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Robust stealthy attacks based on uncertain costs and
labeled finite automata with inputs

Rabah Ammour1 Member, IEEE, Said Amari2, Leonardo Brenner1, Isabel Demongodin1

and, Dimitri Lefebvre3, Senior Member, IEEE

Abstract—This paper deals with the vulnerability analysis of
cyber-physical systems subject to malicious actions. For this
purpose, the considered system is assumed to be abstracted as
a discrete event system. Labeled finite automata with inputs are
used to model the system’s behavior along with the information
that circulates in both the input and output channels. In par-
ticular, we study here stealthy, i.e., undetectable, cyber-attacks
that aim to drive the system from a given normal state to a
set of forbidden states. We assume that the attacker has limited
resources, i.e., a credit, to insert and delete control and sensors
events. The proposed analysis evaluates the costs of such attacks
on the controlled system depending on its structure, the cost of the
malicious actions and possible uncertainties that may affect those
costs. It provides systematic methods that aim to compute attacks
of minimal cost and robust attacks that are weakly impacted by
uncertainties. A case study representing a manufacturing plant
is considered to illustrate the results.

Index Terms—Discrete Event Systems, Automata, Cyber-
Physical Systems, Robust Attacks.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) have been widely used in
numerous applications such as networked control systems,
smart power grids, healthcare systems, advanced communica-
tion processes and autonomous transportation networks. CPSs
integrate computational and communication capabilities to
control and monitor physical processes. The communication
and data exchange networks between controllers /supervisors
and the operative part of the process increase the vulnerability
of CPSs to various types of attacks that may lead to critical
and dangerous situations. Examples of cyber attacks include
the StuxNet strike on industrial control systems [1], and the
spoofing of global positioning systems to capture unmanned
aircrafts [2]. As a consequence, vulnerability analysis of CPSs
is an increasingly important problem and several works ad-
dressed this issue in recent years [3]. In the context of Discrete
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Event Systems (DESs), automata formalism is suitable to
model CPSs to analyze their vulnerability.

Authors of [4] use this formalism and investigate the prob-
lem of synthesizing an attack strategy for a given controlled
DES by adopting an attacker’s viewpoint. They assume that
the attacker is able to manipulate the sensor measurements in
order to mislead the controller and drive the system to unsafe
or undesirable states without being detected. A similar problem
has been addressed by authors of [5] considering actuator
attacks where the intruder partially observes the execution of
the closed-loop system and can modify the control generated
by the supervisor. In the work of [6], attacks on both sensors
and actuators layers in networked supervisory control systems
are addressed. Thus, the intruder can hide, insert or replace
events with the objective to drive the system to reach unsafe
states.

Attacks on both sensors and actuators are also considered
in [7] but in the discrete-time distributed multi-agent systems
framework. The authors show how an attack on a compromised
agent can propagate and affect other agents that are reachable
from it. An adaptive attack compensator is designed to limit
the attack effect and its propagation. Attacks and defense
graphs [8], [9] and kill chains [10] are widely used tools
to deal with the problem of security assessment due to their
great ability to detail network attacks. Basically, the nodes of
such graph or chains represent vulnerabilities or devices, and
the edges represent the possible evolution within nodes, e.g.,
the attacker gains more and more privilege in the network by
exploiting successive vulnerabilities. Different analysis meth-
ods (such as path search, Bayesian netwoks) are then applied
on the graph to assess the vulnerabilities of the network. In
the meantime, some approaches have been extended to the
stochastic context [11], [12], [13] allowing to quantify, in a
probabilistic sense, the attack strategies.

An other concept has been proposed in [14] where a fixed
cost has been assigned to each possible attack action. This
cost captures the expense (in terms of time, complexity or data
packet size) of the attacker when trying to alter the exchanged
data in the CPS. This concept makes it possible to model the
attacker’s cost constraints and to characterize feasible attacks
scenario with respect to intruder’s available resources.

In this paper, we assume that the network security barriers
have failed and we consider malicious stealthy actions on both
sensors and control events allowing the attacker to drive the
system from its current state to a set of target (forbidden or
dangerous) states. We refer to such attacks as stealthy moving
attacks in the rest of the paper. The context is similar to
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[14], in the sense that the attacker is assumed to have a
certain credit to manipulate the control symbols sent to the
actuators and the output labels returned by the sensors. It
is supposed that each action, which can be an insertion or
deletion of symbols/labels, has a certain cost. Consequently,
stealthy cyber-attacks of limited cost could be considered.
The stealthiness characterizes the ability of the attacker to
hide its traces and to remain undetectable while it moves the
system’s current state. Assigning constant values to the attack
costs has been developed in [15] with a vulnerability analysis
based on Dijkstra algorithm. In the present work, we introduce
uncertain costs represented by intervals that may be used when
costs are varying or not perfectly known. This new setting is
consistent with many practical situations for which the cost
values cannot be exactly estimated. By enlarging the cost
intervals, the approach can be implicitly extended to situations
that include some unknown costs. This setting needs the use
of a new approach based on min-max regret [16].

With this new concept, the main objective of this paper is to
evaluate and discuss the vulnerability of the CPS by defining
and computing attacks of maximal robustness. Such attacks
are characterized by the lowest impact of the uncertainties on
their global cost. Note that exploring robust attacks that aim
to minimize the maximal regret is interesting not only for the
attacker but also for the defender in the sense that this new
notion helps to design and refine a defence strategy.

The rest of the paper is organized as follows. Section II is
about the motivations and backgrounds. Section III introduces
uncertain cost graphs based on labeled finite automata with
inputs. Section IV is devoted to the vulnerability analysis of
CPS affected by stealthy moving attacks. Section V is a case
study and Section VI concludes the paper.

II. BACKGROUNDS

We consider attacks that aim to drive the system from a
given (normal) state to a target (forbidden or dangerous) state.
Such a moving attack is able to change the information that
circulates in both the input and output channels of the system
as represented in Figure 1. Consequently, it can replace the
true control sequence i by a wrong control sequence ia. In the
same time, the attacker is able to erase the traces generated
by its malicious actions or to insert wrong traces oa that are
similar to the expected traces to be observed by the user which
makes such attacks stealthy. The following assumptions are
considered:

• the attacker knows the model of the system,
• the attacker knows (or is able to estimate) the current

state of the system to perform the attack,
• the attacker can manipulate (insert or delete) the input

symbols and output labels, each action corresponds to a
given cost and the attacker has a limited credit to perform
its attack.

For the sake of brevity, we restrict the proposed analysis to
the insertion of input events and deletion of output labels and
consider the cases where the attacker can manipulate all events
and labels without any restriction, as far as it has enough

credit. It is worth noting that the previous assumptions can
be relaxed, in particular, by increasing some cost values.
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Fig. 1: Cyber-physical system under attack

In our previous work [17], a particular class of Petri nets,
called output synchronized Petri nets, has been defined to
model the controlled plant and the information that circulates
through the CPS. To represent and analyze the behavior of
such a model, labeled finite state automaton with inputs is
derived from this formalism. It represents the states space of
the system as well as the input and output information.

Definition 1: A labeled finite automaton with inputs (LFAI)
is a 6-tuple G = (X,Eλ, δ, x0, Q,Obs), where

• X is a finite set of states,
• E is a finite set of symbols (i.e., external input events)

and Eλ = E ∪ {λ} where λ is an internal and ”always
occurring” event,

• δ : X × Eλ → X is a (possibly partially defined)
transition function,

• x0 ∈ X is an initial state,
• Q is a finite set of labels (i.e., output events) and Qε =

Q ∪ {ε}, where ε denotes the absence of label,
• Obs : X × Eλ → 2Q ∪ {ε} is a labeling function. ▲

We consider that the LFAI is deterministic with respect to
the symbols i.e., ∀x ∈ X,∀e ∈ Eλ, |δ(x, e)| ∈ {0, 1} where
|.| stands for the cardinality of a set. If |δ(x, e)| = 1 with
e ∈ E, then e is said to be active at state x. δ(x, λ) = x′

means that the system will move from x to x′ according to
the ”always occurring” event λ, i.e., without waiting for any
external input symbol. In this case, x is said to be a λ-state.
λ-transitions and λ-states are used to represent explicitly
internal switches, for example high priority switches, that do
not require any action from the controller and are directly
generated by the system. Moreover, when a λ-transition (i.e.,
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Fig. 2: Example of labeled finite state automaton with inputs



AMMOUR et al.: ROBUST STEALTHY ATTACKS BASED ON UNCERTAIN COSTS AND LFAI 3

a transition associated with event λ) exists from a given state
x then it will be the single transition outgoing from x, i.e.,∑

e∈Eλ
|δ(x, e)| = 1. Note that multiple labels (a subset of

Q) could be provided by one transition and ε is used when
no label is generated.

Example 1: Consider the LFAI of Figure 2. It is defined
by a set of 8 states X = {x0, · · · , x7} (with three λ-states
x3, x5, x7 represented by dashed circles) where x0 is the
initial state. The set of symbols is E = {a, b} and the set of
labels is Q = {A,B,C}. The notation “a : A” means that
the system switches from state x0 to state x1 when it receives
symbol a and that this change delivers label A. Thus, it holds
δ(x0, a) = x1 and Obs(x0, a) = A. □

A control sequence of length n sent by a controller is
denoted by i = e1 . . . en with eh ∈ E, h = 1 . . . n. It is
completed by the λ events that are generated spontaneously
by the system leading to the corresponding executed sequence
i′ = e′1 . . . e

′
m, e′h ∈ Eλ, h = 1 . . .m with m ≥ n. Due to

the determinism of the considered formalism, a single i′ is
associated to a given i.

We introduce δ∗ and Obs∗ as the trivial extensions of
δ and Obs functions defined recursively, for an executed
sequence i′, by δ∗(x, ei′) = δ∗(δ(x, e), i′) and Obs∗(x, ei′) =
Obs(x, e)Obs∗(δ(x, e), i′). A trajectory, denoted σ(x, i′), of
m+ 1 successive states could be obtained from x as:

xj0

e′1:Obs(xj0 ,e
′
1)−−−−−−−−−→ xj1 . . . xjm−1

e′m:Obs(xjm−1
,e′m)

−−−−−−−−−−−−→ xjm (1)

where xj0 = x and xjm = δ∗(x, i′). The sequence
of sets of labels generated by i′ is denoted as
o = Obs∗(x, i′) = Obs(xj0 , e

′
1) . . . Obs(xjm−1

, e′m). We
use (xjh−1

, e′h) ∈ σ(x, i′) to refer to a transition from the
state xjh−1

driven by the symbol e′h in the trajectory σ(x, i′).
Finally, when an attacker inserts orders or manipulates
the control sequence i sent by the controller, the resulted
sequence is called an attack sequence which is denoted as ia.
Its corresponding executed sequence i′a is called an executed
attack sequence and the generated sequence of sets of labels
to be erased is denoted as oa.

III. UNCERTAIN COST GRAPH

In this section we consider that the attacker knows the model
of the system, and can manipulate the symbol and label events.
In particular, we consider moving attacks that are composed
by sequences of symbols generated exclusively by the attacker,
i.e., ia = i, and sequences of sets of outputs erased by the
attacker. An insertion cost cI is defined for each symbol and a
deletion cost cE is defined for each label. Note that cI(λ) = 0
and cE(ε) = 0. For e ∈ E and q ∈ Q, insertion and deletion
costs may be either defined as single values or as intervals
when some uncertainties exist about such costs. Uncertainties
may exist for various reasons, including the risk (from the
attacker’s viewpoint) that the controller performs some actions
during an attack.

In our previous work [15], fixed values of costs have
been considered and an Adding Control Graph (ACG) has
been developed. The objective was to characterize the attack
sequences of minimal cost. The nodes of an ACG are those
of the LFAI while each edge corresponds to a transition of
the LFAI with a weight given as follows. Let x, x′ ∈ X be
two states in the LFAI and e ∈ Eλ such that δ(x, e) = x′.
The weight cACG(x, e) of the arc corresponding to transition
δ(x, e) = x′, is given by:

cACG(x, e) = cI(e) +
∑

q∈Obs(x,e)

cE(q) (2)

Now, let us introduce the Uncertain Adding Control Graph
(UACG) that is similar to the ACG except that the weight of
each edge is a positive interval. For this purpose let us first
define for each symbol e ∈ E the insertion cost interval as:

CI(e) = [c−I (e), c
+
I (e)], (3)

and for each label q ∈ Q, the deletion cost interval as:

CE(q) = [c−E(q), c
+
E(q)]. (4)

Note that CI(λ) = CE(ε) = [0, 0]. Let x, x′ ∈ X be two
states in the LFAI and e ∈ Eλ, such that δ(x, e) = x′. The
weight cUACG(x, e) of the edge corresponding to transition
δ(x, e) = x′ is associated to the interval1:

CUACG(x, e) = [c−UACG(x, e), c
+
UACG(x, e)], (5)

with

c−UACG(x, e) = c−I (e) +
∑

q∈Obs(x,e) c
−
E(q),

c+UACG(x, e) = c+I (e) +
∑

q∈Obs(x,e) c
+
E(q).

(6)
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Fig. 3: (a) Adding control graph, (b) Uncertain adding control
graph

Example 2: Let us consider that the costs to insert or delete
each symbol and label for the LFAI of Figure 2 are given by
cI(a) = 2, cI(b) = 1, cE(A) = 1, cE(B) = 0, cE(C) = 1.
From these values, the cost of each transition of the cor-
responding ACG could be computed for the ”certain case”
as reported in Figure 3 (a). For instance, the cost to drive
the system from state x0 to state x1 is equal to 3 which
corresponds to the sum of the cost to insert the symbol a
and of the cost to erase the label A that results from the state
switch, i.e., cACG(x0, a) = cI(a) + cE(A) = 2 + 1 = 3.

Concerning the ”uncertain case” and considering the
cost intervals, CI(a) = [2, 3], CI(b) = [1, 2], CE(A) =

1Intervals are manipulated according to the IEEE 1788 standard for interval
arithmetic [18]. In particular, [a, b] + [c, d] = [a+ c, b+ d].
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[1, 4], CE(B) = [0, 2], CE(C) = [1, 2], one can compute the
cost of each transition of the UACG as reported in Figure 3 (b).
For instance, the cost interval to drive the system from state x0

to state x1 is equal to CUACG(x0, a)=[c−I (a)+c−E(A), c+I (a)+
c+E(A)] = [3, 7]. □

IV. ANALYSIS OF STEALTHY ATTACKS

In this section, we consider stealthy moving attacks that
aim to drive the system from the current state to a state from
a subset F ⊆ X of forbidden states. This set could include
deadlocks or other dangerous states. To perform a stealthy
moving attack, the attacker inserts an attack sequence (i.e., a
wrong sequence of symbols) and, in the same time, it erases
the observable traces (i.e., a sequence of sets of labels) that
the attack sequence has generated. Uncertain costs, associated
to the attacker’s actions, are used to take into account the
situations where the insertion and disabling costs may vary
depending on the system state and other reasons, e.g., the
risk that the controller sends symbols during the attack.
Such variations are defined by a given UACG. Observe that
compared to our previous works [15] the proposed analysis
aims to evaluate the robustness of the attack with respect to
the system.

Definition 2: Let ia = e1 . . . en be a stealthy moving
sequence that drives the system from a state x to a forbidden
state in F . The cost of ia is included in interval cMA(ia, x)
defined by

cMA(ia, x) =
∑

h=1,...,n

CUACG(xjh, eh).

▲

Since many possible attacks with variable costs exist to
reach a forbidden state, two particular attacks are considered:
the attack of minimal cost and the attack of maximal
robustness. The search of such attacks is motivated by the
assumption that the attacker has a limited credit to perform
its attack.

Definition 3: An attack sequence i∗a of minimal cost c∗ is
an attack that drives the system from a state x to a forbidden
state in F such that other attacks from x to F have a cost at
least equal to c∗. ▲

Observe that the attack i∗a corresponds to the worst case
from the controller perspective since the attacker could reach
F from x with the lowest cost.

Definition 4: An attack sequence ira of maximal robustness
(or robust attack) is an attack that drives the system from a
state x to a forbidden state in F such that the possible cost
variation, with respect to the minimal cost attack to F , is
minimal. ▲

A. Moving attack of minimal cost

In order to compute the cost of a stealthy moving attack in
an UACG, the notion of scenario is first introduced [16].

Definition 5: A scenario S is an assignment of a single
value cUACG(x, e, S) ∈ CUACG(x, e) for each state x ∈ X
and event e ∈ E active in x. ▲

We refer to ACG(S) as to the adding control graph obtained
from the UACG associated to scenario S. The cost of the
stealthy moving attack from x to xf ∈ F in scenario S
that inserts ia at x and erases the corresponding generated
sequence of sets of labels oa is obtained according to its
corresponding executed attack sequence i′a and the resulting
trajectory σ(x, i′a) of the form (1) that ends in xf . It is named
as the cost of attack sequence ia at state x in scenario S and
computed as:

cMA(x, ia, S) =
∑

(x′,e)∈σ(x,i′a)
cUACG(x

′, e, S).

We denote by S the set of possible scenarios S. Observe
that it remains non tractable to enumerate all possible
scenarios.

Proposition 1: The attack sequence i∗a of minimal cost from
state x ∈ X to a forbidden state in F is defined by

i∗a = argmin
ia∈Ia(x,F)

{cMA(x, ia, Smin)}. (7)

where Ia(x,F) is the set of attacks that move the state from
x to any state in F and Smin is the scenario of minimal
costs in which cUACG(x

′, e, S) = c−UACG(x
′, e) for each

state x′ ∈ X and event e ∈ E active in x′.

Proof: Let us first consider a given scenario S ∈ S. The
stealthy moving attack of minimal cost from state x to a
given state xf ∈ F in scenario S can be obtained by using
the well-known Dijkstra algorithm in ACG(S) and the cost
c∗MA(x, xf , S) of such attack satisfies:

c∗MA(x, xf , S) = min
ia∈Ia(x,xf )

{cMA(x, ia, S)}.

where Ia(x, xf ) is the set of attacks that move the state from x
to xf . Now by repeating the use of Dijkstra algorithm to each
state xf ∈ F , one can compute the minimal cost c∗MA(x,F , S)
from current state x to any state xf ∈ F in scenario S:

c∗MA(x,F , S) = min
xf∈F

{c∗MA(x, xf , S)}

= min
ia∈Ia(x,F)

{cMA(x, ia, S)}.

Finally, the minimal cost over all scenarios S ∈ S is given
by:

c∗MA(x,F) = min
S∈S

{c∗MA(x,F , S)}.

Observe that for S ∈ S and xf ∈ F , we have c∗MA(x, xf , S)
≥ c∗MA(x, xf , Smin) and c∗MA(x,F , S) ≥ c∗MA(x,F , Smin).
Consequently, c∗MA(x,F) = c∗MA(x,F , Smin) and
Proposition 1 holds. □
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B. Robust moving attack

In this section we are interested in determining robust
attacks with respect to a set of known cost intervals that
model the uncertainties. The criterion used here to classify an
attack as robust or not is the maximal regret. This criterion
initially proposed in the context of game theory was adapted
to robust optimization in [19], [20], [21] and is extended here
for defining robust attacks. Let us consider an UACG and
first introduce the notion of regret.

Definition 6: The regret rMA(x, xf , ia, S) of a moving
attack ia from a state x to a state xf ∈ F in a given scenario
S is the difference between the costs of the attack sequence
ia and the one of minimal cost to reach xf in scenario S:

rMA(x, xf , ia, S) = cMA(x, ia, S)− c∗MA(x, xf , S). (8)

▲
The regret reflects the additional cost that the attacker may

spend to reach xf with respect to the attack of minimal cost.
The notion of regret can be extended to a set of forbidden
states F for ia in scenario S by:

rMA(x,F , ia, S) = cMA(x, ia, S)− c∗MA(x,F , S). (9)

Proposition 2: The attack sequence ira of maximal robust-
ness from state x ∈ X to a forbidden state in F is given
by

ira = argmin
ia∈Ia(x,F)

{rMA(x,F , ia, S
max
min (ia))} (10)

with Smax
min (ia) the scenario where the cost of each transition

(x′, e) ∈ σ(x, i′a) (i′a is the executed attack sequence that
corresponds to ia) is assumed to take its maximal value
c+UACG(x

′, e), whereas the costs of all other transitions in the
UACG take their minimal values.

Proof: The regret rMA(x, xf , ia, S) of an attack sequence
ia from x to a given state xf ∈ F reaches its maximal value
for the particular scenario Smax

min (ia) [16]:

rMA(x, xf , ia, S
max
min (ia)) = max

S∈S
{rMA(x, xf , ia, S)}.

It can be extended to a set of forbidden states F :

rMA(x,F , ia, S
max
min (ia)) = max

S∈S
{rMA(x,F , ia, S)}.

The stealthy moving attack of maximal robustness from x to
F corresponding to attack sequence ira is the attack with the
minimal value of maximal regret. ira is obtained in three steps:

• compute the set Ia(x,F) of attacks that correspond to
non cycling trajectories from x to F in the LFAI (it is
not necessary to consider the trajectories with one or more
cycles because such trajectories include an additional cost
and regret),

• for each attack ia from x to F , compute the maximal
regret rMA(x,F , ia, S

max
min (ia)),

• compute the minimal value r∗MA(x,F) of the maximal
regret of the attacks from x to F :

r∗MA(x,F) = min
ia∈Ia(x,F)

{rMA(x,F , ia, S
max
min (ia))}.

Consequently, the stealthy moving attack from state x to
F of maximal robustness is obtained according to the attack
sequence of Equation (10) and Proposition 2 holds. Note that,
in general, ira does not coincide with i∗a. □

Remark 1: the time complexity to determine the robust
attack that drives the system from state x to a state in F
is O(|Ia(x,F)|.|V |. log |X|). It depends on the number of
non-cycling trajectories |Ia(x,F)| which can be bounded by
|F| ×

∑n
k=0

n!
(n−k)! with n = |X| − (|F| + 1) and on the

complexity of Dijkstra’s algorithm given by O(|V |. log |X|)
where |V | is the number of UACG edges.

Example 3: Consider again the LFAI of Figure 2 and an
attack that aims to change the current state and mask the traces
generated by the attack. Specifically, the attacker aims to drive
the plant from state x0 to state x6. There exist several attack
sequences to reach x6, in particular the sequences of symbols,
ab(ab)∗b and ba. According to Dijkstra algorithm applied on
ACG in Figure 3(a), the trajectory of minimal cost is x0

b:A−−→
x2

a:A−−→ x3
λ:AB−−−→ x6 of cost c∗MA(x0, x6) = 6. Thus, the

attacker needs to insert symbol b, next symbol a and, to erase
labels A three times and next B once. The attack sequence of
minimal cost is then given by i∗a = ba which corresponds to
the executed attack sequence (i′a)

∗ = baλ.
Consider now the UACG of Figure 3(b) and attacks

that aim to drive the system from x0 to x6. Let us first
remark that ACG(Smin) associated to this UACG is the one
represented in Figure 3(a). Thus c∗MA(x0, x6, Smin) = 6 and
i∗a = ba. For the robust attack that drives the plant from
state x0 to state x6, observe that only two attack sequences
that correspond to non cycling trajectories exist to move
the system from x0 to x6 given by Ia(x0, x6) = {abb, ba}.
The maximal regret of the two attacks are respectively
rMA(x0, x6, abb, S

max
min (abb)) = 7 + 4 + 6 − 2 − 3 − 1 = 11

whereas rMA(x0, x6, ba, S
max
min (ba)) = 6+7+6−3−2−2 =

12. To conclude, r∗MA(x0, x6) = 11 and thus the robust
attack sequence is given by ira = abb. Note that the attack of
minimal cost is different from the robust one. □

Remark 2: The proposed approach, dedicated to CPS, could
be enlarged to any system provided that its associated model
explicitly defines the states space and the input/output infor-
mation.

V. CASE STUDY

We consider for this case study a part of an industrial
plant (see Figure 4) composed by two production lines and
shared robots. Each line comprises several mobile agents to
transport the products that will undergo three operations by
robots of different types (R1, R2, and R3). Each robot executes
a particular operation on the product.

A. Description

The considered system is represented by the output syn-
chronized Petri net (OutSynPN) given in Figure 5 (see [17] for
more details on this formalism). Places p1 and p5 represent,



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2023

Fig. 4: Considered manufacturing plant
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Fig. 5: Output synchronized Petri net of the case study

respectively, the availability of mobile agents of production
lines 1 and 2 (in other terms, the agents are located at the
electric charging stations). The availability of shared robots of
types R1, R2, and R3 are represented by places p9, p10, and
p11, respectively. Transported by mobile agents, the products
of line 1 have the following sequence of operations, repre-
sented by t1, p2, t2, p3, t3, p4, t4 in the OutSynPN: operation
1 on robot R1 (place p2), next operation 2 on robot R2 (place
p3) and finally operation 3 on robot R3 (place p4). The one
of products of line 2, represented by t5, p6, t6, p7, t7, p8, t8, is
as follow: operation 1 on robot R3 (place p6), next operation
2 on robot R2 (place p7) and finally operation 3 on robot R1
(place p8).

The controller, via a wireless network, gives the orders to
guide the mobile agents through the areas of robots. These
control inputs, associated with the transitions of the Petri
net model, are described in Table I. Note that the moving
of a mobile agent of line 2 from area R3 to area R2 is
done autonomously, i.e., without any control input sent by the
controller, as it is represented by symbol λ associated with
transition t6.

Several sensors are placed in the physical system in order
to detect the presence of mobile agents in the different areas
or the availability of robots. According to these sensors, the

TABLE I: Control inputs

Symbol Application Control input
a mobile agent of line 1 enter in line 1 & move to area R1
b mobile agent of line 2 enter in line 2 & move to area R3
c mobile agent of both

lines
evacuate the line (i.e., the product)
and move to the station

d mobile agent of line 2 move to area R1
e mobile agent of line 1 move to area R2 and/or area R3

TABLE II: Plant output

Label Definition Plant output
A ↑m2 a MA enters in line 1
B ↑m6 a MA enters in line 2
C ↓m4 a MA leaves line 1
D ↓m8 a MA leaves line 2
E (↓m10 ∧ (m2 = 2))∨ a blocked situation

(↓m9 ∧ (m2 = 2) ∧ (m7 = 1))∨
(↓m11 ∧ (m6 = 2) ∧ (m3 = 1))

physical system provides some feedback to the controller as
resumed in Table II, where ↑mi and ↓mi represent, respec-
tively, an increasing or decreasing of the marking of place pi
(mi = M(pi)) and MA stands for mobile agent.

Note that if we consider two robots R1, one robot R2 and
two robots R3, noted as configuration 2R1/1R2/2R3, with
two mobile agents per production line, the physical system is
blocked in two situations: robot R2 is used by line 1 and both
robots R3 are used by line 2 ; both robots R1 are used by line
1 and robot R2 is used by line 2. These both situations are
detected by the feedback E provided by the physical plant to
the controller.

B. Results

Let us now consider the costs associated with an insertion of
symbol or a deletion of label by the attacker given by Table III.
At the initial state, in configuration 2R1/1R2/2R3 with two
mobile agents per production line, all robots are available and
all mobile agents are located at the electric charging station.
From the Petri net model, the LFAI could be determined and
the uncertain adding control graph is obtained. This UACG,
shown in Figure 6, is composed of 41 states where x0 is the
initial state and, x18 and x19 are deadlocks corresponding to
the two blocked situations previously described.

We consider the set of forbidden states given by F =
{x13, x14, x18, x19} that correspond to the two deadlocks and
two additional dangerous states from which the system cannot
come back to a normal state.

The attacker wants to determine an attack, weakly impacted
by costs uncertainties, that drives the system from the initial
state x0 to one state of F . According to the approach proposed
in this paper, the robust attack ira is computed by evaluating
the maximal regret from x0 to states x13, x14, x18 and x19

(see Table IV). Thus, according to Proposition 2, the robust
attack ira = aba is obtained which corresponds to the smallest

TABLE III: Insertion and deletion costs

Symbol CI Label CE

a [2, 3] A [1, 4]
b [1, 2] B [0, 2]
c [1, 2] C [1, 2]
d [2, 3] D [1, 3]
e [1, 5] E [3, 4]
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TABLE IV: Minimal costs and min-max regret

State Minimal cost min-max regret
x13 10 11
x14 9 14
x18 12 21
x19 11 15

regret r∗MA(x0,F) = 11. The detail of the trajectory is as
follow: x0

a:A−−→ x1
b:B−−→ x8

a:AE−−−→ x13. Due to uncertainties
in the insertion and deletion costs (see Table III), the actual
cost of the attack aba may vary in range [11, 21]. In the worst
case, the cost may increase up to 21.

In order to point out the importance of computing the robust
attack for both attacker and defender, consider also the attack
i∗a = aebb of minimal cost c∗MA(x0,F) = 9 that differs from
ira = aba. It corresponds to the trajectory x0

a:A−−→ x1
e−→

x3
b:B−−→ x7

b:BE−−−→ x14. When uncertainties exist, the cost of
aebb may vary within [9, 23] and one can observe that, in the
worst case the cost of aebb exceeds 21 and that input sequence
aba becomes more performent than input sequence aebb.

C. Computation time evaluation

To evaluate our approach, a set of simulation has been run
using Matlab® on an Intel® CoreTM i7-8650U 2.11GHz CPU
with 16Go RAM memory. First of all, the time needed to
compute the previously robust attack, ira = aba, is 286.55
seconds. A simulation campaign has been conducted with
different robots configurations, number of mobile agents and,
cost intervals.

Table V shows the impact of the number of mobile agents
and robots on the size of the UACG and on the computation
time. Note that for the first four configurations, the compu-
tation time is bounded when the number of mobile agents
per line is equal to the total number of robots. In fact, the
size of the UACG, and consequently the number of attack
trajectories, remain constant. This result can be generalised
to all configurations as it is a structural property of the
system’s OutSynPN model. The number of attack trajectories,
|Ia(x,F)|, increases exponentially as the size of the UACG
(represented by the number of nodes |X| and the number
of edges |V |) grows. As a consequence, the computational
time becomes large (out of time (o.t.) is used when the
computational time exceeds 3 hours).

The results of Table VI are obtained for a fixed robots
configuration 2R1/1R2/2R2 and two mobile agents in each
production line. Firstly, it is shown how the number of
attack trajectories (and thus the computation time) evolves
with respect to the number of forbidden states. Secondly, we
consider a variation of the cost intervals. The values, based on
Table III, are given by CI = [c−I , c

+
I +∆];CE = [c−E , c

+
E +∆]

where ∆ is the parameter. It is important to point out that the
variation of the cost intervals does not impact the computation
time (insignificant time variation). This result is not surprising
as the proposed approach does not consider an exhaustive
investigation of all scenarios but considers only extremum
scenarios that use minimal and maximal cost bounds.

TABLE V: Simulation results

Robots
config.

Agents
per line

|X| |V | |F| |Ia(x,F)| Comp.
time
(sec.)

Config.1: 1 8 10 2 3 0.016
1R1 2 15 24 2 5 0.018
1R2 3 17 28 2 7 0.035
1R3 4 17 28 2 7 0.035
Config.2: 1 11 17 1 6 0.026
2R1 2 28 55 2 332 1.546
1R2 3 36 74 2 1282 8.674
1R3 4 38 78 2 2389 21.762

5 38 78 2 2389 21.762
Config.3: 1 11 18 0 − −
1R1 2 25 47 2 37 0.182
2R2 3 36 67 3 145 1.071
1R3 4 38 71 3 201 1.564

5 38 71 3 201 1.564
Config.4: 1 10 15 1 4 0.017
1R1 2 25 48 2 77 0.359
1R2 3 33 66 2 175 1.046
2R3 4 35 70 2 231 1.481

5 35 70 2 231 1.481
Config.5: 1 11 19 0 − −
1R1 2 33 73 1 1671 13.392
2R2 3 51 116 2 31525 338.360
2R3 4 69 153 3 566839 6947.07

5 71 157 3 892942 o.t.
Config.6: 1 12 21 0 − −
2R1 2 41 91 2 22264 179.670
1R2 3 66 155 2 2641486 o.t.
2R3 4 75 178 2 13299270 o.t.
Config.7: 1 22 21 0 − −
2R1 2 89 91 1 16334 161.39
2R2 3 146 155 3 4490807 o.t.
1R3

TABLE VI: Computation times with different sets F and
variable cost intervals

Computation time (seconds)
F |Ia(x,F)| ∆ =

0
∆ =
2

∆ =
5

∆ =
10

∆ =
100

{x13} 6969 61.80 61.21 62.52 62.75 61.12
{x14} 2124 19.03 20.49 18.91 18.82 18.95
{x18} 5064 45.08 45.16 45.64 44.94 44.09
{x19} 17200 160.64 157.41 157.43 162.94 154.86
{x14, x18} 7188 64.11 65.65 64.55 63.76 63.04
{x18, x19} 22264 179.67 203.57 203.07 207.88 198.95
{x13, x19} 24169 222.44 218.62 219.95 225.69 215.98
{x13, x14 31357 286.55 284.27 284.50 289.45 279.02
x18, x19}

VI. CONCLUSIONS

This paper concerns vulnerability analysis of cyber-physical
systems that include input and output events. By using a
labeled finite automaton with inputs (LFAI) and an uncertain
weighted graph that encodes the cost of the malicious actions,
we propose an approach to evaluate the robustness of the attack
and the vulnerability of the controlled system. This analysis
can be used to isolate the weaknesses of the system (in terms
of cyber-security) such that improvements can be considered
to compensate the vulnerabilities. This approach is illustrated
in the case of moving attacks that aim to drive the system’s
current state into a set of forbidden states. Limitations of the
proposed approach lie in the difficulty to estimate the values
of the cost intervals for real system, but also in its complexity
related to the size of the graph that may grow exponentially.

The solutions obtained by robust optimization techniques
such as the min-max regret could be too conservative [22]. Re-
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Fig. 6: UACG of the case study

placing the intervals by probabilistic distributions and connect-
ing the probabilistic aspects to the costs leads to several open
questions, such as the use of less conservative approaches,
that will be considered in our future works. In addition,
we will consider more general attack scenarios, including
partial controllability and observability properties from the
perspective of the attacker. We will also consider situations
where the controller and attacker interact like a two-player
game. Finally, we will explore situations where the attacker
wants to freeze the state of the system in some particular
situations.
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