

Trends in PM2.5 and chemical component at the French EMEP sites

Anna Font, Aude Bourin, Corentin Gouillou, Cécile Debevec, Stéphane Sauvage

▶ To cite this version:

Anna Font, Aude Bourin, Corentin Gouillou, Cécile Debevec, Stéphane Sauvage. Trends in PM2.5 and chemical component at the French EMEP sites. 23rd Task Force on Measurement and Modelling Meeting, May 2022, Online, France. hal-04202881

HAL Id: hal-04202881

https://hal.science/hal-04202881

Submitted on 11 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Trends in PM_{2.5} and chemical components at the French EMEP sites

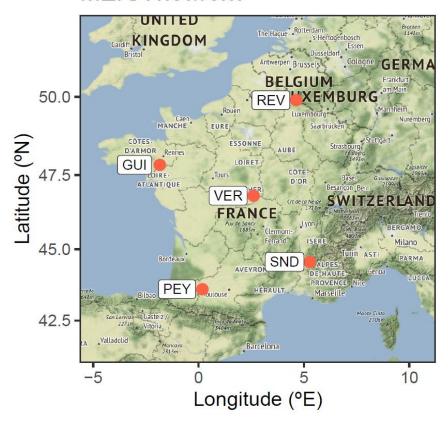
Anna FONT, Aude BOURIN, Corentin GOUILLOU, Cécile DEBEVEC, Stéphane SAUVAGE

5 May 2022

23rd EMEP Task Force on Measurements and Modelling (TFMM)

Background

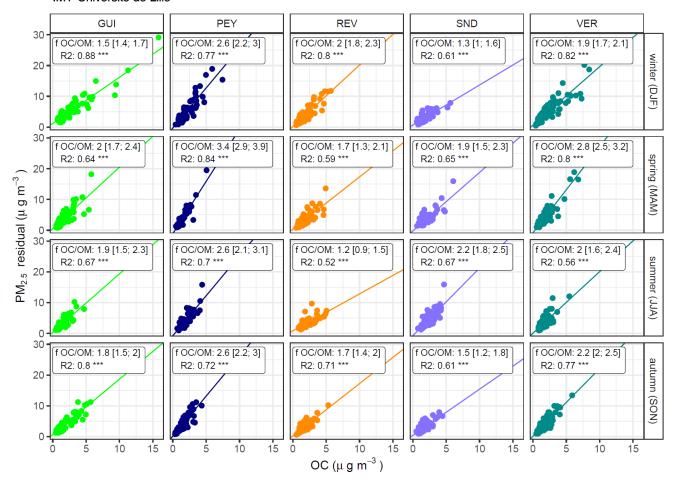
- Fine particles (PM_{2.5}) are well-known to have an impact on climate, ecosystems as well as human-health
- Background sites in western and central Europe exceeding the WHO limits (5 μg m⁻³ as annual limit; 15 μg m⁻³ as daily mean) (Bressi et al., 2021)
- Chemical composition of PM_{2.5} essential to assess the sources contributing to mass concentrations
- In France, five background sites monitored PM_{2.5} mass concentrations and chemical composition between
 2014 2020
- Temporal trends in PM_{2.5} is a common tool to evaluate changes over time and assess the impact of any
 possible policy aiming to reduce primary emissions
- Trends in atmospheric components not only influence by changes in emissions but also changes in meteorology and transport patterns that might occur


Aims

- To undertake the chemical mass balance of $PM_{2.5}$ mass concentrations based on the main ions along the years at the five remote sites monitoring $PM_{2.5}$ and chemical composition in France in 2014 2020.
 - To review conversion factors used to calculate source concentrations especially that used to account organic matter (OM) from organic carbon (OC)
- To evaluate trends in PM_{2.5} concentrations in association with changes in emission patterns removing
 any possible influence from meteorological and long-range transport characteristics

French EMEP network (MERA): PM_{2.5} chemical composition

MERA network



- MERA / EMEP sites where PM_{2.5} chemical composition is available for 2014 - 2020
- PM_{2.5} hourly mass concentrations (TEOM, TEOM-FDMS, BAM, FIDAS)
- Daily chemical composition every 6th day (14% year)
 - quartz filters (Pallflex Tissuquartz 2500 QAT-UP, 47 mm in diameter) + Partisol 2025i
 - OC & EC measurements: punch of 15 cm² is analysed by the Sunset instrument following EUSAAR2 protocol
 - Ca²⁺, K⁺, Mg²⁺, Na⁺, NH₄⁺; and Cl⁻, NO₃⁻, SO₄²⁻: digestion in pure water of a punch of 15.85 cm² and analysis ion chromatography
 - Monthly field blanks; averaged by season and removed from filter measurements except for OC & EC
 - No LOD correction applied

4

Mass closure calculations and OC to OM conversion factor

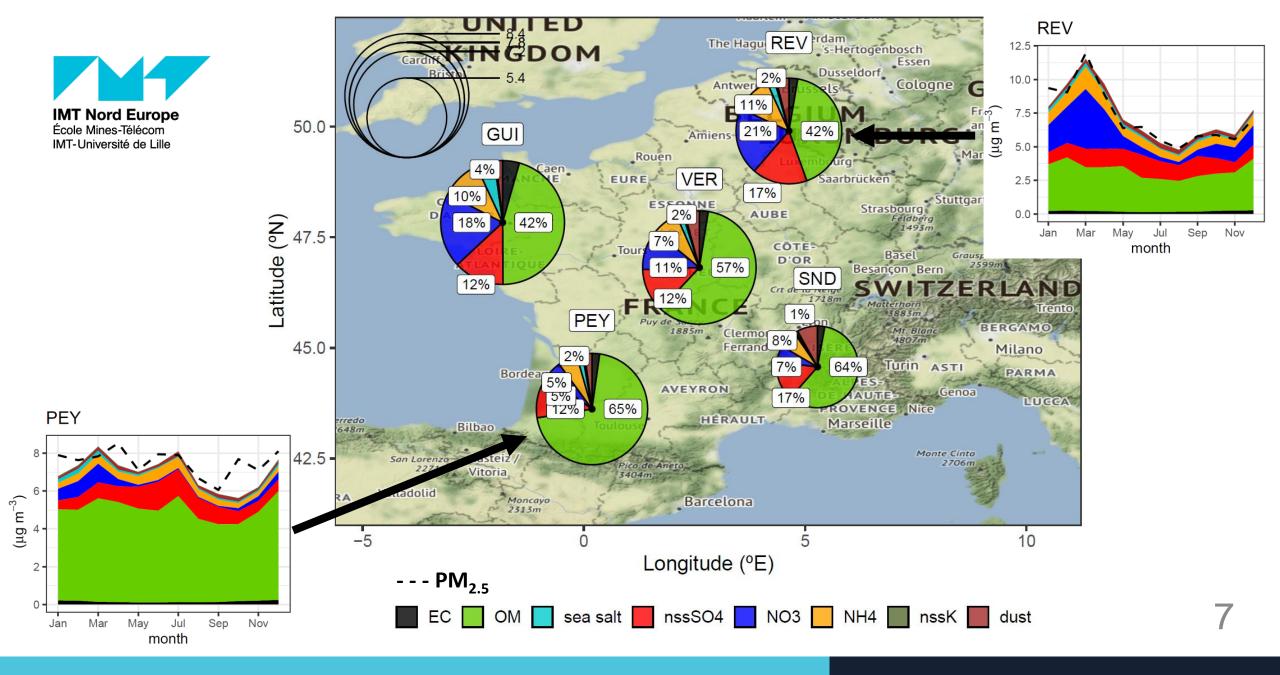
station 🖊 GUI 🖊 PEY 💉 SND 🗲 REV 🖊 VER

$$PM_{2.5} = [OM] + [EC] + [SIA] + [sea salt] + [mineral dust] + [trace elements] + ϵ (1)$$

$$[SIA] = [NO_3^-] + [nss-SO_4^{2-}] + [NH_4^+]$$
 (2)

$$[OM] = f_{OC:OM} * [OC]$$
 (3)

Determination of $f_{OC:OM}$ by **site**; and by **season** and **site**: $f_{OC:OM} = ([PM_{2.5}] - ([EC] + [SIA] + [sea salt] + [mineral dust] + [trace elements])/OC (3) Fitted by OLS$



Mass closure calculations and OC to OM conversion factor

PM_{2.5} mass closure: comparison with measurements

		GUI	PEY	REV	SND	VER
Fived	Slope	0.94 [0.91 – 0.98]	0.71 [0.67 – 0.76]	0.94 [0.91 – 0.98]	0.95 [0.90 – 1.00]	0.84 [0.82 – 0.87]
Fixed $f_{\text{OC:OM}} = 1.8$	R^2	0.88***	0.70***	0.88***	0.72***	0.89***
	Avg res (%)	0.6 (7%)	2.1 (28%)	-0.4 (-6%)	-0.6 (-11%)	1.2 (16%)
Single $f_{\text{OC:OM}}$	Slope	0.90 [0.87 – 0.94]	0.90 [0.84 – 0.95]	0.93 [0.90 – 0.96]	0.95 [0.90 – 1.00]	0.91 [0.88 -0.95]
per site	R^2	0.88***	0.69***	0.89***	0.72***	0.88***
	Avg res (%)	1.0 (12%)	0.5 (7%)	-0.2 (-3%)	-0.6 (-11%)	0.4 (5%)
	Slope	0.91 [0.88 – 0.95]	0.91 [0.85 – 0.97]	0.95 [0.92 -0.98]	0.99 [0.94 – 1.04]	0.93 [0.90 – 0.97]
$f_{\rm OC:OM}$ season &	R^2	0.88***	0.71***	0.88***	0.73***	0.88***
site	Avg res (%)	0.6 (7%)	0.4 (5%)	-0.1 (-1%)	-0.5 (-9%)	0.4 (5%)

Better PM_{2.5} mass closure achieved → reduction unaccounted mass

Methods: linear trends

- Mann-Kendall test to evaluate if monotonic trends
- Theil-Sen method to calculate the temporal trend (rate of change): median of all possible trends for all x-y date points combinations.
 - Monthly means from hourly PM_{2.5} data
 - Monthly means from daily PM_{2.5} and chemical composition data

Mean trends (95% confidence interval)

	Hourly P	M _{2.5} data	Daily MERA filters		
	Trend	Trend	Trend	Trend	
site	(µg m ⁻³ year ⁻¹)	(% year ⁻¹)	(µg m ⁻³ year ⁻¹)	(% year ⁻¹)	
GUI ^A	-0.4 [-0.8, -0.1]*	-4.3 [-7.5 <i>,</i> -0.8]*	-0.5 [-0.9, -0.2]**	-5.7 [-8.8 <i>,</i> -2.3]**	
PEY	-0.5 [-0.7 <i>,</i> -0.3]***	-5.5 [-7.2 <i>,</i> -3.8]***	-0.5 [-0.7 <i>,</i> -0.3]***	-5.7 [-6.9 <i>,</i> -3.3]***	
REV	-0.5 [-0.7 <i>,</i> -0.4]***	-6.1 [-7.5 <i>,</i> -4.6]***	-0.7 [-0.9, -0.4]***	-7.2 [-8.9 <i>,</i> -5.1]***	
SND	-0.3 [-0.5, -0.1]**	-4.7 [-6.9 <i>,</i> -2.4]**	-0.3 [-0.5, -0.1]**	-5.3 [-7.8 <i>,</i> -2.7]**	
VER	-0.6 [-0.9, -0.3]***	-6.5 [-9.0 <i>,</i> -4.1]***	-0.7 [-1.0, -0.4]***	-8.0 [-9.9 <i>,</i> -5.3]***	

A trends calculated for 2014-2019

^{***} p < 0.001 ** p < 0.01 * p < 0.05 + p < 0.1

Methods: random-forest modelling for de-weathered time series

Primary emission rates, meteorological conditions and long-range transport patterns influence PM_{2.5} concentrations as well as its chemical components

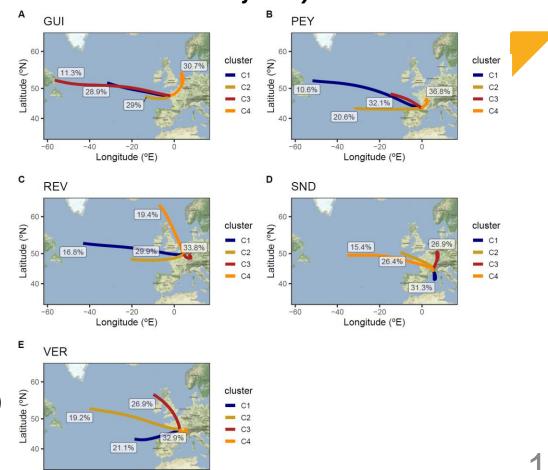
- Random-forest modelling is a machine-learning method based on decision-trees (Grange et al., 2017)
- Multiple trees were built to reproduce concentrations using temporal, meteorological and transport
 explanatory variables using 70% of the data time series; the remaining 30% of the data is used to
 evaluate the performance of the model
- De-weathered algorithm calculates the time series for a given atmospheric component based on an iterative
- Limitation: chemical composition is based on daily filter measurements sampled every 6th day while meteorological and long-range transport data is available at a higher time resolution
 - <u>Proposed solution</u>: use 3-hourly met data and long-range transport data to predict 3 —h chemical data; daily averages to compared modelled vs daily measured data

Methods: random-forest modelling for de-weathered time series

Longitude (°E)

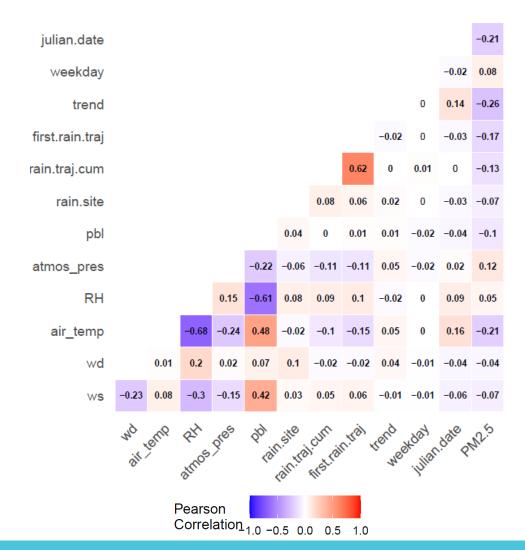
Temporal variables

- Day of the week
- Julian date (to capture seasonal variability)
- Decimal date (to capture long-term trends)


Meteorological variables

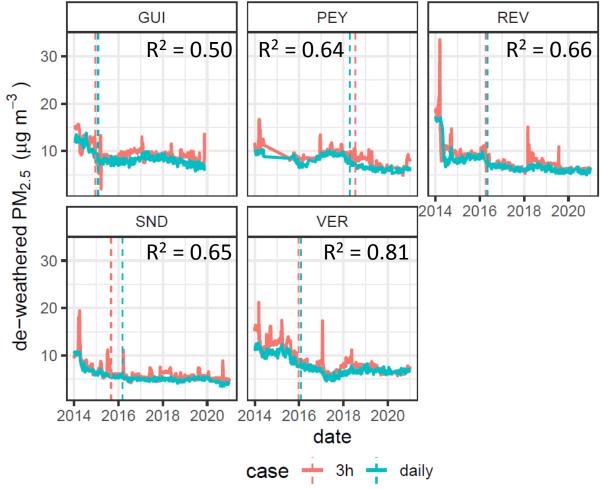
- Wind speed
- Wind direction
- Temperature
- Atmospheric pressure
- Relative humidity
- Mixing layer height (from GFS model)
- Precipitation at the site (from GFS model)

Long-range transport


- Backtrajectory cluster (Hysplit GFS; release at 500 m)
- Cumulative rain along the trajectory
- Hour back main rain episode (> 0.2 mm)

Main backtrajectory cluster

Methods: Pearson correlation between explanatory variables


Variables chosen:

- Wind speed
- Wind direction
- Air temperature
- Atmospheric pressure
- Cluster
- Cumulative rain along back-trajectory
- Trend
- Weekday
- Julian date

Comparison de-weathered time series: daily vs 3 h explanatory

data

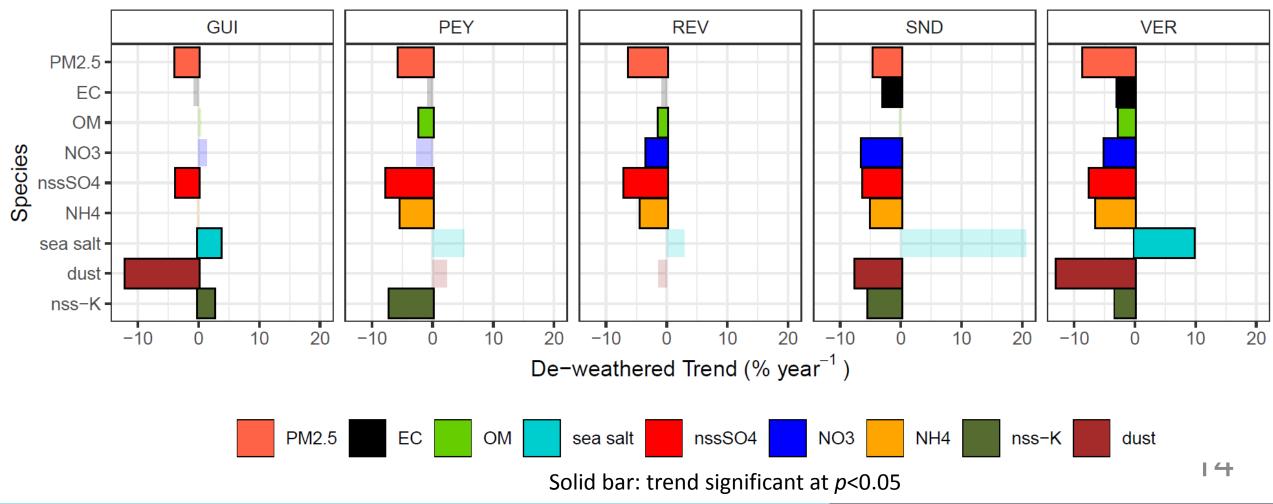
Vertical line: change point (based on the Buishand Range Test)

Comparison de-weathered time series: daily vs 3 h explanatory data

Evaluation of the random-forest model

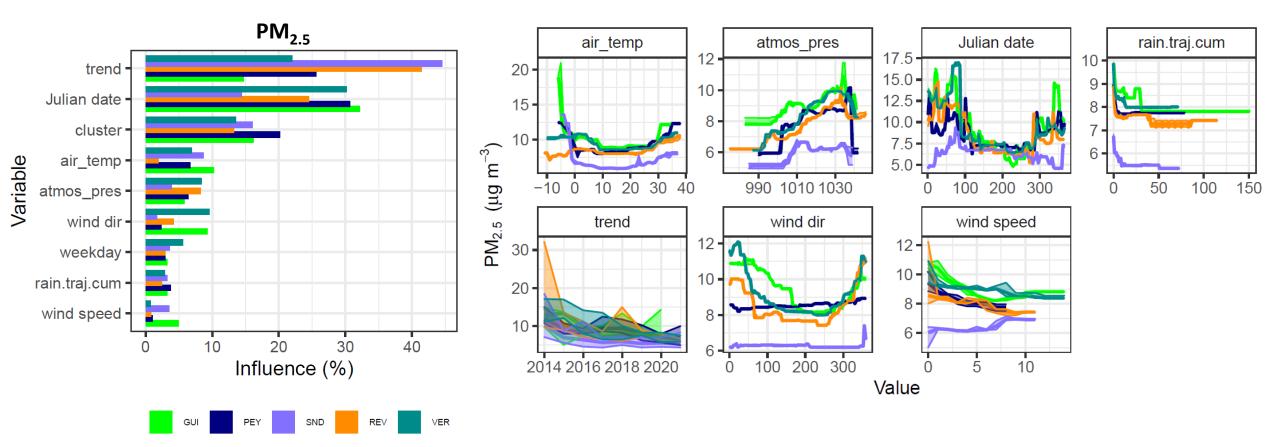
	Daily explanatory data			3 h explanatory data		
site	Slope [95% CI]	RMSE (μg m ⁻³)	R ²	Slope [95% CI]	RMSE (µg m ⁻³)	R ²
GUI ^A	0.752 [0.647, 0.873]***	5.09	0.41	0.940 [0.938, 0.942]***	1.67	0.96
PEY	0.754 [0.642, 0.884]***	3.83	0.40	0,910 [0.908, 0.912]***	1.16	0.95
REV	1.026 [0.881, 1.194]***	5.44	0.28	0.923 [0.921, 0.926]***	1.49	0.95
SND	0.679 [0.593, 0.776]***	3.37	0.44	0.905 [0.903, 0.907]***	1.10	0.94
VER	0.773 [0.687, 0.870]***	5.29	0.57	0.947 [0.946, 0.949]***	1.45	0.97

Linear trends (Theil Sen slope)


	Daily explana	itory data	3-hourly explanatory data		
	Trend	Trend	Trend	Trend	
site	(µg m ⁻³ year ⁻¹)	(% year ⁻¹)	(µg m ⁻³ year ⁻¹)	(% year ⁻¹)	
GUI ^A	-0.50 [-0.25, -0.79]***	-5 [-3, -8]***	-0.41 [-0.15, -0.69]***	-4 [-2, -6]***	
PEY	-0.57 [-0.45, -0.68] ***	-6 [-5 <i>,</i> -7] ***	-0.64 [-0.48, -0.88]***	-6 [-5 <i>,</i> -7]***	
REV	-0.51 [-0.41, -0.64] ***	-6 [-5, -7]***	-0.63 [-0.56, -0.73]***	-7 [-6 <i>,</i> -8] **	
SND	-0.36 [-0.26, -0.44] ***	-6 [-4 -7]***	-0.30 [-0.19, -0.44]***	-4 [-3, -6]***	
VER	-0.62 [-0.35, -0.84] ***	-7 [-4 <i>,</i> -9]***	-0.96 [-0.67, -1.2]***	-9 [-7, -11]***	

A trends calculated for 2014-2019

^{***} p < 0.001 ** p < 0.01 * p < 0.05 + p < 0.1


Results: Theil-Sen trends for de-weathered time series (3-h model)

Results: influence of variables & partial dependency plots

Conclusions

Annual PM_{2.5} concentrations at background sites in France ranged from 4.8 μg m⁻³ to 11.6 μg m⁻³ for the period 2014 – 2020, with the majority of sites / years exceeding the annual WHO limit value (5 μg m⁻³)

- Better PM_{2.5} mass closure was achieved when using site and seasonal specific $f_{OC:OM}$ ratios, with the unaccounted mass from -11% to 28% (fixed $f_{OC:OM} = 1.8$); to -9% to 7%.
- The chemical composition of fine aerosols was at the French EMEP sites for 2014 2020: OM (42–65%), non-sea-salt sulphate (17–21%), nitrate (5–21%), ammonium (12–5%), mineral dust (2–9%), EC (2–4%), sea salt (1–4%) and non-sea-salt potassium (~1%).
- OM was the main component of PM_{2.5} all year long
- SIA contributed mostly in spring
- The contribution of OM to PM_{2.5} was larger at the southern sites whereas the contribution of SIA was larger at the northern sites.

Conclusions

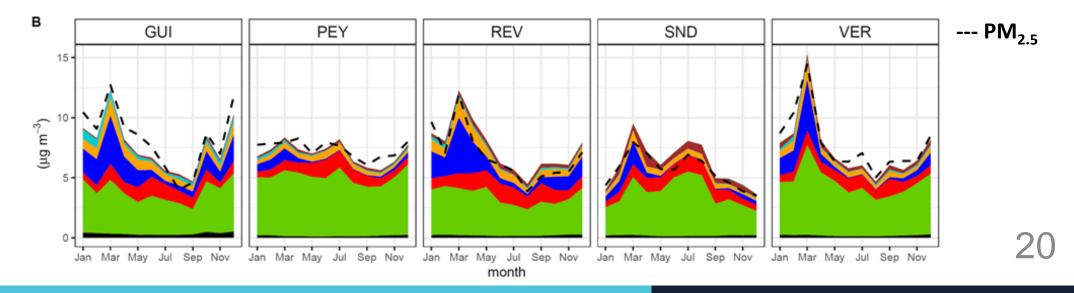
 Better reproduction of PM_{2.5} concentrations by random-forest modelling when using 3-hourly met and long-range transport information (R² > 0.90 and RMSE < 1.5 μg m⁻³)

- Temporal variables had greater role in explaining the variability in PM_{2.5} concentrations (15 45%);
 followed by the cluster variable (~15%) representing the long-range transport
- De-weathered time series for PM_{2.5} and the main components were built using the RF modelling
- All sites observed downward trends in PM_{2.5}, at a rate of -4 to -9% year⁻¹ for the period 2014 2020
- Downward trends in PM_{2.5} were coincidental with the downward trends in nss-SO₄²⁻ (-4 to -8 % year⁻¹) associated with the decrease in SO₂ emissions (mean decrease of -8% year⁻¹ between 2014 2019 in France)
- Reduction in NO₃⁻ concentrations from reduced NO_X emissions less evident at the French EMEP sites: 3 out of 5 sites observed significant downward trends (REV, SND and VER: -3% year⁻¹ to -6% year⁻¹). For 2014-2020, NO_X emissions in France decreased at a rate of -5% year⁻¹.
- Reduction in biomass burning was observed with downward trends in nss-K⁺ at three sites (VER, SND and PEY: -3 to -7 % year⁻¹). One site observed a significant upward trend (GUI) (2% year⁻¹)

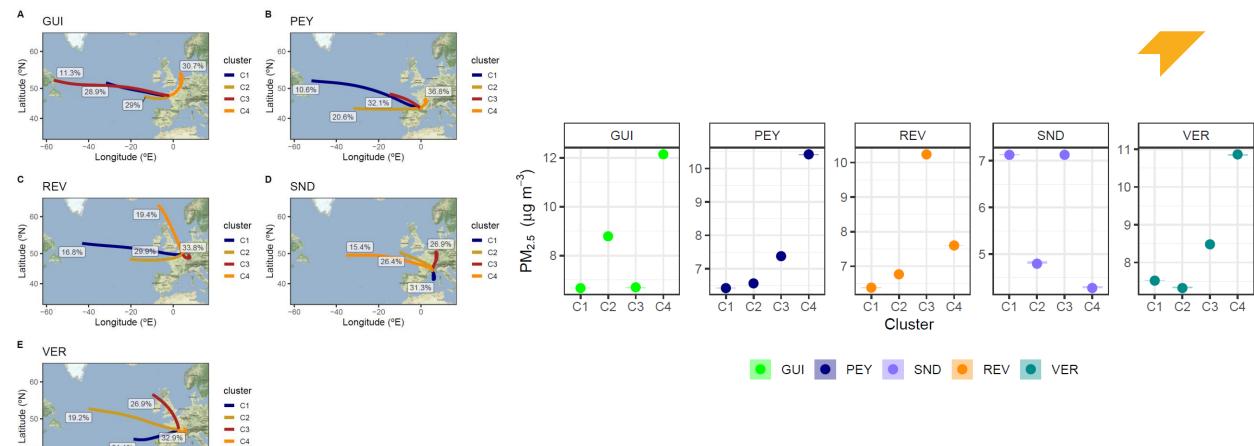
17

Trends in PM_{2.5} and chemical components at the French EMEP sites


Many thanks for your attention


Anna FONT, Aude BOURIN, Corentin GOUILLOU, Cécile DEBEVEC, Stéphane SAUVAGE

5 May 2022


PM_{2.5} mass closure

Results: partial dependency plots for the cluster variable

21.1%

Longitude (°E)

- C4