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Abstract :   
 
An advanced algorithm for atmospheric water vapor column (WVC) retrieval from the Advanced 
Microwave Scanning Radiometer (AMSR) measurements over the Arctic sea ice (SI) and open ocean 
waters is presented. The algorithm is built on the physical modeling of the brightness temperature (BT) of 
the microwave radiation of the SI-open ocean-atmosphere system at the AMSR frequencies and 
polarizations. The BTs are calculated using a data set of the SI, atmospheric, and oceanic parameters 
changing in the range of their natural variability in the Arctic, and using the SI microwave emission 
coefficients varied according to the published experimental data. The inverse operator explores neural 
networks (NNs), trained on an ensemble of modeled BTs. The algorithm is applied both to the AMSR-E 
and to the AMSR2 measurement data. Validation of the algorithm is performed with radiosonde (r/s) WVC 
measurements from the four Arctic coastal stations at different SI conditions during 2014-2017. The 
results of the application of the new algorithm to satellite radiometer measurements are also compared 
with the Era-Interim reanalysis WVC, as well as with other satellite WVC products, based on the data of 
the Moderate Resolution Imaging Spectrometer (MODIS) and on the data of the Advanced Microwave 
Sounding Unit-B (AMSU-B) for 2008 and 2015. To justify the usage of the Era-Interim WVC as a reference 
data set for the algorithm accuracy estimation in the Arctic area, Era-Interim WVC is also compared with 
the r/s WVC measurements. 
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I. INTRODUCTION 

 

Water vapor is one of the major natural greenhouse gases. It is a key parameter in the 

global hydrological cycle and a component of climate change and ocean - atmosphere energy 

exchange studies [1]. Study of the atmospheric water vapor distribution and variability can 

supposedly help to understand the climate response to increasing greenhouse gas concentrations 

[2]. A number of recent studies investigated the water vapor column (WVC) climatic trends and 

their accuracy exploring different data sets [3]–[12]. These studies explore different WVC data 

sets and time periods. The accuracy of WVC data is discussed in most of them. Large deviations 

between WVC data sets over some areas, including Arctic region, were found from the analysis 

of the 22 WVC satellite-based and re-analysis data sets.  

The WVC changes over the Arctic area are poorly studied not least due to the scarcity of 

direct observations [13]. Radiosonde (r/s) WVC measurement data have long been considered as 

a source of the most accurate WVC providing precise moisture data at different pressure levels 

with high vertical resolution [14]. However, being available only from the sparse r/s stations, not 

all r/s humidity observation can be qualified as complete to calculate WVC [15]. Moreover, the 

raw radiosonde humidity records contain large errors and biases which need to be homogenized 

before their usage for the studies of long-term changes [16]. Some satellite retrievals of moisture 

related quantities are even used as reference data to estimate radiosonde data accuracy [17]. 

Nevertheless, the r/s WVC measurements are still most widely used both for validation purposes 

[18]–[21] and in climate studies of the WVC trends [9], [12], [22]. 

A highly accurate WVC data may be obtained from the observations at ground-based 

Global Positioning System (GPS) networks [23]. One of the most important advantages of the 

GPS WVC data is their high temporal resolution and providing homogenized data, which may be 

used both for the correction of r/s WVC measurements and for validation studies [24]. 

Unfortunately, low elevation angles, poor visibility of GEO satellites, sparse monitoring 



infrastructure and ionospheric effects limit usability of the Global Navigation Satellite Systems 

(GNSS) in the Arctic [25]. 

Some other ground-based instruments, such as microwave radiometers, Raman lidars, 

multifilter rotating shadow band radiometers and sun photometers are also capable to measure 

WVC. But only satellite remote sensing measurements provide regular basin-wide WVC 

estimates in the Arctic. A detailed review of various satellite-based techniques for WVC 

retrievals as well as the description of different WVC datasets, their advantages and limitations is 

given in [2]. Here we will outline the general features of water vapor sensors in terms of the 

Arctic cloud cover that exceeds 65% as measured by the different sensors [26]. 

Visible and near IR methods are based on attenuation measurements of solar radiation over 

cloudless areas. The WVC retrievals from these sensors are limited to the daylight portion of the 

swath [19]. Another group of methods explores thermal IR radiation measurements. These 

methods are independent of the day light but under cloudy conditions they allow measuring 

WVC only over clouds [27]. The observed WVC underestimation in many climatological studies 

is attributed to exploiting only the clear sky scenes [6], [28], but the amplification of this bias in 

the Arctic have not yet been investigated. In particular, the WVC distribution, trends, and 

anomalies over the Arctic for the period 2001–2015 obtained in [3] using the WVC monthly 

product of moderate resolution imaging spectrometer (MODIS) data incorporate inevitable errors 

since this product is generated only from cloudless data.  

Recent progress in satellite atmospheric parameter monitoring, independent of clouds and 

sun light, is associated with the deployment of a large networks of limb-sounding satellites, 

using GPS radiooccultation (RO) [29]. GPS RO ability to penetrate through clouds and 

insensitivity to surface emissivity ensures avoiding biases typical for WVC measurements from 

other satellite missions [2]. The GPS RO measurements have a potential to fill the gap in 

observing the WVC over the Arctic. Unfortunately, the RO sounding often does not reach the 

surface in the Arctic that limits the RO capabilities to measure WVC in this region. [30]. 



Regular long-term observations of water vapor are provided by satellite passive microwave 

instruments. Both satellite microwave imagers and sounders allow  retrieving WVC for clear and 

cloudy sky conditions, though not in the presence of strong scattering by cloud/precipitation 

hydrometeors [31]. Both WVC and total cloud liquid water have been successfully retrieved 

from such satellite passive microwave instruments (PM), as the Scanning Multichannel 

Microwave Radiometer (SMMR) on board the Nimbus 7, the Special Sensor Microwave/Imager 

(SSM/I) and the Special Sensor Microwave Imager and Sounder (SSMIS) on board the DMSP 

series satellites, the WindSat radiometer, the Microwave Instrument onboard the Tropical Rain 

Measurement Mission (TRMM) satellite (TMI) and the series of the Advanced Microwave 

Scanning Radiometers (AMSR, AMSR-E and AMSR2) [32]. Many algorithms for WVC 

retrieval from PM imager data have been developed for non-precipitating atmosphere over ocean 

surface during the last decades [33]–[36]. WVC retrieval over other surface types is difficult due 

to their complex and variable emissivity. 

Recent studies demonstrated possibilities of WVC retrieval from PM imager measurements 

over the surfaces, different from open oceans. These studies are based on PM measurements at 

the frequencies close to the frequency of water vapor resonant absorption at 22.235 GHz [37]. 

These methods assume that the surface electromagnetic properties are the same at close 

frequencies [38], [39]. However satellite WVC products, based on PM imager data, are still 

available only over open oceans [34], [40] due to high retrieval errors over the surfaces with 

large variability of microwave emissivity. The mean retrieval error of ~ 4.7 kg/m2 reported in 

[39] is close to monthly regional natural WVC variability, thus the WVC estimates do not 

provide valued information. 

The major progress in WVC retrieval from satellite measurements over the Arctic sea ice is 

associated with the usage of satellite passive microwave sounder data, and has been reported by 

the scientists from the University of Bremen [41]. The key concept of their method was 

suggested in [20], where the authors used several channels near the 183.31 GHz water absorption 



line, for which microwave radiation is featured by similar surface emissivity but different water 

vapor absorption behavior. The usage of the 183.31 GHz channels along with the channel at the 

150 GHz window frequency allowed successful retrieval of WVC lower than ~7 kg/m2 over the 

sea ice from such satellite instruments as the Advanced Microwave Sounding Unit-B AMSU-B 

(AMSU-B) or the Microwave Humidity Sounder (MHS). In the retrieval process the authors of 

[41] initially exploited the 89 GHz channel measurements along with several assumptions on the 

sea ice emissivity. However, the WVC values were estimated with large errors due to high 

variability and lack of knowledge about sea ice emissivity at 89 GHz. The following version of 

the algorithm was supposed to be valid for WVC < 15 kg/m2 over the sea ice and for WVC < 

7 kg/m2 over the sea water with an error of ~ 3 kg/m2over the sea ice surfaces [42]. Then the 

authors extended the method to be applicable for a lager range of WVC over the sea water 

surface by the development of the sub-algorithm specifically for ice-free and partially ice-

covered areas [41]. The new algorithm was tested against the European Centre for Medium-

Range Weather Forecasts (ECMWF) ERA-Interim [43] reanalysis data over the whole Arctic 

and against the other two WVC PM satellite products over open ocean areas. The reported error 

for summer months of ~ 5.7 kg/m2 seem to be too high to to exploit this product. 

Reviewing published research studies, we can conclude that despite the highly essential 

role of water vapor in the Earth’s climate, there is still lack in reliable WVC data. The results of 

climatic WVC studies are sometimes inconsistent. E.g. in [11] the positive WVC trends are 

found from GPS, radiosonde, and PM data both over land and over oceans, with larger change 

rates over oceans. In contrast the WVC trends obtained in [12] from the  global COSMIC RO 

and radiosonde observations are positive only over land, while over ocean they are negative. 

Thus, the reliability of existing WVC data for the Arctic region needs to be further carefully 

investigated due to various inherent limitations. 

Here we present a new method for WVC retrieval from the measurements of the AMSR-E 

and AMSR2 instruments with the similar sets of channels and characteristics. The methodology 



used to estimate WVC is the same as in the algorithms, developed in [18], [32], [44] for the 

AMSR-E, SSM/I and AMSR2 data, and applied for the measurements over open ocean The 

methodology includes: 1) numerical simulation of the AMSR2 measured brightness temperatures 

(TBs) for a large number of surface and atmospheric parameters varying within  the range of their 

natural variability, using physical TB model, and 2) inversion of TBs into WVC by applying  

Neural Networks (NNs), trained with an ensemble of modeled TBs. The new method  is based on 

the numerical simulation of the AMSR measured TBs both over sea ice (SI) and open water 

(OW), thus providing WVC estimates for the most part of the Arctic region. Validation of the 

algorithm is done with the ERA-Interim reanalysis and radiosonde data for the whole range of 

the WVC variability in the Arctic region. We also compared the results of the algorithm 

application to the AMSR-E data with the two publically available satellite-based data sets of the 

WVC in the Arctic. The first one is based on the application of the advanced algorithm to the 

AMSU-B data [41]. The second presents a MODIS WVC product, used in [3] to derive the water 

vapor trends in the Arctic atmosphere. We validated these products with the Era-Interim WVC 

data to compare the accuracies of WVC from these datasets with the accuracy of our AMSR-

based retrievals. In addition verification of the Era-Interim WVC in the Arctic was done with the 

r/s ground-truth data to justify our conclusions.  

 

II. INSTUMENT AND DATA DESCRIPTION 

 

The AMSR – Earth Observing System sensor (AMSR-E) – is the first of well calibrated Japan 

AMSR instruments launched on 4 May 2002 onboard the Aqua satellite and operated until 4 

October 2011. It was succeeded by the AMSR2 launched on 18 May 2012 onboard the GCOM-

W1 satellite. Both instruments provide global measurements of the brightness temperatures (TBs) 

of vertically (V) and horizontally (H) polarized microwave radiation at the frequencies 6.9, 10.7, 

18.7, 23.8, 36.5, 89.0 GHz with the equator crossing of descending and ascending orbits at 01:30 



and 13:30 local time [45]. The AMSR2 basic characteristics are the same as those of its 

predecessor but with several enhancements, including additional TB channels at 7.3 GHz (V and 

H). The main characteristics of the AMSR-E and AMSR2 instruments are presented in Table I. 

The AMSR-E and AMSR2 data of different processing levels are freely distributed by the 

GCOM-W1 Data Providing service of the Japan Aerospace Exploration Agency (JAXA) through 

the G-Portal (https://gportal.jaxa.jp). In our study we use TB data from the Level 1R (L1R) and 

Level 3 (L3) products. In the L1R product, that was made available comparatively recently, the 

calibrated TB values are resampled to a common resolution that corresponds to the footprint 

center and scan number of the measurements at 89.0 GHz to account for different channel 

resolution. The L3 product provides the daily and monthly averaged geophysical parameters and 

TBs, calculated from the L1R product for the two grid resolutions of 0.1° and 0.25° separately for 

ascending and descending orbit paths. 

The L1R product is used for matching with the r/s data to enable precise collocation in time, 

while the L3 product is appropriate for comparison with the daily averaged WVC products. 

The following data sets are used additionally in this study: 

- The Era-Interim reanalysis data on air temperature, humidity, pressure, liquid water content 

profiles,  sea water temperature, sea ice temperature and sea ice concentration for 2°2° grid are 

used for the AMSR TB model calculations. 

- The r/s WVC measurements are used for validation of the WVC retrievals as well as for 

evaluation of the Era-Interim reanalysis data.  We use the r/s profiles for three-years period from 

the four Russian Arctic coastal stations: 20744 Malye Karmakuly (72.36N, 52.7E), 20674 Ostrov 

Dikson (73.5N, 80.40E), 21432 Ostrov Kotelnyj (76.0N, 137.86E) and 20292 Gmo Im.E.K. 

Fedorova (77.71N, 104.3E). The r/s data, obtained by Russian RF-95 sondes, were downloaded 

from the University of Wyoming archive (http://weather.uwyo.edu/ upperair/sounding.html). 

These radiosondes have an accuracy of 7 % for relative humidity measurements. The data were 

http://weather.uwyo.edu/%20upperair/sounding.html


converted to absolute humidity with the new approximation formula for vapor pressure proposed 

in [46]. 

- The WVC Era-Interim reanalysis surface level daily data were downloaded from the 

ECMWF (https://apps.ecmwf.int/datasets/data/interim-full-daily) for the Arctic region at the grid 

of 0.75°  0.75°. After evaluation they were used for the algorithm validation and as a 

benchmark data set to estimate the accuracy of other WVC satellite products. 

- In the validation process we also exploit the Level 3 sea ice concentration (SIC) daily 

product of University of Bremen (https://seaice.uni-bremen.de) to determine the surface type 

(sea ice or open water). The SIC in this product is retrieved using the ARTIST Sea Ice algorithm 

(ASI) from the AMSR2 measurements at 89 GHz [47].  

- The algorithm performance is also analyzed against the two satellite products: 

- Daily WVC product, derived from the AMSU-B measured radiances [41]. The dataset of 

geo-referenced WVC data for the 4 months of 2008 – March, June, September and December – 

is available at https://doi.org/10.1594/PANGAEA.888100.  

- Daily WVC product, derived from the Terra MODIS Near IR and IR channel measurements 

(https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/ MOD08_D3/2008). 

 

III. ALGORITHM DEVELOPMENT 

 

In general the algorithm development repeats the scheme, described in details in [18]. 

Numerical simulation of the brightness temperatures (TBs) at the AMSR frequencies, 

polarizations and incidence angle for the full range of atmospheric, oceanic and sea ice 

parameters allows obtaining a dataset of TBs and corresponding WVC values. The radiation 

transfer model is restricted by non-precipitating conditions. This restriction implies a simplified 

form of the Radiation Transfer Equation (RTE) in absorption-emission approximation and 

https://seaice.uni-bremen.de/
https://doi.org/10.1594/PANGAEA.888100
https://ladsweb.modaps.eosdis.nasa.gov/archive/


neglecting microwave scattering on large cloud/rain drops and ice particles with a size r > /2. 

For all the AMSR frequencies except 89 GHz such approximation is valid for clear and cloudy 

atmosphere [48]. At 89 GHz channels (wave length  ~ 3mm ) cloud liquid and ice water 

particles may produce non-negligible scattering effect. The problem in TB modeling under any 

conditions, including radiation scattering, lies in the large influence and variability of water 

particle parameters (e.g. distribution of sizes and forms) on RTE and the absence of data to 

account for this influence.  

In the absence of scattering the brightness temperature TB
H,V(,) of the sea ice – ocean – 

atmosphere system at frequency , incidence angle  and polarization P (vertical-V or horizontal-

H) can be written as: 
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where  is an atmospheric optical thickness, h – a vertical coordinate, T(h) – atmospheric 

temperature, ,a aT T   are atmospheric upwelling and downwelling radiation at frequency  

correspondingly. The atmospheric constituents of the radiation are the functions of molecular 

oxygen (o), and water vapor (wv) and liquid water (lw) absorption coefficients :  = o + wv 

+ lw. Their models, as in [18], [32], [44], [49], are taken from [50] for o and lw, and from [51] 

for wv. Effective surface radiation ,

_

H V

s effT is defined by the parameters of the underlying surface. 

Since we consider the radiation of the sea ice – open ocean water – atmosphere system, it can be 

written as: 



, , ,
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where Cn is a partial concentration of the sea ice of type n, 
,H V

icen  - its emission coefficient 

on H and V polarization, icenT  - its surface temperature, (1 )n

n

C  - open water concentration, 

,H V

w  - open sea water emission coefficient, wT  - sea surface temperature. Effective reflection 

coefficient 
,H V

effr  in (1) can be written as: 

, , ,1 ( (1 ) )H V H V H V
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The open water microwave emission 
,H V

w  consists of two parts – calm salt water radiation 

and wind-induced radiation [52]. The calm sea emission model is taken from [53] whereas the 

wind induced signal is modeled differently for different channels. For the lower frequency 

channels (in K and Ka bands) we follow [52] model, for the 89 GHz channels we use our recent 

findings [49]. 

The sea ice emission coefficient is a function of many sea ice parameters. The most 

significant factor governing sea ice microwave emission is the sea ice type. But such parameters 

as snow presence and its properties, ice formation history and its current state also influence 

,H V

icen . In this study we use two sea ice types with distinct properties – first year ice (FY) and 

multi-year ice (MY). The corresponding emission coefficients 
,H V

FY  and 
,H V

MY  are set 

randomly within the ranges of variability taken from experimental and modeling studies [54], 

[55]: 
V

FY  ~ 0.93 – 0.91; 
H

FY ~ 0.85 – 0.9; 
V

MY  ~ 0.93 – 0.55; 
H

MY ~ 0.83 – 0.51. 

Calculations of TB
H,V are performed for all the AMSR frequencies at which microwave 

radiation is sensitive to WVC, i.e. 18.7, 23.8, 36.5 and 89 GHz. Air temperature, humidity, 

pressure and liquid water content profile data as well as Tw and Tice data from the Era-Interim 

reanalysis are used for calculations. The full range of parameter variability and 

representativeness of the final match-up dataset of TB
H,V and WVC are ensured by the usage of 



data for the whole year 2015 for latitudes higher than 65 degree with a grid of 2°2°. Era-

Interim data on sea ice concentration C are used to calculate surface emission. Partial 

concentrations of MY or FY sea ice type, CMY and CFY, are set up randomly for C > 0 so that 

CMY + CFY = C. Since the reanalyses tend to underestimate high values of sea surface wind 

speed [56], it is set randomly with uniform distribution within the range of 0 - 35 m/s for C < 1. 

Then we added a normally distributed radiometric noise with 0.5 K equivalent temperature to 

the simulated TB values. The WVC values are derived from the Era-Interim data by the 

integration of  humidity profiles. The resulting matchup dataset consisted of 375 231 sets of eight 

TBs at 18.7, 23.8, 36.5 and 89.0 GHz on horizontal (H) and vertical (V) polarizations and the 

corresponding WVC value. 

Then we applied an NN technique to establish the relationship between the AMSR TBs 

simulated measurements and the WVC values. An NN is able to approximate any continuous or 

nearly continuous dependence given a representative data set for NN training [57]. NN functions 

of Multilayer Perceptron (MLP) type have demonstrated their efficiency to solve remote sensing 

inverse problems [58] including WVC retrieval from satellite PM data [38], [59]. Performance of 

an NN-based algorithm depends primarily on the choice of a representative data set for NN 

training and an optimal configuration of the NN [60]. 

To invert simulated TB values to WVC a standardNN of MLP type with feedforward 

backpropagation of errors is used. This task belongs to the simplest class of NN approximation. 

In [61] it is shown that a single layer feedforward NN with a sigmoid transfer function can 

perform any mapping given sufficient number of hidden neurons. 

Since the ensemble of TBs and WVC is generated from the whole year of the Era-Interim data 

to account for seasonal variations we suppose that it represents the whole range of the parameter 

variability in the Arctic. Although contribution of the inter-annual parameter variability may  

increase this range, we believe that it is not reasonable to further enlarge the dataset.  



The whole matchup dataset was randomly divided into two subsets consisting of 187287 and 

187944 sets of the TBs and WVC values to use them for NN training and testing respectively. 

Utilizing this comparatively large amount of data ensures representing the majority of possible 

combination of atmospheric and oceanic parameters required for NN training and for reliable 

estimation of NN performance from its testing [62].  

A neural network consists of a number of interconnected nodes, and an MLP generally 

consists of the three types of layers. The first layer of input nodes and the third layer of output 

nodes are represented in our case by the TBs and WVC respectively. The second layer is a hidden 

layer that transfers the signals modified with a non-linear sigmoid function from the input layer 

to the output layer. An increase in the number of hidden nodes enables an NN to learn more 

complex problems, but the capacity for generalization is reduced [57]. There are still no rules for 

the choice of NN complexity for various remote sensing problems. Practically an optimal NN 

configuration is searched from the numerous experiments of training and testing different NN 

models. 

Since we consider a complicated underlying surface – atmosphere system, including sea ice 

and sea water surfaces, we tried various sets of NNs inputs. Involving the measurements at lower 

frequency channels (6.9 and 10.65 GHz) resulted in increase of the least root mean square 

difference , although they were supposed to be helpful for discrimination of sea ice and ocean 

surfaces due to their insensitivity to water vapor. The best theoretical results in terms of , 

calculated for the testing data set, are achieved when we use as input data the TBs measured at 

18.7, 23.8, 36.5 and 89 GHz channels – altogether 8 inputs.  

A hyperbolic tangent is used as a sigmoid function applied to the TBs, and the formula to 

calculate WVC with NN algorithm  is: 

8
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The optimal number of nodes (neurons) in the hidden layer Noptimal is determined from a series 

of experiments of NN training and testing. The process of training in the feedforward 

backpropagation NN consists of initialization of node weights, calculation of the output and 

comparison of the calculated output with the corresponding match-up parameter. The total root 

mean square error is then back-propagated through the network and the weights are altered so 

that to ensure the error decreases during the following processing of inputs. In our study we used 

a modified Levenberg-Marquardt method to solve a nonlinear least squares problem:  

2

1

( ) min
M

NN

k k

k

WVC WVC


  , (8) 

where M is the number of training data.  

The process of an optimal NN development is shown in Fig. 1. At each step L the training is 

fulfilled a dozen times with different initial weights to avoid local minimum [57]. While the 

training error train is gradually reduced with an increase of the hidden node number N, a 

decrease of the testing error test slows down followed by its rise for N > 7. Thus the least test of 

1.2 kg/m2 for WVC retrieval over the Arctic SI and OW surfaces corresponds to the Noptimal= 7 

with fully connected input and hidden nodes. (Fig. 2). The NN weights are given in Table II. 

We analyzed the algorithm sensitivity to the eight input TBs to check its robustness both to 

systematical biases and to random noise in channel measurements. As expected, the algorithm 

proved to be most sensitive to the vertically polarized measurements at 23.8 GHz (TB23V) near 

the water vapor resonant absorption line center at 22.234 GHz. Adding the systematical bias of 

2 K [45] led to test increase of ~ 50%. The influence of the random noise with the noise 

equivalent temperature (NET) of 2K at this channel is twice weaker: test increased by 25%. 

Therefore errors in TB23V channel measurements lead to 1 kg/m2 on each 1 K of the 

systematical bias and +0.5 kg/m2 on each 1 K of NET. The other seven channels had much lower 

weighting factors in the algorithm with the errors from bias and random noise not exceeding 

15%. Surprisingly the variations of the TBs at 89 GHz, sensitive to WVC, have the least effect on 



the performance of the algorithm. This result may be considered as positive since the higher 

frequency channels have the largest NET. Thus adding the systematical biases and the random 

noise to the algorithm inputs results in remarkable bias in WVC retrievals only for the TB23V 

channel. 

Though the error (test) of 1.2 kg/m2 seems to be low as compared with published retrieval 

errors for alternative methods and alternative instruments [19], [41], it may be far from actual 

one. The reasons are related to possible model inconsistencies and calibration issues as described 

in [63]. This error characterizes only the NN capability to reproduce well the dependency of 

WVC on TBs, represented by model data. Therefore we analyzed the algorithm performance after 

its application to satellite measurements by comparison of WVC estimates with ground-truth 

data. This analysis is described in the following sections IV and V.  

 

IV. ALGORITHM VALIDATION 

 

A.  Validation with radiosonde data 

 

The NNs algorithm, described in Section III, is applied to the AMSR2 Level 1R TB 

measurements at 18.7, 23.8, 36.5 and 89 GHz on vertical and horizontal polarization after 

accounting for model/calibration inconsistencies by adding a constant bias correction to TB 

values, substantiated in [63]. Though these biases had been found for the AMSR-E instrument, 

they can be applied to the AMSR2 data as well because JAXA provides consistent AMSR data 

record based on cross calibration analysis that accounts for the differences in sensor properties. 

The r/s WVC measurements from the Russian Arctic coastal radiosonde stations over the 

period of 2014 – 2017 are used to construct a database of matched up AMSR2 and r/s 

measurements. Although the r/s stations measure WVC twice a day we used only the 

measurements at 0:00 UTC for temporal collocation within 1 hour. To avoid land contamination 



on the results of the algorithm application we took the AMSR2 measurements over the sea 

points in the vicinity of the stations. The distance between the station and selected point does not 

exceed 60 km, and is not less than 48 km (station 20674 on Fig. 3).  The selected stations meet 

the following criteria to be chosen as a source of WVC ground-truth data: their elevation is not 

too high for inconsistencies; they provide measurements in the whole range of the Arctic WVC 

variability; the seas near the stations are covered by the sea ice in winter and spring seasons, thus 

providing WVC data both over the open water and over the sea ice We selected the r/s profiles 

with humidity measurements available at least up to 10 mB.  

After initial quality control (screening physically not valid profiles of humidity) every WVC 

value derived from the r/s profile is matched-up with the AMSR2 measurements over the 

selected points near the station. Locations of these points and stations are presented in Fig. 3 

along with an example of WVC field on March 11, 2014, retrieved with the developed 

algorithm. The selected AMSR2 measurement points and the r/s station positions are marked 

with green and red circles 'respectively. The WVC field, presented in the figure, are retrieved 

from the AMSR2 descending path 183D that covers all four stations few minutes after midnight,  

and is used for comparison with the r/s measurements taken at 0:00 UTC.  

The WVC distribution derived from the 1852 selected r/s profiles covers the full range of the 

WVC variability (Fig. 4a). The largest WVC values are observed in summer months over OW 

surfaces, defined as the areas with SIC < 10%. Most of the r/s measurements over SI (SIC > 

90%) do not exceed 10 kg/m2 with a maximum number of samples at 3-4 kg/m2. 

The scatter plot of WVC, retrieved from the AMSR2 data with the new algorithm 

(WVCAMSR2), versus WVC, measured by radiosondes (WVCr/s), is presented in Fig. 5. The 

correlation coefficient R = 0.96, the slope is 0.9, the intercept is 0.6 kg/m2.The total root mean 

square error of 1.5 kg/m2 is calculated as: 
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where i is the number of a match-up in the dataset. The highest difference between 

WVCAMSR2 and WVCr/s (up to 5 kg/m2) is observed over open water providing the main 

contribution to the error. Considering the WVC only over SI reduces the AMSR2,r/s to 1 kg/m2. 

The relative error rel , defined as AMSR2,r/s divided by the mean WVC, is 20% over OW and 

25% over SI. Overall, the algorithm provides reasonable estimates both over SI and OW 

surfaces, although slight underestimation of the WVC values higher than 25 kg/m2 can be noted 

from Fig. 5. The largest deviations of the WVCAMSR2 from the WVCr/s occur for the cases with 

time difference exceeding 40 minutes that, obviously, can be explained by the fast changes in the 

atmosphere during this time. 

The amount of r/s data we use for validation is not sufficient to draw solid conclusion about 

the algorithm accuracy under various Arctic conditions. Reanalysis data present a consistent and 

numerous dataset that may serve as a source of ground-truth data. Therefore we have validated 

the algorithm also with the European Centre for Medium‐Range Weather Forecasts (ECMWF) 

Interim Reanalysis (Era-Interim) data on WVC. To ensure that the WVC from the Era-Interim 

Reanalysis can be used as ground-truth data we first investigate its accuracy in the Arctic region. 

 

B.  Validation of Era-Interim reanalysis WVC with radiosonde data 

 

Reanalysis data present consistent global data sets with hundreds of available parameters. 

Reanalysis process tremendous number of observation data, assimilating them into a consistent 

database that allows studying various processes. Though reanalysis data sets are based both on 

in-situ data and models, they are often considered as observational data sets. In contrast, some 

studies discuss the caution needed when replacing observation data by reanalysis data [64]. It is 

generally recognized that the accuracy of reanalysis data on geophysical parameters needs to be 

estimated before exploiting them for scientific studies [65]. Accuracy of data is typically 



estimated with some ground-truth data [66]. To some extent the reanalysis data are ground-truth 

themselves, but obviously this is not the case for remote Arctic areas.  

The Era-Interim reanalysis is produced at a horizontal spatial resolution of about 79 km. It 

incorporates an improved representation of the hydrological cycle and 4D-Var assimilation 

scheme of WVC satellite retrievals. The largest amount of data comes from polar-orbiting and 

geostationary satellite observations, which are mostly assimilated as brightness temperatures. A 

part of assimilated data are the ground-truth WVC measured from radiosondes, GPS, ships, 

weather stations etc. The accuracy of the WVC Era-Interim reanalysis was regionally estimated 

with ground-based measurements in many studies. This data set is confirmed to be one of the 

most homogeneous and consistent among the modern reanalysis. In [67] the authors compared 

the Era-Interim WVC with WVC from the r/s, radio occultation and GPS measurements and 

found high consistency and no significant biases on a global scale. Despite some shortcomings 

in the near‐surface variables, this reanalysis is the best of available  for the Arctic region [68] 

To evaluate an accuracy of the Era-Interim data on WVC in the Arctic region we use the same 

r/s stations for the period of 2014 – 2017 and both ‘times of observation: 0:00 UTC and 12:00 

UTC. 

We found almost no systematical bias between WVCEra-I and WVCr/s using 8339 collocated 

estimates. The scatter plot of the WVCEra-I versus WVCr/ and their monthly means along with the 

root mean square error ERA-I,r/s are presented in Fig.6. The ERA-I,r/s is 1.6 kg/m2 for the whole 

data set, that corresponds to rel ~ 20%, and slightly lower in winter  (~ 0.7 – 1 kg/m2) than in 

summer (2 – 2.5  kg/m2). 97% of WVCEra-I data do not scatter more than 2 , /Era I r s  , and 85% 

of data fall within  , /Era I r s  . These characteristics confirm that accuracy of the WVC Era-

Interim reanalysis in the Arctic region is sufficient for using this data set as a source of vast 

benchmark validation WVC data. Apparently the reanalysis WVC data are not independent  

from the  r/s measurements, assimilated during reanalysis process. However the atmospheric 

models with their biases, the errors, induced by the assimilation schemes and the number of 



observations varying in space and time affect the reanalysis quality [2] thereby justifying 

estimation of their accuracies.  

 

C.  Validation with Era-Interim data 

 

Validation of the algorithm with the Era-Interim WVC data is performed for the period of one 

year. We applied the algorithm both to the AMSR2 and to the AMSR-E data. Comparison of the 

AMSR-E (WVCAMSR-E) and AMSR2 (WVCAMSR2) retrieved WVC with WVCEra-I was done for 

daily averaged data for the period of 2008 and 2015 respectively. The year of 2008 was selected 

because the alternative satellite product, based on the AMSU-B satellite data [41], is available 

for that period allowing comparing the accuracy of our WVC estimates with that products, 

presented in the next section. 

The algorithm is applied to the AMSR-E and AMSR2 daily averaged Level 3 TB data and the 

results are gridded on the Era-Interim grid of 0.75°0.75°. The SIC data of the University of 

Bremen, also gridded on the Era-Interim grid, are used to identify the surface type.  

The Era-Interim reanalysis provided much larger amount of WVC validation data than r/s 

measurements. For example for the period of the year 2015 we have 2 380 351 valid WVC 

values over the whole Arctic defined as the ocean area north of 65° (SI and OW surfaces) 

against 1852 r/s values over 4 stations for ~ 4 years. Fig. 4(b) shows WVC distribution over SI 

and OW surfaces according to the Era-Interim reanalysis data for the period of 2015. In 

particular, the large WVC values of more than 10 kg/m2 over SI are better represented in the Era-

Interim data comprising 17% of the dataset, while only 3% of such samples are available in the 

r/s data. We analyzed the algorithm performance for the total matched-up dataset as well as for 

the monthly means. To assess the significance of the WVC retrievals we compared the root 

mean square error 2,AMSR Era I   estimated as in (9) with the WVC standard deviation natural , 

that is the characteristic of the range of WVC natural variability, calculated as 
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where N is the number of WVC values within the whole year and monthly datasets. Any 

algorithm provides valuable knowledge about a geophysical parameter only if the natural 

variability is larger than the retrieval error: in the equation natural = k 2,AMSR Era I  , k > 1. For 

the AMSR-2 retrievals we found that for the whole Arctic the monthly k values range between 

2.1 and 3.5, being the lowest in July and August when high WVC values are observed. For the 

whole match up data set the 2,AMSR Era I   is 1.07 kg/m2 corresponding to a relative error rel = 

2,AMSR Era I  /<WVCEra-I> ~ 15%. The correlation coefficient R is 0.98 with insignificant 

difference between the mean WVC values of -0.07 kg/m2.. 

The scatter plots of the AMSR2 and AMSR-E retrieved WVC versus Era-Interim WVC as 

well as corresponding statistics separately for SI and OW surfaces are presented in Fig. 7 and 8, 

and in Table III. The results of the algorithm application to the AMSR2 and AMSR-E data are 

quite similar except slightly enhanced errors for the WVCAMSR-E as compared to WVCAMSR2. 

This is likely caused by the differences in the atmospheric and oceanic conditions in 2008 and 

2015. 

Fig. 9 shows annual distribution of WVC and retrieval errors over SI and OW surfaces along 

with error bars illustrating the range of WVC variability. In terms of the absolute retrieval error 

there is no significant difference in the algorithm performance over SI and OW, except in 

summer months, when they are higher by ~ 0.3 – 0.5 kg/m2 over SI. But the natural variability of 

WVC over the sea ice is lower, so that k =1.5 – 2.5 throughout a year, whereas over OW k = 4-5, 

ensuring more valued information about WVC The corresponding comparison for the AMSR-E 

WVC retrievals is presented in the next section along with the comparison with the other WVC 

products. 



We also checked the consistency of the new algorithm with that developed previously for 

open water areas [32] (ZCOW). One could expect that the ZCOW algorithm should have higher 

accuracy than the newly developed as it does not use measurements at the 89 GHz channel. 

Nevertheless, as compared with the Era-Interim WVC data, the ZCOW does not exhibit any 

noticeable advantages either in terms of the error or in terms of bias and correlation throughout 

the whole year (Table III). The only small advantage of ZCOW is related to lower number of the 

WVC estimates that differ from the ERA-Interim data by more than 2,AMSR Era I   i.e. when 

|WVCAMSR2 – WVCEra-I| > 2,AMSR Era I  . The percentage of such data for the new algorithm is 

23%, whereas for ZCOW it is 21%. The difference of 2% we attribute to weather events, 

associated with high liquid or ice water content in the atmosphere, possible scattering of 

microwave radiation at 89 GHz, not accounted by physical modeling and thus deteriorating the 

new algorithm performance. 

 

V. COMPARISON WITH OTHER SATELLITE WVC PRODUCTS IN THE ARCTIC 

 

The main advantage of the newly developed algorithm is its ability to retrieve WVC not only 

over OW but also over SI. To evaluate the benefits of this algorithm we validated the MODIS-

based and AMSU-B-based satellite products on WVC over the Arctic SI and OW surfaces 

against the data from the Era-Interim reanalysis in a similar way as for the AMSR retrievals in 

section IV. For analysis we use the period of the year 2008, for which all these datasets are 

available.  

The daily WVC product derived from the AMSU-B measured radiances (WVCAMSU-B) 

provides the WVC estimates valid over SI and OW within the range of 0 - 15 kg/m2 [41]. We 

used the latest AMSU-B product generated with the new version of the algorithm that was found 

to be the most accurate. The WVC derived from the Terra MODIS measurements (WVCMODIS) 

is a daily product though containing limited amount of data due to significant cloud coverage on 



the MODIS scenes. Both the WVC products are gridded on the Era-Interim reanalysis grid for 

pixel to pixel comparison as well as the WVC retrievals from the AMSR-E data. 

Also the same SIC product provided by the University of Bremen [47] is used to distinguish 

WVC data over SI and OW surfaces.  

 

A. Comparison with MODIS WVC product 

 

The results of the comparison of the MODIS WVC and the AMSR-E retrievals with the Era-

Interim data over the Arctic region are presented in Figs. 10 and 11, and in Table IV. The 

MODIS WVC data are much more scattered than those retrieved from AMSR-E measurements 

both over SI and over OW surfaces as illustrated on the scatter plots in Figs. 8 and 10 and 

indicated from the comparison of the root mean square errors and correlation coefficients 

(Tables III and IV). In addition, the bias of -1.1 kg/m2 as well as the scatter plots in Fig. 10 

reveal overall underestimation of WVC in the MODIS product, that can be particularly 

attributed to excluding the scenes with cloud cover.  

The annual behavior of the monthly mean WVC values (<WVCMODIS> and <WVCEra-I>) and 

the root mean square errors ,MODIS Era I   and ,AMSR E Era I    are shown in Fig.11. The largest 

underestimation of the WVCMODIS as compared to the WVCEra-I is observed in summer, 

especially over SI surface where the bias exceeds 3 kg/m2, and the errors are higher than the 

natural variability of WVC. In contrast, ,AMSR E Era I   is as low as ~ 1.2 – 1.3 kg/m2 and no 

systematical bias is observed for WVCAMSR-E during the whole year. In fact WVCMODIS can be 

considered as a reliable WVC product only in winter, although slight underestimation over SI 

and overestimation over OW are still observed even during winter months. 

 

B. Comparison with AMSU-B WVC product 

 



The four-month AMSU-B product (March, June, September and October) available in the 

product is used for the comparison with the Era-Interim WVC data. The results, presented in 

Table IV and Figs. 12 and 13, show that despite a small overall bias, the large root mean square 

errors and low correlation are observed, especially, in summer months (June and September). 

For example, in September ,AMSU B Era I   = 4.3 kg/m2 and R = 0.15 .  

The scatter plots in Fig 12 show that for the Era-Interim WVC higher than  7 kg/m2 the 

AMSU-B estimates are significantly deviate from the 1:1 line: over OW the WVC is 

underestimated, while over SI it is overestimated for the WVCEra-I within the range of 7-12 

kg/m2 and underestimated for the WVCEra-I higher than 15 kg/m2. Although excluding WVCEra-I 

exceeding 15 kg/m2 results in notable improvement of the AMSU-B product accuracy over OW 

(by ~30%), the observed underestimation is still remarkable. Besides, in this case, a significant 

portion of the Arctic region remains uncovered by WVC retrievals. The largest discrepancies in 

the monthly averaged WVC values (see Fig. 13) are found for June and September: the 

WVCAMSU-B estimates are overestimated over SI and underestimated over OW in contrast with a 

good agreement between the AMSR-E retrievals and the Era-Interim data. The lower values of 

the ,AMSR E Era I   , especially for June and September are also among the advantages of the new 

algorithm.  

Figs. 14 and 15 illustrate spatial distribution of WVC from the ERA-Interim reanalysis and its 

difference from the satellite WVC products for March 13, 2008 and June 3, 2008 respectively. 

The fields of the WVC differences illustrate general features of the products typical for winter 

and summer. 1) WVCMODIS is mostly reliable in winter but large areas over OW are not covered 

by data due to cloud cover. In summer this product has large errors both over SI and over OW; 

2) WVCAMSU-B in winter is accurate over SI, but significantly underestimates WVCEra-I over OW  

areas with comparatively high WVC. In summer this underestimation is more dramatic and can 

exceed for some areas the average value of ,AMSU B Era I    in several times. The overestimation 

over SI in summer is also evident almost for the whole Arctic area. 3) WVCAMSR-E is highly 



accurate in winter both over SI and over OW. In summer deviations from WVCEra-I increase but 

remain lower than the deviations of the alternative products. 

 

VI. CONCLUSION 

 

In attempts to fill the gap in the Arctic WVC data a new algorithm for WVC retrieval from the 

AMSR instruments (AMSR-E and AMSR2) is developed. The algorithm presents an 

advancement of the previous algorithms developed in [18], [32], applicable over open oceans 

only. The main advantage of the new algorithm consists in the expansion of the applicability 

area to sea ice surfaces, thus covering the most of the Arctic region. The algorithm is based on 

the results of the numerical simulation of the AMSR measured brightness temperatures over sea 

ice and open water areas. The inversion method is based on a Neural Networks approach. 

Extensive validation of the algorithm was done using as benchmark data sets  the ERA-Interim 

reanalysis and radiosonde measurements for the whole range of WVC variability in the Arctic 

region. The validation of the algorithm applied to the AMSR2 data using the r/s measurements 

from the four Arctic coastal stations during 2014 – 2017 proved the high accuracy of the WVC 

retrievals both over SI and OW with the overall root mean square error of 1.5 kg/m2. Before 

using the ERA-Interim reanalysis as a validation dataset, it was also compared with the same r/s 

data. This comparison revealed root mean square error  of 1.6 kg/m2 and no systematical bias. It 

made possible to validate the algorithm exploiting the Era-Interim WVC data over the entire 

Arctic region for a whole year both for the AMSR2 and for the AMSR-E retrievals. We found 

high correlation of the retrieved WVC (0.96 – 0.99) and the absence of WVC bias both over SI 

and over OW for both instruments. The root mean square errors for SI and OW surfaces are 

close and vary within the range of 0.9 – 1.2 kg/m2, but the relative error is almost 3 times higher 

over SI. We also checked the performance of the new algorithm in terms of consistency with that 

developed previously and applicable only over OW. We did not find any substantial difference 



between the results. So we may conclude that the new algorithm does not deteriorate WVC 

retrievals over OW but offers the possibility to estimate WVC over SI. As expected variability 

of WVC over SI is low as compared to that over OW. Therefore a significance of the AMSR 

derived retrievals over SI (assessed as a relation of the WVC natural variability to the retrieval 

error) is 3-4 times lower than over OW. Nevertheless, these are the best basin-wide WVC 

estimates among currently available datasets for the Arctic region. The validation of the two 

alternative satellite WVC products, based on the AMSU-B and MODIS measurements against 

the ERA-Interim data for 2008 along with the validation of AMSR-E retrievals showed the 

advantages of the new method. We found that both alternative products showed high errors for 

comparatively wet atmosphere, mostly during summer months, when the retrieval errors started 

to be of the order or exceeded the value of WVC natural variability. Although the errors for the 

MODIS product and the AMSR-E estimates in winter are similar, the underestimation of 

WVCEra-I by the MODIS data is notable throughout the year. Moreover, MODIS WVC retrievals 

are limited to cloud free regions. As for the AMSU-B based WVC, we found a significant 

overestimation and underestimation over SI and OW respectively as compared to WVCEra-I.  

The strength of the conclusions, based on the validation with the Era-Interim reanalysis data 

may be called into question since reanalysis data assimilate in particular, satellite passive 

microwave measurements. But more accurate WVC data over the vast Arctic sea ice areas are 

apparently lacking. The new algorithm provides new measures to study the Arctic atmospheric 

water vapor distribution and variability and may suggest a new stage of satellite passive 

microwave data exploration. 
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Fig. 1. A flow diagram illustrating the process of an optimal NN development. 
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Fig. 2. Optimal Neural Network for WVC retrieval over the Arctic SI and OW surfaces. 

T18H, T18V, T23H, T23V, T36H, T36V, T89H, T89V denote brightness 

temperatures, measured at 18.7, 23.8, 36.5 and 89.0 GHz on horizontal (H) and 

vertical (V) polarizations. 
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Fig. 3. Example of WVC field, retrieved with the developed algorithm from the AMSR2 

Level 1R TB in the area of the Russian coastal r/s stations on March 11, 2014. The 

AMSR2 measurement points are marked with green circles, the station positions are 

marked with red circles. 
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Fig. 4. WVC distribution in the Arctic: (a) from the 4 r/s station measurements during 2014-

2017; (b) from the Era-Interim reanalysis data over the Arctic region for the period of 

2015. Blue and red lines refer to WVC over SI and over OW surfaces respectively. 
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Fig. 5. The scatter plot of WVC, retrieved from the AMSR2 data, versus WVC, measured by 

radiosondes. Color shows the number of WVC data, falling into the bin of WVC = 

0.175 kg/m2. The solid line represents the linear regression and the dashed line indicates 1:1 

function. 
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Fig. 6. (a) The scatter plot of WVCEra-I versus WVCr/s. Color shows the number of WVC data, 

falling into the bin of WVC = 0.175 kg/m2, the black line represents the linear regression; 

(b) Root mean square error , /Era I r s  and monthly means <WVCEra-I> and <WVCr/s>. Error 

bars relate to WVCr/s. 
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Fig. 7. (a) The scatter plot of WVCAMSR2 versus WVCEra-I for the full domain of daily 

averaged data for the period of the year 2015 over SI; (b) the same over OW. Color 

shows the number of WVC data, falling into the bin of WVC = 0.117 kg/m2. The solid 

lines represent the linear regression and the dashed lines indicate 1:1 functions. 
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Fig. 8. (a) The scatter plot of WVCAMSR-E versus WVCEra-I for the full domain of daily 

averaged data for the period of the year 2008 over SI; (b) the same over OW. Color 

shows the number of WVC data, falling into the bin of WVC = 0.117 kg/m2. The solid 

lines represent the linear regression and the dashed lines indicate 1:1 functions. 
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Fig. 9. Monthly averaged WVC derived from the AMSR2 data (<WVCAMSR2>) and Era-

Interim reanalysis (<WVCEra-I>), and the root mean square error 2,AMSR Era I  , for 

monthly datasets of the year 2015: (a) over SI; (b) over OW. Error bars relate to 

WVCEra-I. 
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Fig. 10. (a) The scatter plot of WVCMODIS versus WVCEra-I for the full domain of daily 

averaged data for the period of 2008 over SI; (b) the same over OW. Color shows the 

number of WVC data, falling into the bin of WVC = 0.117 kg/m2. The black lines 

represent the data linear regression. The dashed lines indicate 1:1 functions. 
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Fig. 11. Monthly averaged WVC derived from MODIS product  (<WVCMODIS>),  AMSR-E 

data (<WVCAMSR-E>) and Era-Interim reanalysis (<WVCEra-I>), and the root mean 

square errors ,MODIS Era I   and ,AMSR E Era I    calculated for monthly datasets of the 

year 2018: (a) over SI; (b) over OW. Error bars relate to WVCEra-I. 
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Fig. 12. (a) The scatter plot of WVCAMSU-B versus WVCEra-I for the full domain of daily 

averaged data for the period of 2008 over SI; (b) the same over OW. Color shows the 

number of WVC data, falling into the bin of WVC = 0.117 kg/m2. The solid lines represent 

the data linear regression and the dashed lines indicate 1:1 functions. 
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Fig. 13. Monthly averaged WVC derived from the AMSU-B  product (<WVCAMSU-B>),  

the AMSR-E data (<WVCAMSR-E>) and Era-Interim reanalysis (<WVCEra-I>), and the root 

mean square errors ,AMSU B Era I    and ,AMSR E Era I    for March, June, September and 

December of 2008: (a) over SI; (b) over OW. 
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Fig. 14. WVC saptial distribution from (a)  Era-Interim reanalysis(WVCEra-I); (b) WVCEra-I - 

WVCAMSR-E; (c) WVCEra-I - WVCMODIS; (d) WVCEra-I - WVCAMSU-B on March 13, 

2008. 
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Fig. 15. WVC saptial distribution from (a) the Era-Interim reanalysis (WVCEra-I); (b) 

WVCEra-I - WVCAMSR-E; (c) WVCEra-I - WVCMODIS; (d) WVCEra-I - WVCAMSU-B on 

June 3, 2008. 

 



Tables. 

Table I. Main characteristics of the AMSR-E and AMSR2 instruments. 

 

AMSR-E and AMSR2 Channel Set 

Center 

frequency,GHz 

Band 

width, 

MHz 

Polarization Ground 

resolution, km  

Sampling 

interval, k m 

6.925 

7.3 – AMSR2 only 

350  

 

 

Vertical and 

Horizontal 

 

35  61  

 

 

10 
10.65 100 24  41 

18.7 200 13  22 

23.8 400 15  26 

36.5 1000 7  12 

89.0(A&B) 3000 3  5 5 

 

 

Table II. NN weights for the optimal NN model. TBi =T18H, T18V, T23H, T23V, T36H, T36V, 

T89H, T89V 

n 

w2in w1n b2n 
i 

1 2 3 4 5 6 7 8 

1 -0.015668 -0.025567 0.018162 0.000008 0.007004 0.023214 -0.004581 0.000150 -1.000000 1.000000 

2 -0.000317 0.000471 0.013752 0.039928 -0.025111 -0.031677 0.010623 -0.004112 -1.000000 1.000000 

3 0.000516 0.000774 0.000163 -0.001377 -0.003342 -0.003810 -0.002599 -0.002214 0.007264 0.628167 

4 0.015318 0.011721 -0.037771 -0.023029 0.030968 0.005835 -0.012890 0.015067 -0.463866 0.652968 

5 -0.009629 -0.035304 0.007139 0.050979 -0.025413 -0.007038 0.021316 0.000047 -0.432594 1.000000 

6 0.000577 0.024602 0.005757 -0.026490 -0.006607 -0.017917 -0.004449 0.017089 0.139035 1.000000 

7 0.000013 -0.000002 0.012980 0.003089 0.003489 -0.000075 -0.003979 -0.013136 -0.832870 1.000000 

b1 = 14.053956; w0 = 48.606963; b0 = 45.027934 

 

Table III. The statistical characteristics of the WVC retrieval algorithm, applied to the AMSR2 

and AMSR-E data over SI and OW, estimated with the Era-Interim WVC data for the 

whole year 2015 and 2008 respectively. 

 

 , kg/m2 rel, % R bias, kg/m2 

AMSR2 SI 1.13 20 0.97 -0.10 

OW 0.90 9 0.99 -0.01 

AMSR-E SI 1.19 23 0.96 -0.07 

OW 1.10 11 0.97 -0.05 

ZCOW OW 0.9 9 0.99 0.003 

 



Table IV. The results of the comparison of satellite WVC products with the Era-Interim WVC 

data for the year 2008. 

 

 , kg/m2 rel, % R bias, kg/m2 

MODIS all data 2.4 38 0.91 -1.1 

SI 2.1 41 0.93 -1.2 

OW 3.2 32 0.81 -0.7 

AMSU-B all data 2.7 46 0.80 0.3 

SI 2.0 43 0.93 1.1 

OW 4.0 44 0.78 -2.0 

 

 


