamental assumptions: conditional ignorability (As-
sumptions 4 or 3) and positivity (Assumption 2). While the second is testable in contrast to the first,
it raises practical issues. It basically states that the distributions L(X | T = t) for t ∈ T share the
same support, which is violated as soon as the groups represented by T bear unique properties. Con-
sider for example that we study individuals where T encodes their genders, and that the covariates X
specify their jobs (among other attributes). Positivity would not hold if gender-locked positions existed,
and consequently we could not identify the counterfactual outcome had she been a man of every woman
occupying a women-only job. In contrast, an SCM always allows such a computation. Therefore, there
exist problems where the two causal models cannot be simultaneously applied to carry out counterfactual
inference in practice. Not only the two kinds of counterfactuals should not be used for the same purpose
(as they provably have different significations), but they cannot always be used for the same tasks.

19



B Remaining proofs

Proof of Lemma 1 Since M is acyclical, there exists a topological ordering on the indices in I, and
therefore on the subset J . This means in particular that there exist some j ∈ J such that Gj takes only
variables in VI as endogenous inputs. Starting from these indices, and recursively substituting along the
topological ordering produces a measurable FJ such that

VJ
a.s.
= FJ (VEndo(J)\J , UExo(J)).

Note that Endo(J) \ J ⊆ I. Carrying out the same substitution on the intervened model MVI=vI with
solution Ṽ gives

ṼJ
a.s.
= FJ (vEndo(J)\J , UExo(J)),

while by definition ṼI
a.s.
= vI .

Proof of Lemma 2 By assumption, the random vector V := (T,X, Y ) is the solution to an acylical
SCM where UT , UX and UY denote the exogenous parents of respectively T , X and Y . Since addition-
ally YEndo(T ) = YEndo(X) = ∅, Lemma 1 ensures the existence of a measurable function FT,X such that

(T,X)
a.s.
= FT,X(UT , UX). Therefore, if UY ⊥⊥ (UT , UX), then UY ⊥⊥ (T,X).

Proof of Lemma 3 Let t ∈ T . By assumption, the random vector V := (T,X, Y ) is the solution to
an acylical SCM. We write UX and UY the exogenous parents of respectively X and Y . Therefore, by
partitioning V into T and (X,Y ), Lemma 1 guarantees the existence of a measurable function FX,Y such
that

(X,Y )
a.s.
= FX,Y (T, UX , UY )

(XT=t, YT=t)
a.s.
= FX,Y (t, UX , UY ).

Therefore, selecting the coordinates corresponding to Y furnishes a measurable function F̃Y such that

Y
a.s.
= F̃Y (T, UX , UY )

YT=t
a.s.
= F̃Y (t, UX , UY ).

These identities hold on a measurable set Ω∗ ⊆ Ω such that P(Ω∗) = 1. To conclude, simply observe that
for any ω ∈ Ω∗ such that T (ω) = t, we have

Y (ω) = F̃Y (t, UX(ω), UY (ω)) = YT=t(ω).
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