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Abstract—In recent years, with the progression of the com-
putational abilities of General-Purpose Processors (GPPs), there
has been a heightened interest in the implementation of software
Low-Density Parity-Check (LDPC) decoders. This investigation
provides a comprehensive analysis of the most effective strategies
for optimizing the decoding latency of 5G LDPC on GPPs. Our
proposed optimization mechanisms consist of the implementation
of Advanced Vector Extensions 512 (AVX-512) instructions in
computationally intensive routines and the application of code
transformation techniques, specifically optimization through un-
rolling to tackle the primary computational challenges and mini-
mize the overall latency of the decoder. To assess the efficiency of
our proposed techniques, thorough simulations were carried out
to determine the decoding time. Our findings indicate that the
implementation of the aforementioned optimization techniques
on computational routines causing time bottlenecks can lead to
a significant reduction of at least 30% in computational delay,
even under unfavorable conditions. This discovery demonstrates
the feasibility of developing a low-latency software 5G NR LDPC
decoder on an x86 architecture.

Index Terms—5G NR, LDPC Decoder, x86 target, AVX-512,
OpenAirInterface

I. INTRODUCTION

The Low Density Parity Check (LDPC) codes, first pro-
posed by Robert Gallager in 1962 [1], have garnered signif-
icant interest among the scientific community in developing
efficient coding solutions for various communication stan-
dards. Due to their performance being near the capacity of
Gaussian channels and the feasibility of parallelizing their
decoding algorithms in software or hardware, they have been
adopted by recent standards such as DVBS2 [4], [8], 5G
NR, and others. However, the current LDPC decoders still
face several limitations in terms of latency, throughput, and
power consumption, creating a gap in performance that needs
to be bridged. The channel decoding component remains the
most computationally intensive aspect of the receiver, and
thus, the decoder delay has a direct impact on the overall
decoding throughput. With the advent of 5G, the requirement
for low-latency decoding has become increasingly crucial.
While ASIC [7] and FPGA technologies offer solutions to this
trade-off, they also entail significant design expenses. Thus,
developing low-latency and high-throughput LDPC decoders
remains a challenging task. The advent of software targets,
such as graphics processing units (GPUs) and general purpose
processors (GPPs) [11] [4] [8], is allowing the develop-
ment of programmable, reconfigurable and scalable software-
based low-density parity-check (LDPC) decoders. However,
the computation complexity associated with LDPC decoding
techniques cannot be ignored. In this regard, the capabilities
of modern x86 general-purpose processors can be leveraged

by utilizing their resources and features. Moreover, the in-
tegration of vector units or extensions in modern processors
can significantly reduce the execution time of a program
and enhance the efficiency of parallelism by utilizing the
AVX-512 (Intel Advanced Vector Extended) instruction sets.
The optimization of the decoding algorithm is essential for
real-time decoding and is based on OpenAirInterface [12]
particularly an x86 target. The performance of the decoder
is restricted by a few steps of the algorithm, which serve as
computational bottlenecks. Profiling, which is the step prior to
optimization, is crucial in this regard as optimization cannot
be achieved without measurement. The paper is structured as
follows: Section II presents the foundation of 5G NR LDPC,
Section III describes the optimization procedures, the results
and performance analysis are presented in Section IV and
finally, Section V concludes the paper.

II. 5G NR LDPC FOUNDATION

The Low-density Parity-check (LDPC) coding technique
has been widely adopted for the uplink and downlink shared
transport channels in 5G New Radio (NR) communication
systems. This coding method is well-suited for 5G NR shared
channels due to its high throughput, low latency, efficient
decoding complexity and rate compatibility. The performance
of LDPC codes in 5G NR demonstrates an error floor at or
below the 105 block error rate (BLER), which is a significant
advantage over traditional coding techniques. The QC-LDPC
family serves as the foundation for 5G NR LDPC codes. NR
LDPC code is constructed from a Base Graph Matrix (BG)
of dimension M × N , designated as HBG. The selection of
the HBG matrices in the 5G NR coding process is based
on the coding rate and the length of the transport block or
code block. There are two base graphs, BG1 with dimensions
of N = 68 and M = 46 optimized for large information
block sizes of K ≤ 8448 and high coding rates between
1/3 ≤ R ≤ 8/9, and BG2 with dimensions of N = 52
and M = 42 optimized for small information block sizes of
K ≤ 3840 and lower coding rates between 1/5 ≤ R ≤ 2/3.
These codes are suitable for high reliability scenarios due to
their ability to achieve additional coding gain at low-code
rates. The maximum number of information bits for BG1 is
K = 22Zc and for BG2 is K = 20Zc, where Zc is the lifting
size. There are 51 lifting sizes ranging from 2 to 384 for each
base graph. The parity check matrix, denoted as H, is obtained
by replacing each element of HBG with a cyclic permutation
identity matrix, I(Pij). In other words, each element of HBG

is replaced by the corresponding Cyclic Permutation Matrix
(CPM). The size of the matrix H is m×n, with m = M×Zc,
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n = N×Zc, and k = n−m = (N−M)×Zc. Both BG1 and
BG2 have similar structures. There are various effective LDPC
encoding techniques because of the structure and features of
base graphs. Due to the structure and features of the base
graphs, there are various effective Low-Density Parity-Check
(LDPC) encoding techniques. A new, high throughput and low
complexity encoding technique has been proposed in [13] The
schematic representation of the PUSCH processing from the
MAC layer to the physical layer is illustrated in Figure 1. This
figure depicts the transmit-end for the uplink transmission and
encompasses various processing stages, including transport
block CRC attachment, code block segmentation with ac-
companying CRC attachment, LDPC encoding, rate matching,
code block concatenation, and modulation. The transmission
procedure involves the addition of a Cyclic Redundancy Check
(CRC) to the transport block. CRC serves as an error detection
code, utilized to calculate the Block Error Rate (BLER) after
the decoding process. Consequently, the entire transport block
is employed to calculate the parity bits of the CRC. Let us
assume that the transport message, prior to the attachment of
the CRC, is represented as a(0), a(1), . . . , a(A − 1), where
A denotes the size of the transport block message. The
parity bits, p(0), p(1), . . . , p(L − 1), are then added to the
message, with L being the number of parity bits employed.
If A > 3824, the number of parity bits, L, is 24. In the
case where A ≤ 3824, L is equal to 16. The resulting
message, after the attachment of the CRC, is represented as
b(1), b(2), . . . , b(B), where B denotes the size of the transport
block information, including the CRC bits, and B = A + L.
In 3GPP NR, the selection of the Low-Density Parity-Check
(LDPC) base graph is dependent on the size of the transport
block message (A) and the transport block coding rate (R).
According to the 3GPP 38212 specification, if A ≤ 292,
or if A ≤ 3824 and R ≤ 0.67, or if R ≤ 0.25, LDPC
BG2 is utilized. Otherwise, LDPC BG1 is employed. The
result of the code block segmentation and Cyclic Redundancy
Check (CRC) attachment process is a sequence of code blocks,
represented as cr(1), cr(2), . . . , cr(Kr), where Kr = K ′

r +L.
Here, K ′ is the number of bits in the rth code block and
L is the attached CRC for that code block. Each code block
message is then encoded independently. The input bit sequence
in 3GPP NR is represented as c = [c(0), c(1), . . . , c(Kr−1)]T ,
where Kr is the number of information bits in the code block.
The redundant bits, also known as parity bits, are denoted as
w = [w(0), w(1), . . . , w(N + 2Zc −Kr + 1)]T . The LDPC-
coded bits are represented as d(0), d(1), . . . , d(Nr − 1). Each
code block is fed to the LDPC encodeder using the following
procedure [10]:

1) Find the set with index iLS which contains Zc in [10].
2) Set dk−2Zc

= ck,∀k = 2Zc, . . . ,Kr − 1
3) Generate Nr + 2Zc − Kr parity bits w =

[w(0), w(1), . . . , w(N + 2Zc − Kr + 1)]T such that
H × [c w]

T
= 0

4) The encoding is performed in GF (2).
5) Set dk−2Zc

= wk−Kr
,∀k = Kr, . . . , Nr + 2Zc − 1

In the rate matching process, each code block is subjected
to independent rate matching. The resulting output sequences
are denoted as frk, where r ranges from 0 to C − 1 and

k ranges from 0 to Er − 1. The value of Er represents
the number of rate matched bits for the rth code block.
Subsequently, code block concatenation is performed, which
involves transforming all code block messages into a sequence
of transport block messages. The output from this block is
a sequence of bits represented by g(0), g(1), . . . , g(E − 1).
The receiving chain serves as the inverse counterpart of the
transmitting chain. The decoding of Low-Density Parity-Check
(LDPC) codes is carried out on each code block individually,
and a range of decoding techniques can be implemented.
Among these, belief propagation (BP) methods, which rely on
iterative exchange of messages between bit nodes and check
nodes, are the most commonly utilized for LDPC decoding.
Although the BP method presents a considerable computa-
tional complexity, it offers near-optimal decoding performance
[16]. To achieve a better trade-off between performance and
complexity, various efficient decoding algorithms based on
Min-Sum (MS) approximation have been proposed in the
literature [14], [15], [17], [19]–[21]. However, layered message
passing decoding has been shown to improve convergence
time, making it a suitable option for Ultra-Reliable Low-
Latency Communications (URLLC).

In order to approach the next section with a clear insight,
let us start by examining the fundamental principle of the
minimum sum decoding algorithm, as described in the Al-
gorithm 1. Assume that qij(b) is the probability that ci = b ,
b ∈ {0, 1}, given extrinsic information from all check nodes,
excluding check node j and channel sample yi, and rji(b) is
the probability of the j − th check equation being satisfied
given ci = b and the other bits have separable distribution
represented by {qij′}j′ ̸= j.

The notation is as follows:
• Bj = Bit nodes connected to check node j,
• Bj/i =bit nodes connected to check node j,excluding Bit

node i
• Ci = check nodes connected to variable node i
• Ci/j = check nodes connected to variable node i, exclud-

ing check node j

The subsequent principle may be used to illustrate the layered
decoding principle as described in the work of WANG [22] :

• Each layer independently processes variable node opera-
tions and checks node operations.

• The input Log-Likelihood Ratio (LLR) of the present
layer is derived from the output LLR of the previous
layer.

• The ultimate output LLR produced by the decoding
algorithm will serve as the basis for the final decision-
making process.

• The input Log-Likelihood Ratio (LLR) of the current
layer can be updated using the following equation:
Lk+1,i = Lk,i − Lk+1,i′ . Here, Lk+1,i represents the
updated input LLR of layer k+1, while Lk,i is the output
LLR of the previous layer and Lk+1,i′ represents the old
input LLR of layer k + 1.

III. OPTIMISATION PROCEDURES

A. Profiling step
The experiments is carried out on a high-performance server

equipped with an Intel® Xeon® Gold 6154 processor. This
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Algorithm 1: Log-Likelihood Min Sum Algorithm
Input:
The channel log likelihoods : Li ∈ Rn:
Maximum # of iterations : MAX-ITER
Description of the parity check matrix using B(j) and C(i).
Output: Estimated code word: ĉ ∈ {0, 1}n:

1 Initialization :
2 for each i, and for each j ∈ C(i) do
3 L (qij) = Li

4 Check Node to Variable Node Step (horizontal step):
5 for each check node j do
6 for each variable node i ∈ B(j) do
7 L (rji) = ∏

i′∈Bj/i

sign (L (qi′j))

 · min
i′∈Bj/i

(|L (qi′j)|)

8 Variable Node to Check Node Step (vertical step)
9 for each variable node i do

10 for each check node j ∈ C(i) do
11 L (qij) = Li +

∑
j′∈Ci/j

L (rj′i)

12 Also compute the output likelihoods
13 L (Qi) = Li +

∑
j′∈Ci

L (rj′i)

14 Hard decision:
15 for each i do
16 ĉi = 1 if L (Qi) < 0 else ĉi = 0

17 Parity Check:
18 if HĉT = 0 then
19 return ĉ

20 otherwise, if # ITER < MAX-ITER
21 goto Check Node to Variable Node Step
22 else
23 return ĉ and indication of coding failure.

processor boasts 18 cores, a clock speed of 3.00 GHz, AVX-
512 instruction set support, 2 FMA units, and a L3 cache
of 24.75 MB. To assess the execution time of the decoder,
we utilize the OAI time measurement tool, specifically the
time meas.h library. The utilization of this tool facilitated
the execution of the profiling phase, thereby enabling the
identification of crucial limitations and bottlenecks. In order to
mitigate any potential impacts from the operating system, the
decoder is executed on a singular core, and the test computer is
operated in a console mode. We evaluate the decoding time for
both short (3840) and long (8448) block lengths. The number
of decoder iterations as well as the coding rate are considered.
Tables I and II present the profiling results as a function of
coding rate, with the number of iterations fixed at 5 for both
short (BG2) and long (BG1) block lengths;

The results of our experiments demonstrate that as the
number of iterations increases, the latency of the system
grows correspondingly, resulting in a near doubling of the

TABLE I
PROFILING CASE BG1, B=8448, 5 ITERATIONS

Routines Time [µ s ]
R=1/3 R=2/3 R=8/9

llr2CnProcBuf 15.931 7.196 2.507
cnProc (per iteration) 19.847 12.604 9.546
cnProcPc (per iteration) 0.218 0.378 0.341
bnProc (per iteration) 2.817 0.436 0.767
bnProcPc(per iteration) 4.149 2.043 1.006
cn2bnProcBuf (per iteration) 12.437 4.171 1.732
bn2cnProcBuf (per iteration) 11.407 3.984 1.648
llrRes2llrOut 0.865 0.516 0.411
llr2bit 0.382 0.196 0.167
ldpc decoder [total] 273.502 131.489 78.316

TABLE II
PROFILING CASE BG2, B =3840, 5 ITERATIONS

Routines Time [µ s]
R=1/5 R=1/3 R=2/3

llr2CnProcBuf 0.790 0.473 0.258
cnProc (per iteration) 9.061 5.530 1.681
cnProcPc (per iteration) 7.341 3.804 2.154
bnProc (per iteration) 0.265 0.387 0.175
bnProcPc(per iteration) 1.472 0.925 0.456
cn2bnProcBuf (per iteration) 2.807 1.632 0.701
bn2cnProcBuf (per iteration) 7.833 4.362 1.381
llrRes2llrOut 7.175 4.162 1.386
llr2bit 0.665 0.470 0.247
ldpc decoder [total] 145.015 82.63 33.389

delay. Furthermore, we have noted the impact of the coding
rate on the latency, where although lower coding rates lead
to improved decoding performance, the decoding delay still
plays a critical role in determining system performance. We
can observe from the profile findings that some algorithmic
processes are computational time bottlenecks. The decoder’s
total effectiveness is constrained by these bottlenecks or hot
spots. The aforementioned findings demonstrate that process-
ing of CNs, BNs, and messages passing between them
constitute up a significant part of the decoder. In order to
minimize decoder latency, the primary focus of optimiza-
tion efforts should be directed towards the routines cnProc,
bnProc, bnProcPc, cn2bnProcBuf , bn2cnProcBuf , and
llr2cnProcBuf . The procedure of cnProc in particular is
computationally intensive, and as a result, constitutes the
primary bottleneck in the decoding process.



B. Optimization Step

In the pursuit of optimizing decoder workload and reduc-
ing time complexity, it is imperative to conduct a thorough
examination of the available alternatives and possibilities. The
choice of decoding algorithm, the design of the parity matrix,
the optimization of the algorithm’s code, and the consideration
of the target architecture all play a crucial role in ensuring a
real-time decoding process. Utilizing cutting-edge features of
contemporary processors, such as Single Instruction Multiple
Data (SIMD) intrinsics, can result in a significant enhancement
of the decoding algorithm’s performance. The utilization of
the SSE, AVX2, and AVX − 512 instruction sets has been
shown to enable various forms of parallelism specifically for
5G NR LDPC decoding. To achieve optimal throughput and
minimize latency in the decoding process, the novel features
of these conventional instruction sets have been exploited in
the loading, storing, and preprocessing operations, as proven
in the literature [2], [4], [8]. Furthermore, the implementation
of an LDPC decoder utilizing the AVX − 512 instruction set
has demonstrated a higher degree of parallelism, resulting in
a reduction in latency and an increase in throughput.

1) AVX-512 instruction sets in CNs/BNs processing:
The optimization process will prioritize the acceleration of
the CNs and BNs routines, which have been identified as
the performance bottlenecks of the algorithm. To fully utilize
the capabilities of the vector processing units, we will revise
the decoding algorithm to incorporate the latest Intel AVX-
512 instructions. These instructions, featuring larger vector
units and registers, will significantly enhance the speed of the
check node (CN ) and variable node (BN ) processing oper-
ations. Theoretically, the performance speed of the decoder
can be estimated to be two times greater by utilizing AVX-
512 instructions instead of AVX2. The implementation of the
decoder can operate using either AVX2 or AVX-512 versions,
dependent upon the microarchitecture of the target processor
or the instruction sets supported by the execution environment.

The optimized processing flow of CNs is depicted in
Listing 1 .

1
2
3
4 / / CN p r o c e s s i n g
5
6 i f (BG==1)
7 {
8 s w i t c h (R)
9 {

10 c a s e 1 3 :
11 {
12 # i f d e f AVX512BW
13 nrLDPC CNP BG1 R13 AVX512 ( . . . ) ;
14 # e l s e
15 nrLDPC CNP BG1 R13 AVX2 ( . . . ) ;
16 # e n d i f
17 b r e a k ;
18 }
19 c a s e 2 3 :
20 {
21 # i f d e f AVX512BW
22 nrLDPC CNP BG1 R23 AVX512 ( . . . ) ;
23 # e l s e
24 nrLDPC CNP BG1 R23 AVX2 ( . . .
25 # e n d i f
26 b r e a k ;
27 }
28 c a s e 8 9 :
29 {
30 # i f d e f AVX512BW
31 nrLDPC CNP BG1 R89 AVX512 ( . . . ) ;
32 # e l s e
33 nrLDPC CNP BG1 R89 AVX2 ( . . . ) ;

34 # e n d i f
35 b r e a k ;
36 }
37 }
38 }
39 e l s e
40 {
41 s w i t c h (R)
42 {
43 c a s e 1 5 :
44 {
45 # i f d e f AVX512BW
46 nrLDPC CNP BG2 R15 AVX512 ( . . . ) ;
47 # e l s e
48 nrLDPC CNP BG2 R15 AVX2 ( . . . ) ;
49 # e n d i f
50 b r e a k ;
51 }
52 c a s e 1 3 :
53 {
54 # i f d e f AVX512BW
55 nrLDPC CNP BG2 R13 AVX512 ( . . . ) ;
56 # e l s e
57 nrLDPC CNP BG2 R13 AVX2 ( . . . ) ;
58 # e n d i f
59 b r e a k ;
60 }
61 c a s e 2 3 :
62 {
63 # i f d e f AVX512BW
64 nrLDPC CNP BG2 R23 AVX512 ( . . . ) ;
65 # e l s e
66 nrLDPC CNP BG2 R23 AVX2 ( . . . ) ;
67 # e n d i f
68 b r e a k ;
69 }
70 }
71 }

Listing 1. AVX-512 instruction sets in CNs processing

2) Enhancement of Processing Buffers:
In the decoding process, buffers have been introduced as a
means of temporarily storing the information that is trans-
mitted between the CNs and BNs nodes. This enables the
implementation of vectorization in a more efficient manner.
However, it has been observed that the transfer of messages
into buffers is a time-consuming process. To resolve this issue,
a highly optimized memcpy function has been developed.
The optimized memcpy function employs the use of the REP
MOVSB (Repeat While Equal Move String Instructions -Byte)
instruction, which is well-suited for modern x86 processors.
This implementation significantly improves the efficiency of
message transfer into buffers and overall performance of the
decoding process.

3) Unrolling process-based optimization of routines:
Additionnaly, we introduce the loop unwinding technique
as a means of efficiently allocating processor registers and
mitigating the delay caused by processing at the control node
(CN) and bit node (BN). This approach is motivated by the
recognition that many programs are characterized by pro-
longed execution times within loops. To reduce this processing
cost, loops can be transformed into repeating sequences of
equivalent, independent operations. While loop unwinding
can significantly enhance program execution speed, it also
increases the space complexity of the program, resulting in
a trade-off between space and time that may not be desirable,
particularly for embedded systems.

IV. NUMERICAL RESULTS AND DISCUSSION

The optimization results on a selected instance are depicted
in Figure 2 and Figure 3. The resulting decoding times after
the optimizations are compared to the measurements obtained
during the profiling phase and are presented in Tables I and



II to highlight the benefits of the optimization efforts. The
optimization outcomes were analyzed based on the employed
coding rate and the maximized block lengths for the BG1 and
BG2 configurations, with a fixed iteration count of 5. The
studied decoders are respectively named reference NRLDPC
decoder and optimized NRLDPC decoder. The correlation
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Fig. 2. Optimization balance - BG1, B=8448, R=1/3 i= 5, 10, 20 iterations.
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Fig. 3. Optimization balance - BG2, B=3840, R=1/5, i= 5, 10, 20 iterations.

between iterations and decoding time is evident. An increase
in the number of iteration results in a substantial increase in the
delay. Additionally, the decoding complexity of LDPC codes
increases exponentially with the size of the code, which limits
their practical application.

Through the implementation of various optimization strate-
gies, our proposed LDPC decoder exhibits a decreased la-
tency compared to the established baseline or reference imple-
mentation. Consequently, the implementation of the suggested
optimization techniques across all procedures is anticipated to
result in a decoder with a substantial reduction in computa-
tional time, potentially by a minimum of 50%. It is important
to emphasise that the optimization efforts in this investigation
were exclusively directed towards the primary hotspots that
acted as critical bottlenecks. The results of the optimization
efforts are presented in Figures 4 and 5.

V. CONCLUSION

This paper presented strategies for optimizing the decoding
latency of 5G Low-Density Parity-Check (LDPC) on Gen-
eral Purpose Processors (GPPs). Our proposed optimization
mechanisms consist of the implementation of Advanced Vector
Extensions 512 (AVX-512) instructions in computationally
intensive routines and the application of code transformation
techniques, specifically optimization through unrolling. The
aim of these strategies is to address the main computational
bottlenecks and enhance the overall performance of the LDPC
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decoder. To validate the effectiveness of our optimization
strategies, we conducted several simulations to evaluate the
latency of the LDPC decoder on OpenAirInterface(OAI).
Our findings indicated that the implementation of the afore-
mentioned optimization techniques on computational routines
causing time bottlenecks can lead to a significant reduction of
at least 30% in computational delay, even under unfavorable
conditions. This discovery demonstrated the feasibility of
developing a low-latency software 5G NR LDPC decoder on
an x86 architecture.
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