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ABSTRACT

The freshwater content (FWC) of the Arctic Ocean is intimately linked to the stratification—a physical

characteristic of the Arctic Ocean with wide relevance for climate and biology. Here, we explore the rela-

tionship between atmospheric circulation and Arctic FWC across 12 different control-run simulations from

phase 5 of the Coupled Model Intercomparison Project. Using multiple lagged regression, we seek to isolate

the linear response ofArctic FWC to a step change in the strength of theArcticOscillation (AO) as well as the

second and third orthogonal modes of SLP variability over the Arctic domain. There is broad agreement

among models that a step change to a more anticyclonic AO leads to an increase in Arctic FWC, with an

e-folding time scale of 5–10 yr. However, models differ widely in the degree to which a linear response to SLP

variability can explain FWC changes. Although the mean states, time scales, and magnitudes of FWC vari-

ability may be broadly similar, the physical origins of variability are highly inconsistent among models. We

perform a robustness test that incorporates a Monte Carlo approach to determine which response functions

are most likely to represent causal, physical relationships within the models and which are artifacts of re-

gression. Convolution with SLP reanalysis data shows that the four most robust response functions have some

skill at reproducing observed accumulation of FWC during the late 1990s and 2000s, consistent with the idea

that this change was largely wind driven.

1. Introduction

The physical dynamics of the Arctic encompass atmo-

spheric, oceanic, and cryospheric processes; systems that

are interlinked at the surface of the ocean. The Arctic

Ocean is stratified by salinity—it is a so-called b ocean

(Carmack 2007)—and therefore freshwater in the Arctic

represents an important control on these linkages, be-

cause its abundance modulates the connections between

the surface of the ocean and the relatively warmAtlantic

Water below. Changes to the freshwater reservoir, and

therefore the stratification, have implications for sea ice

stability and growth, vertical heat fluxes, mixing of nu-

trients, and the carbon cycle and have broad indirect

implications for climate and biology [for an overview,

see Carmack et al. (2016)]. Any attempt to understand

the future evolution of the Arctic climate system would

benefit from an improved representation of the pro-

cesses governing freshwater variability (Lique et al.

2016). Furthermore, changes to Arctic freshwater con-

tent (FWC) should be closely related to changes in

the supply and export of freshwater, though these links

have proven difficult to pin down in observations
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(e.g., Haine et al. 2015). Enhanced freshwater export to

the North Atlantic has the potential to affect the

Atlantic meridional overturning circulation (AMOC)

by modifying the salinity and stratification in regions

of deep water formation (Jahn and Holland 2013;

Wang et al. 2018) and/or altering the densities along

boundary currents in the subpolar gyre (Pickart and

Spall 2007).

The Arctic Ocean maintains a relatively fresh state

as a result of its position at the northerly node of the

global hydrological cycle (Carmack et al. 2016). Fluxes

of freshwater fromEurasian andNorthAmerican rivers,

flow of fresh Pacific Water through the shallow Bering

Strait, and an imbalance of precipitation and evapo-

ration supply freshwater to the Arctic at a net rate of

approximately 10 000 km3 yr21 (Haine et al. 2015).

The freshwater reservoir of the Arctic Ocean and

Canadian Arctic Archipelago (CAA) comprises both

liquid (;100 000 km3) and solid (;14 000 km3) compo-

nents (Haine et al. 2015), unevenly distributed across

the Arctic basins, shelf regions, and the CAA. Both the

solid and liquid components show a pronounced sea-

sonal cycle, and both the regional distribution of liquid

freshwater and the total liquid Arctic FWC vary

significantly on interannual to decadal time scales

(e.g., Polyakov et al. 2008).

A prerequisite of improving simulated FWC vari-

ability is the ability to assess and evaluate existing sim-

ulations. Indeed, we must go beyond comparing the

mean state and variability of the Arctic FWC reservoir

in climate models and evaluate the physical relation-

ships between drivers and responses. Here, we isolate

what is considered to be an important mechanism in the

natural variability of Arctic FWC across 12 different

model simulations from phase 5 of the Coupled Model

Intercomparison Project (CMIP5): the response of

Arctic FWC to changes in the dominant patterns of

large-scale atmospheric circulation over the Arctic do-

main. These atmospheric circulation patterns are de-

scribed by the leading modes of sea level pressure (SLP)

variability. In section 2 we define the time series we use

and provide background to the relevant climatology in

each model.

It has been understood for some time that winds can

drive the redistribution and export of freshwater, which

resides at the surface of the Arctic Ocean, whether

as liquid or sea ice (Proshutinsky and Johnson 1997;

Proshutinsky et al. 2009). Atmospheric circulation af-

fects the pathways and fluxes of inflowing PacificWaters

(Alkire et al. 2007; Steele et al. 2004) and low-salinity

waters from the Siberian shelves (Newton et al. 2008;

Timmermans et al. 2011) as well as more saline Atlantic

Waters (Morison et al. 2006; Muilwijk et al. 2019). These

connections are mediated by the sea ice cover, and

its decline over recent decades may have contributed to

the increased salinity contrast between the (fresher)

Amerasian basin and the Eurasian basin (Wang et al.

2019). Redistribution of liquid freshwater within the

Arctic is itself important for establishing geostrophic

circulation via the tilting of the halocline; these dy-

namics are perhaps most clear in the Beaufort Gyre,

the largest reservoir of FWC in the Arctic Ocean

(e.g., Manucharyan and Spall 2016).

As the leading mode of extratropical sea level pres-

sure variability in the Northern Hemisphere, the Arctic

Oscillation (AO; Thompson andWallace 1998) captures

the dominant variability in the large-scale wind forc-

ing and therefore represents a natural starting point

in identifying causal relationships between atmospheric

and oceanic/cryospheric variability. Indeed, several

studies have focused on determining the influence of the

AO on patterns of sea ice drift (Rigor et al. 2002; Kwok

2009; Kwok et al. 2013; Armitage et al. 2018) and surface

geostrophic circulation (Morison et al. 2012; Armitage

et al. 2018). There has, however, been substantial diffi-

culty in linking observed Arctic FWC changes to at-

mospheric variability (Rabe et al. 2014). Much of this

difficulty arises from the fact that the ocean responds

slowly to an atmospheric perturbation. Theory and

idealized modeling suggest that FWC in the Arctic

Ocean, or at least in its largest reservoir the Beaufort

Gyre, bears a multiyear to decadal memory of past

atmospheric forcing (Davis et al. 2014; Manucharyan

and Spall 2016; Manucharyan and Isachsen 2019;

Doddridge et al. 2019).

To appropriately capture a relationship where mem-

ory is important, we use linear response theory. Our

method, following the approach of Kostov et al. (2017,

2018) and Johnson et al. (2018), yields impulse re-

sponse functions and their time integrals, step response

functions. In section 3, using the preindustrial control

run of each model, we isolate the linear response of

Arctic FWC to a 1-standard-deviation change in the

strength of the AO, and the second and third orthog-

onal modes of SLP variability. Through convolution of

the derived linear response functions with the original

SLP, we attempt to reconstruct the FWC time series of

each model. To the extent that the derived relation-

ships are physically robust, we are then able to evaluate

both the nature of the FWC–SLP relationship and its

importance in determining overall FWC variability in

each model. This intercomparison is the first objective

of the paper.

The second objective of the paper is to probe the ca-

veats associated with a regression-based technique and

establish a technique for its assessment. In section 3b
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we document a Monte Carlo approach that we employ

to determine levels of statistical significance for our re-

sponse functions. In section 4, we establish an external

test on the robustness of the functions by utilizing the

historical run of each model and applying furtherMonte

Carlo tests. In section 5, after this evaluation, we select

and describe the response functions that are most likely

to represent physical relationships within the models

from which they are derived.

The third and final objective is to evaluate whether the

model-derived relationships selected in section 5 are at

all an accurate reflection of the real-world relationship

betweenArctic FWC and SLP. In section 6, we convolve

the model-derived impulse response functions with re-

analysis SLP data from ERA-20C (Poli et al. 2016) and

ERA-Interim (Berrisford et al. 2011). This yields a

comparable FWC accumulation in the late 1990s–

2000s to that reported by Rabe et al. (2014) and

Polyakov et al. (2013). In this context, our method is a

novel means for evaluating coupled models with freely

evolving atmospheric components; this analysis pro-

vides information that cannot be obtained from his-

torical simulations alone.

2. Models used and time series definitions

We use monthly mean data from 12 different model

contributions to the CMIP5 ensemble (Table 1). For the

principal analysis, we use the preindustrial control runs

of each model because these are long, unforced runs in

which the internal variability is most likely to be char-

acterized by stationary processes.We later introduce the

historical runs of each model as an independent test on

the robustness of the derived relationships. Following

the definitions below, we compute one-dimensional time

series for our analysis: deseasonalized Arctic freshwater

content and principal component time series of SLP

variability north of 708N.

a. Representation of Arctic freshwater

FWC in the Arctic Ocean is commonly defined rela-

tive to a reference salinity, Sref, chosen as the mean sa-

linity of the Arctic: 34.8, such that Sref 5 34.8 (Aagaard

and Carmack 1989):

FWC(t)5

ððð0
z(S5Sref)

S
ref

2 S

S
ref

dV . (1)

This definition also physically corresponds to the salinity

at a depth near the base of theArctic halocline, meaning

that it has real utility in quantifying the expansion and

freshening of this upper fresh layer. Because the inte-

gration extends only as far down as the halocline, changes

below the halocline—for instance, from changingAtlantic

Water inflow—are not considered. In this analysis, we

take the reference salinity as the mean Arctic Ocean

salinity for each model in question (Table 2), in order to

avoid the effects of salinity biases in the models relative

to the real Arctic. In each model simulation, these ref-

erence salinities all lie near the base of the halocline

(not shown).

In constructing our freshwater budget for each model,

we exclude the Canadian Arctic Archipelago, which is

represented very differently between models. As such,

we use the same Arctic Ocean domain as chosen by

Serreze et al. (2006) in their observational synthesis

(Fig. 2). Note that the archipelago is often included in

other Arctic freshwater budgets (e.g., Haine et al.

2015). The model simulations show a range of FWC

mean states (Fig. 1), with a factor-of-2 difference be-

tween the ensemble members with the greatest and

smallest FWCmean states. For reference, Serreze et al.

TABLE 1. Models used and their characteristics. Grid resolutions are displayed as longitude 3 latitude, followed by the number of

vertical depth levels. Sea ice grids match the ocean component, except for the sea ice grid of CanESM2, which matches the atmosphere

component. Full definitions of model names can be found online (https://www.ametsoc.org/PubsAcronymList).

Model Atmosphere grid Ocean grid Sea ice model Reference

ACCESS1.0 1.888 3 1.258 Tripolar; 18 3 18; 50 levels CICE, v4.1 Dix et al. (2013)

ACCESS1.3 1.888 3 1.258 Tripolar; 18 3 18; 50 levels CICE, v4.1 Dix et al. (2013)

CanESM2 2.818 3 2.798 1.418 3 0.948; 40 levels CanSIM1 Chylek et al. (2011)

CCSM4 1.258 3 0.948 Dipolar; 1.118 3 (0.27–0.54)8; North Pole

in Greenland; 60 levels

CICE, v4.0 Gent et al. (2011)

CNRM-CM5 1.48 3 1.48 ORCA-18; tripolar; 42 levels GELATO (v5) Voldoire et al. (2013)

GFDL CM3 2.58 3 28 Tripolar; ;18 3 18; 50 levels; tripolar SISp2 Griffies et al. (2011)

GFDL-ESM2M 2.508 3 2.028 Tripolar; ;18 3 18; 50 levels SISp2 Dunne et al. (2012)

IPSLA-CM5A-LR 3.758 3 1.898 ORCA-28; tripolar; 31 levels LIM2 Dufresne et al. (2013)

IPSLA-CM5A-MR 2.58 3 1.278 ORCA-28; tripolar; 31 levels NEOM-LIM2 Dufresne et al. (2013)

MIROC5 1.418 3 1.48 Shifted poles;;1.48 3 (0.5–1.4)8; 50 levels COCO4.5 Watanabe et al. (2010)

MPI-ESM-LR 1.888 3 1.878 Shifted poles; ;1.58 3 1.58; 40 levels MPIOM Giorgetta et al. (2013)

MPI-ESM-MR 1.888 3 1.878 Shifted poles; ;0.48 3 0.48; 40 levels MPIOM Giorgetta et al. (2013)

1 APRIL 2020 CORN I SH ET AL . 2535

Unauthenticated | Downloaded 10/06/23 12:42 PM UTC

https://www.ametsoc.org/PubsAcronymList


(2006) estimate the pre-2000 climatological mean liq-

uid FWC to be 740006 7400km3, based on hydrographic

observations. Intermodel comparisons of absolute values

of freshwater as commonly defined in the literature

are ambiguous (Schauer and Losch 2019). To provide

parity, we report our linear response functions in

terms of the fractional change in each model’s Arctic

FWC reservoir.

Some of the preindustrial control simulations exhibit

a clear trend in FWC through the run (CanESM2,

CNRM-CM5, and MIROC5). In all cases, we linearly

detrend the FWC time series before performing the

analysis. We group model runs into lengths of 3600,

6000, and 9600 months to standardize our regression

procedure (section 3a). Where we truncate model runs

to fit this grouping scheme, we begin from the first

month in all cases except MIROC5 and MPI-ESM-MR,

which display trends in the early part of the runs that are

inconsistent with the rest of the time series. In these two

simulations we omit the first 1008 months.

TABLE 2. Preindustrial-control-run Arctic FWC characteristics. The standard deviation is taken after deseasonalizing and linearly

detrending the FWC time series. The decorrelation time scale is the e-folding time scale of the autocorrelation function, given to the

nearest year.

Model simulation Sref (mean Arctic salinity) Mean FWC (km3) Std dev (km3) Decorrelation time scale (yr)

ACCESS1.0 34.64 78 000 4100 14

ACCESS1.3 34.71 77 000 3500 21

CanESM2 34.71 109 000 3700 7

CCSM4 34.77 75 000 2500 6

CNRM-CM5 34.40 107 000 2800 19

GFDL CM3 34.65 90 000 2600 6

GFDL-ESM2M 34.73 76 000 2600 9

IPSLA-CM5A-LR 34.63 128 000 3000 9

IPSLA-CM5A-MR 34.68 136 000 3100 12

MIROC5 34.79 64 000 2800 7

MPI-ESM-LR 34.69 80 000 2300 13

MPI-ESM-MR 34.61 82 000 2400 8

FIG. 1. Deseasonalized Arctic FWC time series in 12 CMIP5 preindustrial control runs.

Model simulations are categorized into lengths of 3600, 6000 and 9600 months (see text).

Mean FWC is given beneath the name of each simulation. Themagnitude of variability can be

seen by comparison with y-axis spacing of 10 000 km3. The first value of each time series is set

to this spacing; the lines do not denote the time series mean.
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The mean freshwater distribution (Fig. 2) and hy-

drography (not shown) within the Arctic also varies

between model simulations. Broadly, however, the

models capture the greater depth-integrated freshwa-

ter storage in the deep basins compared with the

shelves, a greater FWC and deeper halocline in the

Amerasian basin than the Eurasian basin, and a saline

and weakly stratified Barents Sea. The models show

some common biases with respect to observations (e.g.,

the Polar Science Center Hydrographic Climatology;

Steele et al. 2001): the Beaufort Gyre is more spatially

diffuse, situated farther from Canada and Alaska, and

FIG. 2. Mean freshwater distribution (m) over theArctic Ocean domain considered in this paper. Themean is taken

over a 50-yr period that is selected randomly from within the preindustrial control runs.
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the central Arctic is overly fresh. These biases are also

clear in the CMIP5 multimodel mean freshwater dis-

tribution (Shu et al. 2018). Additionally, the IPSL

models show an overly fresh Barents Sea (Fig. 2).

Intercomparison of Arctic Ocean hydrography in a

suite of coupled climate models was last undertaken by

Holland et al. (2007), who examined 10 models con-

tributing to the Intergovernmental Panel on Climate

Change Fourth Assessment Report. Ding et al. (2016)

examined the processes governing the seasonal fresh-

water cycle in CMIP5 models, but otherwise the only

intercomparison of Arctic Ocean freshwater and/or

hydrography in models of the same generation of

the CMIP5 models thus far comes from Arctic Ocean

CORE-II studies, which considered forced (noncoupled)

model simulations (Wang et al. 2016; Ilicak et al. 2016).

Shu et al. (2018) assess the projected changes of the

CMIP5 multimodel mean freshwater content in the

twenty-first century.

b. Representation of atmospheric variability

The Arctic Oscillation is a winter-intensified, annular

mode of sea level pressure variability that is linked to the

polar vortex (Thompson and Wallace 1998). The AO

correlates strongly with the North Atlantic Oscillation

(NAO), especially during winter (Deser 2000), but af-

fects climate beyond the Arctic and indeed beyond

the Atlantic sector (Thompson and Wallace 2001).

The positive (negative) mode of the AO involves a

strengthening of cyclonic (anticyclonic) atmospheric

circulation over the Arctic. In this analysis, we restrict

our attention to sea level pressure variability north of

708N and define the AO as its leading empirical or-

thogonal function (EOF). Figure 3 shows the AO as

defined above, using ERA-Interim reanalysis data pro-

vided by the European Centre for Medium-Range

Weather Forecasts (Berrisford et al. 2011). As plot-

ted, the positive phase of this EOF corresponds to the

anticyclonic, negative mode of the Arctic Oscillation.

The first EOF (EOF1) of each model simulation con-

sidered here shows a high degree of spatial correlation

with this definition of the AO (Table 3), and also with

EOF1 from the other models. The first principal

component (PC1) time series for each model also

show similar spectral densities to one another and to

the PC1 time series from ERA-Interim and ERA-20C

data (not shown). The spatial patterns of the second

and third EOFs, by contrast, vary considerably among

models (see also Cai et al. 2018). Furthermore, as the

variance explained by PC1 is substantially higher than

that explained by PC2 and PC3 in all cases (Table 3),

EOF1 must be close to the true underlying leading

mode. In contrast, the variances explained by PC2 and

PC3 are closer together (not shown), raising the pos-

sibility that our estimated EOF2 and EOF3 might be

linear combinations of the true underlying second and

third modes (North et al. 1982). As such, we only

compare the response functions for PC1 in this paper,

though we also calculate the response functions for

PC2 and PC3 as part of the analysis (section 3a).

3. FWC–SLP relationships in CMIP5 preindustrial
control runs

a. Linear response function method

We employ linear response theory (e.g., Hasselmann

et al. 1993) as per Kostov et al. (2017) to determine the

response of theArctic FWC reservoir to a one-standard-

deviation step change in the strength of the negative

(anticyclonic) AO. We also determine the responses of

FWC to one-standard-deviation step changes in the

second and third EOFs of SLP. Although these func-

tions are employed in our reconstructions, we do not

directly compare them for reasons given in section 2b.

Our approach is a statistical alternative to active model

FIG. 3. The negative AO as represented by ERA-Interim

(Berrisford et al. 2011). Calculated as the first EOF of SLP vari-

ability north of 708N, this mode explains 53% of the variance in

ERA-Interim SLP data spanning 1979–2018.
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perturbation experiments (see Marshall et al. 2017)

and permits the investigation and comparison of fully

coupled models.

First, we define our time series of interest. The find-

ings of Johnson et al. (2018) indicate that all of the first

three PCs of SLP are significant in explaining freshwater

variability—in both a coupled model context and most

likely the real Arctic. As a result, we choose to consider

the first three PCs of SLP and by design allow the

combination of these three orthogonal modes to maxi-

mize the Arctic FWC variance explained by SLP. For

each model simulation, we treat the time series of Arctic

FWC as the sum of convolutions of the first three PCs of

atmospheric forcing, PCiwith n5 3, and their respective

unknown impulse response functionsGi, integrated over

time lags t, from any given time t, to tmax years prior

(with dt 5 1 month), plus a residual «(t) that varies in

time. We choose tmax as 20 years:

FWC(t)5�
n

i51

ðtmax

t50

G
i
(t)PC

i
(t2 t) dt1 «(t) . (2)

We solve for the three impulse response functions Gi

simultaneously usingmultiple lagged regression.We can

then attempt to reconstruct the original FWC time series

by convolving the impulse response functions with the

forcing; that is,

FWC(t)recon 5�
n

i51

ðtmax

t50

G
i
(t)PC

i
(t2 t) dt .

The fit between the reconstruction and the original time

series indicates how much FWC variability in the model

can be explained as a linear response to the first three

modes of SLP, over lags of up to 20 years. (See appendix

Fig. A1 for an example in the CCSM4 control run.) The

misfit, on the other hand, gives us the residual term; that

is, «(t) 5 FWC(t) 2 FWC(t)recon. This residual noise

is employed in the uncertainty estimation procedure

[section 3b(2)].

For each model simulation, we attempt to minimize

overfitting by assembling over 1000 different estimates

for the impulse response functions. We do this by

varying (i) the cutoff lag applied to our impulse response

functions, between 20 and 30 years; (ii) the part of the

run that we select for the regression; and (iii) the length

of this part. We group the models by length and adopt

a consistent approach to subsampling the runs for all

models (see Table A1).

The final impulse response function is a mean of all

estimates over time lags up to 20 years (we terminate

impulses with greater cutoff lags at a lag of 20 years in

order that all response functions used are the same

length). We then integrate through time lags to obtain

step response functions, also known as climate response

functions (CRFs; e.g., Marshall et al. 2017; Muilwijk

et al. 2018). We next evaluate the statistical robustness

of these response functions using a Monte Carlo pro-

cedure (section 3b).

This technique follows that of Kostov et al. (2017,

2018) and Johnson et al. (2018) and theHigh-Resolution

Global Environmental Model (HiGEM) contribution to

the multimodel CRF study by Muilwijk et al. (2019). In

this contribution, we develop the method through the

addition of (i) a simultaneous approach to finding the

impulse responses to each PC, (ii) Monte Carlo evalu-

ations of response function error and significance, and

(iii) the application of another run from the same model

as an independent test of robustness.

b. Monte Carlo procedure

1) STATISTICAL SIGNIFICANCE

Regression techniques may produce relationships that

do not reflect a causal mechanism but are simply a

TABLE 3. Preindustrial-control-run AO characteristics.

Model simulation

SLP % variance

explained by EOF1

SLP % variance explained

by first three EOFs

EOF1 spatial correlation (R2) with

ERA-Interim EOF1

ACCESS1.0 63 86 0.96

ACCESS1.3 65 87 0.96

CanESM2 67 87 0.93

CCSM4 73 90 0.87

CNRM-CM5 68 87 0.95

GFDL CM3 70 87 0.90

GFDL-ESM2M 68 89 0.93

IPSLA-CM5A-LR 73 90 0.97

IPSLA-CM5A-MR 70 89 0.96

MIROC5 68 87 0.94

MPI-ESM-LR 69 88 0.96

MPI-ESM-MR 71 89 0.97
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statistical artifact of the attempt to best fit the target

data. This is an issue because it is unknown a priori how

much of the variance the forcing should be able to ex-

plain; the impulse response functions will inevitably fit

variability that is unrelated to the forcing, a problem that

becomes exacerbated as forcings explain progressively

less variance in the target data.

Monte Carlo methods have become a standard tool

for the statistical testing of regression-derived rela-

tionships in the climate sciences (e.g., Lund 1970)

and beyond. Here, we use a Monte Carlo approach

to help establish the statistical significance of the re-

lationships derived by our linear response function

approach.

We repeat our method for finding the response func-

tions and computing reconstructions but exchange the

models’ PC1 for a randomized forcing time series. The

randomized, or surrogate, time series are generated by

phase randomization as described in Schreiber and

Schmitz (2000), and are designed to have the same

spectral properties as the models’ PC1 time series.

Periodicity artifacts are minimized by first making each

time series periodic by appending its reflection in time,

then using only half the length of the resulting surro-

gate time series. We use the same procedure on every

occasion that we generate randomized or surrogate

time series. We perform 1000 such trials, and also re-

peat the procedure for the case where we have three

simultaneous random forcing time series (emulating

our three PCs).

We can then ask the following question for both the case

of PC1 alone and all three PCs combined: Does the FWC

reconstruction for eachmodel (calculated as in section 2a)

explainmore variance than that which could be explained

using random forcing, at the 95% certainty level?

If a response function derived from the original

model SLP forcing explains more FWC variance than

the 95th-percentile value from the trials with random

forcing, it is likely that the response is physical and not

an artifact of the regression method. The true rela-

tionship between a given mode of atmospheric forc-

ing and the FWC response in any given model may

explain a low degree of variance (lower than the sig-

nificance level) in the FWC time series and still be

physical. Note, however, that if a low-variance ex-

plaining relationship exists, its representation in the

impulse response function may be distorted by the at-

tempt to best fit the residual noise.

2) RESPONSE FUNCTION UNCERTAINTY

To establish uncertainty estimates for our linear re-

sponse functions, we again employ a Monte Carlo ap-

proach. We start with the expectation that a given

response function is physical. We find the fraction of the

model simulation’s FWC variance [R2 in Eq. (3)] that is

explained by this response function (as per section 2a)

and determine the spectral density of the residual noise.

We then create an ensemble of 1000 synthetic FWC time

series, which is generated in the following manner.

Figure 4 also illustrates this method.

As shown in Eq. (3), each synthetic time series

contains a mixture of the FWC time series derived

from (i) the convolution of our original response

function G1 with randomized SLP forcing PCrand
1 , the

resulting time series of which has a standard deviation

sG3PC; and (ii) a random time series FWC(t)RandRes

FIG. 4. Flowchart illustrating our Monte Carlo method for calculating the error on the re-

sponse functions. Repeated boxes indicate the presence of 1000 versions of the given time

series. PC1rand and FWCRandRes are generated through randomization of PC1 and FWCres,

respectively. The randomization process is described in section 3b(1). The multiplication sign

indicates convolution [first term on the RHS of Eq. (3)], the plus sign refers to the addition and

rescaling process that completes the RHS of Eq. (3), and the backslash is shorthand for the

multiple lagged regression used to estimate impulse responses.
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that has the same spectral density as the residual noise

«(t) and has a standard deviation sRandRes. Note that

the abbreviation RandRes stands for randomized re-

sidual. We scale the two time series in accordance with

the appropriate division of variance explained and

sum them to create the synthetic FWC time series

FWC(t)syn:

FWC(t)syn 5

ðtmax

t50

G
1
(t)PCrand

1 (t2 t) dt1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12R2

R2

r

3

"
FWC(t)RandRes

s
RandRes

/s
G3PC

:

#

(3)

Taking this ensemble of 1000 synthetic FWC time

series, FWC(t)syn, and 1000 corresponding random-

ized forcing time series, PCrand
1 , we use multiple lagged

regression to estimate an impulse response func-

tion, Gest
1 , that best relates the two time series, as

per FWC(t)syn 5
Ð tmax

t50G
est
1 (t)PCrand

1 (t2 t) dt.

The resulting ensemble of 1000 response functions,

Gest
1 , answers the motivating question: How reliably can

we ‘‘back out’’ a physical response function G1(t)when

it only explains a certain degree of variance R2 and the

residual noise FWC(t)RandRes has a given spectral den-

sity? In each case, the mean of the 1000 estimates faith-

fully reproduces the original response function G1(t).

However, the spread may be large. The 1-standard-

deviation error bars for the response functions that we

derive from the preindustrial control runs are then given

by the standard deviation of the 1000 response functions

in this ensemble.

The magnitude of the 1-standard-deviation uncer-

tainty on each response function is related to both the

variance explained and the spectral properties of the

residual noise with which we dilute the target time series

(appendix Fig. C1). For more information on how the

spectral properties affect error, see appendix C.

c. Results

In Fig. 5 we show the estimated responses of Arctic

FWC in each model simulation to a step change in the

strength of the negative AO. Though confidence in the

results varies across the ensemble, we note the follow-

ing. While the simulations exhibit a range of responses,

there is broad agreement that the freshwater reservoir

grows in size following a step change to a more negative

(anticyclonic) AO. All models show a positive response

after 10 years. Only GFDL-ESM2M and IPSL-CM5A-

LR show negative mean responses by the end of the

20-yr cutoff lag; however, these results show large un-

certainty windows that encompass positive responses.

The ensemble mean shows an ;7.5% inflation of the

freshwater reservoir after 20 years.

The time scales of response are also broadly similar

across the 12model simulations. On the whole, response

functions show a quasi-exponential form, approaching a

new equilibrium after 10 years. Similarly, Johnson

et al. (2018) show that in the coupled climate model

HiGEM (Shaffrey et al. 2009), Arctic FWC increases

by;8% of the reservoir size, reaching a new state that

approximates equilibrium 15 years after a hypotheti-

cal step change to a more anticyclonic AO. We save

more detailed analysis of response function forms for

section 5, in which we select the response functions

that we judge to be the most robust representations of

the AO–FWC relationship on the basis of the results

from both the preindustrial control and historical runs

(section 4).

It is important to note that, in the frequency domain,

the impulse response function is a transfer function re-

lating the spectral densities of the forcing and response.

A transfer function that acts as a filter mapping ap-

proximately white noise (SLP) onto red noise (FWC)

will have a slow adjustment time scale in the time do-

main. Even in the absence of a genuine physical con-

nection between the forcing and response time series,

their spectral densities will dictate that of the transfer

function, because the regression method seeks the best

fit. As such, the spectral density/adjustment time scale of

the transfer/impulse response function alone is not de-

cisive evidence that the ocean has a decadal memory of

a particular mode of atmospheric variability. A more

convincing case would incorporate (i) strong theoretical

grounds or (ii) statistical approaches that robustly re-

produce such a relationship. We note the existence of

the former for certain atmospheric modes (e.g., Davis

et al. 2014; Manucharyan and Spall 2016), and test the

second condition in these models here using Monte

Carlo analyses.

In Fig. 6 we show the FWC reconstruction skill

across models using the linear response functions

(crosses), alongside the significance levels [bars; see

section 3b(1) for method]. There are major differ-

ences across models in the extent to which these linear

response functions can explain the FWC variability,

with the lowest PC1 reconstruction R values around

0.2 and the highest around 0.6. We find that only

four model simulations show AO–FWC relationships

that are sufficiently strong to exceed the significance

levels: CanESM2, CCSM4, GFDL CM3, and IPSL-

CM5A-MR (see blue bars and crosses in Fig. 6).

Note that the addition of the second and third EOFs

must, by construction, increase the variance explained

[Eq. (2); see pink bars and crosses in Fig. 6]. For some

1 APRIL 2020 CORN I SH ET AL . 2541

Unauthenticated | Downloaded 10/06/23 12:42 PM UTC



simulations (CNRM, IPSL-CM5A-LR, MIROC5) the

combination of the first three PCs explains a statisti-

cally significant degree of variance, where the first PC

alone does not. This implies that there is a physical

relationship between SLP as expressed through the

combination of PCs 1–3 and FWC in these simula-

tions, but that the AO–FWC relationship is weak,

indeed the estimated AO–FWC response function

might not represent a physical relationship in the

model. Note that the opposite occurs when the second

and third modes are included for GFDL CM3; the

combined response functions are not significant at the

95% level, indicating that in this model simulation,

the second and third PCs exert limited control over

the evolution of FWC.

There are a number of possible physical reasons why

the models might show apparently weak relationships

between FWC and SLP. These reasons include nonlin-

earity of the relationship; nonstationarity (for instance,

the relationship might be modulated by a changing ice

regime); a dominance of other forcing mechanisms,

whether far field or local; and compensation from

competing mechanisms of FWC change. Different sea

ice representations across the models (the sea ice model

used in each case is listed in Table 1) have the potential

to modulate the nature and strength of the SLP–FWC

relationship. We review evidence for this from the real

world and evaluate model differences in sea ice rep-

resentations in appendix B. We find, however, that

there is no conclusive link across models between the

FIG. 5. Response of Arctic FWC to a step change to a more anticyclonic (more negative) AO in 12 CMIP5

preindustrial control runs. Shaded areas show the 1 std dev uncertainty, calculated using theMonteCarlomethod as

in section 3b(2). Response functions bymodel are divided into (a)–(d) for legibility, but the black dotted curve is the

ensemble mean step response across all 12 models.
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different sea ice representations and the derived SLP–

FWC relationships.

The FWC variance explained in each model is not

evenly shared between the modes of forcing. For ex-

ample, in MIROC5, the response to PC2 dominates the

FWC variance explained by SLP in this model. By

contrast, in CanESM2, theAO is dominant in explaining

FWC variability. These differences may be related to

the different FWC distributions between models, onto

which the EOFs of SLP will project differently, hence

producing a range of responses.

While it is beyond the scope of this paper to deter-

mine the physical mechanisms by which freshwater ad-

justments in response to the AO occur, we note that

dedicated modeling and observational studies provide

insight as to how the AO2 might lead to Arctic FWC

accumulation, and we suspect similar mechanisms to be

at play in the CMIP5 models. Lique et al. (2010) showed

using a Lagrangian analysis applied to a high-resolution

ocean ice model that the Beaufort Gyre expands and

intensifies under AO2 forcing relative to AO1, while

the export of freshwater through the Fram Strait de-

creases. The latter result is mirrored in the Zhang et al.

(2003) forced model study. Observational studies also

report expansion of the Beaufort Gyre under AO2
forcing, and a more Eurasian position of the Transpolar

Drift (Rigor et al. 2002; Steele et al. 2004; Kwok et al.

2013). These changes are largely connected to the

impact on Ekman pumping within the Arctic (e.g.,

Ma et al. 2017), which influences the surface geostrophic

circulation. Armitage et al. (2018) show with sea

surface height data that the AO forcing drives cross-

shelf Ekman transport, which excites along-shelf flow.

Armitage et al. (2018) find that the AO2 is associated

with enhanced Bering Strait inflow (of relatively fresh

waters) and decreased Atlantic inflow through the

Barents Sea opening.

Different physical mechanisms have different time

scales of adjustment that may be detectable in the form

of the response functions. Thermodynamic sea ice

changes should adjust rapidly to a change in the at-

mospheric circulation (Wernli and Papritz 2018). Sea

ice growth perturbations can remain important on

longer time scales, however, if changes to the sea ice

export result in sustained anomalies to the ice-free

area, leading to sustained sea ice growth anomalies.

Mixing across the halocline is low (e.g., Zhang and

Steele 2007), in the main due to strong stratification

rather than sea ice cover (Guthrie et al. 2013; Lincoln

et al. 2016). However, vertical mixing might alter with

SLP-driven changes to the stratification, especially in

shelf regions, and with changes in eddy activity. Liquid

freshwater fluxes through the Arctic gateways adjust to

SLP anomalies via both barotropic and baroclinic flow.

Sea surface height gradients should respond quickly to

SLP anomalies by Ekman pumping. In the interior of

FIG. 6. Reconstruction skill of response functions for the preindustrial control run. Blue

and red bars indicate the significance levels for PC1 and all three PCs, respectively, derived

using a Monte Carlo technique. Blue crosses indicate the R value from the correlation of

reconstructed FWC using PC1 and the original control run FWC time series, after removal of

the reconstructions using PC2 and PC3. Red crosses give theR value for the correlation of the

original FWC time series and the reconstruction using all three PCs.
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the Arctic Ocean, the tilts of isopycnal surfaces are

expected to adjust more slowly, whether by processes

related to planetary Rossby waves (Yang et al. 2016) or

by eddy activity (e.g., Manucharyan and Spall 2016). In

the Beaufort Gyre, the time scale of adjustment is af-

fected by a combination of eddy diffusivity and sea-

sonally occurring drag on the geostrophic circulation

by overlying sea ice, yielding amultiyear time scale that

is shorter than that due to eddy diffusivity alone

(Doddridge et al. 2019).

4. CMIP5 historical runs

Weattempt to reconstructArctic FWC in eachmodel’s

historical run (spanning 1850–2005) using the linear re-

sponse functions described above, with several objectives

in mind. First, we seek an independent test of whether a

given response function is physical. Our hypothesis is

that, providing the nature of the SLP–FWC relationship

is largely unchanged between the preindustrial control

run and the historical run of a given model, response

functions trained on the control run should be capable of

reproducing some of the FWC variability in the histor-

ical run, but only if they capture physical relationships in

the control run. Because the historical runs are relatively

short, response functions trained directly on the histor-

ical runs would be particularly vulnerable to overfitting.

Our second objective is to probe the strength of the

SLP–FWC relationship, independent of the impulse

response functions that were derived from the prein-

dustrial control. We use a Monte Carlo approach with

synthetic response functions to estimate the upper

bounds on reconstruction skill in the historical runs

(see section a of appendix A).

a. Reconstruction

First, we again define our time series of FWC and PCs

of SLP in the same way as in section 2 but based on the

historical-run data. We detrend the FWC time series as

before, but do not attempt to decipher and remove any

influence of radiative forcing a priori. We regress the

SLP variability of the historical run onto the first three

EOFs of SLP from the control run, then attempt to re-

construct the historical FWC time series by convolving

the impulse response functions derived from the control

run GPIC
i with the SLP forcing from the historical

run PCHIST
i :

FWCHIST(t)5�
n

i51

ðtmax

t50

GPIC
i (t)PCHIST

i (t2 t) dt . (4)

We then calculate the correlation coefficient be-

tween this estimate of the historical FWC and the

original historical FWC time series, which gives us the

reconstruction skill.

b. Results

In Fig. 7, we show that convolution of historical-run

forcing with impulse responses estimated from the pre-

industrial control run yields a wide range of FWC re-

construction skill across the 12 models. In some cases,

all reconstruction skill disappears, and/or the correla-

tion with the original FWC time series becomes nega-

tive. In these cases, we must assume either that

(i) the original response functions were not represen-

tative of a physical relationship, or (ii) the relationship

between SLP and FWCmay differ between the control

and historical runs.

Comparison of the R value from our reconstructions

(crosses in Fig. 7) with the upper bounds on recon-

struction skill derived using random response functions

(squares in Fig. 7; see section a of appendix A for the

method) indicates whether the impulse response func-

tions derived in the control are also the most skillful

possible linear description of the SLP–FWC relationship

in the historical simulations. If the reconstruction skill is

similar to, or higher than, the Monte Carlo estimate of

the upper bound, then the response functions estimated

from the control run are also appropriate at relating SLP

and FWC variability in the historical run. Both of these

metrics link themodel’s original SLP to its original FWC

variability. By contrast, the blue bars in Fig. 7 indi-

cate the 95th-percentile level of R values that can be

achievedwith random forcing and new impulse response

functions trained on the historical run with this random

forcing [the method is the same as in section 3b(1), but

with the historical-run data]. Note that because the

historical runs are short, these new response functions

can be easily overfitted andwill therefore produce a high

bar for the significance levels. We suggest that they

should be seen as a guide rather than absolute markers

for significance. Comparison of these significance levels

(blue bars) with the previous two metrics (squares and

crosses) helps to establish how likely it is that the forcing

time series itself can causally explain FWC variability in

the historical run.

To aid with the interpretation of this combination of

metrics, we provide two examples. The linear response

functions for GFDL-ESM2M lose all reconstructive

skill when convolved with the historical SLP variabil-

ity; the R values are low or even negative (crosses in

Fig. 7). Clearly, if a relationship between SLP and FWC

exists in this run, it is not well described by these linear

response functions. To test whether a relationship

between SLP and FWC does exist, we next look to

the Monte Carlo estimate of the upper bound on
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reconstruction skill (square) and compare this against

the significance level (bar). The fact that the estimated

upper bound on reconstruction skill for PC1 is greater

than the significance level indicates that there may be

a physical relationship between PC1 and FWC in the

historical run, which explains a notable portion of

the FWC variance (R 5 0.5), but that relationship is

different to the one obtained in the preindustrial

control run.

The reconstruction skill in the CanESM2 historical

run is high when using the response functions derived

from the preindustrial control run (crosses, Fig. 7).

Indeed, comparison with the R values from the Monte

Carlo ensemble (squares) shows that these relationships

are highly skillful in relating SLP and FWC variability,

even though they were trained on a different run. This

consistency with the significant result in the preindus-

trial control run convinces us that this is most likely a

physical relationship in both runs.

In Table 4, we evaluate the likelihood that response

functions represent causal, physical relationships be-

tween SLP and FWC variability in their respective

models. While we can never have complete certainty

of causal, physical relationships using this statistical

method, we can establish the confidence that we may

have in the results. To assist with this, we introduce

a ranking procedure to compare our estimated re-

sponse functions with an ensemble of synthetic re-

sponse functions in both control and historical runs

(for details see section b of appendix A). If the rank

position goes up when including the historical run as

an independent test, this increases the likelihood that

our estimated response function represents a causal,

physical relationship. If the rank goes down, it de-

creases that likelihood. As a second test, we compute

the conditional probability that a synthetic response

function that is more skillful than our estimated re-

sponse function in the control run will also be more

skillful in reconstructing historical variability. If the

conditional probability is small, we may have more

confidence in the robustness of the estimated response

functions than if it is large. We indicate qualitatively

how likely the control-run response functions are

to represent physical model relationships in the last

column in Table 4.

Again, to aid with interpretation, we provide two ex-

amples. The reconstruction skill for GFDL CM3 in the

control run is statistically significant for PC1 and almost

so for the combination of three PCs. Application of the

same response function to the historical run, however,

yields effectively zero reconstruction skill. Indeed, the

rank of the response functions for this model drops

markedlywhen including the historical run. Furthermore,

the conditional probability of achieving higher recon-

struction skill in the historical run with the synthetic re-

sponse functions that weremore skillful in the control run

with random forcing is high. As a result, we must con-

clude either that a statistically significant result in the

FIG. 7. Monte Carlo evaluation for the historical runs. Blue bars indicate the significance

levels for a single forcing component. Crosses show the reconstruction skill using linear re-

sponse functions derived from the preindustrial control run, calculated after removal of the

FWC contributions from PC2 and PC3. Squares represent the 95th-percentile reconstruction

skill using a Monte Carlo ensemble of synthetic response functions—an upper estimate of

possible reconstruction skill with linear responses.
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control run was achieved by chance, not as a result of

capturing a physical relationship, or that the nature of the

SLP–FWC relationship is simply different in the histori-

cal run. It is not clear which is the case, so we indicate a

question mark for this model in Table 4, but do not in-

clude the statistically significant AO–FWC result in the

analysis carried out in the following section. By contrast,

the rank of the response functions for model MPI-ESM-

LR improves when including the historical run, and

the conditional probability of being outperformed twice

by the same random functions is moderately low. The

historical-run results provide more confidence in the ro-

bustness of the MPI-ESM-LR control-run response func-

tions, and so we include these results in the next section.

5. Most robust AO–FWC relationships

After statistical testing in both the control-run context

and through the application of the historical run as an

independent test, we select the models with AO–FWC

response functions that canmost confidently be judged to

represent causal, physical relationships in both the pre-

industrial control and historical runs. These models are

CanESM2, CCSM4, IPSL-CM5A-LR, and MPI-ESM-

LR, and we show their responses to a step change to a

more negative AO in Fig. 8. These functions bear cer-

tain similarities. They are all positive, with adjustment

magnitudes greater than the previous ensemble mean

(gray curve). They all have similar magnitudes relative

to the whole ensemble and they show a broadly similar,

quasi-exponential form. After a relatively slow first-year

adjustment, the FWC reservoir grows rapidly within the

first 10 years, approaching a new equilibrium between 15

and 20 years. Overinterpretation of the precise shapes of

these response functions should be avoided—note how

the error bars would accommodate a range of shapes.

The ensemblemean of these four functions (black curve,

Fig. 8) has an e-folding time scale of 7.4 yr and a maxi-

mum freshwater change of 12.8% of the total Arctic

FWC reservoir.

6. Reconstructing observed FWC variability

Having extracted SLP–FWC relationships in each

model, we attempt to evaluate whether these relation-

ships are reflective of real-world dynamics, following

TABLE 4. Response function evaluation by model. The R-value rank, given as a percentile, is explained in section b of appendix A. The

conditional probability is explained in section 4b. Note that it cannot be computed when the estimated response function outperforms all

synthetic responses in the control run. In the final column, check marks indicate that we can have confidence that a response function is a

consistent representation of model physics rather than a statistical artifact, X is used when we suspect that response functions are a

statistical artifact, and question marks indicate uncertainty in these judgements.

R-value rank as % Conditional probability: random

skill . HIST reconstructionModel simulation PIC Change: PIC 1 HIST Physical?

ACCESS1.0 PC1 55.1 132.9 0.15 ✓?

All PCs 64.2 21.6 0.41 X?

ACCESS1.3 PC1 84.1 249.4 0.78 X?

All PCs 92.0 27.6 0.4 X?

CanESM2 PC1 100 0 - ✓

All PCs 100 0 - ✓

CCSM4 PC1 100 0 - ✓

All PCs 99.9 10.1 0 ✓

CNRM-CM5 PC1 64.8 14.6 0.44 ✓?

All PCs 99.1 23.4 0.11 ✓

GFDL CM3 PC1 96.0 225.6 0.65 ?

All PCs 91.3 229.9 0.54 ?

GFDL-ESM2M PC1 67.8 218.6 0.48 X

All PCs 51.2 22.6 0.51 X

IPSL-CM5A-LR PC1 73.0 118.3 0.12 ✓?

All PCs 100 0 - ✓

IPSL-CM5A-MR PC1 99.6 10.3 0 ✓

All PCs 95.4 14 0.04 ✓

MIROC5 PC1 68.0 119.8 0.23 ✓?

All PCs 98.7 23.3 0.38 ✓

MPI-ESM-LR PC1 90.1 14.6 0.22 ✓

All PCs 67.7 118.5 0.23 ✓?

MPI-ESM-MR PC1 38.5 24.5 0.57 X

All PCs 21.6 11.7 0.67 X
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Johnson et al. (2018). Our impulse responses can be

convolved with real-world atmospheric time series to

attribute observed variability. We use ERA-Interim

(Berrisford et al. 2011) and ERA-20C (Poli et al. 2016)

reanalysis data as the forcing. The higher fidelity ERA-

Interim data are available from 1979 onward, so we use

the ERA-20C record only up to 1979.

In this analysis, we focus on the AO, because it is

consistently represented across the ensemble of models

and the reanalysis SLP data (Table 3). We select the

four model-based response functions that most likely

reflect causal relationships between the AO and FWC

in the simulations (Fig. 8). We regress the reanalysis

SLP data onto the first three EOFs of SLP for each

model then convolve the resulting PC time series with

their respective response functions. This yields SLP-

driven time series of FWC through the historical pe-

riod based on linear model-derived relationships. In

Fig. 9, we plot reconstructions using PC1 alone in bold

and reconstructions using the first three PCs as a dotted

line. We show the period 1980–2017 and compare with

observations of Arctic FWC from Rabe et al. (2014).

Note that we require a full 20 years of forcing before

the results reflect the full memory in the response

functions, and as such we require reanalysis forcing

from 1960 onward to build these reconstructions. To

calculate the error bars, we use the ensemble of 1000

impulse response functions described in section 3b(2).

Convolving these 1000 response functions with the

atmospheric forcing yields 1000 different reconstruc-

tions. We plot the standard deviation of these recon-

structions as our error bars.

Changes in the AO dominate the FWC variability;

including the second and third modes does not signif-

icantly change the reconstruction. A sharp downward

trend in FWC during approximately 1988–95 is evident

in all reconstructions and is the result of a strong and

sustained shift toward a positive phase of theAO at the

start of that period. All four model-based reconstruc-

tions show an increase in Arctic FWC coincident in

time with that reported by Rabe et al. (2014) during

1995–2012, due to a sustained shift toward a negative

phase of the AO at the start of that period. The mag-

nitude of change is somewhat smaller (;30%–80%)

in the reconstructions than the observations, with

CanESM2 and IPSL-CM5A-MR coming the closest to

reproducing the observed increase. Note that differ-

ences in the magnitudes of variability also reflect the

different mean states of Arctic FWC in each model

(Fig. 1, Table 2).

For comparison, Shu et al. (2018) show that the

CMIP5 historical-run multimodel mean captures;50%

of the observed freshening during the 1992–2012 ob-

servational period. This signal can be assumed to aver-

age across stochastic SLP forcing and represent the

effects of longer-term anthropogenic climate change,

relating to sea ice melt and an enhanced hydrological

cycle, among other possible changes (which could in-

clude changes to SLP variability).

7. Concluding discussion

Theory, idealized modeling, and observations indi-

cate that subsystems of Arctic liquid FWC (e.g., the

Beaufort Gyre) and solid FWC (e.g., the Transpolar

Drift sea ice stream) are controlled, at least in large

part, by SLP variability (see the references in the

introduction).

In another coupled climate model, HiGEM, Johnson

et al. (2018) found that linear responses to the first three

modes of SLP forcing could explain FWC variability

with a reconstruction skill of R 5 0.93. None of the

CMIP5 models studied here exhibit SLP–FWC rela-

tionships that are as strong as that found inHiGEM. The

relationship varies considerably in strength from model

to model. In many cases the variance explained is in-

sufficiently high for us to be confident that the result is

physical. A major caveat of the regression technique is

that it cannot be known a priori what portion of the

FIG. 8. Selected response functions: response of Arctic FWC to a

step change to a more negative AO in preindustrial control runs.

Response functions chosen as the most likely to represent physical,

causal relationships between SLP and FWC after assessment are

described in the text and in Table 4. The black dashed curve shows

the ensemble mean of selected response functions; the gray dashed

line shows the ensemble mean of all 12 response functions pre-

sented in this paper.
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FWC variability should be explainable by a given forc-

ing, so if the selected mode of forcing does not dominate

the variability, the response functions will inevitably

be trained to best fit residual noise. Error increases as

the decorrelation time scale of this residual increases

(appendix C). As such, our technique is most effective

when there are strong relationships between the vari-

ables of interest. Even with random forcing time series,

the regression technique will yield response functions

that will find some level of reconstruction skill, which

may vary widely on a random basis. We outline here a

Monte Carlo approach to fairly assess the level of

confidence that we therefore can have in whether a

regression-derived response function consistently rep-

resents the model physics.

The utility of this technique, on the other hand, is

evident in several aspects. The technique allows us to

cleanly isolate relationships that involve memory in a

computationally efficient manner. These relationships

can then be easily compared and evaluated in terms of

their nature and strength across a range of coupled

climate models. Here, we establish a baseline for

the Arctic SLP–FWC relationship in CMIP5 models

against which the effects of future model development

in coupled climate models can be assessed. Further, the

technique provides a novel means for model evaluation

against observations, through the convolution of esti-

mated response functions with forcing time series from

observations or reanalysis data.

In section 6, we perform model evaluation against

observations of FWC changes that are thought to have

been driven largely by SLP variability (Johnson et al.

2018; Wang et al. 2019). The convolution of SLP re-

analysis data and response functions from selected

FIG. 9. Reconstruction of historical FWC changes in the real world from 1980, calculated

through convolution of SLP reanalysis data from 1960 onward with response functions

estimated from preindustrial control runs of each model: the negative AO in ERA-Interim

reanalysis SLP data, normalized to 1 std dev in the monthly data for (top) the period 1960–

80 and (middle) 1980–2018. Note that positive values indicate a more negative AO. The

gray line shows the monthly time series, and the blue line shows a 3-yr moving mean.

(bottom) The solid lines denote reconstruction using PC1 alone, and the dotted lines are for

all three PCs.
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models yields between 30% and 80% of the observed

freshwater accumulation 1992–2012, with similar timing

of changes. While coupled climate models may be able

to reproduce the amplitude and frequency of internal

atmospheric variability (e.g., the AO) we do not expect

model SLP to vary with the same phase as in the real

atmosphere either in the historical runs or the future,

meaning we should exercise caution in interpreting

FWC changes exhibited in these runs. As such, our

model evaluation approach provides one solution to

attributing historical changes, and while we cannot

predict SLP variability years in advance, memory in the

systemmay afford a few years of potential predictability

for Arctic FWC (Johnson et al. 2018). As CMIP6 data

become available, we suggest that this approach has

utility in evaluating the representation of CMIP6 internal

variability against the real world in cases where memory

is important and the forcing process is freely evolving in

the model run. Such an approach can also help to dis-

tinguish changes arising from forced versus internal var-

iability, crucial in the context of climate change.

The results for the response of Arctic FWC to a step

change in the AO that are most likely to represent

causal, physical relationships in the model simulations

all indicate that one-standard-deviation enhancement of

the anticyclonic AO leads to freshwater accumulation,

with a magnitude of ;13% of the total Arctic FWC

reservoir, and with an e-folding time of;7 years. These

results show an appreciable correspondence with re-

cent observations of Arctic FWC changes (section 6),

providing some confidence that they are useful repre-

sentations of real-world dynamics. FWC accumulation

under AO2 forcing is consistent with modeling and

observation results that show an intensified Beaufort

Gyre, weakened Fram strait freshwater export, and

increased Bering Strait inflow under the AO2 (e.g.,

Lique et al. 2010; Armitage et al. 2018).

The fact that CMIP5 models exhibit such different

strengths of SLP–FWC relationships is a compelling

indicator that, while the mean states and spectral den-

sities of FWC variability might be broadly similar, the

physical origins of this variability are inconsistent be-

tween models. This, in turn, calls into question our

ability to understand the sources of future Arctic FWC

variability in climate change runs of these models and

our confidence in their predictions.
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APPENDIX A

Methods

a. Monte Carlo estimate of upper bound on
reconstruction skill in historical runs

The Monte Carlo procedure in section 3b(1) yields an

ensemble of 1000 synthetic impulse response func-

tions for each model, symmetrically distributed about

zero. We use this ensemble here to estimate bounds

on the potential reconstruction skill in the historical

runs through convolving synthetic response func-

tions and historical-run SLP. The 1000 convolutions

yields a histogram of R values, symmetrical about

R 5 0. Because the ensemble of 1000 response func-

tions spans the plausible space of possible impulse

responses, some should be skillful by chance. The maxi-

mumR value is likely the product of a relationship that is

overfitted by chance. The level of reconstruction skill is

less sensitive to small changes to the response functions at

the 95th percentile level, however. We take the 95th

percentile value as the estimated upper bound on re-

construction skill; this also enables an equivalent com-

parison against the significance level.

b. Ranking procedure using historical run as
independent test

We rank the performance of the preindustrial-control-

run reconstructions described in section 3 against the

ensemble of reconstructions that are used to establish

the significance levels [section 3b(1)]. The exact same

1000 synthetic impulse response functions used in the

significance evaluation are carried forward to the anal-

ysis that yields the upper bound on reconstruction

skill in the historical run (section a of this appendix).

The forcing for these reconstructions is the historical-

run SLP variability.
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For each unique synthetic response function, we

then sum the FWC reconstruction R value from the

control and historical run. Summing the reconstruc-

tion R value from our reconstructions of historical

and control FWC variability, we again rank our esti-

mated response function within the ensemble of syn-

thetic response functions. In Table 4, we show side

by side the control-run rank (.95% corresponds to

statistical significance) and the change in rank when

results for the control run and historical runs are

combined. The combined rank is a qualitative metric;

it is the change in rank (whether up or down) that is

more informative than the absolute value.

c. Linear response function method

Table A1 illustrates the segmentwise approach used to

subsample the model runs in the regression process—an

attempt to minimize overfitting (section 3a). Figure A1

compares the reconstructed FWC time series and the

original FWC time series in the CCSM4 control run.

Reconstructions use the linear response functions described

in section 3a.

APPENDIX B

Sea Ice Relationships

The momentum transfer from atmosphere to ocean

depends on sea ice characteristics in a complex manner

(Martin et al. 2014; Tsamados et al. 2014; Petty et al. 2016;

Cole et al. 2017), with implications for ocean circulation

beneath (Davis et al. 2014;Dewey et al. 2018;Meneghello

et al. 2018) and for sea ice drift and export from theArctic

(Haas et al. 2008; Petty et al. 2016). It is therefore im-

portant to considermodel representations of sea ice when

discussing SLP–FWC relationships.

Analysis of Arctic sea ice variability in the historical

runs of CMIP5 models reveals a wide range of biases

in sea ice area and export (Langehaug et al. 2013),

some of which may originate from model tuning

aimed at reducing other biases such as hemispheric

sea ice area (Ivanova et al. 2016). We show the mean

sea ice volume and extent over our Arctic region in

Fig. B1. Across the 12 preindustrial simulations con-

sidered here, no significant relationship (at a confi-

dence level of 90%) exists between the strength of the

SLP–FWC relationship (the reconstruction R value

for all three EOFs) and these mean sea ice metrics.

Comparison of simulations from the same modeling

group also indicates inconsistent effects of different

sea ice representations (e.g., compare IPSL models,

MPI models).

Next we ask whether the growth and melt of sea ice is

important in attributing liquid FWC changes unex-

plained by SLP variability. Here we analyze the seven

model simulations in our selection for which ice-to-

ocean freshwater flux is archived. After subtracting the

contribution of SLP to the variability in the FWC time

FIG. A1. Preindustrial-control-run reconstruction of Arctic FWC in CCSM4 using SLP and

estimated response functions; R denotes the correlation of the reconstructed time series with

the original FWC time series, and RS denotes the correlation after removal of the FWC con-

tributions from the other components.
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series, we compute correlations with accumulated ice-

to-ocean freshwater fluxes (I2O) over the same domain

(Table B1). The expected correlation is positive. I2O

is somewhat important in explaining non-SLP-related

variability in ACCESS1.0, ACCESS1.3, and MIROC5.

Weak, and negative, relationships exist between I2O

and FWC in the GFDL and IPSL models. I2O vari-

ability is particularly muted in the IPSL models relative

to FWC variability (not shown).

APPENDIX C

Spectral Properties and Sources of Error

There is a positive correlation between the decorrelation

time scale of the FWC time series and the error on the

response function that we calculate, and a negative corre-

lation between error and the variance explained by the

FWC reconstructions. Table C1 shows the variance in

the error explained by key regressors.

To determine the origin of the error associated with

the decorrelation time scale, we perform synthetic tests.

We construct predictable FWC time series using a

known impulse function and known (white noise) forc-

ing time series. We can then mix these predictable sig-

nals with residual noise, as per section 3b(2). In this

method, however, we construct residual noise time se-

ries as first-order autoregressive [AR(1)] processes us-

ing convolution with an exponential impulse response

function, G(t) 5 e2t/T. This yields AR(1) time series

with an autocorrelation function, r(t) 5 at that has an

e-folding decorrelation time scale T 5 21/lna.

We then undertake the regression method to attempt

to find the original response functions. We span a rea-

sonable parameter space and find the errors as the stan-

dard deviation of the 500 response function estimates for

each choice of parameters. Error increases with both the

residual noise decorrelation time scale and the inverse of

variance explained (Fig. C1).

An additional source of error associated with the

spectral properties of the FWC time series arises from

the use of a relatively short response function cutoff

TABLE B1. Correlation of cumulative ice-to-ocean freshwater

fluxes (I2O) with the residual of Arctic FWC after subtraction of

the reconstruction using SLP and response functions. I2O is ac-

cumulated from the beginning of the run. Only model simulations

in which the I2O are archived are shown. All values are for the

preindustrial control runs.

Model simulation R value: I2O and FWC residual

ACCESS1.0 0.66

ACCESS1.3 0.49

GFDL CM3 20.09

GFDL-ESM2M 0.27

IPSLA-CM5A-LR 20.14

IPSLA-CM5A-MR 20.28

MIROC5 0.43

FIG. B1. Mean sea ice volume and extent in preindustrial control

runs of 12 CMIP5 model simulations.

TABLE A1. Explanation of the four distinct segmenting schemes

used to subsample the model runs in the regression process. Each is

made up of 20 segments, of the length shown, and starting on the

month shown. The starting months are separated by the spacing

between segments, also shown.

1 2 3 4

3600-month runs

Length of each segment (months) 3581 3353 3239 3125

Spacing between segments (months) 1 13 19 25

Starting month, segment no.

1 1 1 1 1

2 2 14 20 26

3 3 27 39 51
..
. ..

. ..
. ..

. ..
.

20 20 248 362 476

6000-month runs

Length of each segment (months) 5981 5354 5031 4708

Spacing between segments (months) 1 34 51 68

Starting month, segment no.

1 1 1 1 1

2 2 35 52 69

3 3 69 103 137
..
. ..

. ..
. ..

. ..
.

20 20 647 970 1293

9600-month runs

Length of each segment (months) 9581 8365 7738 7111

Spacing between segments (months) 1 65 98 131

Starting month, segment no.

1 1 1 1 1

2 2 66 99 132

3 3 131 197 263
..
. ..

. ..
. ..

. ..
.

20 20 1236 1863 2490
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lag. As the decorrelation time scale of the FWC time

series approaches and exceeds the cutoff lag time scale,

error grows. For a 20-yr cutoff lag, the error follows

a roughly linear trend over the range of time scales

we consider, from close to zero additional error at a

decorrelation time scale of 5 years, to 0.7 reservoir

fractions of integrated response function error at 20 years

(not shown).

Given that (i) red residual noise increases the error

in the determination of impulse response functions,

(ii) the residual noise generally has similar spectral

properties to the original FWC time series, and (iii) a

(relatively small) error grows as the decorrelation

time scale of FWC approaches and exceeds the re-

sponse function cutoff lag, it might be considered

desirable to high-pass filter the data. It is conceivable

that other sources of variability possibly unrelated to

Arctic SLP add noise on longer time scales and con-

tribute to error. However, we choose not to include

analysis of high-pass filtered data here for three main

reasons. First, there is not an obvious physically mo-

tivated time scale to choose as the filter threshold.

Second, the SLP forcing has roughly equal power at

all frequencies; via an impulse response function, it

should be able to produce long-time-scale variability.

Third, high-pass filtering a red time series, for which

power increases with decreasing frequency, creates

a new peak in the power spectrum at frequencies

immediately above the threshold, effectively forc-

ing the time series to become periodic on these

time scales.

Repeating the analysis in section 3 with a 40-yr cutoff

high-pass filter leads to step responses that are quali-

tatively similar to the originals, though with shorter

adjustment time scales and a pronounced oscillatory

component (not shown). The number of significant

results for the AO response functions increases to 10 of

12 models (not shown). This lends credence to the ro-

bustness of the results, but these response functions

portray a distorted SLP–FWC relationship, so we do

not include them here.
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