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Introduction

AQC applied to optimization problems is a computational process introduced in [START_REF] Farhi | A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem[END_REF] for optimization perspectives. This process describes the state evolution of conservative systems with a linear interpolation of two time-independent Hamiltonians H M and H C :

H(t)= 1- t T H M + t T H C (1) 
It is seen that when t=0,H(t)=H M and when t=T where T is the ideal annealing time, H(t)=H C . The adiabatic theorem tells that if a quantum state is prepared into the initial ground state |ψ 0 ⟩ of the Hamiltonian H M and if t varies slowly enough from 0 to T , the quantum state |ψ t ⟩ will stay close to a ground state of H(t). The initial state |ψ 0 ⟩ has to be easily prepared and must be a ground state of the Hamiltonian H M . Additionally, H M and H C must not commute.

Quantum annealers, such as D-Wave systems [START_REF]D-wave systems, d-wave ocean sdk[END_REF], implement a noisy adiabatic evolution and are designed to minimize the Ising cost function H C (s) taking an input vector s=(s 1 ,s 2 ,...,s n ) with s i ∈{+1,-1} where h i and J ij represent qubits auto-coupling and coupling strength:

H C (s)=- n i=1 h i s i - n i<j J ij s i s j (2) 
The topology of D-Wave quantum annealers is sparse. Hence, an efficient method is required to find an adequate mapping of qubits to embed problems on these chips (limiting the number of variable duplications).

Embedding Ising Problems on D-Wave Systems

Consider a source graph G s =(V s ,E s ), which models an Ising problem to be mapped onto a target graph G t =(V t ,E t ), which models the target quantum chip. The problem of mapping an Ising problem onto a quantum chip can be defined as follow :

Given a source graph G s =(V s ,E s ) and a target graph G t =(V t ,E t ), the goal is to find a mapping function :

ϕ:V s - →V t ×V t such that : 1. each vertex v ∈V s is mapped onto a connected subgraph ϕ(v) of V s . 2. each connected subgraph must be vertex disjoint ϕ(v) ∩ ϕ(v ′ ) = ∅, with v ̸ =v ′ . 3. each edge e∈E s is mapped onto at least one edge in E t : ∀(u,v)∈E s ,∃u ′ ∈ ϕ(u),∃v ′ ∈ϕ(v), such that (u ′ ,v ′ )∈E t .
Considering quantum annealers such as D-Wave systems, the graph G t is very sparse and strongly limits the size and density of the source graph G s that can be embedded into these chips. Polynomial algorithms used to decide if G s can be embedded into G t exist but do not report on the mapping function. In the theory of graph minors, Robertson and Seymour [START_REF] Robertson | Graph minors .XIII. the disjoint paths problem[END_REF] have shown that for fixed G s , there exists a polynomial algorithm to find its embedding on G t . However, G s is not fixed in our case, and the existing algorithm still has an exponential running time in the size of G s .

Previous Work

Several attempts have been made to design efficient methods to find mappings of Ising problems on QA. These attempts can be divided into two categories. The first approach is to look for the embedding of complete graphs with near-optimal embedding, considering the structure of the target graph. The first work was proposed by V. Choi [START_REF] Choi | Minor-embedding in adiabatic quantum computation: Ii. minor-universal graph design[END_REF], which provides an optimal embedding of complete graphs on triangular layouts (TRIAD scheme). This preliminary work was completed by C. Klymko et al. [START_REF] Klymko | Adiabatic quantum programming: minor embedding with hard faults[END_REF], who proposed a minor embedding method tailored to find clique embedding on lattices composed of regularly dispatched fully connected bipartite subgraphs. This method considers inoperable qubits (the target graph usually contains a few disabled qubits) and generates valid embeddings derived from the initial near-optimal clique embedding.

The second approach considers embedding algorithms of unknown structured input graphs on partially-known or unknown target graphs. An initial and generic heuristic was presented in [START_REF] Cai | A practical heuristic for finding graph minors[END_REF] and is implemented in [4]. This algorithm is composed of two steps: the first one consists in finding an initial mapping for each logical qubit allowing overlapping (i.e., a vertex v ∈ V t may map more than one vertex ϕ(v) in V s ). The second step is a refinement where the mapping is iteratively improved by removing a vertex mapping ϕ(v) and looking for a better mapping for this vertex, minimizing the overall number of physical vertices. The quality of the mapping of a vertex is computed with a cost function. An output graph without any overlapping is considered valid. The refinement phase ends when no improvements have been made during a specific number of tries. Several other heuristics have been reusing this algorithm with the addition of pre-processing phases as for Layout-Aware Minor Embedding [START_REF] Pinilla | [END_REF][START_REF] Pinilla | Layout-aware embedding for quantum annealing processors[END_REF], Springbased MinorMiner (SPMM) and Clique-Based MinorMiner (CLMM) [START_REF] Zbinden | Embedding algorithms for quantum annealers with chimera and pegasus connection topologies[END_REF]. Another heuristic named Probabilistic-Swap-Shift-Annealing (PSSA) based on the simulated annealing algorithm was proposed in [START_REF] Sugie | Graph minors from simulated annealing for annealing machines with sparse connectivity[END_REF] and enhanced in [START_REF] Sugie | Minor-embedding heuristics for large-scale annealing processors with sparse hardware graphs of up to 102, 400 nodes[END_REF]. This algorithm seems to be efficient, especially when the target graph G t has a structure of a King's graph.

All the previous methods build chains of logical qubits. However, chains usually break at their extremities when the chain strength is insufficient. A recent method proposed an embedding based on chains of cliques [START_REF] Pelofske | 4-clique network minor embedding for quantum annealers[END_REF], which reduced chain break frequency and lowered the required couplings energy.

High-Quality Embedding

The characteristics defining a high-quality embedding are still poorly understood. Current embedding methods attempt to minimize the final number of physical qubits. However, several other factors may impact the quality of the embedding. We propose three questions and related experiments to understand better the important criteria to consider while embedding problems on quantum annealers. What is the best structure for a logical qubit ? Evaluating the best possible structure for a logical qubit could guide the embedding heuristic. The error propagation on a logical chain usually starts at its boundaries [START_REF] Venturelli | Quantum optimization of fully connected spin glasses[END_REF]. For small chains, especially when the majority vote is crucial, replacing chains with cliques or cycles could be interesting, as in [START_REF] Pelofske | 4-clique network minor embedding for quantum annealers[END_REF]. Error propagation could also be studied for logical qubit structures like trees. An experimental sampling of the same problem with different logical qubit structures, letting the coupling strength J ij constant for each implementation, could help to identify such preferred structures.

Is there a maximum chain length that should not be exceeded ? Setting large negative values for each J ij coupler inside a logical qubit theoretically maintains the problem structure. However, J ij coupling strength is limited for D-Wave devices (e.g., -1 < J ij < 1 for Advantage6.1 annealer) and is automatically rescaled when the problem is mapped to the quantum chip. Maintaining ferromagnetic coupling on large chains of physical qubits can be hard without setting large chain strengths. Experimental bounds considering the maximum length of the chain could be determined. This bound should depend on the initial distribution of h i and J ij weights and the precision of the quantum annealer. Does the chain's distribution impact solution finding ? Studying the distribution of chains on the target topology (i.e., sparsity versus concentration; uniform chain length versus other chain length distributions) could give insight into the optimal allocation and duplication of variables. This study could be done by embedding the same problem with the same amount of qubit duplications, playing on their sparsity and chain length distributions. These three experiments' results will help design the global objective function to maximize while searching for a high-quality embedding.

Conclusion

Evaluating the quality of an embedding is crucial to enhance the mapping of problems on quantum annealers. The embedding strongly impacts the ability to solve a problem that does not match the quantum chip topology. We propose several experiments that may identify criteria used to evaluate the quality of an embedding. This work is a first step to propose a quality-driven embedding method for quantum annealing-based processors.