A Euler-Lagrange Approach to Aerodynamic Design and Artificially Intelligent Design Algorithms. (A Letter)
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In this paper we propose a new and innovative idea for use in Artificially Intelligent wing design satisfying requirements involving velocity, pressure and atmospheric pressure as a variant of altitude. We aim to develop an expression suitable for utilization within Artificial Intelligence-driven design algorithms involving pressure flux and an appropriate cost function.

Introduction.

Numerical simulation (NS), particularly Computational Fluid Dynamics (CFD), plays a crucial role in the design and analysis of aircraft wings. Your contention about using the surface function of the wing as boundary conditions with a velocity vector field surrounding the wing is partly correct. Let me provide you with an overview of how NS is used in airline wing design. Problem Statement and Geometry Setup: The first step in using NS in wing design is defining the problem. This involves specifying the aircraft's operating conditions (e.g., altitude, speed, angle of attack) and the geometry of the wing. The wing's shape, including airfoil profiles, wing span, chord length, and other relevant geometric features, must be accurately represented in a computational model. Mesh Generation: To numerically solve the NS equations, the computational domain surrounding the wing needs to be discretized into a mesh. This mesh divides the space into finite elements or cells, allowing for the calculation of flow properties at discrete points within the domain. Generating a high-quality mesh is essential for accurate simulations. Boundary Conditions: Boundary conditions are critical. The surface of the wing serves as a boundary, and the conditions on this surface are specified. This includes the no-slip condition, which assumes that the air at the wing's surface is stationary relative to the wing. Additionally, inflow conditions are specified to represent the incoming air velocity and other properties. Velocity Field Calculation: Within the computational domain, a velocity vector field is calculated by solving the NS equations. These equations describe the conservation of mass and momentum for fluid flow. The velocity field represents how air flows around and over the wing as a function of time. Turbulence Modeling (if applicable): In many cases, turbulence modeling is necessary to capture the effects of turbulence on the wing's performance accurately. Different turbulence models, such as the Reynolds-Averaged Navier-Stokes (RANS) equations or Large Eddy Simulation (LES), may be used depending on the level of detail required. Solving the NS Equations: The NS equations are typically solved numerically using methods like finite volume, finite element, or finite difference techniques. The solution provides information on flow velocities, pressures, and other fluid properties. Post-Processing and Analysis: Once the NS equations are solved, post-processing is performed to analyze the results. Engineers can assess the lift, drag, and other aerodynamic properties of the wing, as well as identify areas of high or low pressure, which can inform design modifications. Iterative Design Process: NS simulations are often used iteratively in the design process. Engineers make design changes to the wing geometry or other parameters and run simulations to evaluate their impact on performance. This iterative process helps refine the wing design to meet specific performance goals. (See. [START_REF]Fundamentals of Aerodynamics[END_REF], [START_REF] Ciarlet | Introduction to the Numerical Analysis of Incompressible Viscous Flows[END_REF], [START_REF] Houghton | Aerodynamics for Engineering Students[END_REF], [START_REF] Mccormick | Aerodynamics: Aeronautics and Flight Mechanics[END_REF], [START_REF] Raymer | Aircraft Design: A Conceptual Approach[END_REF], [START_REF] Versteeg | An Introduction to Computational Fluid Dynamics: The Finite Volume Method[END_REF], [START_REF] Wesseling | Principles of Computational Fluid Dynamics[END_REF], [START_REF] White | Fluid Mechanics[END_REF], [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF])

In summary, numerical simulation using the NS equations is a fundamental tool in the design and analysis of airline wings. It involves defining the problem, creating a computational domain and mesh, specifying boundary conditions, calculating a velocity vector field, and conducting post-processing to analyze the results. This process allows engineers to optimize wing designs for various operational conditions and performance objectives.

Only recently has Lagrange been introduced as a technique for use in wing design (see [START_REF] Thomas | Airplane Design with Aerodynamic Shape Optimization[END_REF]), we aim herein to extend its use in the way of artificially intelligent shape optimization given arbitrary cost functions.

Main Proposal

We will now attempt to create an expression that incorporates pressure and a selection of the following wing design parameters: Wing Span (b), Wing Chord (c), Wing Area (A), Aspect Ratio (AR), Wing Sweep, Wing Dihedral, Wing Taper Ratio, Wing Thickness Ratio, Wing Loading, Wing Camber, Aileron and Flap Dimensions, Winglets, and Wing Sweepback Angle. These parameters collectively define the size and shape of the wing during the design process. By leveraging this information, we aim to develop an expression suitable for utilization within Artificial Intelligencedriven design algorithms involving pressure flux and an appropriate cost function. This expression will aid in the generation of an optimized wing configuration that satisfies specified requirements.

A very central need in the way of achieving lift is a pressure (Force/Area) gradient across the surface area of the wing being designed. Here ⃗ (V ) ∈ R 3 × R + , C ∞ represents the velocity component in the direction of incidence of the surface of the wing S, and assumed to be Lipschitz Continuous. Here in addition, SU, SV are the upper-top and lower-bottom surfaces of the wing respectively. (For an in depth look at the theory of wing and aerofoil design, see for instance, [START_REF]Fundamentals of Aerodynamics[END_REF], [START_REF] Megson | Aircraft Structures for Engineering Students[END_REF], [START_REF] Ashley | Aerodynamics of Wings and Bodies[END_REF] and [START_REF] Houghton | Aerodynamics for Engineering Students[END_REF]).

(1.1) p = nRT V

Using the above, we have:

(1.2) S SU dS = S ( ∂U ∂x ) 2 + ( ∂U ∂y ) 2 + 1dS
and:

(1.3) S SV dS = S ( ∂V ∂x ) 2 + ( ∂V ∂y ) 2 + 1dS,
which yields the following for the Force difference across the surface of the wing:

(1.4)

F ∆D = P (∆S, t)(SU (∆S, t) -SV (∆S, t))
Thus over the entire surface, with P (S, t) being the pressure over S, we have:

(1.5) F = S P (S, t)(SU (S, t) -SV (S, t))dS
We will return at a later point in the way of estimating P (S, t).

The quantity F D is a vector quantity.

When drag is introduced, we have the following for resistance:

(1.6) D = 1 2 ρ v 2 C D A
where F D is the drag force, ρ is the density of the fluid, v is the speed of the object relative to the fluid, A is the cross sectional area, and C D is the drag coefficient -a dimensionless number.

After incorporation of these forces, for the length (L) of the wing, yields:

(1.7)

F D = S P (S, t)(SU (S, t) -SV (S, t))dS (1.8) - Ω(L) 1 2 ρ C D || - → V (x, y, z, t)|| 2 ∂ ∂y (U (x, y, t) -V (x, y, t))dS
We employ these functions to characterize the region in which we apply variational algebra, aiming to transform the problem into a minimization task:

(1.9) I = Ω P (S, t)(SU (S, t) -SV (S, t))dxdy

(1.10)

-

Ω(L) 1 2 ρ C D || - → V (x, y, z, t)|| 2 ∂ ∂y (U (x, y, t) -V (x, y, t))dxdy
1 Here the second portion above is the expression for drag calculated along the wing, summing up the drag over each cross sectional area of the wing. I Being the quantity we wish to minimize, we have:

(1.13) I = S G(x(r), y(r), x ′ (r), y ′ (r), r)dr
Suppose we wished to minimize:

(1.14) J = E(x(r), x ′ (r), r)dr
Then in essence we wish to initially obtain: δJ which works out to:

(1.15) δJ = δ E(x(r), x ′ (r), r)dr
(As all variables are described as a function of t.)

Where δ implies an infinitesimal difference of all quantities by use of the chain rule which states that for related quantities(change to the left implies a change with respect to all variables e.g. δx, δy, δz i.e. all the partial derivatives), if for instance u = f (x(r)) then du = dx(r) dr dr and additionally if u = f (x(r), y(r)) then du = [ dx(r) dr + dy(r) dr ]dr.

Making use of the difference relation 2 , we have:

(1.16) δJ = [ ∂E ∂x(r) δx(r) + ∂E ∂x ′ (r) δ( dx(r) dr )]dr
Next, we proceed by integrating the given integrals with respect to their respective differentials, such as dx(r), dx ′ (r), . . . . This involves applying integration by parts to each term within the integral and setting the result equal to zero. Specifically, for the integral I, the process unfolds as follows:

( )]]dr 1 To explain the use of ∂ ∂y in the above, we will note that the following is the expression for drag: (1.11) -

Ω(L) ∀x 1 2 ρ C D || - → V (x, y, z, t)|| 2 ∆ ∆y (U (x, y, t) -V (x, y, t))dxdy
Which becomes:

(1.12) -

Ω(L) 1 2 ρ C D || - → V (x, y, z, t)|| 2 (U (x, y, t) -V (x, y, t))dx
As we wish to replace the sum in the above expression with that of an integral, we will need to find a way to eliminate the dy in the expression effectively and as such we arrive at the result for I above.

2 f (a + h) = f (a) + f ′ (a)h + o(h), g(b + k) = g(b) + g ′ (b)k + o(k), (g • f )(a + h) = (g • f )(a) + g ′ (f (a))[f ′ (a)h + o(h)] + o(k) = (g • f )(a) + [g ′ (f (a))f ′ (a)]h + o(h). Resulting in: (g • f ) ′ (a) = g ′ (f (a))f ′ (a).
This is due to the fact that all variables are expressed w.r.t t. Additional criteria for surface area follow as: SU ≤ s 1 and SV ≤ s 2 . Incorporating a necessary condition for d entails specifying prerequisites not only for the initial boundary-point u(x, y) but also for the concluding boundary-point d(x, y) along the upper surface w(x, y), which is a subset of U (x, y) on the wing. These conditions dictate the precise locations where all head-on impacts occur with the vector -→ V . This is achieved by defining U (x, y) as a specific line segment with a defined height and length at specific positions along the wing's surface. Furthermore, it is essential to ensure that this line U intersects the z-plane, denoted as {z = 0}.

To minimize F D , we can employ the Lagrange method in conjunction with the previously mentioned equation (1.10) including gravitational and additional forces as required. Additionally, solving for SU = s 1 and SV = s 2 based on equations (1.1) and (1.2), coupled with the overarching objective of minimizing drag, will allow us to determine suitable values for both U and V .