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Abstract—With the increase of renewable energy and the
consumer flexibility needed in the energy transition, grid man-
agement will become more and more complex. Solutions for a
decentralized market and handling of the physical state of the
network already exist in the literature. But when simulated on a
single machine for simulation purposes, these implementations do
not scale up well with the problem size. This makes it impossible
for researchers and system operators to tune parameters and
check for stability, robustness, and dimension in a large grid.
In this contribution, we optimized an endogenous Peer to peer
market on a Graphic Processing Unit to allow the scaling of
these algorithms. The computation times between the Central
and Graphic Processing Units are divided by more than 25 with
600 agents, and the speed-up increases with the problem size.
Some algorithmic and implementation issues are highlighted for
such extensive problem dimensions.

Index Terms—Peer-to-Peer Market, Congestion management,
endogenous market, GPU, heterogeneous preferences

I. INTRODUCTION

The energy transition requires, on the first hand, the mul-
tiplication of renewable power plants and, on the other hand,
the generalization of consumption flexibility [1]. Moreover,
mobility migration towards electric energy is likely to cause
a considerable increase in consumption [2]. Therefore, the
intermittency and imperfect predictability of production must
be compensated for by constantly adjusting the flexibilities
available on the consumption side [3]. This exercise is made
even more difficult by the diversity of distributed energy re-
sources that must be aggregated to have a significant effect [4].
Electricity networks are thus faced with multiple challenges:
they will be used more intensively by a considerable number
of actors and in a more complex manner.

This situation gives rise to a rich scientific literature devoted
to designing new management rules to operate the network
safely and efficiently [5]. Indeed, the current management
mechanisms would face difficulty scaling up in terms of
the number of actors involved. Many efforts are devoted to
distributing control in order to overcome this difficulty [6].
Each actor would then perform a portion of the computation,
all these results being coordinated by information exchanges
until converging towards the global solution [7].

Such approaches open promising ways for solving opera-
tionally and in real-time optimal management problems whose

complexity is out of all proportion to the current situation.
However, before a possible actual deployment, numerous sim-
ulations are required from the research community, network
managers, and normative authorities. In a non-exhaustive way,
it will be necessary to judiciously parameterize the distributed
management mechanisms [8], to verify the behavior during
extreme events [9], or to ensure the robustness of the proposed
solutions in case of faults on the power or communication
network [10]. All these simulations cannot yet rely on the
computational power provided in a distributed manner and
must therefore be performed centrally on a single machine or
computing cluster. The efficient and scalable resolution of the
distributed management mechanisms proposed in the literature
is, consequently, a lock that must be lifted before effective
implementation.

In this context, Graphics Processing Units (GPU) are par-
ticularly relevant because of their important physical paral-
lelism. These architectures have shown their efficiency in
solving power flow (PF) [11], and Optimal Power Flow (OPF)
problems [12]. On the other hand, to our knowledge, the
transposition of distributed management mechanisms on GPUs
is still the subject of few contributions [13]. In particular,
because of the diversity of mechanisms currently proposed
in the literature, any contribution to this domain bears the risk
of being specific to a particular case. To overcome this point,
we choose here the so-called endogenous market problem [10],
[14], [15]. This solves a peer-to-peer market (P2P) constrained
as an OPF by the electrical network’s physical equations and
limits. The choice of a P2P market is, first of all, motivated by
the numerous recent works of which this paradigm has been
the object [16] and by the specific functionalities it allows,
such as heterogeneous preferences. In addition to its use as
such, a P2P market can be considered as a generalization
of other market structures [17]. Thus this formalism can be
adapted to other cases to ensure the genericity of the work
presented here. Taking into account the constraints of the
network is also necessary for this genericity and makes it
possible to compare results with an OPF, which is a notable
particular case of this endogenous market.

The rest of this paper is organized as follows. First, sec-
tion II will present the endogenous market problem and the
algorithm used for its solution. The next part will be devoted



to the architectural optimizations allowing us to obtain the
accelerations and scaling effects presented in section IV. The
last part will be devoted to a discussion on the limits of the
algorithm for high-dimensional resolutions

II. PROBLEM FORMULATION

A. Centralized endogenous market

Let a grid be composed of Nb Buses, L lines (with a unique
couple (i, j) of buses associated with each line l), and N
agents. The power flow on a line l is noted ϕij = ϕl, θi is
the voltage angle, and Bll = 1/xl the line susceptance. The
market problem with grid constraint thought a DC-PF can be
defined as follows:

min
T,P

∑
n∈Ω

(
gn(pn) +

∑
m∈ωn

βnmtnm

)
(1a)

s.t. T = −tT (Λ) (1b)

pn =
∑

m∈ωn

Tnm (µ) n ∈ Ω (1c)

pn ≤ pn ≤ pn n ∈ Ω (1d)

Tnm ≤ 0 n ∈ Ωc (1e)
Tnm ≥ 0 n ∈ Ωg (1f)
pn ≤ Tnm ≤ pn n ∈ Ωp (1g)

ϕij = Bl(θi − θj) (i, j) ∈ L (1h)

ϕij ≤ ϕij ≤ ϕij (δ1−2) (i, j) ∈ L (1i)

The optimization aimed at minimizing the sum of the agent’s
cost function gn = 1

2anp
2
n + bnpn and the heterogeneous

preferences βnm for all agents n ∈ Ω. The constraints are the
trade balance (1b), the relation between total power and trades
for each agent (1c), the power limits (1d) and the trade limits
(1e)-(1g) for respectively the consumers Ωc, the generators
Ωg and the prosumers Ωp with Ω = Ωc ∪ Ωg ∪ Ωp and
Ωc ∩Ωg ∩Ωp = ∅. Finally, (1h) is the DC-PF, and (1i) is the
power flow constraint on each line. Constraints (1b), (1c) and
(1i) are associated with dual variables λ, µ, δ1 and δ2. With G
being the grid sensitivity – i.e. the relation between the agent
power and the power flow, of size L · N – the constraints
(1h)-(1i) become:

|GP | ≤ l (2)

G = B · CT · (C ·B · CT )−1 · I (3)

if lij = −lij = l and where the diagonal matrix B is
the susceptance, C and I the incidence matrices respectively
between buses and lines and between buses and agents.

According to the study case, some lines may be oversized
so that it is known beforehand that their power constraints
will never be activated. To save time and memory space, the
G matrix can be computed for the whole grid, and the rows
corresponding to these lines in G and l can be removed. After
computing G ·P with all rows, this hypothesis can be checked
afterward.

Readers can notice that if βnm = 0 and if only the total
power is considered, (1b) becomes that the sum of all powers
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Fig. 1: Communication of the Engogenous Peer-to-Peer market

is null and (1) becomes a DC-OPF with flexible agents. Thus
our endogenous market formulation can be considered as a
generalization of the DC-OPF.

B. Endogenous P2P Market organization

Problem (1) is a quadratic minimization under linear con-
straint and can be solved as such. Nevertheless, the high
complexity of this formulation does not allow it to scale up
with the problem size. This is why this resolution would be
decentralized in an operational context. In particular, the grid
topology, line impedances, and thermal limits must be known
to compute the line constraints. Within a microgrid, these
could be common knowledge. However, one or several System
Operators (SO) are mandatory to handle large-scale networks.
The actual implementation of this endogenous P2P market is
likely to be decomposed as described in figure 1.

When a new agent joins the market, Fig: 1a, the SO sends
him the computation parameters (defined in the following
sections). The only agent data that the SO needs is the agent
location (the bus of injection).

During the computation, Fig: 1b, each agent must send
their trade to the others for the P2P market and the sum of
their trades to the SO. The SO computes the grid state and
sends to each agent its nodal price (cp2, (14d). This nodal
price will change the optimum of the P2P market toward a
solution that respects all line constraints. All computations and
communications must stop only when the SO confirms that the
line constraints are respected (Resx) and when the P2P Market
has converged (Ress) to a balanced solution (Resr).

The present contribution focuses on reproducing the be-
havior of the above management algorithm in an efficient
implementation on GPU. Adopting a similar decomposition
between the roles of the SO and the P2P market ensures
that the behavior of the algorithm is reproduced and thus
guarantees its reliability. Moreover, this decomposition is
suitable for a parallelized implementation on GPU, as the
following sections will describe.

C. Resolution decentralization

The objective of this section is to summarize how (1)
can be decomposed as shown in Fig.1. A comprehensive



demonstration can be found in [15]. (1b) and (1i) constraints
are relaxed to form their augmented Lagrangian. As the power
flow sign in the line is a convention, only one penalty factor
ρ1 can be kept for the two (1i) constraints. To simplify
the expressions and reduce the computation’s count, some
variables are added:

αk
ln = Glnp

k
n (4)

Qtot
l =

∑
n∈Ω

αln = ϕl ;Qpart
ln =

∑
j>n

αlj (5)

Then an Alternating Direction Method of Multipliers
(ADMM), [18] is used to iteratively solve this so-called global
problem for each agent n:

min
Tn,pn

gn(pn) +
∑

m∈ωn

(βnmtnm)

+
ρ

2

∑
m∈ωn

(
tnm −

tknm − tkmn

2
+

λk
nm

ρ

)2

+ρ1
∑
l∈L

(
α2
ln + (|κk

l1| − |κk
l2|+ 2Qpart

ln )αln

) (6)

with the following variable updates and Π− being the projec-
tion to the negative numbers.

κk
1l = ll + δk−1

l1 −
∑
n∈Ω

Glnp
k
n = ll +Π−(κk−1

1l )−Qtot
l

κk
2l = ll + δk−1

l2 +
∑
n∈Ω

Glnp
k
n = ll +Π−(κk−1

2l ) +Qtot
l

(7)

λk
nm = λk−1

nm +
ρ

2
(tknm + tkmn) (8)

Finally, the residuals to check for early convergence can be
computed:

rk+1 =
∥∥∥tk+1

nm + tk+1
mn

∥∥∥
sk+1 =

∥∥∥tk+1
nm − tknm

∥∥∥
xk+1 =

∥∥∥[Π−(κk+1
1 )−Π−(κk

1)]
2 + [Π−(κk+1

2 )−Π−(κk
2)]

2
∥∥∥

(9)

D. P2P market resolution
The minimization (6) for one agent, will be called local

problem and can be written in this way:

T k+1
n = argmin

tnm

g
( ∑
m∈ωn

tnm

)
+

∑
m∈ωn

fnm(tnm)

s.t. tnm ∈ C

(10)

and the sharing ADMM solution [18] is:

tj+1
i = argmin

lbn<ti<ubn

(
f(ti) +

ρl

2

∥∥∥ti − tji + t
j − p̃j + µj

∥∥∥2
2

)
(11a)

p̃j+1 = argmin
pn<Mnp̃<pn

(
g(Mnp̃) +

Mnρl

2

∥∥∥p̃− µj − t
j+1

∥∥∥2
2

)
(11b)

µj+1 = µj + t
j+1 − p̃j+1 (11c)

fi(ti) =
ρ

2
(xi −

tkni − tkin
2

+
λk
ni

ρ
)2 + βni · ti

g(Mnp̃) = M2
n ·

[
0.5an + ρ1

∑
l∈L

G2
ln

]
· p̃2

+Mn

[
bn + ρ1

∑
l∈L

(
(|κk

l1| − |κk
l2|+ 2Qpart

ln )Gln

)]
p̃

(12)

This is the minimization of two scalar quadratic functions that
can be noted as follows:∑

j

aj · (y − bj)
2 +

∑
j

cj · y (13)

Most of the coefficients are constant. By using respectively
t and p subscripts for the coefficients of equations (11a) and
(11b), the coefficients that will change according to the global
(k) and local (j) iterations are the following:

bt1 = 0.5(tkni − tkin)−
λk
ni

ρ
(14a)

bt2 = tji − t
j
+ p̃j − µj (14b)

bp1 = µj + t
j+1 (14c)

cp2 =ρ1Mn

∑
l∈L

(
(|κk

l1| − |κk
l2|+ 2Qpart

ln )Gln

)
(14d)

Residuals can be computed to check the algorithm early
convergence:

rj+1
l =

∥∥∥tj+1 − p̃j+1
∥∥∥

sj+1
l =

∥∥∥tj+1
i − tji

∥∥∥ (15)

To take into account (1d)-(1g), the two solutions ti and
p̃ must be respectively be projected into their admissible set
[lb, ub] (according to the agent type) and [pn/Mn, pn/Mn].
The whole algorithm is summarized in Alg.1.

Algorithm 1 Global algorithm on CPU-GPU

While((r, s, x) > ϵg,x and k < kmax)
P2P Market

While((rl, sl) > ϵl and j < jmax)
Bt2 ← (14b)
T j+1 ← (11a)
T j+1 ← max(min(T j+1, Ub), Lb)
T ← mean(T j+1)
Bp1 ← (14c)
p̃← (11b)
p̃← max(min(p̃, pn/Mn), pn/Mn)
µ← (11c)
IF (j%Stepl == 0)

(sk+1
l , rk+1

l )← (15)
Λ, Bt1 ← (8), (14a)
pk+1
n ← T ·Mn

SO computation
(αk+1

ln , Qpartial, Qtot)← ((4),(5))
(κk

1l, κ
k
2l)← (7)

Cp2 ← (14d)
IF (k%Stepg == 0)

(rk+1, sk+1, xk+1)← (9)

III. HARDWARE OPTIMIZATION

A. Test objectives

This section will focus on the implementation of the SO
resolution (4), (5), (7) and (14d). Indeed the P2P market has



already been optimized in previous work [13]. Furthermore,
with the problem size augmentation, the SO computation
becomes the dominant part of the algorithm once switched
to a GPU. Indeed, the following Tab. I can be obtained by
studying the serial and parallel complexity of the different
parts. Representative functions of the complexity of each part
have been selected. It can be seen that the complexity of
the P2P market only depends on the number of agents N ,
respectively, in a quadratic or a logarithmic way on the CPU
and for the GPU. On the SO part, representative operations
depend on both the number of agents N and the number of
lines L. On a CPU, complexity is linear towards each of these
factors. However, these operations being reductions, they can
not be fully parallelized on GPU and depend on one parameter
each.

TABLE I: Complexity of the Endogenous Market

Location Representative serial parallel
function complexity complexity

P2P Tn = mean(Tn) n ∈ Ω O(N2) O(log(N))
SO Qpart (5) O(N · L) O(N)
SO Cp2 (14d) O(N · L) O(log(L))

To parallelize on GPU using the maximum of its capacities,
the following rules must be observed:

• using the minimum number of kernel calls;
• using the minimum number of global memory accesses

by using local and shared memory when possible;
• using coalescent accesses to the global memory (adjacent

treads must read adjacent memory).
In the Cuda language, kernel calls are applied to a grid. The

grid comprises several blocs of threads that share memory and
can be synchronized only within a bloc. In our program, all
data are stored in row-major order. Thus several cases are
possible, Fig. 2:

• each bloc computes on one matrix row, i.e. one grid line
(Rdim);

• each bloc computes on one matrix column, i.e. one grid
agent (Cdim);

• each bloc computes a fixed number of coefficients inde-
pendently of the rows and columns of the matrix (1D).

Thus, to have coalescent accesses, blocs must not compute
on the matrix column (Cdim). To use shared memory, threads
that access the same memory must be in the same bloc. The
same applies if the matrix is transposed before being stored
(· · T ), but the data in each bloc will not be the same.

B. Methodology and results

The black box compilation step and the GPU features can
have unexpected results on performances. Thus to find the best
configuration for each computation, the methodology of [19]
has been followed. Data has been randomly generated, and the
computation time of each kernel call has been measured for
several problem sizes. Several computations to average the
results have been made, and data are copied between each

computation to prevent any GPU optimization. In our case,
the matrices that can be transposed are G, α, and Qpart, and
this will change all the SO computations.

As the performance can depend on the problem size, Fig. 3
shows the SO computation time according to the problem size
comparing the use of the transpose. The best configuration for
each computation has been chosen. It can be seen that at a
small dimension, the two ways of computing are equivalent.
Nevertheless, at a large size, using the transposed matrices is
faster. For example, for the case N = 5000 and L = 10000,
the computation time is divided by 2.

IV. PROBLEM SIZE IMPACT ANALYSIS

A. Presentation
All C++/Cuda codes, benchmarks, and results are in open

access on Gitlab1. Simulation has been done on a personal
computer with an ADM RYZEN CPU operating at 3,3GHz
and an Nvidia GPU GeForce RTX 3060 for a laptop. This
GPU has 30 Streaming Multiprocessors and 3840 Cuda cores.

To study the impact of the problem size on the P2P
and SO computation time, simulations on random cases of
different sizes have been done. To do so, the grid has been
fixed from the one in the European open source data [20].
A homogeneous random law has been used to select the
constraint lines and their limits, the agent powers, preferences,
cost functions, and positions on the grid. The random and
simulation parameters are respectively resumed in Tab. II and
Tab. III. As the penalty factors are arbitrarily fixed, they can
be poorly chosen in some cases. Furthermore, some cases
may not be feasible due to the constraint lines. Thus, only
the results of cases that achieve the precision asked within
the fixed maximum number of iterations will be presented.
Computations were made on the CPU and GPU to compare
the results.

B. Results
Fig. 4 displays the ratio between the SO and P2P computa-

tion time (Ratio = tSO/tP2P ) according to the problem size.

1https://gitlab.com/satie.sete/gpu endogenous p2p market

Fig. 2: Memory accesses according to the bloc configurations

https://gitlab.com/satie.sete/gpu_endogenous_p2p_market
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TABLE II: Random characteristics for the study case genera-
tion

Consumer Generator
Features average variation average variation

Proportion 0.6 0 0.4 0
P0 (MW) 60 50 300 250
pn (MW) -0.9 P0 0 P0 0
pn (MW) -1.1 P0 0 0 0

an (MW−2) 1 0 0.01 0
bn (MW−1) P0 0 20 18
|β| (MW−1) 4 2 4 2

l (MW ) 1000 300 1000 300

TABLE III: Parameters for the simulation

Features value Features value

kmax 50000 jmax 5000
stepg 10 stepL 1
ϵg 0.01 ϵl 0.001
ρg 10 ρl ρg
ρ1 0.004 ϵx 1

nSimu 20 offset 2
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Fig. 4: Ratio between SO and P2P computation time

For the CPU, Fig. 4a, the larger the number of agents, the
longer it takes to solve the P2P market compared to the SO
computation. The opposite happens on the GPU, Fig. 4b. This
is relevant to what we demonstrated in the previous section
Tab. I.
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Fig. 5: Computational time divide by the number of global
iteration

Fig. 5 shows the computation time divided by the number
of global iterations (k) according to the problem size. For the
CPU, Fig. 5a, the computation time increases fast with the
number of agents. This is not the case on the GPU, Fig. 5b,
thanks to the parallelization. In this study, the more lines there
are, the more constrained the problem is when there are many
agents. When the line constraints are activated, the problem
needs more iterations to be solved, and these iterations are
faster as the P2P market only needs to change the agents’
trades which activates the constraints.
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This graph and Fig. 6 also shows the speed-up between
the CPU and GPU versions, as they need the same number
of iterations to converge. Thus the CPU is faster for small
dimensions, but the GPU divides by 5 the computation time
at 300 agents and 25 at 600 agents. This speed-up continues to
increase with the problem size. To compare with the literature,
in [15], the 39-bus IEEE case is solved in 1min with Matlab
(CPU). This same case is solved with C++ in about 2s on the
CPU and 6s on GPU.

V. DISCUSSION AND LIMITS

The speed-up allowed by the GPU use makes it possible
to simulate significant cases and highlights some algorithm
problems at these sizes. These issues may prevent any imple-
mentation of this algorithm (independently of the hardware
used) by imposing a prohibitive number of global iterations
(and thus of messages [21]) in a concrete application.



First, this algorithm’s performances depend on the penalty
factors ρ and ρ1. According to [18], the penalty factor can
be tuned during the computation according to the residuals.
Nevertheless, applying that in our case with two penalty factors
can no longer ensure convergence. Thus the penalty factors
are fixed during the simulation and must be tuned beforehand,
which is not always possible.

Furthermore, the increasing size of the study case limits
the precision asked for the power flow in the lines. Indeed as
Φ = G ·P , with G a dense matrix in a case of a meshed grid.
A small error on each agent ϵpn will provoke a noticeable
inaccuracy in the power flow ϵϕ ≈ |G| · ϵpn ≈ N · g · ϵpn with
g the order of magnitude of the G matrix coefficients. Thus it
can happen that for a feasible case and a not-bad combination
of penalty factors, reaching the asked precision was almost
impossible and asked a consequent number of iterations. To
solve this issue in our work, the accuracy asked for the power
flow has been reduced while allowing the user to add an offset
on the line constraints (∆l = offset · ϵx). This offset ensures
that the line constraint will be strictly respected even with
poor accuracy. The value of offset must be tuned according
to the study case; too small, the power flow may exceed the
line constraint; too big, it will change the optimum.

VI. CONCLUSION

To summarize, the main contributions of this work are the
following:

• a hardware and software optimization of an endogenous
P2P market to reduce the computational time;

• a scaling-up study of the computational time, with the
distribution between the SO and the P2P market;

• a highlight of the algorithm limitation for large cases.

Thus this algorithm’s implementation on GPU allows for
solving significant cases during long periods faster than the
CPU solutions. The speed-up achieved at 600 agents is about
25 and increases with the problem size.

Nevertheless, at the moment, many parameters must be
tuned to limit the number of global iterations. The algorithm
may be improved by using a FAST-ADMM to update the dual
variables or by preconditioning the data. Besides, as the SO
takes more time with the problem size increase, the computa-
tional time can be reduced by decentralizing its computation,
making it more suitable for GPU implementation. Finally, this
algorithm only considers the line power flows in the case of a
DC-PF. Further works on the algorithm must be done to assess
voltages, losses, and voltage angles on the grid via an AC-PF.
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