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A Triadic Generalisation of the Boolean Concept Lattice

Alexandre Bazin

LIRMM, CNRS, Université de Montpellier, FRANCE
alexandre.bazin@umontpellier.fr

Abstract. Boolean concept lattices are fundamental structures in formal concept
analysis, both from a theoretical and an applied point of view. There are multiple
ways to generalise them in the triadic concept analysis framework and one of
them, the so-called powerset trilattice, has already been proposed by Biedermann
in 1998. However, it lacks some interesting properties such as extremality in the
number of triconcepts for tricontexts of a given size. In this paper, we discuss
another generalisation of Boolean concept lattices that exhibit such properties.
We argue that those structures form equivalence classes and should be studied as
such, and investigate the minimum number of objects required to produce them.

Keywords: Formal Concept Analysis· Triadic Concept Analysis· Boolean lat-
tice.

1 Introduction

Formal Concept Analysis (FCA [9]) is a formalism that establishes a connection be-
tween classical binary data (crosstables) and the structure of concepts and rules that
can be found in said data. It is very powerful, if underutilised, as it offers well-studied
mathematical structures to be exploited by algorithms.

As crosstables are a rather limiting way of representing data, various extensions
of the formalism have been proposed to deal with more complex data, such as Pattern
Structures [7], Relational Concept Analysis [12], fuzzy FCA [11] or graph FCA [6].
Just like FCA, they are based on lattice theory [5].

Triadic Concept Analysis [10] is another such formalism that aims to extend FCA
to data in the form of ternary relations (i.e. tridimensional crosstables), and has the pe-
culiarity of involving trilattices instead of lattices. Such structures are much less studied
and many questions remain open (or waiting to be opened).

In this paper, we are interested in the tridimensional generalisation of the well
known Boolean concept lattices. There are multiple ways to generalise these structures
to the tridimensional case, one of them having been studied by Biedermann [3]. While
interesting in many aspects, these so-called powerset trilattices lack properties that are
of interest in pattern mining. For instance, Boolean concept lattices contain all possible
subsets of attributes as intents, i.e. all possible descriptions, making it the fundamental
search space for anything itemset-related. This is not the case of powerset trilattices
as its triconcepts do not contain all possible combinations of attributes and conditions.
Powerset trilattices are also not extremal in the number of triconcepts for tricontexts of
a given size.
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We thus discuss here another generalisation of Boolean concept lattices that exhibits
the properties we are looking for. In Section 3, we begin by arguing that the absence of
duality between the quasi-orders of a trilattice opens a new way to study these struc-
tures: as classes of trilattices sharing the same structure of “descriptions” of triconcepts.
In Section 4, we define the classes of trilattices generalising Boolean concept lattices,
and in Section 5 we discuss the minimum number of objects required to produce such
trilattices.

2 Formal and Triadic Concept Analysis

2.1 Formal Concept Analysis

We begin by presenting the essential notions of formal concept analysis. For an indepth
introduction to FCA, we refer the interested reader to the book [9]. A formal context is
a triple (O,A, I) where O is a set of objects, A is a set of attributes and I ⊆ O × A
is a binary relation between objects and attributes. We say that object o is described by
attribute a when (o, a) ∈ I. The description of the object o is thus a set of attributes.
Formal contexts can be represented as crosstables, as depicted in Fig. 1. A formal con-
text is said to be reduced when no row (resp. column) is empty, full of crosses or equal
to the intersection of other rows (resp. columns). We suppose in this paper that all con-
texts are reduced.

a1 a2 a3 a4 a5

o1 × ×
o2 × × ×
o3 × × ×
o4 × ×
o5 × ×

Fig. 1: A crosstable representing a formal context with five objects ({o1, o2, o3, o4, o5})
and five attributes ({a1, a2, a3, a4, a5}).

From a formal context, two derivation operators ·′ are defined such that

– ·′ : 2O → 2A, O 7→ O′ = {a ∈ A | ∀o ∈ O, (o, a) ∈ I}, and
– ·′ : 2A → 2O, A 7→ A′ = {o ∈ O | ∀a ∈ A, (o, a) ∈ I}.

A formal concept is a pair (E, I) ∈ 2O × 2A such that E = I ′ and I = E′. We
call E the extent of the concept while I is its intent. Concepts correspond to maximal
rectangles of crosses in the formal context, up to permutation of rows and columns.
Hence, another definition is that a formal concept is a pair (E, I) such that E × I ∈ I
and both components are maximal for this property. According to the basic theorem of
formal concept analysis, the set of formal concepts in a formal context ordered by the
inclusion relation on either their intents or extents forms a complete lattice called the
concept lattice of the context.
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(o1o2o3o4o5, ∅)

(o1o4, a1) (o1o2o3, a2) (o2o4, a3) (o2o3o5, a4)

(o1, a1a2) (o4, a1a3) (o2o3, a2a4) (o3o5, a4a5)

(o2, a2a3a4) (o3, a2a3a5)

(∅, a1a2a3a4a5)

Fig. 2: Concept lattice of the formal context depicted in Fig. 1.

The Boolean concept lattices are the concept lattices of contexts of the form (S, S, ̸=
) called contranominal scales. Fig. 3 depicts such a Boolean concept lattice for |S| = 3.
In a Boolean concept lattice, all subsets of attributes (resp. objects) are intents (resp.
extents) of concepts. As such, it contains 2|S| concepts.

1 2 3

1 × ×
2 × ×
3 × ×

(123, ∅)

(23, 1) (13, 2) (12, 3)

(3, 12) (2, 13) (1, 23)

(∅, 123)

Fig. 3: A Boolean concept lattice

2.2 Triadic Concept Analysis

Triadic concept analysis is the tridimensional generalisation of FCA introduced by
Lehman and Wille [10]. It has since then been further generalised to the n-dimensional
case by Voutsadakis [13] but this is outside the scope of this paper. In this setting, a
triadic context (or tricontext, or 3-context) is a triple (O,A, C, I) where the O is a set
of object, A is a set of attributes, C is a set of conditions and I ⊆ O×A×C is a ternary
relation between elements of the three dimensions. In this paper, we shall say that the
pairs (a, c) such that (o, a, c) ∈ I form the description of the object o. An example of
a triadic context is depicted in Fig. 4. For practical reasons that will be clarified later,
we represent the object dimension on the bottom of the figure so that the descriptions
of objects are visually represented as classical formal contexts.

A triadic concept (or triconcept, or 3-concept) is then a maximal tridimensional box
full of crosses, i.e. a triple (X1, X2, X3) such that X1 × X2 × X3 ⊆ I and the Xi

are maximal for this property. For instance, ({o1, o2}, {a1, a2}, {c1}) is a triconcept in
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c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × ×
a2 × ×
a3 × × × × ×

o1 o2 o3

Fig. 4: A triadic context ({o1, o2, o3}, {a1, a2, a3}, {c1, c2, c3}, I).

Fig. 4. We shall say that, in a triconcept (O,A,C), O is the extent while (A,C) is the
description of the triconcept. The set S of all triconcepts in a tricontext together with
the three quasi-orders

(X1, X2, X3) ≲i (Y1, Y2, Y3) ⇔ Xi ⊆ Yi, i ∈ {1, 2, 3},

forms a triadic lattice (or trilattice, or 3-lattice) L = (S,≲1,≲2,≲3) [4] called the
concept trilattice of the tricontext. A trilattice is a triordered set, i.e.:

– if ∀i ∈ {1, 2, 3} \ {j}, A ≲i B then A ≳j B (antiordinal dependency) and
– if ∀i ∈ {1, 2, 3}, A ∼i B, then A = B (uniqueness condition).

The duality of the two partial orders on extents and intents in the dyadic case is thus
lost in the triadic case. This has consequences that are discussed in the next section.

In [3], Biedermann proposed a first triadic generalisation of Boolean lattices called
powerset trilattices. They are the concept trilattices of tricontexts of the form

(S, S, S, S3 \ {(a, a, a) | a ∈ S}).

They contain 3|S| triconcepts (X1, X2, X3) that are such that X1 ∩X2 ∩X3 = ∅ and
Xi ∪ Xj = S for distinct i, j ∈ {1, 2, 3}. Fig 5 depicts such a powerset trilattice for
|S| = 3.

1 2 3 1 2 3 1 2 3

1 × × × × × × × ×
2 × × × × × × × ×
3 × × × × × × × ×

1 2 3

({1}, {1, 2, 3}, {2, 3}) ({1}, {2, 3}, {1, 2, 3}) ({2}, {1, 2, 3}, {1, 3})
({2}, {1, 3}, {1, 2, 3}) ({3}, {1, 2}, {1, 2, 3}) ({3}, {1, 2, 3}, {1, 2})
({1, 3}, {1, 2}, {2, 3}) ({1, 3}, {2, 3}, {1, 2}) ({2, 3}, {1, 2}, {1, 3})
({1, 2}, {2, 3}, {1, 3}) ({2, 3}, {1, 3}, {1, 2}) ({1, 2}, {1, 3}, {2, 3})
({2, 3}, {1, 2, 3}, {1}) ({1, 2}, {1, 2, 3}, {2}) ({1, 2}, {1, 2, 3}, {3})
({2, 3}, {1}, {1, 2, 3}) ({1, 3}, {2}, {1, 2, 3}) ({1, 2}, {3}, {1, 2, 3})
({1, 2, 3}, {1}, {2, 3}) ({1, 2, 3}, {2}, {1, 3}) ({1, 2, 3}, {3}, {1, 2})
({1, 2, 3}, {2, 3}, {1}) ({1, 2, 3}, {1, 3}, {2}) ({1, 2, 3}, {1, 2}, {3})
(∅, {1, 2, 3}, {1, 2, 3}) ({1, 2, 3}, ∅, {1, 2, 3}) ({1, 2, 3}, {1, 2, 3}, ∅)

Fig. 5: The tricontext and triconcepts of a powerset trilattice on three elements.
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3 The Loss of Duality in Triadic Concept Analysis

The biggest difference between the bidimensional and the tridimensional cases is that,
in a concept lattice, the partial order on extents is dual to the partial order on intents
whereas fixing two quasi-orders in a concept trilattice does not determine the third
quasi-order. This is exemplified in Fig 6 where two different tricontexts produce two
sets of triconcepts that have the same descriptions but different extents. The second and
third quasi-orders of both trilattices are thus isomorphic while the two first quasi-orders
are not.

c1 c2 c3 c1 c2 c3
a1 × × × ×
a2 × ×
a3 ×

o1 o2

c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × ×
a2 × ×
a3 ×

o1 o2 o3

(∅,{a1, a2, a3},{c1, c2, c3})
({o1, o2},∅,{c1, c2, c3})
({o1, o2},{a1, a2, a3},∅)
({o1},{a1},{c1, c2, c3})
({o1},{a1, a2, a3},{c1})

({o1, o2},{a1},{c1})
({o2},{a2},{c2})

(∅,{a1, a2, a3},{c1, c2, c3})
({o1, o2, o3},∅,{c1, c2, c3})
({o1, o2, o3},{a1, a2, a3},∅)

({o1},{a1},{c1, c2, c3})
({o2},{a1, a2, a3},{c1})
({o1, o2, o3},{a1},{c1})

({o3},{a2},{c2})

(∅,{a1, a2, a3},{c1, c2, c3})

({o1},{a1},{c1, c2, c3})
({o1},{a1, a2, a3},{c1})

({o2},{a2},{c2})

({o1, o2},∅,{c1, c2, c3})
({o1, o2},{a1, a2, a3},∅)

({o1, o2},{a1},{c1})

(∅,{a1, a2, a3},{c1, c2, c3})

({o1},{a1},{c1, c2, c3})

({o2},{a1, a2, a3},{c1})

({o3},{a2},{c2})

({o1, o2, o3},∅,{c1, c2, c3})
({o1, o2, o3},{a1, a2, a3},∅)

({o1, o2, o3},{a1},{c1})

Fig. 6: Two tricontexts ({o1, o2, o3}, {1, 2, 3}, {a, b, c}, I1) (left) and
({o1, o2}, {1, 2, 3}, {a, b, c}, I2) (right), their associated triconcepts and the two
first quasi-orders.

For a trilattice L = (S,≲L
1 ,≲

L
2 ,≲

L
3 ), we call L≡ the equivalence class comprised

of all trilattices L2 = (S2,≲
L2
1 ,≲L2

2 ,≲L2
3 ) such that ≲L

i is isomorphic to ≲L2
i for

i ∈ {2, 3}. We argue that the study of such equivalence classes in triadic and polyadic
concept analysis opens up new and interesting questions, even beyond the purely math-
ematical aspects:
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– what does it mean from the point of view of knowledge representation when there
are different ways objects can belong to formal concepts as defined by their de-
scriptions?

– if the size of a dimension can be changed without modifying the structure, can it
lead to new data augmentation/reduction techniques?

– if a tricontext produces a trilattice with the minimum number of objects among its
equivalence class, does it mean anything?

Brief divagation These equivalence classes impact the way implications [8,2] should
be considered in the multidimensional case as different tricontexts can produce differ-
ent implications sets that all allow for the reconstruction of the exact same descriptions.
We propose that all implications common to all the tricontexts/trilattices of an equiva-
lence class be called structural implications while implications that only hold in some
tricontexts/trilattices be called contextual implications. Further study of such objects is
outside the scope of this paper and shall be the subject of future work.

4 A Triadic Generalisation of the Boolean Concept Lattice

A Boolean concept lattice has useful features that are not present in the powerset trilat-
tice and that justify our proposition of another triadic generalisation. Firstly, the lattice
of its intents is the powerset lattice of attributes, i.e. all subsets of attributes are present
as the intent (description) of a concept. Secondly, it is maximal in the number of con-
cepts for a given context size, i.e. given an n × n context, the biggest possible corre-
sponding concept lattice is the Boolean concept lattice with 2n elements (2min(n,m)

elements in a non-reduced n × m formal context). By contrast, the powerset trilattice
does not have all possible descriptions (there are no (X, {2, 3}, {2, 3}) triconcept in
Fig. 5) and it is not maximal in the number of triconcepts for its tricontext’s size (the
powerset trilattice on a 3× 3× 3 tricontext has 27 triconcepts while the trilattice of the
tricontext in Fig 7 has 30).

c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × × ×
a2 × × × × × ×
a3 × × × × × ×

o1 o2 o3

Fig. 7: A 3×3×3 tricontext that contains more triconcepts than the 3×3×3 powerset
trilattice.

Having all possible descriptions in a concept lattice is useful as a basic search space
for pattern mining. Most itemset mining algorithms can be seen as cleverly searching
the powerset of items, so having the multidimensional equivalent of this search space
would allow for similar new multidimensional description mining algorithms. As for the
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maximal number of concepts in fixed contexts, its knowledge is required in the rigorous
analysis of algorithms. We also expect these structures to play a role in the study of
“big” trilattices, similarly to Boolean concept lattices [1]. Therefore, we propose the
following triadic generalisations of the Boolean concept lattice.

Let A and C be an attribute and a condition set and L = (S,≲1,≲2,≲3) be a
concept trilattice such that

(X1, X2, X3) ∈ S ⇔ (X2, X3) ∈ ((2A \ ∅)× (2C \ ∅)) ∪ {(∅, C), (A, ∅)}.

This trilattice is a generalisation of the Boolean concept lattice as it contains all possible
concept description and, as two components of a concept uniquely define the third, it is
thus maximal in the number of concepts among all trilattices on tricontexts of the form
(O,A, C, I). However, as discussed in the previous section, there are multiple such
trilattices for a given A and C. Hence, for n = |A| and m = |C|, we use Bn,m = L≡

to denote the equivalence class of trilattices that contain all possible descriptions, i.e.
all possible rectangles, in an n × m crosstable. More formally, the concept trilattices
(S,≲1,≲2,≲3) in Bn,m are the concept trilattices of tricontexts (O,A, C, I) (we still
suppose that all contexts are reduced) such that |A| = n, |C| = m and, for all (Y,Z) ∈
(2A \ ∅)× (2C \ ∅), there is a triconcept (X,Y, Z) ∈ S. Clearly, the powerset trilattice
depicted in Fig 5 does not belong to B3,3 as it has no triconcept (X, {3}, {2, 3}).

Fig. 8 depicts the tricontexts and triconcepts of two elements of B2,2. We can see
that the 9 non-empty rectangles in a 2 × 2 crosstable, as well as two occurrences of
empty rectangles, are present as descriptions of triconcepts.

c1 c2 c1 c2 c1 c2 c1 c2
a1 × × × ×
a2 × × × ×

o1 o2 o3 o4

c1 c2 c1 c2 c1 c2
a1 × × × ×
a2 × × × ×

o1 o2 o3

(∅,{a1, a2},{c1, c2})
({o1},{a1},{c1, c2})
({o2},{a2},{c1, c2})
({o3},{a1, a2},{c1})
({o4},{a1, a2},{c2})
({o1, o3},{a1},{c1})
({o1, o4},{a1},{c2})
({o2, o3},{a2},{c1})
({o2, o4},{a2},{c2})

({o1, o2, o3, o4},∅,{c1, c2})
({o1, o2, o3, o4},{a1, a2},∅)

(∅,{a1, a2},{c1, c2})
({o1},{a1},{c1, c2})
({o2},{a2},{c1, c2})
({o2},{a1, a2},{c1})
({o1},{a1, a2},{c2})
({o1, o2},{a1},{c1})
({o1, o3},{a1},{c2})
({o2, o3},{a2},{c1})
({o1, o2},{a2},{c2})

({o1, o2, o3},∅,{c1, c2})
({o1, o2, o3},{a1, a2},∅)

Fig. 8: Two tricontexts producing trilattices in B2,2.

A trilattice in Bn,m contains (2n − 1)× (2m − 1)+ 2 triconcepts, corresponding to
the (2n − 1)× (2m − 1) descriptions that are non-empty rectangles plus two times the
empty rectangle in the two triconcepts of the form (O, ∅, C) and (O,A, ∅).



8 Alexandre Bazin

5 On the Minimum Number of Objects in a Bn,m Tricontext

In Fig. 8, we see two B2,2 trilattices, one built on 3 objects and the other on 4. A ques-
tion then naturally arises: what is the minimum number of objects required to produce
a Bn,m trilattice? In the bidimensional case, Boolean concept lattices are produced by
contranominal scales and require as many objects as attributes. In the triadic case, it is
easy to see that any Bn,m trilattice can be produced on n+m objects. Indeed, the rect-
angles missing only a single row or column are irreducible, i.e. they cannot be obtained
by intersecting two other rectangles, so they have to appear as maximal rectangles in
the description of an object. Having all these rectangles on different objects produces a
Bn,m trilattice on n + m objects, as exemplified on the left hand side of Fig. 8 and in
Fig. 9. Can we do it with fewer objects? In the case of B2,2 yes, as shown in Fig. 8 with
3 objects, but the answer is not so simple for other sizes.

First of all, we know that if (X1, X2, X3) and (Y1, Y2, Y3) are triconcepts such that
X2 ⊆ Y2 and X3 ⊆ Y3, then Y1 ⊆ X1. As the height of the poset of rectangles in an
n ×m crosstable ordered by inclusion is n +m, we have that a Bn,m trilattice cannot
be produced on fewer than n + m − 1 objects. The minimum number of objects thus
lies in [n+m−1, n+m]. We now inelegantly show that it is n+m when either n > 2
or m > 2.

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × × × × × × × × ×
a2 × × × × × × × × × × × ×
a3 × × × × × × × × × × × ×

o1 o2 o3 o4 o5 o6

Fig. 9: A 6× 3× 3 B3,3 tricontext.

Let us start with the case n = m and illustrate with n = m = 3 without loss of
generality. As the n+m irreducible rectangles have to appear somewhere, if we want to
construct a Bn,m tricontext on n+m−1 objects, we have to put two irreducible rectan-
gles on the same object. For instance, ({a1, a2}, {c1, c2, c3}) and ({a1, a2, a3}, {c2, c3}).

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × × × × × × ×
a2 × × × × × × × × × ×
a3 × × × × × × × × × × × ×

o1 o2 o3 o4 o5 o6

However, if we do this, their intersection ({a1, a2}, {c2, c3}) is not the description
of a triconcept anymore. The ({a1, a2}, {c2, c3}) rectangle must thus appear as a maxi-
mal rectangle in the description of another object. The only option is to put it on its own
object and then we go back to having n+m objects. From there, being able to construct
a Bn,m tricontext on n+m− 1 objects implies being able to construct a Bn−1,m−1 tri-
context on n +m − 3 objects (in the greyed area) as two objects are already taken by
the two irreducible rectangles and their intersection.
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c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × ×
a2 × × × × ×
a3 × ×

o1 o2 o3 o4 o5

It is possible to construct a B2,2 tricontext with 3 objects (see Fig. 8): two pairs of
irreducible rectangles are put on two objects and both their intersections coexist on a
third object. To show that this is only one way to do so, up to permutation of rows and
columns, is left as an exercise for the reader. The construction of a hypothetical B3,3

tricontext on 5 objects would thus proceed as follows:

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × × × × × ×
a2 × × × × × × × × ×
a3 × ×

o1 o2 o3 o4 o5

As the irreducible rectangles still need to appear somewhere, the only way to have
them appear without destroying the B2,2 subcontext is thus as follows:

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × × × × × × × ×
a2 × × × × × × × × × × ×
a3 × × × × × × × ×

o1 o2 o3 o4 o5

The coexistence of irreducible rectangles on the same object again causes their inter-
section to stop being descriptions of triconcepts, so we have to add ({a1, a3}, {c1, c3})
and ({a2, a3}, {c1, c2}) as maximal rectangles in the description of an object. One of
them can be added to the description of o5 but it can be seen that none of them can be
added to the description of o2. For example, adding ({a2, a3}, {c1, c2}) would cause
({a2}, {c2, c3}) to stop being the description of a triconcept, creating the need for a
sixth object. We are thus stuck, and conclude that B3,3 trilattices require at least 6 ob-
jects. From this we deduce that Bn,n trilattices require at least 2n objects.

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × × × × × × × × ×
a2 × × × × × × × × × × × × ×
a3 × × × × × × × × × × × ×

o1 o2 o3 o4 o5 o6

Fig. 10: Another way to build a B3,3 trilattice on 6 objects.

Now, we show analogously that B2,m trilattices require at least 2 +m objects. We
illustrate on a B2,3 trilattice but assert that the same construction and reasoning apply
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to m > 3. As for the 3× 3 case, all irreducible rectangles in a 2×m crosstable have to
appear in the description of an object.

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × × × × × ×
a2 × × × × × × × × ×

o1 o2 o3 o4 o5

In order to reduce the number of objects, two such rectangles have to be put on the
same object. Their intersection ceases to be the description of a triconcept so we have
to put it on its own object.

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × ×
a2 × ×

o1 o2 o3 o4

If it is possible to construct a B2,m trilattice on 2+m−1 objects, then it is possible to
construct a B1,m−1 trilattice on 2+m−3 objects. It is the case here. In order to complete
the tricontext so that all irreducible rectangles appear as maximal rectangles in the de-
scription of an object, the unused horizontal irreducible rectangle (({a2}, {c1, c2, c3})
here) has to coexist with another irreducible rectangle. Their intersection thus has to
appear as a maximal rectangle in the description of another object and it easy to see,
on such a small example, that it is impossible without having rectangles cease to be
descriptions of triconcepts (adding it to o2 would cause ({a1}, {c1}) to stop being the
description of a triconcept).

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
a1 × × × × × × × × ×
a2 × × × × × × × × ×

o1 o2 o3 o4 o5

Hence, Bn,m trilattices require at least n+m objects when either n > 2 or m > 2.

6 Discussion and Conclusion

The generalisation of Boolean concept lattices proposed in this paper is only one of
many but we feel that its properties are interesting for both pattern mining and the
study of the maximal size of concept trilattices. The latter is still an open question
as, for instance, powerset trilattices are not the biggest trilattices that can be built in a
n× n× n tricontexts and do not fit. The next step would be to further generalise these
structures to the n-dimensional case. The definition is straightforward but our proof of
the minimum number of objects required to build the trilattice is hardly scalable as it
relies on handmade contexts that would be too big and numerous in higher dimensions.
We also plan on further studying the structure of the classes of trilattices/n-lattices
defined in Section 3 and the consequences of that loss of duality on implications.
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