
HAL Id: hal-04202821
https://hal.science/hal-04202821

Submitted on 5 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of a peer-to-peer electricity market
resolution on GPU

Beatrice Thomas, Roman Le Goff Latimier, Abdelhafid Elouardi, H. Ben
Ahmed, Samir Bouaziz

To cite this version:
Beatrice Thomas, Roman Le Goff Latimier, Abdelhafid Elouardi, H. Ben Ahmed, Samir Bouaziz.
Optimization of a peer-to-peer electricity market resolution on GPU. 4th IEEE International Confer-
ence on Electrical Sciences and Technologies in Maghreb - CISTEM 2022, Oct 2022, Tunis, Tunisia.
�10.1109/CISTEM55808.2022.10043860�. �hal-04202821�

https://hal.science/hal-04202821
https://hal.archives-ouvertes.fr

Optimization of a peer-to-peer electricity market
resolution on GPU

1st Béatrice THOMAS
Université Paris-Saclay

ENS Paris-Saclay, CNRS, SATIE
91190, Gif-sur-Yvette, France
beatrice.thomas@ens-rennes.fr

2nd Roman LE GOFF LATIMIER
UniR

ENS Rennes, SATIE
35170, Bruz, France

roman.legoff-latimier@ens-rennes.fr

3rd Abdelhafid EL OUARDI
Université Paris-Saclay

ENS Paris-Saclay, CNRS, SATIE
91190, Gif-sur-Yvette, France

abdelhafid.elouardi@universite-paris-saclay.fr

4rd Hamid BEN AHMED
UniR

ENS Rennes, SATIE
35170, Bruz, France

hamid.benahmed@ens-rennes.fr

5rd Samir BOUAZIZ
Université Paris-Saclay

ENS Paris-Saclay, CNRS, SATIE
91190, Gif-sur-Yvette, France

samir.bouaziz@universite-paris-saclay.fr

Abstract—The increasing integration of distributed energy
resources on the electrical grid will complexify its management by
overloading the system operator. One solution explored in the lit-
erature is to decentralize the grid management with communities
or a peer-to-peer market. However, the computational challenge
also applies to researchers when they simulate this management
on unique hardware. In this work, extensive research has been
done to optimize a simulation of an energy market on a Graphic
Processing Unit (GPU). This market will be decentralized using
an Alternating Direction Method of Multipliers (ADMM). The
new optimized version has enhanced the computation time by
about 40% by comparison to the GPU reference method. This
allows a resolution of a study case of 2463 agents in 0.15s per
hour step or less than one hour for a 3-years simulation.

Index Terms—GPU optimization, Electricity market, Peer to
Peer (P2P), Performance evaluation

I. INTRODUCTION

With the increasing integration of renewable energy and
active consumers on the electrical grid1, its management
will become even more complex [1]. Having renewable and
distributed energy, which has high variability, makes having a
real-time market (every 15 minutes) critical. Furthermore, the
agents’ count’s growth may open new ways of grid manage-
ment while overloading the system operator, which may not
be able to find the optimum in time [2]. However, balance
at every moment consumption and production is crucial to
prevent any collapse of the electrical grid.

Thus, several research studies try to prove that solving the
market in a decentralized way using a SmartGrid is possible
and relevant [3]. Indeed, by decentralizing the market, two
goals are achieved. First, each agent has more privacy because
they communicate only their choice. Then, the large-scale
problem is divided into many little parallel problems that
are easier to solve [4]. A Peer to Peer (P2P) market is

1RTE. Conditions and Requirements for the Technical Feasibility of a Power
System with a High Share of Renewables in France Towards 2050

decentralized, with no central operator, and every agent can
communicate with all the others.

Nevertheless, the decentralized market simulation being
often centralized on unique hardware, researchers face pro-
hibitive processing times to realize the proof-of-concept on
actual size study cases other than micro-grid. For example, [5]
is fast (0.1s) but has only 12 agents in their market, whereas
[6] and [7] have more than 30 agents but last respectively
9.5s and 59s (the second adds physical grid constraint). The
computational challenge comes when a larger-scale problem
(with more than 100 or 1000 agents) is considered.

GPU has proven itself in many domains, such as radars
[8] or cartography [9] for the reduction of computation time.
This hardware has also been used for power Flow problems
[10]- [11] and decentralized electricity market management2.
Nevertheless, many hardware-specific optimizations must be
done to make the most of it.

The objective of this work is multiple. The first is to describe
one GPU optimization method to allow optimization on other
problems. The second is to give the community an open-source
code to solve large-scale P2P markets during long periods
to help validate the performances of their management or to
check the operation safety, for example.

The remainder of this paper is structured as follows: first,
part II presents the algorithm, the hardware architecture,
and the optimization methodology for the calculations. Then
section III introduces the different optimizations made, and
finally, part IV will present the result of these optimizations.

II. METHODS AND MATERIALS

A. Market resolution algorithm
The objective of the peer-to-peer market resolution is to

maximize global social Welfare without any central coordina-
tor. That is made via the minimization of the sum of each agent

2the code of a previous personal study is available here https://gitlab.com/
satie.sete/p2p market resolution gpu

https://gitlab.com/satie.sete/p2p_market_resolution_gpu
https://gitlab.com/satie.sete/p2p_market_resolution_gpu

n ∈ Ω cost function gn, (1a). This cost function represents
the goal of power needed or the cost of producing electricity
for each agent. As there is no central agent, each trade tnm
between the agents n and m must be considered in addition
to the total power pn of each agent (1c). The other constraints
are as follows: what is bought must be sold, (1b), each agent
has limits to the exchangeable power (1d)-(1g). According to
the agent’s type (consumer, generator, or prosumer), the trades
must be negative, positive, or between the fixed limits.

The dual variables Λ and µ (Lagrangian multipliers) are
respectively associated to the constraints (1b) and (1c).

min
T,P

∑
n∈Ω

gn(pn) (1a)

s.t. T = −tT (Λ) (1b)

pn =
∑

m∈ωn

tnm (µ) n ∈ Ω (1c)

pn ≤ pn ≤ pn n ∈ Ω (1d)

tnm ≤ 0 n ∈ Ωc (1e)
tnm ≥ 0 n ∈ Ωg (1f)
pn ≤ tnm ≤ pn n ∈ Ωp (1g)

To decentralize the resolution, the augmented Lagrangian Lρ,
associated with the minimization and the constraint (1b), is
introduced.

Lρ(T, P,Λ, z) =
∑
n∈ω

gn(pn)

+
∑
n∈ω

∑
m∈ωn

λnm(tnm − znm)

+
∑
n∈ω

∑
m∈ωn

ρ

2
(tnm − znm)2

(2)

with znm the global variable and ρ the penalty factor:

znm =
tnm − tmn

2
(3)

By using a so-called consensus ADMM [12], it can be deduced
that solving (1a) and (1b) is the same as solving for each step
k and each agent n:

T k+1
n =argmin

Tn

gn(pn)

+
∑

m∈ωn

(ρ
2
(tnm −

tknm − tkmn

2
+

λk
nm

ρ
)2
)

s.t. (1b)− (1g)

(4)

In each step, the Lagrangian multipliers associated with the
anti-symmetry constraint are updated as follows:

λk+1
nm = λk+1

n +
ρ

2
(tk+1

nm + tk+1
mn) (5)

The following residual calculation for each agent n allows an
anticipated termination of the algorithm:

rk+1
n = ||tk+1

nm + tk+1
mn || (6a)

sk+1
n = ||tk+1

nm − tknm)|| (6b)

with ||.|| being any norm. This part will be called the global
problem as it concerns all agents.

Per analogy, by using a so-called sharing ADMM [12] with
the global variable zi = ti, it can be deduced that solving (4)
and (1c) is the same as solving for each step j and each trade
between the agent n and its ith peer:

tj+1
i = argmin

ti

(
f(ti) +

ρl
2
||ti − tji + t

j − zj + µj ||22
)

(7a)

zj+1 = argmin
z

(
g(Mnz) +

Mnρl
2

||z − µj − t
j+1||22

)
(7b)

with:

fi(ti) =
ρ

2
(ti −

tkni − tkin
2

+
λk
ni

ρ
)2 (8a)

g(Mnz) = gn(Mnz) (8b)

µj+1
i = µj

i + tj+1
i − zj+1

i (8c)
z = mean(z) (8d)

All (7) functions are scalar and quadratic ones that can be
written in this way:

h(x) =
∑
i

ai(x− bi)
2 +

∑
i

ci · x (9)

For the rest, if the coefficients (i.e., ai, bi or ci) refer to the
trades’ equations, the index will be a t, the index will be p if
it relates to the total power equations. Their minimum can be
found analytically :

xmin =
2 ·

∑
j aj · bj −

∑
j cj

2
∑

j aj
(10)

Most of these coefficients are constants and only depend on
the agent n considered; thus, they will be defined during
the initialization, but the three following coefficients must be
updated every step:

bt1 = 0.5(tkni − tkin)−
λk
ni

ρ
(11a)

bt2 = tji − t
j
+ zj − µj (11b)

bp1 = µj + xj+1 (11c)

To consider the constraints (1d)-(1g), ti and z are projected
on their allowed intervals (respectively lbn ≤ tj+1

i ≤ ubn and
pn/Mn ≤ zj+1 ≤ pn/Mn). To check the convergence of this
so-called local problem, the residuals are computed as follows:

rj+1 = ||tj+1 − zj+1|| (12a)

sj+1 = ||tj+1
i − tji || (12b)

This will be called the local problem as each agent can solve
its problem independently. The algorithm is presented here in
Alg: 1; it is worth noticing that the residual computation will
be detailed later.

input : Study case, ρ, ϵ and kmax
output: Vectors T, Λ, residuals

1 while err > ϵ et k < kmax do
2 Λ← Λ + ρ · (T +t T)/2 ;
3 while errl > ϵ et j < jmax do
4 T j+1 ← argminF (T j+1);
5 T j+1 ← min(T j+1, Ub) ;
6 T j+1 ← max(T j+1, Lb) ;
7 Tmean ← mean(T j+1) ;
8 z ← argminG(z) ;
9 z ← min(z, pn/Mn) ;

10 z ← max(z, pn/Mn) ;
11 µ← Tmean + µ− z ;
12 if j%Stepl == 0 then
13 err1← ||T j+1 − T j ||∞ ;
14 err2← ||Tmean − z||∞ ;
15 errl ← max(err1, err2) ;
16 end
17 end
18 if k%Stepg == 0 then
19 ResR ← ||T −t T ||∞ ;
20 ResS ← ||Tk − Tk−1||∞ ;
21 err ← max(ResR, ResS) ;
22 end
23 end

Algorithm 1: Solving algorithm

B. Software specification

All the code is made with C++ for the Central Processing
Unit (CPU) and Cuda for the GPU functions. The object-
oriented programming paradigm has been followed. Indeed,
classes have been used to represent the study case, the study’s
parameters, and the study’s results, and a personal class has
been used to store matrix and their operation on CPU and
GPU. One abstract class is used to interface all methods for the
calculation. This allows the fast implementation, integration,
and testing of new ways of resolution. All definitions and
implementation of kernel functions are in this abstract class to
prevent compilation errors while allowing the reuse of parts.
All have been coded from scratch by the author, and only basic
libraries of C++ and Cuda are needed to print messages and
measure times. It is worth noticing that all calculations are
big-dimension matrix operations; thus, they will be on GPU,
and the CPU is used as a controller. The code is split into
several functional blocs to allow further analysis, Fig. 1. The
meaning of each bloc is resumed in the following table I.
The GPU function’s calls are depicted with black arrows, and
data transfers are shown with blue arrows. Data transfers are
reduced to their minimum to increase performance, with one
significant transfer at the simulation’s beginning and end and
just two float transfers at each step.

C. Hardware specification

The algorithm performance evaluation has been made on
a GPU GeForce RTX 3060 architecture (Ampere GA 106

TABLE I
FUNCTIONAL BLOCKS AND EQUATIONS MATCHING

Block Description equations

FB 0 Initialization
FB 1a Local problem (Bt2, T) (11b) & (7a)
FB 1b Local problem (Tmean) (8d)
FB 1c Local problem (Bp1, P) (11c) & (7b)
FB 2 Local residuals (12)
FB 3a Global problem (Λ) (5)
FB 3b Global problem (Bt1) (11a)
FB 4 Global residuals (6)
FB 5 Results’ retrieval

Fig. 1. CPU-GPU partitioning with functional blocs

architecture). It contains 30 Streaming Multiprocessors (SM)
and 3840 Cuda cores. The Roofline of this architecture for the
single-precision float is given in the figure 2 according to the
benchmark of [13]. On this graph, the measured performance
is better than the theoretical one because the GPU can increase
its frequency beyond its theoretical limit when the temperature
is low. Thus, during the measurement, the frequency of the
GPU was higher than the one on the specification. The CPU
associated is an AMD RYZEN 5 operating at 3,3GHz.

0 20 40 60 80 100 120 140

operationnal intensity (Flops/byte)

0

2000

4000

6000

8000

10000

12000

P
e

rf
o

rm
a

n
c
e

 (
G

F
L

O
P

S
)

Roofline for single precision float

measured

theory

Fig. 2. Measured and theoretical Roofline for single precision float

D. Methodology

To use the hardware-software co-design methodology and
check the efficiency of every optimization, the APOD Nvidia
optimization methodology3: Assert, Parallelize, Optimize, De-
ploy has been followed. It consists of studying the existing
code to find the bottleneck, introduce the possible paralleliza-
tion, and modify the algorithm to optimize the implementation
using the GPU specifications (shared memory, synchronization
within a bloc...). The last step is to deploy and benchmark
the new version. While it is possible, the whole process
can be repeated. Benchmarking is critical because the code
run has passed through another black-box architecture-specific
optimization process: compilation whose effects are not pre-
dictable a priori. The benchmarks will be made using two
methods. The first one is based on the micro-benchmarks
described by [14] and consists of the processing time measure-
ment of each kernel launch on random data. Copies are made
between each call to prevent GPU optimization. As the GPU is
asynchronous, barrier functions must be added to measure the
time of kernel calls. The mean of ten kernel calls is made
one hundred times and stored in a file. This is done with
different size of data (i.e. different agent’s count). The second
one, which allows testing the algorithm’s behavior, has been
made on data from an open database DTU-ELMA/European
Dataset [15]. Methods are tested one by one, and the time
for the simulation for each hour in a fixed period is measured
(with the CPU clock function). Similar tests have been made
with barrier functions to measure the time of each functional
bloc.

III. OPTIMIZATION

A. Reference method

The first algorithm version is a trade-off between fast
instantiation and processing performance. Indeed, basic op-
timizations have been used to improve the computation time
without requiring extensive studies in opposition to advanced
optimizations. The shared optimizations between every method
are the following:

• all variables are stored as class attributes, and matrices
for intermediate calculations are allocated one time in the
beginning to prevent useless allocations and transfers;

• the sparse N2-sized matrices are transformed into M -
sized vector (with N being the agents’ count and M the
total number of trade);

• all reductions are optimized using [16];
• all calculations are with single-precision float to make the

best use of GPU resources;
• the global penalty factor may vary based on residual pairs

ratio to make their converging speed equal;
• the residual computation is the infinite norm to prevent

error accumulation due to the use of single-precision
float;

3https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

TABLE II
OPTIMIZATIONS MADE

Name Effect

0.a

The study case matrices are copied directly
on the GPU instead of duplicated on the
CPU and then transferred to the GPU, thus
saving one memory copy per matrix

1.a Each agent uses one bloc of thread, and the
three steps are made in one kernel call

1.b Compute a fixed number of steps in one
kernel call

1.c Use local memory (registers when available)
1.d Use shared memory

12.a
The two residuals are computed for all
agents, which stop at the same time to
prevent any divergent branch

12.b Compute all local steps (with residuals) in
one kernel call

3.a The two phases of this functional bloc are
made in the same kernel call

4.a The two residuals computation are made in
the same kernel call

• residuals are not computed every step to reduce the
operation’s amount and data transfers between CPU and
GPU.

This method will be called GPU5.

B. Differences between the methods

TABLE III
METHODS PRESENTATION

Name GPU6 GPU7 GPU8 GPU9 GPU10 GPU11 GPU12

0.a ✓ ✓
1.a ✓ ✓ ✓ ✓ ✓ ✓ ✓
1.b ✓ ✓ ✓
1.c ✓
1.d ✓ ✓ ✓
12.a ✓ ✓ ✓ ✓ ✓
12.b ✓ ✓
3.a ✓ ✓
4.a ✓

This part will describe the different optimizations used for
each functional bloc. Each optimization will be called with
one number indicating the functional bloc on which it will be
applied and one letter to differentiate several optimizations on
the same functional bloc. The optimizations are resumed on
the following Table II. To optimize on a GPU, some rules must
be known. First, if no Stream is used, only one kernel call is
active at once, so it is as if there is unnecessary global synchro-
nization between each kernel call. Then, GPU performs better
at a high operational intensity (operation count divided by
memory usage). However, the reference method’s operational
intensity is very low (GPU5), so the memory access count
must be reduced. Finally, GPU has several memories; registers
are local to each thread, and the fastest one, shared is for all
threads on one block and is faster than the global memory
accessible by all threads. Nevertheless, it is worth noticing
that if there is not enough space in registers, data will be
stored in the so-called local memory at the same place (and

at the same speed) as the global memory. The table II shows
the differences between each tested method. The GPU7 way
is a naive version of GPU12 that has a memory problem and
shows what must not be done to optimize an application on
GPU; it is why it isn’t considered in the following parts.

IV. RESULTS

This part will show the results of the different tests on the
methods. For clarity, only graphs about testing on the ten first
days of June 2013 of the European case will be presented.
All codes are available on GitLab with the MATLAB script
to print the results4.

Time(s) for each FB according to the method

GPU5 GPU6 GPU8 GPU9 GPU10 GPU11 GPU12

10
1

10
2

FB0

FB1

FB2

FB3

FB4

FB5

Fig. 3. Measured time for each functional bloc according to the method (240-
hours simulation)

Relative time(%) for each FB according to the method

GPU5 GPU6 GPU8 GPU9 GPU10 GPU11 GPU12

0

20

40

60

80

100

120

FB0

FB1

FB2

FB3

FB4

FB5

Fig. 4. Relative time for each functional bloc according to the method (240-
hours simulation)

First, the two graphs, Fig. 3-4, show the time (respectively
the relative time) of each functional bloc according to the
method. It is worth noticing that as we add barrier functions,
the printed times are far from the real ones when the GPU
is asynchronous. Furthermore, readers must be aware of the
logarithm scale of the first graph; for instance, the initialization
(FB 0) lasts around 3s even if it is not visible on the
figure. On the first graph, Fig. 3, the improvement of each
change is clearly visible. While they are identical, the time
variation of some functional blocs shows the variability of the
performance. The second figure, Fig. 4, shows that the more
computations are optimized, the more the other steps become
important.

4https://gitlab.com/satie.sete/p2p market resolution gpu

1 2 3 4 5 6 7 8 9 10

day

0.1

0.15

0.2

0.25

0.3

0.35

ti
m

e
 (

s
)

simulation time (s) according to the method and the day

GPU5

GPU6

GPU8

GPU9

GPU10

GPU11

GPU12

Fig. 5. Average processing time (s) for each pair (method, day) during June
2013

On the graph, Fig. 5, are represented the processing time
for each method in the European case for June 2013, grouped
by day. Whatever the chosen month, the results are similar;
thus, only the result for this month is presented here. It’s
worth noticing that the time for a one-hour calculation is
between 0.1 and 0.5s; these values vary depending on the
considered hour and the method used (for reference, optimized
CPU methods or non-optimized GPU methods take several
seconds on average to process the same thing). The first step
processing time is between 1.3 and 2s, which shows what
happens without warm-start. For each temporal step s, the
SpeedUp is computed as follows:

Ss =
ts,GPU5 − ts,new

ts,GPU5
(13)

Results are summarized in the table IV.

TABLE IV
SPEEDUP (%) AND AVERAGE TIME (S) FOR EACH METHOD

Method Avg Med Max Min Std Tavg

GPU6 12 % 13 % 24 % - 12 % 0.08 0.24
GPU8 6 % 8 % 15 % - 13 % 0.06 0.26
GPU9 12 % 16 % 66 % - 102 % 0.3 0.22
GPU10 23 % 30 % 73 % - 84 % 0.3 0.20
GPU11 24 % 32 % 74 % - 86 % 0.3 0.20
GPU12 40 % 44 % 71 % -5 % 0.2 0.15

It’s worth noticing that, on average optimized methods are
faster than the basic one (which has Tavg = 0.28s), but
this is not uniform. In some study cases, the basic method
outperforms optimized ones. It can also be noticed that making
several (or all) steps in one kernel call for the local problem
(from GPU9 to GPU12) smooths the average processing
time according to the day. Furthermore, using shared rather
than local memory is really efficient (GPU10 against GPU9).
Nevertheless, reducing the number of matrix copies at the
initialization (GPU11 and GPU12) has no visible effect as
the complete initialization only happens one time.

V. CONCLUSION

This study allowed us to increase the time efficiency of
an electrical market management algorithm (in the European

https://gitlab.com/satie.sete/p2p_market_resolution_gpu

case) using a hardware-software co-design method. The time
needed to simulate one hour-step has reached 0.15s on average,
which allows the simulation of 3 years in less than one hour.
The entire implementation is open access on GitLab and can be
used by anyone. This will allow solving real scaled problems
quicker, hence allowing statistical studies (comparison and
variability explanation), dimensioning studies, and stability
studies (by adding or removing links or agents)

Achieved performance can be further improved using other
architecture having more significant memory blocs, and by
changing the software, optimization is applied accordingly.
Furthermore, the peer’s agent count could be limited to reduce
the size of the problem. However, in this case, tests must be
done to check the market convergence to the global optimum.

Finally, only the market was considered in this simulation;
further investigation could also consider the physical grid
constraint.

REFERENCES

[1] Sousa T, Soares T, Pinson P, Moret F, Baroche T, Sorin E. Peer-to-
peer and community-based markets: A comprehensive review, Renew-
able and Sustainable Energy Reviews, Volume 104, 2019, Pages 367-
378,ISSN 1364-0321 https://www.sciencedirect.com/science/article/pii/
S1364032119300462

[2] Dong A, Baroche T, Le Goff Latimier R, Ben Ahmed, H. Convergence
analysis of an asynchronous peer-to-peer market with communication
delays. Sustainable Energy, Grids and Networks, 26, 100475. 2021

[3] Garau M, Ghiani E, Celli G, Pilo F, Corti S. Co-simulation of smart
distribution network fault management and reconfiguration with LTE
communication. Energies, 2018, 11.

[4] Hug G, Kar S, Wu C. (2015). Consensus+ innovations approach for
distributed multiagent coordination in a microgrid. IEEE Transactions
on Smart Grid, 6(4), 1893-1903.

[5] Sorin E, Bobo L, Pinson P . Consensus-based approach to peer-to-peer
electricity markets with product differentiation. IEEE Transactions on
Power Systems, 34(2), 994-1004. 2018

[6] Baroche T, Le Goff Latimier R, Pinson P, Ben Ahmed H. Exogenous
Cost Allocation in Peer-to-Peer Electricity Markets. IEEE Transactions
on Power Systems, Institute of Electrical and Electronics Engineers,
2019, 34 (4), pp.2553 - 2564. ffhal-01964190f

[7] Chernova T, Gryazina E. Peer-to-peer market with network constraints,
user preferences and network charges. International Journal of Electrical
Power & Energy Systems,Volume 131,2021,106981,ISSN 0142-0615,
https://doi.org/10.1016/j.ijepes.2021.106981.

[8] Martelli M, Enderli C, Gac N, Vermesse A, Merigot A. GPU Accel-
eration: OpenACC for Radar Processing Simulation. 2019 International
Radar Conference (RADAR), 2019, pp. 1-6, doi: https://doi.org/10.1109/
RADAR41533.2019.171296

[9] Dine A, Elouardi A, Vincke B, Bouaziz S, Speeding up graph-based
SLAM algorithm: A GPU-based heterogeneous architecture study. 2015
IEEE 26th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). 2015. pp 72-73, doi: https://doi.
org/10.1109/ASAP.2015.7245711

[10] Sooknanan D J, Joshi A . GPU computing using CUDA in the deploy-
ment of smart grids. In 2016 SAI Computing Conference (SAI) (pp.
1260-1266). IEEE.2016, July

[11] Araújo I, Tadaiesky V, Cardoso D, Fukuyama Y, Santana Á . Simultane-
ous parallel power flow calculations using hybrid CPU-GPU approach.
International Journal of Electrical Power & Energy Systems, 105, 229-
236. 2019

[12] Boyd S, Parikh N, Chu Borja Peleato E, Eckstein J, Distributed Opti-
mization and Statistical Learning via the Alternating Direction Method
of Multipliers

[13] Konstantinidis E, Cotronis Y. A quantitative roofline model for GPU
kernel performance estimation using micro-benchmarks and hardware
metric profiling. Journal of Parallel and Distributed Computing. 2017.
vol 107. p 37-56.

[14] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato and M.
Püschel. Applying the roofline model. 2014 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
2014, pp. 76-85, doi: https://doi.org/10.1109/ISPASS.2014.6844463

[15] Jensen T, Pinson P. RE-Europe, a large-scale dataset for modeling a
highly renewable European electricity system. Sci Data 4, 170175 .2017.
https://doi.org/10.1038/sdata.2017.175

[16] Harris M. NVIDIA Developer Technology. Optimizing Parallel Reduc-
tion in CUDA

https://www.sciencedirect.com/science/article/pii/S1364032119300462
https://www.sciencedirect.com/science/article/pii/S1364032119300462
https://doi.org/10.1016/j.ijepes.2021.106981
https://doi.org/10.1109/RADAR41533.2019.171296
https://doi.org/10.1109/RADAR41533.2019.171296
https://doi.org/10.1109/ASAP.2015.7245711
https://doi.org/10.1109/ASAP.2015.7245711
https://doi.org/10.1109/ISPASS.2014.6844463
https://doi.org/10.1038/sdata.2017.175

	Introduction
	Methods and materials
	Market resolution algorithm
	Software specification
	Hardware specification
	Methodology

	Optimization
	Reference method
	Differences between the methods

	Results
	Conclusion
	References

