
HAL Id: hal-04202817
https://hal.science/hal-04202817

Submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware–software codesign for peer-to-peer energy
market resolution

Beatrice Thomas, Roman Le Goff Latimier, Hamid Ben Ahmed, Gurvan
Jodin, Abdelhafid El Ouardi, Samir Bouaziz

To cite this version:
Beatrice Thomas, Roman Le Goff Latimier, Hamid Ben Ahmed, Gurvan Jodin, Abdelhafid El Ouardi,
et al.. Hardware–software codesign for peer-to-peer energy market resolution. Sustainable Energy,
Grids and Networks, 2023, 35, pp.101122. �10.1016/j.segan.2023.101122�. �hal-04202817�

https://hal.science/hal-04202817
https://hal.archives-ouvertes.fr

Hardware-Software Codesign for Peer-to-Peer Energy Market Resolution

Beatrice THOMASa,b,∗, Roman LE GOFF LATIMIERb, Hamid BEN AHMEDb, Gurvan JODINb, Abdelhafid EL OUARDIa,
Samir BOUAZIZa

aUniversite Paris-Saclay, ENS Paris-Saclay, CNRS, SATIE, Gif-sur-Yvette, 91190, France
bSATIE, ENS Rennes, CNRS, Bruz, France, Bruz, 35170, France

Abstract

The growth of distributed energy resources raises the challenge of scaling up network management algorithms. This difficulty may

be overcome in operating conditions with the help of a rich literature that frequently calls upon the distribution of computations.

However, this issue persists during preliminary simulations validating the performances, the operation’s safety, and the infrastruc-

ture’s sizing. A hardware-software co-design approach is conducted here for a Peer-to-Peer market to address this scaling issue

while computing simulations on a single machine. The mapping between several algorithms and different models of partitioning on

Central and Graphic Processing Units (CPU-GPU) has been conducted. The complexity and performance of the Operator Splitting

Quadratic Program (OSQP) or Alternating Direction Method of Multipliers (ADMM) for a centralized or decentralized resolution

according to the hardware have been studied and analyzed in different test cases. The dominance of the pair ADMM and GPU has

been demonstrated by having a speed-up of more than 98% compared to the other methods when the market has more than 500

agents.

Keywords: Electricity market, Peer to Peer (P2P), CPU-GPU Partitioning, Parallel computing, Performance evaluation

Nomenclature

#(.) Cardinality of a set

Λ = (λnm) Matrix of trade prices λnm of agent n with
agent m

gn(Pn) = an · P2
n + bn · Pn Cost function of agent n

N = |Ω| Total number of agents

Ω Agent’s Community

Ωc Set of consumers (subset of Ω)

Ωg Set of generators (subset of Ω)

ωn Set of partners of agent n

Ωp Set of prosumers (subset of Ω)

pn/pn Lower/upper power boundary of agent n

lbn/ubn Lower/upper trade boundary of agent n

∗Corresponding author : beatrice.thomas@ens-rennes.fr, École nor-

male supérieure de Rennes Campus de Ker Lann 11, avenue Robert Schuman

35170 BRUZ - France

M =
∑

n∈Ω Mn Entire number of peers (possible trades count)

Mn = #(ωn) Peers count of the agent n

P = (pn) Vector of the total amount of power pn traded by
agent n

T = (tnm) Matrix of trade powers tnm of agent n with
agent m

1. Introduction

To achieve carbon neutrality by 2050 for electricity genera-

tion, the power grid must be prepared for the massive integra-

tion of Distributed Energy Resources (DER) [1]. These include

renewable energies, mainly distributed producers, who will sig-

nificantly impact the grid [2]. Furthermore, many so-called ac-

tive consumers (smart home [3], electric vehicle, battery, load

management) will be more and more present on the grid. The

coordination of all these new agents calls for a modification of

Preprint submitted to IJEPES October 4, 2023

the mechanisms of power systems management. Indeed, solv-

ing a management problem with such a large number of actors

gets more and more difficult and certainly impossible in a cen-

tralized approach due to its algorithmic complexity [4].

Up to now, electricity markets have proven their operational

aptitude to handle various agents aiming at maximizing their

social welfare while balancing production and consumption of-

fers. This balance is crucial to prevent any collapse of the entire

grid. Therefore, several markets operate in succession, prior but

closer and closer to the delivery time, to adjust the balance as

much as possible as the forecasting uncertainties are reduced.

Nowadays, a centralized market agent operates marketplaces,

gathering offers and performing market clearing. But with the

increase of the agent number, this central agent may face both a

communication bottleneck and a computational challenge [5].

To address this limitation, decentralized approaches have re-

sulted in an extensive literature. The large-scale management

problem is then divided into a multitude of local problems that

are coordinated with each other [5]. While reducing the com-

putational load of the agents, it relies on exchanging messages

between several machines through a communication network

[6]. Among other architectures of the distributed resolution, a

Peer to Peer (P2P) market is fully decentralized since there is no

longer a central agent but only communications between peers.

It allows the introduction of specific features, such as heteroge-

neous preferences. Besides being a market structure that can be

used, the P2P market can be considered as a formal generaliza-

tion of any other network: centralized, hierarchical [7] ...

Decentralized mechanisms enable resolution algorithms

where each agent performs a part of the computation, mak-

ing real-time resolution possible with a manageable computa-

tional cost for each agent. However, before being implemented

in the actual grid, some challenges must be addressed by the

P2P market[8]. Thus, preliminary simulations - both from sys-

tems operators and researchers- are necessary for numerous

purposes: designing the rules of this new market, assessing

its performances, guaranteeing its safety, and anticipating new

infrastructures. These simulations must be done on realistic

study cases, i.e., large-dimension cases, to observe the algo-

rithm’s scale effects [9], and over a long period to keep tem-

poral coherency while verifying the behavior during extreme

events [10]. As these simulations are performed upstream of

the actual deployment, they cannot yet involve the distributed

computing capacities of the agents that will be involved in the

future. These simulations being made centralized on a unique

hardware target, prohibitive processing time resurfaces with the

increase in agents. Studies on real-size systems then become

unfeasible. This observation is not limited to market problems

but is also valid for network simulations as power flows (PF)

[11]-[14], or for combined resolution as optimal power flows

(OPF) [15]-[16].

Tab. 1 presents an illustrative state of the art of computation

time on the different electric grid problems depending on the

number of agents and the target hardware architecture. The pur-

pose here is not to be exhaustive or to compare times between

studies, as they are different problems that cannot be compared.

But to illustrate the above observation based on several inde-

pendent studies. Readers must be aware that 9s may appear

small, but this is the time for one step and 30-agents case. The

time to process a 3000-agents test case will be at least 10000

times higher (as the complexity is at least quadratic). One day

to compute one step is too slow to enable the simulation over a

large period with, for example, one hour step. In addition, com-

putation time and hardware used for simulation are not system-

atically indicated in the publications. When it is not specified

otherwise, the time is for the simulation of the complete reso-

lution. It is worth noticing that [17] is a market resolution that

also considers the grid status. Readers’ attention is also drawn

to the comparison of several algorithms and implementations

done in [15]. It results in a variety of computation times for

similar problems. It clearly highlights the importance of care-

fully selecting the method and the hardware target to reduce the

simulation times.

In all cases, considerable computation times can be observed

when the problem size increases. This empirical increase is

sharper than a linear evolution according to the number of

2

Table 1: Comparison of different electrical problems and their computation
times on CPU

Problem hardware size time
target (N)

OPF 48 > 0, 3s
decentralized [15] CPU < 483s

PF CPU 34 9.4s
decentralized [11]
& communication

delay
decentralized CPU 31 9.5s
market [18]

decentralized CPU 31 59s
market [17] I5-7200U

decentralized CPU 12 0.1s
market [19] I7-6500U
centralized CPU 12 4.4s

MASCEM[20] 1446 65s
centralized CPU 14 0,115s

PF [13] Xeon E5-2620 9241 197s
centralized CPU 30 212.9s
OPF [16] E5-2650 300 37 000s

agents. Moreover, when possible, the parallelization of tasks

across the cores of a CPU allows, at most, a reduction by a fac-

tor equal to the number of cores, although this limit generally

cannot be reached. Therefore, the design of distributed man-

agement mechanisms is confronted with a computational com-

plexity bottleneck that makes any simulation of a large-scale

real system unfeasible.

Beyond the use of parallelization, this lock calls for a

Hardware-Software Codesign approach in order to be able to

carry out the large-scale simulations required for the deploy-

ment of new power system management regulation. This ap-

proach consists in finding the best pair algorithm architecture

for one application, the P2P market in the present study. Due

to the decentralized approach of this application, the massively

parallel architecture, such as General-Purpose Graphics Pro-

cessing Units (GP-GPU), will preferably be explored as it gives

access to considerable computing power as long as the tasks

to be performed match the internal architecture of the compo-

nent. Indeed, this type of computing architecture has already

proven its performance in various domains: radars [21], image

processing [22], and cartography [23]. Even within the power

system field, GP-GPU has also been used to reduce simulation

time on Power Flow problems [12]-[14] and Optimum Power

Flow [16]. As an example, two methods and their performance

on CPU-GPU architectures are resumed in Tab. 2.

Table 2: Comparison of the different electrical problems and their computation
times on CPU-GPU

Problem hardware size time
target (N)

centralized CPU-GPU 14 1,528s
PF [13] Xeon E5-2620

NVIDIA 9241 86,46s
Tesla K20c

centralized CPU-GPU 30 13.1s
OPF [16] Xeon E5-2620

NVIDIA 300 2 300s
Tesla K20c

By following Hardware Software Codesign approach, the

present work aims to allow the P2P market resolution in the

case of a massive number of agents. This will make it possible

to simulate large systems over an extended period. The main

contributions of this work are the following:

• comparison of the computational and memory complexity

of several algorithms of a P2P market resolution;

• different implementations with a CPU-GPU partitioning,

for each algorithm ;

• an optimized Alternating Direction Method of Multipliers

(ADMM) formulation targeted for massively parallel com-

puting;

• performance evaluation on a European data set and on ran-

dom cases.

The remainder of this paper is structured as follows: first,

part 2 presents the market problem and analyzes two algorithms

for the minimization resolution. Then part 3 will focus on

describing all the optimizations made to achieve a CPU-GPU

partitioning of the algorithms. Finally, section 4 will present

the obtained results following hardware-software co-design ap-

proach.

3

Figure 1: Network for a centralized (left) or a decentralized (right) market [24]

2. Peer-to-peer market and resolution approaches

2.1. Centralized resolution: overview and definitions

To integrate a large number of participants in the operation

of power systems, peer-to-peer markets are a frequently inves-

tigated paradigm. As illustrated Fig. 1, a central agent is no

longer required in the market. This decentralized operation al-

lows scaling the number of agents. Rather than a power to ex-

change with the network, each peer negotiates an exchange with

another peer. This allows the introduction of product differen-

tiation: a peer can have heterogeneous preferences between its

different partners.

Besides its direct application as such, this form of market

is a generalization of different communication structures: for

instance, a centralized market can be considered as a peer-to-

peer market where one peer is connected to all the others. This

justifies its choice for this study. The considered market (1)

aims at minimizing the cost functions of all agents: generators

n ∈ Ωg, consumers n ∈ Ωc and prosumers n ∈ Ωp, and their

product differentiation γnm.

min
T,P

∑
n∈Ω

(
gn(pn) +

∑
m

γnmtnm

)
(1a)

subject to tnm = −tmn (λnm) n,m ∈ Ω (1b)

pn =
∑
m∈ωn

tnm (µn) n ∈ Ω (1c)

pn ≤ pn ≤ pn n ∈ Ω (1d)

tnm ≤ 0 n ∈ Ωc (1e)

tnm ≥ 0 n ∈ Ωg (1f)

pn ≤ tnm ≤ pn n ∈ Ωp (1g)

The production and flexibility costs are assumed to be ex-

pressed as convex functions, bounded by the limits (1d). The

power exchanged with the network by an agent is equal to the

sum of all its trades (1c) with its partners ωn, a constraint asso-

ciated with the dual variable µn. In order to maintain the balance

between production and consumption, each trade is submitted

to a reciprocity constraint (1b) associated with λnm.

In an actual application, each peer n is connected to a set of

partners ωn; hence the number of trades is proportional to N,

the number of agents. However, the extreme case of a com-

pletely connected market where #(ωn) = N − 1 would generate

(N − 1)2 trades. This would lead to a quadratic program involv-

ing Nv = O(N2) variables and subject to Nc = O(N2) linear

constraints. To solve this problem, a resolution algorithm will

be characterized by its algorithmic complexity (number of oper-

ations) and its spatial complexity (used memory space). Those

parameters will determine how algorithms scale with the num-

ber of agents.

In order to assess the resolution complexity of this problem,

an optimization algorithm must be selected. OSQP1 (Operator

Splitting Quadratic Program) has been chosen here since it is

considered a state-of-the-art reference algorithm for quadratic

problems [25]. Appendix 6 provides its computational com-

plexity analysis. In this fully connected market, the computa-

tional complexity is in O(N2∗α) with α > 2 as it can be seen in

Fig. 2. Only one problem must be stored, so the spacial com-

plexity is about O(N4) and can be reduced to O(N3) thanks to

sparsity.

A 250 s delay to solve a 200-agents market makes it clear

that the resolution of a P2P market cannot scale in a centralized

manner. Solving the P2P market thus raises a computational

complexity barrier in its centralized form. Consequently, the

simulation of large-scale markets is compromised at this stage.

1https://github.com/oxfordcontrol/osqp

4

https://github.com/oxfordcontrol/osqp

20 40 60 80 100 120 140 160 180 200

agents' count

0

50

100

150

200

250

300

350

400

450

ti
m

e
 (

s
)

Increase of simulation time according to the problem size

OSQPCentralized

O(N3)

O(N4)

O(N5)

Figure 2: Measured computational time (black) and trend curves according to
the problem’s size for an OSQP centralized resolution (C++ on CPU, AMD
RYZEN 5 5600H)

2.2. Decentralized peer-to-peer market algorithm

Considering the computational complexity of the centralized

resolution of the P2P market, the following section focuses on

the description of decentralized algorithms, along with the es-

timation of their algorithmic complexity. Using the Alternating

Direction Method of Multipliers (ADMM), [26], (1a) and (1b)

can be re-written for each agent n, and with several steps k with

ρ the penalty factor (see Appendix 6 for more details):

T k+1
n = argmin

Tn

gn(pn) +
∑
m∈ωn

γnmtnm

+
∑
m∈ωn

(ρ
2

(tnm −
tk
nm − tk

mn

2
+
λk

nm

ρ
)2
)

s.t. tnm ∈ C

(2)

Tn being the vector containing the agent (n)’s trade offers. In

this expression, C is the convex set gathering (1c)-(1g) con-

straints. In each step, the Lagrangian multipliers are updated to

ensure the anti-symmetry of the exchanges.

λk+1
nm = λ

k
nm +

ρ

2
(tk+1

nm + tk+1
mn) (3)

Primal (symmetries) and dual residuals (changes between each

step) are evaluated as follows:

rk+1
n =

∑
m∈ωn

(tk+1
nm + tk+1

mn)2

sk+1
n =

∑
m∈ωn

(tk+1
nm − tk

nm)2
(4)

This algorithm is highly parallel as each agent can perform

his own minimization independently. Results still need to be

broadcast to evaluate the residuals and reach the consensus.

input : Study case, ρ, ϵ and kmax
output: T, Λ, Residuals

1 while err > ϵ and k < kmax do
2 for n=1,...N do // agents

3 T k+1
n ← (2);

4 end
5 for n=1,...N do // agents

6 for j=1,...m do // peers

7 rk+1
n , s

k+1
n ← (4) ;

8 Λnm ← (3) ;
9 end

10 end
11 ResR ← sum(rk+1

n) ;
12 ResS ← sum(sk+1

n) ;
13 err ← max(ResR,ResS) ;
14 end

Algorithm 1: Global algorithm

2.3. Global resolution complexity

To solve the global problem described by Alg. 1, the local

problem (2) must be solved N times (one per agent) per iter-

ation. The other operations (residuals calculation, Lagrangian

multiplier update...) are the same for each agent and have a

complexity of O(N2). With Cn
l being the complexity of the lo-

cal problem (2) for agent n, the total algorithm’s complexity

will be:

Cg = O
(
N2 +

∑
n<N

Cn
l

)
(5)

Similarly, to store the trade matrix T or the dual variable Λ,

the memory used is at least O(N2). This is smaller than the

centralized complexity of O(N4). If the agents are clustered by

k, the complexity computation became :

Cg(k) = O
(
N2 +

∑
i<N/k

Ci
l(k)

)
(6)

This algorithm has anticipated ending conditions that cannot

be known beforehand. Hence the scaling of the average number

of iterations cannot be calculated a priori. Therefore, only the

worst-case scenario complexity will be checked: the anticipated

ending conditions are never used. The following paragraphs

will focus on evaluating the complexity of the local problem

5

resolution Cn
l according to two different and representative ap-

proaches. To do so, it is necessary to provide an expression for

the cost functions. They will be here supposed to be quadratic

[27] as follows:

gn(pn) = 0, 5 · an · p2
n + bn · pn (7)

The flexibility of a consumer will then be indicated by a min-

imum cost for the expected power and a stiffness an. The lo-

cal problem becomes a linear constrained quadratic program.

Thus, the first option will be a direct OSQP resolution [25]. To

harness the local problem parallelization, the second option will

again be a decomposition by ADMM.

Local minimization by OSQP. In a fully connected market, Nc

and Nv are O(N) for the local minimisation. Thus, Cn
l = O(Nα)

and the global computational complexity will be Cg = O(Nα+1).

To use the OSQP algorithm, at least N matrices with a O(N2)

size must be stored (one matrix A for each agent). Therefore,

the spatial complexity is about O(N3). By considering pn as a

variable for each agent in the local minimization and the con-

straint (1c) in A, the sparsity of all matrix reduces the spacial

complexity at O(N2). By clustering the agents, the system to

solve is about (k · N) sized; thus, the complexity will be about

Ci
l(k) = O(kαNα). The global computational complexity will

then be Cg(k) = O(kα−1Nα+1). So clustering the agents is not at-

tractive as it significantly worsens the complexity. With OSQP

solving local problems and in the worst-case scenario (when all

agents are solved together, k = N), the complexity of the global

algorithm is Cg(N) = O(N2α) as in the centralized computation.

Local minimization by sharing ADMM. The second presented

approach focuses on the parallelism exploitation in the local

minimization (2) by formulating it as a sharing problem (see

Appendix 6 for more details). According to [26], let k be the

global step, j the local step, ti the ith t vector’s component cor-

responding to the ith trade of the considered agent, t the mean

value of the trades of agent n, and finally p̃ ≈ pn
Mn

. The solution

(where p̃ = t) is reached by iterating the following steps for

each agent n:

t j+1
i = argmin

lbn≤ti≤ubn

(
fi(ti) +

ρl

2

∥∥∥∥ti − t j
i + t j

− p̃ j + µ j
∥∥∥∥2

2

)
(8a)

p̃ j+1 = argmin
pn≤Mn p̃≤pn

(
g(Mn p̃) +

Mnρl

2

∥∥∥∥ p̃ − µ j − t j+1
∥∥∥∥2

2

)
(8b)

µ j+1 = µ j + t j+1
− p̃ j+1 (8c)

with lbn and ubn the boundaries on the trade (1e)-(1g) and:

fi(ti) =
ρ

2
(ti −

tk
ni − tk

in

2
+
λk

ni

ρ
)2 + γniti (9)

All the functions that must be minimized are scalar and

quadratic, so their minima can be expressed analytically. These

functions can be noted as follows:

∑
l

al · (y − bl)2 +
∑

l

cl · y (10)

a and c coefficients are constants. Only the b coefficients will

change according to the global iteration k or the local iteration

j. Trades update (8a) coefficients are noted bt1 and bt2, power

update (8b) coefficient is noted bp1:

bt1 = 0.5(tk
ni − tk

in) −
λk

ni

ρ
(11a)

bt2 = t j
i − t j

+ p̃ j − µ j (11b)

bp1 = µ
j + t j+1 (11c)

To check the algorithm convergence and have an early termina-

tion condition, residuals can be computed:

r j+1 =
∥∥∥∥t j+1

− p̃ j+1
∥∥∥∥

s j+1 =
∥∥∥∥t j+1

i − t j
i

∥∥∥∥ (12)

The local algorithm for each agent is resumed in Alg. 2.

In this local algorithm, finding the minimum needs a con-

stant number of operations at each iteration for each peer.

Thus with a fully connected market, the local complexity is

Cn
l = O(#(ωn)) = O(N). In this worst case the global com-

plexity then becomes Cg =
∑

n<N #(ωn) = M = O(N2). Further-

more, several N ·N matrices whose number does not depend on

6

input : jmax, ubn, lbn, peers
output: tmin

1 while err > ϵ and j < jmax do
2 for i=1,...M do // all peers

3 t j+1
i ← (8a);

4 t j+1
i ← max(min(t j+1

i , ubn), lbn) ;
5 end
6 t j+1

← mean(t j+1) ;
7 p̃ j+1 ← (8b) ;
8 p̃ j+1 ← max(min(p̃ j+1, pn/Mn), pn/Mn) ;
9 µ j+1 ← (8c) ;

10 (s j+1, r j+1)← (12) ;
11 err ← max(s j+1, r j+1) ;
12 end
13 tmin ← t j ;

Algorithm 2: ADMM local algorithm

the agents’ count are stored. Thus, the spatial complexity is at

most O(N2).

When the agents are clustered, the local algorithm’s com-

plexity is Ci
l(k) = O(

∑
k Mk ≃ k · N) for each cluster. There

are N/k clusters, so the total complexity remains O(N2). Thus,

agents can be clustered and vector concatenated without wors-

ening the computational complexity. Furthermore, the memory

and computational complexity are O(N2), which is the best pos-

sible for this total algorithm.

The complexity analysis presented here is built on the rad-

ical assumption that each peer is connected to all the others;

hence the number of trades is in N2. This will hardly ever be

the case during a real deployment where the maximum num-

ber of peers will likely be fixed to a constant value. The an-

nounced complexity values would then all be reduced by one

exponent. Nevertheless, a fully connected market ensures that

the decentralized algorithm will converge to the same value as

the centralized one and, thus, is initially required for the sim-

ulation. The problem being strictly convex, with the penalty

factors tuned, the algorithm is guaranteed to converge to the

optimum value.

The previous sections have highlighted that the resolution of

a P2P market presents a complexity that strongly scales with the

number of agents. For the ADMM the computational complex-

ity is the same as the memory complexity (O(N2)), whereas the

computation is dominant for OSQP (O(Nα+1) against O(N3)).

Not only this means that the appropriate hardware must be se-

lected according to the operational intensity: the number of op-

erations divided by the memory used. But also, particular at-

tention must be paid to the implemented algorithm to make the

most of the hardware architecture.

3. Hardware-Software Codesign for P2P Energy Market

Resolution

The hardware-software codesign approach consists of carrying

out an algorithm-architecture mapping in order to identify an ar-

chitecture model that meets the requirements of computational

complexity and processing times. To do so, a CPU-GPU par-

titioning and an algorithm’s optimization for all algorithms are

presented in this section. This consists in allocating specific

tasks between the CPU and GPU to optimize the overall perfor-

mance. The original algorithm should be modified to make the

most of this approach to ensure that computations are suited for

the GPU regarding parallelization and memory access.

All operations must not be deported onto the GPU to opti-

mize the processing time. For instance, in [10]-[11], only spe-

cific operations have been deported (such as the Jacobian ma-

trix calculation) onto the GPU to reduce the processing time.

Indeed, the CPU is flexible and versatile, with small latency

compared to GPU. The GPU can significantly reduce computa-

tion time if the data processing architecture is designed with a

highly parallel model and efficient memory management. This

high parallelization is only possible by considering the GPU-

specific hardware features. For instance, all threads within a

warp (smallest schedulable unit on a GPU) must compute the

same work; if not, their execution will be serialized [28]. To do

so, it is important to do branchless programming on the threads.

Suppose their code asks them to compute the same instruction.

In that case -the GPU is a Single Instruction Multiple Data hard-

ware (SIMD)- all threads within a warp will materially proceed

to the same calculation on different data.

This CPU-GPU complementarity fosters the implementation

of tasks on the most suitable target, but it is not always the best

7

solution. Indeed, the data transfers between the two materials

are very time-consuming1 and must be prevented.

3.1. Partitioning methodology

Cuda is a high-level language2 which allows the programmer

to work whatever the GPU architecture, while it is an Nvidia

graphic card. Nevertheless, some modifications’ effects may

depend on the architecture features or on the compiler used

and cannot be determined a priori. This is why Nvidia pro-

vides a methodology1 to optimize any cuda application. This

methodology is an iterative optimization called APOD for its

four steps: ”Assess, Parallelize, Optimize, and Deploy.”.

First, the bottleneck, the steps responsible for a large share of

execution time, and the parallelizable tasks must be identified.

Whenever possible, modifications should be made to the algo-

rithm to improve the parallelism or make it more adapted for

a GPU. Then the algorithm must be split up between the CPU

and the GPU. When it is done, the code can be optimized to

reduce the processing time. To do so, unit testing must be done

to analyze the results and check the proper algorithm’s func-

tioning and consistency. Furthermore, time measurements to

check the performance’s effective increase are essential. Thus

every software or algorithmic change has been integrated with

a new function version. Then every function was compared to

the other on random cases (with count agent’s variation) and on

a large and fixed case. Micro-benchmarks have been made to

locate each kernel function on the roofline to compare more pre-

cisely when the processing times were too similar. The method-

ology for those tests is based on [29]. The time of multiple ker-

nel functions’ calls on random-generated data (copied between

calls to prevent GPU optimization) is measured. Then, each

kernel function’s operational intensity and the operation count

are analytically determined.

All algorithms, the study case and the micro-benchmarks can

be found on the following Gitlab repertory3.

1https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
2https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
3https://gitlab.com/satie.sete/p2p_market_resolution_gpu

Figure 3: Algorithm’s functional blocks, CPU version

3.2. CPU implementation

As explained above, the algorithm must be analyzed on the

CPU before partitioning. As a reminder, the application prin-

ciple is for one study case to compute the electricity consump-

tion, production, and price. The input is a description of the

study case with the agents’ count (N), the set of each agent type

(Ωg,Ωc,Ωp), and for each the cost function (gn) and the power

bounds (Pn, Pn). This application can be used several times to

change some parameters and simulate several time steps. The

outputs are the negotiations’ results, i.e. all trades (T) (and

thus the total power for each agent Pn) and the price matrix Λ.

The residuals and the complete step count kg (the comprehen-

sive communications count) represent the quality of the con-

vergence. Finally, the computational time tsimu is measured for

each application’s use. The functional block representation of

the CPU algorithm is made in Fig. 3; the description of the dif-

ferent blocs is as follows.

• FB 0 is the data initialization corresponding to the study

case and the algorithm choice. Then if ADMM is chosen,

matrices creations (in-house class) are made. Otherwise,

OSQP requires the creation of OSQP objects to store pa-

rameters and realize minimization.

8

https://gitlab.com/satie.sete/p2p_market_resolution_gpu

• FB 1 and FB 2 are the local problem resolution. For the

OSQP algorithm, this step uses the C OSQP solver once

per agent. For the ADMM algorithm, this bloc is the rep-

etition of the three operations (a, b, and c) to obtain the

exchanges and the power to compute the residuals finally.

• FB 3 is the global problem’s update, i.e., the dual vari-

able Λ update for the two algorithms, the bt1 update for

ADMM, and the q update for OSQP.

• FB 4 is the residual calculation for the two algorithms.

• FB 5 is the retrieval of results in a class made for this.

The different steps of the resolution for the ADMM version are

resumed in Tab. 3:

Table 3: Functional blocks and equations matching
Block Description equations

FB 0 Initialization
FB 1a Local problem (Bt2, T) (11b) , (8a)
FB 1b Local problem(T)
FB 1c Local problem (Bp1, P̃, µ) (11c) (8b) (8c)
FB 2 Local residuals (12) or (14)
FB 3a Global problem (Λ) (3)
FB 3b Global problem (Bt1) (11a)
FB 4 Global residuals (4) or (13)
FB 5 Results’ retrieval

The reader must notice that step FB 3 will begin with the

peer’s communication in the real implementation. Neverthe-

less, in the simulation, all data is stored in the CPU and GPU

global memory, which is accessible by all agents. To remain

the closest possible to actual implementation, agents only read

data they would have access to (i.e. their own data and the trade

pmn proposal of their peers m).

It is worth noticing that for the OSQP method, the local prob-

lem is solved agent per agent because clustering the agent in-

creases the complexity. The OSQP objects for each agent are

maintained between the steps to keep all parameters and re-

sults for the warm start and prevent many reboots. The linear

cost vector (q in Appendix) is the only parameter that changes

between steps. On the other hand, the ADMM processing is

achieved by implementing matrices since this does not change

the complexity, and that will be the same structure for the GPU

version. Thus the result for three methods on CPU will be pre-

sented, COSQP is the Centralized OSQP, OSQP is the decen-

tralized OSQP, and ADMM is the decentralized ADMM.

3.3. GPU implementation

This section will focus on the CPU-GPU partitioning, i.e.,

which blocks of the algorithm will be deported on the GPU.

First, let’s notice that according to [30], using OSQP on GPU4

can only be helpful from a local problem size of Mn = 105.

So it can be used for the centralized resolution as a reference.

This new implementation called COSQPGPU is faster than the

CPU centralized resolution (COSQP) but slower than all the

decentralized methods. It will not be kept for the following sec-

tions. Furthermore, the decentralized method will not reach this

number of agents and peers. By clustering the agents, the local

problem’s size can increase and make the GPU more interesting

for OSQP. Nevertheless, clustering the agents will increase the

complexity too much to be interesting so that the decentralized

OSQP will be kept on the CPU.

In Fig. 4, the relative time for each functional block for one

220 agents study case on four consecutive market resolutions

with Warm start for all methods can be seen. The GPU re-

sults will be discussed later in another section. The centralized

method (COSQP) needs 20% of the computational time to ini-

tialize the study case; the OSQP solver uses the remaining time.

For the decentralized CPU methods (OSQP, and ADMM), the

more critical step is during the local problem resolution FB 1.

Fortunately, for the ADMM, these calculations are linear op-

erations adapted for a massively parallel architecture. Indeed

agents read their own data and write their results, which are

different for all agents in the global memory, so there is no

race condition. Therefore, all ADMM calculations were im-

plemented on GPU, and the CPU will be used to initialize data

and manage the conditional loop of the algorithm. This will

limit data transfers between the CPU and the GPU. Indeed, data

4https://github.com/ZhenshengLee/cuosqp

9

https://github.com/ZhenshengLee/cuosqp

Relative time(%) for each FB according to the method

COSQP

OSQP

ADM
M

GPU
IG

PU

OGPU

COSQPGPU

0

20

40

60

80

100

120

FB0

FB1

FB2

FB3

FB4

FB5

Figure 4: Relative time, N = 220 agents and four-step simulation

Figure 5: CPU-GPU partitioning of the algorithms functional blocks

available in the GPU memory can be reused by all the calcu-

lations on the GPU. The data transfers are only made at the

algorithm’s beginning and end (except for the residual, which

is only a float variable). The resulting functional block parti-

tioning is represented in Fig. 5. Every data transfer is depicted

with blue arrows. It is worth noticing that if the first and last

data transfer is O(N2) sized, the intermediate transfers are O(1)

sized (two floats every step). The dotted arrows represent the

kernel calls.

Identification of the dependency between the data used for

the calculation is necessary when the implementation is paral-

lel. Each agent’s peer results are needed for this algorithm’s

global update and residual calculation. Thus, this step implies

a synchronization between the agents, i.e. that each agent must

wait that all agents have finished their computation to continue

running the algorithm. On the other hand, for each agent, all the

other actions do not need the results of the other agents. There-

fore, there is no need for synchronization between the agents

for the local problem.

In this work, only the default stream of the GPU has been

used. So only one kernel launch can be done at once. This

means that there is a global synchronization between the kernel

launch and at each data transfer, so the computation of the sec-

ond kernel call begins only when the previous call is complete.

3.4. Algorithm rewriting

At least two ways of using OSQP are possible for the local

problem. Either the trade substitutes the power pn through the

constraint (1c). Either the power pn and the constraint (1c) are

kept as a variable and constraint of the problem. This last choice

slightly increases the size of the problem (one more constraint

and variable) but makes the H matrix diagonal, which greatly

increases the OSQP KKT matrix’s sparsity.

As a GPU has more float calculation units than double-

precision ones, using single-precision floats will increase the

computation capability of the GPU. Nevertheless, it will im-

pact the calculation accuracy and impose a minimum on the

reachable residuals. To prevent any error accumulation on the

residual calculation, this will be done by taking the maximum

(∥ϵ∥∞) rather than the sum of the coefficients (∥ϵ∥2). The resid-

ual calculations (4) become:

rk+1 = max
n,m∈Ω

(tk+1
nm + tk+1

mn)

sk+1 = max
n,m∈Ω

(tk+1
nm − tk

nm)
(13)

The same goes for the local residual calculations (12) for each

agent:

r j+1
l = t j+1

− p̃ j+1

s j+1
l = max

i<Mn
(t j+1

i − t j
i)

(14)

It is worth noticing that in a case where all agents are not linked

together, many of the trade matrix terms are null. Computing

these terms is useless and can slow down the simulation using

10

GPU resources. The problem can be rewritten to only consider

non-null terms. The problem size remains N agents, but the

computational and memory complexity reduce from O(N2) to

O(M) with (M =
∑

n∈ω Mn) the total possible trades’ count. To

switch from one space to another, vectors have been introduced

to store the correspondence for the index.

input : Study case, ρ, ϵ and kmax
output: Vectors T, Λ, residuals

1 while err > ϵ and k < kmax do
2 while errl > ϵ and j < jmax do
3 Bt2 ← (11b) ;
4 T j+1 ← (8a);
5 T j+1 ← max(min(T j+1,Ub), Lb) ;
6 Tmean ← mean(T j+1) ;
7 Bp1 ← (11c) ;
8 P̃← (8b) ;
9 P̃← max(min(P̃, pn/Mn), pn/Mn) ;

10 µ← (8c) ;
11 if j%S tepl == 0 then
12 (rk+1

l , s
k+1
l)← (14) ;

13 errl ← max(rk+1
l , s

k+1
l) ;

14 end
15 end
16 Λ← (3) ;
17 Bt1 ← (11a) ;
18 if k%S tepg == 0 then
19 (rk+1, sk+1)← (13) ;
20 err ← max(rk+1, sk+1) ;
21 end
22 end

Algorithm 3: Optimized algorithm on CPU-GPU

To limit the number of synchronizations, data transfer, and

useless calculations, the residuals can be computed every S tepl

or S tepg iterations (respectively for the local or global prob-

lem). If this number of steps between each computation is too

small, there will be a lot of useless calculations of residual and

data transfer; if it is too high, there will be a lot of useless iter-

ations. The ADMM algorithm becomes Alg. 3, with T the M

sized vector (rather than a N · N matrix).

In this work, every kernel call is blocking, as we use the de-

fault stream of the GPU. Thus, there is a synchronization be-

tween the kernel calls, which can be useless. Operations should

be aggregated in the same kernel call to prevent useless syn-

chronization. Nevertheless, all operations are not computed on

the same-sized problem.

Indeed the FB 3 and 1a are calculations on M sized vectors,

the FB 1b block is a reduction from M to N, and the FB 1c

block is a calculation on N sized vector. Finally, the FB 2 block

is a N to 1 and a M to 1 reduction, and the FB 4 bloc is two M

to 1 reductions. Different sizes’ calculations on the same kernel

call will reduce the parallelism. Indeed, there will be many

inactive threads, or each thread will do several computations.

Furthermore, having only one thing by kernel call will facilitate

the GPU compiler optimization and the branching prediction.

Due to its large number of processors (over a thousand),

the GPU computation is particularly efficient in performing the

same instruction on a set of data (SIMD: Single Instruction

Multiple Data). Indeed, even if the GPU Streaming Multipro-

cessors (SM) can execute different instructions, only one in-

struction type can be computed on the processors in each SM.

Thus, the local ADMM algorithm’s parallelization, Alg. 2, must

consider this constraint. The most natural thought would be

to parallelize the agents by analogy with the real distributed

deployment. The left part of Fig. 6 represents the agent paral-

lelization for the functional blocks FB1 and FB2. Nevertheless,

this configuration raises some issues.

First, if the agents do not have the same peers count (for ex-

ample, here in Fig. 6, 1 and 2 peers), the different branches will

not compute the same number of operations. Furthermore, each

agent finishes the calculation when it achieves its termination

criterion. But, doing so provokes divergent embranchment be-

tween the threads (those who must continue the simulation and

those who must finish). The next step (FB 3) is blocking; the

agents that end will do nothing, waiting for the others. Thus,

there will be many inactive threads, which will not save time.

Indeed, there are two possibilities for an agent that ended: Ei-

ther the agent thread is launched as part of an active warp and

does nothing. This will anyway use some GPU resources. Ei-

ther it is not launched, but in this case, contiguous threads may

not access adjacent memories (no-coalescent memory access).

On the other hand, the FB1a and FB2 steps are not fully paral-

lelized because, respectively, independent calculations are seri-

alized, and the reduction is not parallelized.

11

Figure 6: Agent parallelized with independent residual (left), trade parallelized (middle), and trade parallelized with independent residual (right), focus on two
agents, one with two peers and the other with 1 peer. Grey boxes are kernel calls

In the middle of Fig. 6, the computation on trades is paral-

lelized to prevent the size-varying for-loop, and the residual cal-

culation is shared with every agent. All agents will stop when

the maximum residuals are small enough. Each step is done by

one kernel call (grey rectangle), and the size is always adapted

to the computation, so the calculation is fully parallelized. Ev-

ery thread processes precisely the same operation. Neverthe-

less, this is done by adding synchronization between each step

(several kernel calls). The left part of fig. 6 shows the compro-

mise between parallelization and using one kernel call. As in

the first proposition, only one kernel call is used, and each agent

has its residual. All are made by having one block of thread by

agent and using shared memory to calculate one reduction by

block. Thus, all steps are fully parallelized, but the FB1c only

uses one thread by block (all the other threads must wait). One

shared variable by block is used to specify if the block must

continue to compute. This variable is set to false if one residual

computation is higher than the precision asked and reset to true

at each loop start. Several threads may want to write on this

variable simultaneously, but there is no race condition as they

all write the same value.

For this algorithm instance, the penalty factor ρ can signifi-

cantly impact the convergence of the problem. If it is too large,

the problem will not converge; if it is too small, it will con-

verge in too many iterations. According to [26], the penalty fac-

tor can be changed according to the ratio between residuals to

speed up the convergence. The demonstration of convergence

also applies if the penalty factor becomes fixed after a finite

number of iterations. All other modifications don’t impact the

convergence as it remains the exact computations. Using sim-

ple floating precision may prevent the algorithm from reaching

very small residuals, but that precision is unnecessary in our

problem.

3.5. Software optimization

This section focuses on the third part of the APOD methodol-

ogy. Optimizations will not change the algorithm, only how it

will be executed and will enhance the processing time.

First, these algorithms need fewer iterations to converge if

they begin close to the optimum. Thus, the use of a warm start

is possible, i.e. using the previously found optimum to initial-

ize the computation as the consumption may not differ a lot be-

tween each time step. Furthermore, using objects and attributes

saves memory allocation time (when the problem size remains

12

the same between two simulations) and limits data transfers be-

tween CPU and GPU when several simulations use the same

data. Finally, the two coefficients Bt2, Bp1 are computed but not

stored to save two writings by step, and as Ap2 is never used

alone; thus, the new coefficient Ap12 = Ap1+Ap2 is used to save

one operation per iteration.

During the resolution, there are two different reductions. FB

2 and FB 4 are maximum searches, and FB 1b is a mean. The

method proposed in [31] has been followed to optimize the re-

ductions.

Finally, the last but not least step consists in tuning the com-

piler. Indeed several options can be used to improve the perfor-

mance, such as using inline functions, disabling some unneces-

sary security options, and asking to optimize the speed of the

application (rather than the storage space). Nevertheless, the

black-box compiler can also provoke unexpected performance

results after any optimization or algorithm re-writing. This is

why evaluating the different implementations is very important.

3.6. Parallel methods’ complexity

In this section, the Brent theorem [32] will be used to evalu-

ate the complexity of the optimized algorithm on GPU. As a

reminder, the problem has a size of M = O(N2).

Let o be the total calculations’ count, and let t be the parallel

complexity. FB 3a&b and FB 1a have a constant calculations’

count per thread, thus o1 = O(M), t1 = O(1). With p1 proces-

sors (or thread), the Brent theorem implies that the complexity

becomes:

Cpara1 = O(
o1

p1
+ t1) = O(

M
p1
+ 1) (15)

Thus, if p1 = M, the calculation of those steps is constant time

according to the problem size. The same goes for FB 1c with

o1 = O(N).

FB 2 and FB 4 are optimized reductions according to [31]

on M-sized vector. The operation count is now o2 = O(M) and

the parallel complexity is t2 = O(log(M)). Similarly, FB 2b is

an optimized reduction from an M-sized vector to an N-sized

vector, so o2 = M = N2 and t2 = log(N) = log(M)/2. The

complexity is:

Cpara2 = O(
o2

p2
+ t2) = O(

M
p2
+ log(M)) (16)

Thus having p2 =
M

log(M) processors is enough to have a

O(log(M)) complexity.

The best reachable complexity is O(log(N)) for this algo-

rithm. Still, if the GPU cannot manage the processors’ asked

count (i.e., p = pmax), the complexity becomes O(M) = O(N2)

as in the serialized algorithm. In this work, all kernel calls have

p = M or p = N according to the calculation sized, except

FB 2b where p = blockS ize ∗ N because there must be one

block per agent. Similarly, if the right part of Fig. 6 is made,

p = blockS ize∗N for all functional blocks of the local problem.

It is why the complexity can be O(log(M)), O(N), or O(N2) ac-

cording to the problem size.

4. Results

4.1. CPU-GPU specifications

In this work, the implementation has been made on an Nvidia

GPU GeForce RTX 3060. It is an Ampere architecture (GA

106) with 30 Streaming Multiprocessors (SM) and 3840 Cuda

cores. According to the micro-benchmark of [33], the roofline

of this GPU is given in Fig. 7. The roofline is an insight-

ful model that can help programmers to characterize the hard-

ware they use and determine the bottleneck of its algorithm

(memory-bound or compute-bound) on this hardware. In this

work, the operational intensity is low (about 1); thus, according

to the roofline, the algorithm should be memory-bound. The

measured performance can be better than the theoretical one

because while the temperature is low, the GPU can increase its

clock frequency higher than the theoretical value. The associ-

ated CPU is an AMD RYZEN 5 5600H operating at 3,3GHz.

The following part will present the results’ comparison be-

tween the five implemented methods. There will be two meth-

ods on CPU called ADMM and OSQP and three methods on

GPU called GPU, IGPU and OGPU. GPU is the first version

13

0 20 40 60 80 100 120 140

operationnal intensity (Flops/byte)

0

2000

4000

6000

8000

10000

12000

P
e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
S

)

Roofline for single precision float

measured

theory

Figure 7: Single precision float roofline

of the algorithm on GPU, whereas IGPU is an optimized ver-

sion following the principle of the middle of fig. 6. Finally,

OGPU is the optimized version following the right part of

fig. 6. The GPU method has one kernel call for each functional

block (except for FB 2b and FB 2c, which are proceeded in the

same call). The optimized versions (IGPU and OGPU) have,

in addition, the following optimizations:

• every variable is stored with class attributes and kept on

GPU between steps if possible, Bt2, Bp1 are not stored;

• the penalty factor varies according to the residuals;

• the problem has been reduced from N2 to M, Ap12 is used;

• the Tmean computation is optimized according to [31].

All the other optimizations and algorithm re-writing viewed

earlier are already used in the first GPU version and kept for

optimized versions. Note that all optimizations that can also be

applied on the CPU have been applied to the presented CPU

method. The functional block study has also been made for the

GPU methods and can be seen in Fig. 4. By comparing GPU

and IGPU, it can be seen that keeping data on GPU reduces the

relative time for the initialization FB 0. Comparing IGPU and

OGPU, shows that having one kernel call for all the local prob-

lems FB 1&2 reduces the associated time. Nevertheless, these

kinds of measures can only be done by adding synchronization

barriers that can greatly influence the algorithm performance;

this is why further study without these barriers is necessary.

4.2. Problem size impact on the resolution time

Random cases have been created to evaluate the algorithm re-

sponsiveness to the size problem. These cases are made by gen-

erating the different agent features with a homogeneous random

draw in a fixed interval. The consumer, generator, and pro-

sumer proportions are set for these cases. The power bounds

are unrelated to the cost function; thus, some agents can be very

constrained in those cases. The study case parameters for the

performance evaluations are given in Tab. 4, and the simulation

parameters are shown in Tab. 5.

Table 4: Random characteristics for the study case generation
Features average variation

Power (MW) 1000 400
a (MW−2) 0.07 0.02
b (MW−1) 50 20

Consumer (%) 50 0
Prosumers (%) 12,5 0

Table 5: Parameters set for the simulation
Features value Features value

kmax 10000 jmax 1000
stepg 5 stepL 5
ϵg 0.01 ϵl 0.005
ρg 0.05 · N ρl ρg

Fig. 8 displays the average simulation time depending on the

problem size and according to several methods. For each prob-

lem size, the simulation was done on 50 cases (the same for

all methods), and the method’s order was randomized for each

case. For clarity, the average times according to the problem

size are resumed in Tab. 6. It is worth noticing that GPU meth-

ods exhibit a strong acceleration in processing time, even at 100

agents.

Hence, even with a problem size increase, the simulation

time of the methods on GPU remains minimal, and the differ-

ences between the GPU methods decrease. In contrast, the sim-

ulation time for the CPU methods (more than 10s) is prohibitive

for a long-term study. To compare the ADMM algorithms with

OSQP, the ratio between the OSQP time with their average sim-

14

0 500 1000 1500

agents' count

0

10

20

30

40

50

60

70

ti
m

e
 (

s
)

simulation time (s) according to the agents' count and the method

OSQP

ADMM

GPU

IGPU

OGPU

Figure 8: Minimum, maximum, and average simulation time for random cases

Table 6: Average times (s) according to the method and the problem size
N agents 100 500 1000 1500

OSQP 0.2 8 27 60
ADMM 0.1 2 8 16

GPU 0.05 0.2 0.4 0.4
IGPU 0.07 0.2 0.3 0.4
OGPU 0.03 0.05 0.2 0.2

ulation time has been written in Tab. 7. The CPU-GPU parti-

Table 7: Ratio between the OSQP and the other method average times
N agents 100 500 1000 1500

ADMM 2 3 3 4
GPU 5 32 75 140
IGPU 3 42 105 167
OGPU 8 142 129 317

tioning and the algorithm rewriting significantly impacted the

simulation time. The resolution is made about 100 times faster

with the GPU method than with the must-use method OSQP. To

study the speed up of the CPU-GPU partitioning of the ADMM

methods, it will be calculated for each study case s:

S s =
ts,ADMM − ts,method

ts,ADMM
(17)

The average results are resumed in Tab. 8. Whatever the prob-

Table 8: SpeedUp in percentage for the ADMM CPU-GPU partitioning
N agents 100 500 1000 1500

GPU 54 % 89 % 95 % 97 %
IGPU 39 % 92 % 97 % 98 %
OGPU 75 % 98 % 97 % 99 %

lem size, the speedup is very high; for instance, the computation

time is enhanced by more than 95% by using the GPU methods

for a case of 1000 agents.

This type of study allows measuring the complexity and com-

paring it with theoretical results. Let η be the time augmentation

due to the problem size increase for a given method. The ex-

pression is the following for the increase from N1 to N2 agents:

η =
t2
t1

(18)

Let O(Nαpoly) be the method complexity, it implies:

η =
t2
t1
= (

N2

N1
)αpoly (19)

Thus, the measured complexity can be calculated as follows:

αpoly =
log(η)

log(N2) − log(N1)
(20)

Tab. 9 aggregates the different simulation time increases for

a rise from 50 to 1500 agents and the related complexity.

The measure is coherent with the theory of the ADMM CPU

method. The lower measured complexity of OSQP can be ex-

plained by the high sparsity of the OSQP problem matrices. The

non-optimized GPU method computes the mean of the trade

with a function that has a complexity of O(N). This stays co-

herent with the value measured. For the optimized method, the

logarithmic complexity (O(log(N)αlog)) has also been computed

with simulation time increases for a rise from 50 to 1500 agents

and the related complexity

αlog =
log(η)

log(log(1500)/ log(50))
(21)

It seems that the number of threads (here, 512 threads per

block) was not enough to achieve a logarithmic complexity; it

is why the complexity of the optimized GPU methods is not a

logarithmic one.

4.3. Performance evaluation using a European market dataset

Thanks to the random cases, the complexity and the conver-

gence’s time have been evaluated. The GPU methods show a

15

Table 9: time increase, measured complexity and theoretical one (with K a
constant depending on the block size)

Method η αpoly αlog Cthe

OSQP 1216 2.1 O(N3)
ADMM 656 1.9 O(N2)

GPU 15 0.8 4.3 O(N)
IGPU 5.5 0.6 2.5 O(N

K + log(N))
OGPU 47 1.1 6.4 O(N

K + log(N))

remarkable improvement in these factors compared to the CPU

ones. Nevertheless, these random cases are not related to real

study cases. Thus, this section will focus on a real study case:

the European market. This case uses open access data DTU-

ELMA/European Dataset [34]. This dataset includes a gener-

ator file with their names, locations, types (coal, lignite, hy-

draulic, gas, nuclear, geothermal), capacities, and production

costs. It also includes nodes description (voltage, location, and

load) at each instant with one hour step for three years. These

data allow simulation of a long period of the market with co-

herent consumption data.

This dataset includes 969 fully controllable generators and

1494 nodes considered consumers. Their capacity bounds the

generator power; the measured load on the data within 10%

determines the consumer power. The function cost of the con-

sumers has its minimum at the measured load and a quadratic

term at 1. The generator function cost has its linear term

equal to the linear cost of the production and a quadratic co-

efficient at 0,1. Thus it is more important to satisfy the con-

sumers than the generators. As a reminder, the cost function is

g(Pn) = a ·P2
n+b ·Pn, the coefficient choices are in Tab. 10, and

the simulation parameters are the same as those in Tab. 5.

To evaluate, compare and present the performance of these

methods, the date of January 2, 2013, was arbitrarily chosen.

Table 10: Coefficients’ definition
Agent Producer Consumer

pn (MW) 0 −1.1 · P0
pn (MW) capacity −0.9 · P0
a (MW−2) 0.1 1
b (MW−1) production cost P0

0 5 10 15 20 25

hour

10
-1

10
0

10
1

10
2

10
3

ti
m

e
 (

s
)

simulation time (s) according to the simulated hour and the method,1/2/2013

OSQP

ADMM

GPU

IGPU

OGPU

Figure 9: Computation time according to the simulated hour

The results are similar, whatever the selected date. Consecutive

time steps have been chosen to use the warm start; indeed, the

first hour is way much slower than it could have been with a

warm start (by beginning one hour earlier).

It is important to note on Fig. 9 that the computation time

fluctuates slightly according to the consumer demands or their

variations (which are the two things that differ between two

hours). But whatever the considerate hour, GPU methods are

faster than CPU ones, and ADMM is better than OSQP. For

clarity, results have been summarized in Tab. 11.

Table 11: Average, median, minimum, and maximum computation time in sec-
onds according to the implemented method

Method Mean Med Min Max Std

OSQP 33 22 15 281 53
ADMM 8.9 6.2 3.9 58 11

GPU 0.56 0.52 0.42 1.5 0.2
IGPU 0.38 0.39 0.16 1.4 0.2
OGPU 0.19 0.13 0.13 1.3 0.23

Furthermore, the optimized method solves a 2463 agents’

study case in less than 0.2 seconds. This means that one year

can be simulated in less than half an hour. In Tab. 12, can be

found the average, minimum, and maximum absolute Speed up

(17) for the ADMM methods. As previously, the speedup is

calculated for each study case (here for each time step), then

then the minimum, the maximum, and the mean of the results

are taken.

It can clearly be noted that the optimized method is faster

than the others. This acceleration is pretty constant in this study,

whatever the consumers’ needs. This speed-up makes possible

simulations on large-scale cases and periods.

16

Table 12: Absolute Speedup of the GPU methods compared to the CPU ADMM
method

Method Mean Med Min Max Std

GPU 92 % 92 % 88 % 97.1 % 0.025
IGPU 95 % 95 % 90 % 98 % 0.021
OGPU 98 % 98 % 97 % 99 % 0.0065

5. Conclusion

In summary, the significant contributions of this work are the

following:

• a comparison of the computational and memory complex-

ity of several algorithms for P2P market resolution;

• a computational complexity study of the ADMM algo-

rithm compared to state-of-the-art methods

• rewriting the ADMM method for a CPU-GPU partitioning

and a parallel implementation

• performance and complexity evaluations on random cases,

a European dataset, and a comparison to state-of-the-art

methods

The results show the speedup achieved with the algorith-

mic rewriting, the CPU-GPU parallelization, and software op-

timization as part of a hardware-software codesign approach.

The European case was used to show a more realistic case

with coherent time variation. The resolution on GPU requir-

ing less than 0,2s (against several hours with MATLAB and

several seconds with C++ on CPU) per hour allows the sim-

ulation of one year in less than half an hour for a system of

2463 agents. All algorithms, the study case, and the micro-

benchmarks can be found on the following Gitlab repertory5.

Nevertheless, a more significant acceleration may be reachable.

First, the peers’ agents count can be limited, reducing the com-

plexity from O(N2) to O(N). But studies must be done to select

the best peers possible for each agent. Furthermore, a decreas-

ing local termination criterion may speed up the beginning of

the simulation where a precise solution is not needed for the

5https://gitlab.com/satie.sete/p2p_market_resolution_gpu

local problem. Finally, some constant parameters can be stored

in the constant memory of the GPU to speed up the memory

access.

Similarly, this work has shown one CPU-GPU partitioning to

speed up the resolution of this problem. The codesign approach

is not limited to CPUs and GPUs: FPGAs would also be of in-

terest. Their massively parallel architecture would bring about

a specific adequacy and perhaps allow new computing time im-

provements. Moreover, the complementarities between CPU,

GPU and FPGA would open the discussion of another metric to

quantify the performance of a resolution: its energy cost when

scaling the problem size

6. Acknowledgments

The authors want to thank the Cairn team (Energy-Efficient

Computing Architectures) of the IRISA laboratory of Rennes

composed by Mickaël DARDAILLON, Simon ROKICKI and

Steven DERRIEN for their expert advice on this work.

References

[1] RTE. Conditions and Requirements for the Technical Feasibility of a Power

System with a High Share of Renewables in France Towards 2050

[2] Bussar C, Stöcker P, Cai Z, Moraes Jr. L, Magnor D, Wiernes P, Van

Bracht N, Moser A, Uwe Sauer D. Large-scale integration of renewable

energies and impact on storage demand in a European renewable power

system of 2050—Sensitivity study, Journal of Energy Storage, Volume

6, 2016, Pages 1-10, ISSN 2352-152X, https://doi.org/10.1016/j.

est.2016.02.004.

[3] Saad Al-Sumaiti A, Ahmed M H, Salama M M. (2014) Smart Home Ac-

tivities: A Literature Review, Electric Power Components and Systems,

42:3-4, 294-305, doi: https://doi.org/10.1080/15325008.2013.

832439

[4] Sousa T, Soares T, Pinson P, Moret F, Baroche T, Sorin E. Peer-to-

peer and community-based markets: A comprehensive review, Renew-

able and Sustainable Energy Reviews, Volume 104, 2019, Pages 367-

378,ISSN 1364-0321 https://www.sciencedirect.com/science/

article/pii/S1364032119300462

[5] Dong A, Baroche T, Le Goff Latimier R, Ben Ahmed, H. Convergence

analysis of an asynchronous peer-to-peer market with communication de-

lays. Sustainable Energy, Grids and Networks, 26, 100475. 2021

17

https://gitlab.com/satie.sete/p2p_market_resolution_gpu
https://doi.org/10.1016/j.est.2016.02.004.
https://doi.org/10.1016/j.est.2016.02.004.
https://doi.org/10.1080/15325008.2013.832439
https://doi.org/10.1080/15325008.2013.832439
https://www.sciencedirect.com/science/article/pii/S1364032119300462
https://www.sciencedirect.com/science/article/pii/S1364032119300462

[6] Garau M, Ghiani E, Celli G, Pilo F, Corti S. Co-simulation of smart distri-

bution network fault management and reconfiguration with LTE communi-

cation. Energies, 2018, 11.

[7] Baroche, T., Moret, F., Pinson, P. Prosumer markets: A unified formula-

tion. PowerTech (pp. 1-6). IEEE. 2019

[8] Tushar W, Yuen C, Saha T K, Morstyn T, Chapman A C, Alam M J E, Poor

H V . Peer-to-peer energy systems for connected communities: A review

of recent advances and emerging challenges. Applied Energy. 2021

[9] Tushar W, Saha T K, Yuen C, Smith D, Poor H V. Peer-to-peer trading

in electricity networks: An overview. IEEE Transactions on Smart Grid,

11(4), 3185-3200. 2020

[10] Ryan H, Marqusee J. ”Designing resilient decentralized energy systems:

The importance of modeling extreme events and long-duration power out-

ages.” Iscience (2021): 103630.

[11] Zhang X, Flueck A J, Nguyen C P. Agent-based distributed volt/var con-

trol with distributed power flow solver in smart grid. IEEE Transactions on

Smart Grid, 7(2), 600-607.2015

[12] X. Su, C. He, T. Liu and L. Wu, ”Full Parallel Power Flow Solution: A

GPU-CPU-Based Vectorization Parallelization and Sparse Techniques for

Newton–Raphson Implementation,” in IEEE Transactions on Smart Grid,

vol. 11, no. 3, pp. 1833-1844, May 2020, doi: 10.1109/TSG.2019.2943746

[13] Araújo I, Tadaiesky V, Cardoso D, Fukuyama Y, Santana Á . Simulta-

neous parallel power flow calculations using hybrid CPU-GPU approach.

International Journal of Electrical Power & Energy Systems. 2019 .

[14] Sooknanan D J, Joshi A . GPU computing using CUDA in the deployment

of smart grids. In 2016 SAI Computing Conference (SAI) (pp. 1260-1266).

IEEE.2016, July

[15] Kargarian A, Mohammadi J, Guo J, Chakrabarti S, Barati M, Hug G,

Baldick R. Toward distributed/decentralized DC optimal power flow im-

plementation in future electric power systems. IEEE Transactions on Smart

Grid, 9(4), 2574-2594. 2016

[16] Roberge V, Tarbouchi M, Okou F. Optimal power flow based on paral-

lel metaheuristics for graphics processing units. Electric Power Systems

Research, Volume 140, 2016, Pages 344-353, ISSN 0378-7796,

[17] Chernova T, Gryazina E. Peer-to-peer market with network constraints,

user preferences and network charges. International Journal of Electri-

cal Power & Energy Systems,Volume 131,2021,106981,ISSN 0142-0615,

https://doi.org/10.1016/j.ijepes.2021.106981.

[18] Baroche T, Le Goff Latimier R, Pinson P, Ben Ahmed H. Exogenous

Cost Allocation in Peer-to-Peer Electricity Markets. IEEE Transactions on

Power Systems, Institute of Electrical and Electronics Engineers, 2019, 34

(4), pp.2553 - 2564. ffhal-01964190f

[19] Sorin E, Bobo L, Pinson P . Consensus-based approach to peer-to-peer

electricity markets with product differentiation. IEEE Transactions on

Power Systems, 34(2), 994-1004. 2018

[20] Santos G, Pinto T, Praça I, Vale Z. MASCEM: Optimizing the perfor-

mance of a multi-agent system. Energy. 111. 513-524. 2016. doi: https:

//doi.org/10.1016/j.energy.2016.05.127.

[21] Martelli M, Enderli C, Gac N, Vermesse A, Merigot A. GPU Accelera-

tion: OpenACC for Radar Processing Simulation. 2019 International Radar

Conference (RADAR), 2019, pp. 1-6, doi: https://doi.org/10.1109/

RADAR41533.2019.171296

[22] Balla-Arabe S, Gao X, Ginhac D, Yang F.Shape-constrained level set

segmentation for hybrid CPU–GPU computers. Neurocomputing. Volume

177. 2016. Pages 40-48. ISSN 0925-2312. https://doi.org/10.1016/

j.neucom.2015.11.004.

[23] Dine A, El Ouardi A, Vincke B, Bouaziz S, Speeding up graph-based

SLAM algorithm: A GPU-based heterogeneous architecture study. 2015

IEEE 26th International Conference on Application-specific Systems, Ar-

chitectures and Processors (ASAP). 2015. pp 72-73, doi: https://doi.

org/10.1109/ASAP.2015.7245711

[24] Pinson P, Baroche T, Moret F, Sousa T, Sorin E, You S. The emergence

of consumer-centric electricity markets. Distribution & Utilization, 34(12),

27-31. 2017

[25] Stellato B, Banjac G, Goulart P, Bemporad A, Boyd, S. OSQP: an op-

erator splitting solver for quadratic programs. Mathematical Programming

Computation https://doi.org/10.1007/s12532-020-00179-2

[26] Boyd S, Parikh N, Chu Borja Peleato E, Eckstein J, Distributed Opti-

mization and Statistical Learning via the Alternating Direction Method of

Multipliers

[27] G Hug, S Kar, C Wu, ”Consensus + Innovations Approach for Distributed

Multiagent Coordination in a Microgrid,” in IEEE Transactions on Smart

Grid, vol. 6, no. 4, pp. 1893-1903, July 2015, doi: https://doi.org/

10.1109/TSG.2015.2409053.

[28] Li X, Li F. GPU-based power flow analysis with Chebyshev precondi-

tioner and conjugate gradient method. Electric Power Systems Research.

Volume 116. 2014. Pages 87-93 .ISSN 0378-7796, https://doi.org/

10.1016/j.epsr.2014.05.005.

[29] Ofenbeck G, Steinmann R, Caparros V, Spampinato D G, Püschel M.

Applying the roofline model. 2014 IEEE International Symposium on Per-

formance Analysis of Systems and Software (ISPASS), 2014, pp. 76-85,

doi: https://doi.org/10.1109/ISPASS.2014.6844463

[30] Schubiger M, Banjac G, and Lygeros J. GPU Acceleration of ADMM for

Large-Scale Quadratic Programming

[31] Harris M. NVIDIA Developer Technology. Optimizing Parallel Reduc-

tion in CUDA

[32] Brent R. P. 1974. The Parallel Evaluation of General Arithmetic Ex-

pressions. J. ACM 21, 2 (April 1974), 201–206. https://doi.org/10.

1145/321812.321815

[33] Konstantinidis E, Cotronis Y. A quantitative roofline model for GPU ker-

nel performance estimation using micro-benchmarks and hardware metric

profiling. Journal of Parallel and Distrind Computing. 2017. vol 107. p 37-

56.

[34] Jensen T, Pinson P. RE-Europe, a large-scale dataset for modeling a highly

renewable European electricity system. Sci Data 4, 170175 .2017. https:

//doi.org/10.1038/sdata.2017.175

18

https://doi.org/10.1016/j.ijepes.2021.106981
https://doi.org/10.1016/j.energy.2016.05.127
https://doi.org/10.1016/j.energy.2016.05.127
https://doi.org/10.1109/RADAR41533.2019.171296
https://doi.org/10.1109/RADAR41533.2019.171296
https://doi.org/10.1016/j.neucom.2015.11.004.
https://doi.org/10.1016/j.neucom.2015.11.004.
https://doi.org/10.1109/ASAP.2015.7245711
https://doi.org/10.1109/ASAP.2015.7245711
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1109/TSG.2015.2409053.
https://doi.org/10.1109/TSG.2015.2409053.
https://doi.org/10.1016/j.epsr.2014.05.005.
https://doi.org/10.1016/j.epsr.2014.05.005.
https://doi.org/10.1109/ISPASS.2014.6844463
https://doi.org/10.1145/321812.321815
https://doi.org/10.1145/321812.321815
https://doi.org/10.1038/sdata.2017.175
https://doi.org/10.1038/sdata.2017.175

[35] Davis T A. Algorithm 849: A concise sparse Cholesky factorization pack-

age. ACM Transactions on Mathematical Software (TOMS), 31(4), 587-

591.(2005).

Consensus and sharing ADMM

This section will focus on giving more details on the equation

demonstrations. Let the objective function be:

argmin
T

N∑
n

fn(T) (.1)

The global consensus problem for the ADMM [26] allow us to

rewrite this minimization by:

argmin
T

N∑
n

fn(Tn) (.2a)

s.t Tn − z = 0 (.2b)

with fn(Tn) = gn(pn)+
∑

m∈ωn
γnmtnm and the so-called common

global variable:

znm =
tnm − tmn

2
(.3)

and the augmented Lagrangien:

Lρ(T, P,Λ, z) =
∑
n∈Ω

gn(pn) +
∑
n∈Ω

∑
m∈ωn

γnmtnm+∑
n∈Ω

∑
m∈ωn

(
λnm(tnm − znm) +

ρ

2
(tnm − znm)2

) (.4)

The resulting ADMM algorithm is the following:

T k+1
n = argmin

Tn

fn(Tn) +
∑
m∈ωn

λk
nm(tnm − zk

nm) +
ρ

2
||tnm − zk

nm||
2
2

(.5a)

λk+1
nm = λ

k
nm +

ρ

2
(tk+1

nm + tk+1
mn) (.5b)

The sharing problem has the following form:

T k+1
n = argmin

tnm

gn

(∑
m∈ωn

tnm

)
+

∑
m∈ωn

fnm(tnm)

subject to tnm ∈ C

(.6)

with:

fnm(tnm) = γnmtnm +
ρ

2

(
tnm −

tk
nm − tk

mn

2
+
λk

ρ

)2
(.7)

The final algorithm became:

t j+1
i = argmin

lbn≤ti≤ubn

(
fi(ti) +

ρl

2
||ti − t j

i + t j
− p̃ j + µ j||22

)
(.8a)

p̃ j+1 = argmin
pn≤Mn p̃≤pn

(
g(Mn p̃) +

Mnρl

2
|| p̃ − µ j − t j+1

||22

)
(.8b)

µ j+1 = µ j + t j+1
− p̃ j+1 (.8c)

Complexity of the OSQP algorithm

A well-known state-of-the-art method when it comes to solving

quadratic problems is OSQP6 [25]. It will be considered in this

work as a reference to evaluate the resolution complexity of a

quadratic problem defined as follows:

x = argmin
1
2

xT Hx + qT x

s.t. l ≤ Ax ≤ u
(.1)

Let Nc be the number of constraints (number of lines in A) and

Nv the number of variables (length of x). OSQP is an iterative

algorithm whose principle can be summed up as Alg.4. This

algorithm’s most important and costly step is a system solving,

(.2), which requires a matrix inversion. Other update steps have

complexity in O(Nc) or O(Nv).

H + σIMn AT

A −ρ−1
l IMn+1

x̃ j+1

v j+1

 =
 σx j − q

z j − ρ−1
l y j

 (.2)

input : jmax, ϵ, P, q, A, b, x0
output: xmin

1 z̃, x̃, x, z init;
2 while err > ϵ and j < jmax do
3 (x̃ j+1v j+1)← solve system (.2) ;
4 z̃ j+1, x j+1, z j+1, y j+1 ← linear update ;
5 err ← linear update ;
6 end

Algorithm 4: OSQP algorithm

The higher dimension being the KKT matrix, the memory

complexity of OSQP is O((Nv + Nc)2). Nevertheless, since

OSQP only store sparse matrix under CSC format, this com-

plexity may be reduced according to the problem at O(Nv +

6https://github.com/oxfordcontrol/osqp

19

https://github.com/oxfordcontrol/osqp

Nc) ≤ O(Hnz + Anz) ≤ O((Nv + Nc)2) with Xnz the number of

non-zeros element in the X matrix.

Regardless of the method used for the system solving (con-

jugate gradient or LDL factorization), the complexity will not

be linear, but polynomial O((Nv + Nc)α) with α ≥ 3 for dense

matrix. Once the factorization is done, solving the system has

a complexity of about O((Nv + Nc)2). If the KKT matrix does

not change between each iteration, its factorization can be done

only once. In our case, only ρl can change depending on the

OSQP settings but not at every step. Let K be the operation

count where the factorization can be kept. The complexity can

be written as O((Nv + Nc)α + K · (Nv + Nc)2) which asymptot-

ically is O((Nv + Nc)α). However, the O(K · (Nv + Nc)2) can

be dominant for a small number of agents as K can happen to

be larger than 1000 depending on the study case. With sparse

matrix, the complexity can be smaller [35].

20

	Introduction
	Peer-to-peer market and resolution approaches
	Centralized resolution: overview and definitions
	Decentralized peer-to-peer market algorithm
	Global resolution complexity

	Hardware-Software Codesign for P2P Energy Market Resolution
	Partitioning methodology
	CPU implementation
	GPU implementation
	Algorithm rewriting
	Software optimization
	Parallel methods’ complexity

	Results
	CPU-GPU specifications
	Problem size impact on the resolution time
	Performance evaluation using a European market dataset

	Conclusion
	Acknowledgments

