

An ecosystem-wide approach for assessing the spatialized cumulative effects of local and global changes on coastal ecosystem functioning

Quentin Nogues, Pierre Bourdaud, Emma Araignous, Ghassen Halouani, Frida Ben Rais Lasram, Jean-Claude Dauvin, François Le Loc'H, Nathalie Niquil

▶ To cite this version:

Quentin Nogues, Pierre Bourdaud, Emma Araignous, Ghassen Halouani, Frida Ben Rais Lasram, et al.. An ecosystem-wide approach for assessing the spatialized cumulative effects of local and global changes on coastal ecosystem functioning. ICES Journal of Marine Science, 2023, 80 (4), pp.1129-1142. 10.1093/icesjms/fsad043. hal-04202452

HAL Id: hal-04202452 https://hal.science/hal-04202452

Submitted on 11 Sep 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	An ecosystem-wide approach for assessing the spatialized cumulative effects of local
2	and global changes on coastal ecosystem functioning
3	Quentin Nogues ^{1*} , Pierre Bourdaud ² , Emma Araignous ³ , Ghassen Halouani ⁴ , Frida Ben
4	Rais Lasram ⁵ , Jean-Claude Dauvin ⁶ , François Le Loc'h ² , Nathalie Niquil ¹
5 6 7 8 9 10 11 12 13 14 15 16 17 18	 ¹Normandie Univ., UNICAEN, Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000 Caen, France. ²Univ. Brest, CNRS, IRD, Ifremer, IUEM, rue Dumont d'Urville, BP 70, 29280 Plouzané, France. ³France Energies Marines ITE-EMR, 525 avenue Alexis de Rochon, 29280 Plouzané, France. ⁴Ifremer, Unité halieutique Manche-Mer du Nord Ifremer, HMMN, F-62200 Boulogne sur mer, France. ⁵ Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France. ⁶Normandie Univ., UNICAEN, Laboratoire Morphodynamique Continentale et Côtière, CNRS UMR 6143 M2C, 24 rue des Tilleuls, 14000 Caen, France. * Corresponding author: quentin.nogues33@gmail.com Journal: <i>ICES Journal of Marine Science</i> https://academic.oup.com/icesjms/article/80/4/1129/7092991
19 20	

21 Abstract

22 Coastal ecosystems are subjected to an increasing number of anthropogenic drivers, 23 including marine renewable energies and climate change. These drivers can interact in 24 complex ways, which may lead to cumulative effects (CE) whose potential consequences on 25 the ecosystems need to be addressed. We used a holistic approach — ecological network 26 analysis (ENA) — coupled with a two-dimensional food web model — Ecospace — to conduct 27 an ecosystem study of the CEs of climate change plus the operation of an offshore wind farm 28 on ecosystem functioning in the extended Bay of Seine (English Channel). Mapped ENA indices 29 showed that CEs were not restricted to the wind farm area, *i.e.*, where anthropogenic drivers 30 are concomitant. CEs varied both in space and among ecosystem properties, displaying that 31 ENA indices can distinguish between different cumulative pathways that modify ecosystem 32 functioning in multiple ways. Moreover, the effects seemed to be tied to the structuring role of climate change, and differed under the 2050 and 2100 conditions. Such changes resulted in 33 stronger loss of ecosystem resilience under the 2100 conditions despite the benefits of the 34 reef and reserve effects of the wind farm. 35

Key words: coastal ecology, ecological network analysis, cumulative effects, ecosystem
 functioning, resilience, combined drivers, climate change, offshore wind farm, fishing.

38 Highlights:

- Interactions between offshore wind farms and climate change can lead to a wide range
 of cumulative effects on ecosystems regardless of fishing activities.
- The structuring role of climate change seems to have a predominant role in the
 formation of cumulative effects.
- Cumulative effects appear heterogeneous across space, over time and among
 ecosystem functional properties.
- In 2050, the combined effects of climate change and the wind farm remain positive for
 ecological resilience.
- In 2100, interactions between climate change and the wind farm change, reducing
 ecological resilience.

49 1 Introduction

50 When multiple anthropogenic drivers — fishing and climate change among others — co-51 occur in an ecosystem, they often interact with each other to produce cumulative effects (CE) 52 on the ecosystems (Folt and Chen, 1999; Vinebrooke et al., 2004). Cumulative effects have 53 been observed in many marine ecosystems (Crain et al., 2008; Halpern and Fujita, 2013). They 54 can result in different ecosystem changes than the sum of the individual drivers, that can be 55 synergistic, antagonistic or dampened. These interactive effects occur at all the levels of 56 biological organization, from single organisms to complex and interconnected systems 57 (Stelzenmüller et al., 2018). In ecosystems, CEs result from complex interactions among ecosystem drivers and depend on ecosystem functioning (Breitburg et al., 1998; Boyd and 58 59 Hutchins, 2012). They can emerge through interactions within the food web, via trophic 60 cascading. In a world subjected to intense human activities and climate change (IPCC, 2021), understanding the effect of each individual driver is not enough. Interactions among drivers in 61 ecosystems must also be studied because they could represent a major threat for marine 62 conservation and management (Willsteed et al., 2017; Gissi et al., 2021). 63

64 It is important to understand the full extent to which biotic and abiotic drivers affect ecosystems to properly manage marine resources (Rombouts et al., 2013; Heymans et al., 65 66 2020), and where these effects take place (Halpern and Fujita, 2013). The European marine spatial planning (MSP) directive (2014/89/EU) requests EU members to establish spatial 67 68 planning processes to achieve ecological, economic and social development. Ecosystem-based 69 management has been advocated as a key pillar for the sustainable management of marine 70 and coastal environments (Langlet and Rayfuse, 2018). As a result, CEs on the whole ecosystem 71 functioning must be considered across time and space to manage ecosystems efficiently. This 72 would ensure more accurate spatial zoning decisions and ecosystem-based management plans 73 (Buhl-Mortensen et al., 2017; Le Tissier, 2020). Unfortunately, time passed until CEs were 74 properly considered in strategic environmental impact assessment (Bidstrup et al., 2016), and 75 there is still an urgent need to further include them nowadays (Gusatu et al., 2021).

Spatial cumulative assessment studies often fail to explore the complex nature of CEs
because (i) interactions among ecosystem components and drivers are frequently ignored, and
CEs are considered additive, and (ii) each driver is usually mapped using the expected footprint

of an impact, without considering the specific response of habitat / community types to the
tested drivers (Ban *et al.*, 2010; Halpern and Fujita, 2013; Kotta *et al.*, 2020; Guşatu *et al.*,
2021).

82 Mapping the expected environmental footprints of multiple anthropogenic drivers can 83 help identify areas prone to cumulative impacts and possibly requiring thorough monitoring 84 to limit CEs; but using expert judgement does not allow for an accurate representation of the 85 ecosystem processes that pilot interactions among drivers like trophic interactions. Such 86 complex processes depend on many ecosystem parameters (ecosystem heterogeneity, species 87 tolerances and displacement, driver magnitude among others (Vinebrooke et al., 2004; Boyd 88 and Hutchins, 2012)), and may affect the spatial extent of CEs and in turn the areas subjected 89 to cumulative responses. The assessment of spatial CEs would greatly benefit from ecosystem 90 approaches taking the complexity of the food web into account to represent the mechanisms 91 leading to CEs (both direct and indirect). It would ensure a quantitative assessment of CEs and 92 their impacts on ecosystem functioning to monitor ecosystems more efficiently (Buhl-Mortensen et al., 2017; Le Tissier, 2020). With their shared vision of ecosystems as networks 93 94 of interactions, cumulative assessment methods and ecosystem approaches seem to fit 95 together to build a coherent tool for marine management and zoning purposes.

96 Ecological network analysis (ENA) indices can be used to link both ecosystem approaches 97 and cumulative assessment. ENA indices are utilized to understand the functioning of a food 98 web; they provide an integrative and holistic view of ecosystem functioning, organization and 99 structure (Ulanowicz, 1986; Baird and Ulanowicz, 1993; Borrett and Scharler, 2019). ENA 100 indices can be computed using food web modeling techniques and have been extensively 101 promoted as promising tools for ecosystem-based management (Ulrike et al., 2018; Fath et al., 102 2019; Safi et al., 2019). They have already been used to study the CEs and the spatial effect of 103 multiple individual anthropogenic drivers (Nogues *et al.*, 2020; Nogues *et al.*, 2022).

Ecopath with Ecosim (EwE) is a food web modeling framework that can explore cumulative impacts on ENA indices (Christensen and Walters, 2004). The spatialized version of Ecopath – Ecospace – was used in Nogues *et al.* (2022) to compute maps of ENA indices in order to understand the spatial organization and functioning of the extended Bay of Seine ecosystem (eBoS, English Channel). Based on its functioning, the Bay of Seine was divided in multiple five functional regions (Nogues *et al.*, 2022). These five regions were used to

characterize the potential individual effects of multiple drivers using ENA indices. These drivers
included the potential effects of climate change (CC) on species distribution and the
exploitation of the offshore wind farm (OWF) of Courseulles-sur-Mer (in the Bay of Seine)
under varying fishing effort.

In this study and in continuity of the approaches of Nogues *et al.* (2022), we combined the different drivers previously modeled in the eBoS model to evaluate holistically how their effects could affect the organization and the functioning of the extended Bay of Seine ecosystem. We aimed to characterize the mechanisms that drive CEs as well as the locations where ecosystem functioning was mostly impacted by CEs. Finally, we studied the effects of the combined drivers on the resilience of the ecosystem.

120 2 Materials and methods

121 2.1 Study area

122 The extended Bay of Seine (eBoS) Ecospace model covers the coastal ecosystem of the 123 Bay of Seine, from the Cotentin peninsula to Le Havre and from the French coastline to the 124 French-British delimitation of the Exclusive Economic Zones (Figure - 1). It is a shallow coastal 125 ecosystem open onto the English Channel in the north, with depth varying from 5 m to 70 m 126 in the paleo-valley of the Seine (mean 35 m). It covers 13,500 km² and is mainly composed of 127 gravel, coarse sand in the offshore part of the bay, while fine sand and muddy fine sand are 128 located near the coast (Dauvin, 2015). This area is heavily anthropized and is home to many 129 human activities including fishing, aggregate extraction, marine renewable energy, tourism, 130 fret transport, and pleasure sailing among others (Dauvin, 2019).

131 In Nogues et al. (2022), the eBoS was divided into five functional regions to help 132 distinguish the effects of the different anthropogenic drivers on the ecosystem. A K-means 133 clustering analysis (MacQueen, 1967) was performed on ecological indicators of the reference model (Supplementary materials 1 Figure S1 - 1), to determine functional regions. Three 134 135 regions with different properties of functioning were defined (Nogues et al., 2022), and named "Coastal Bay of Seine" (CBoS), "Offshore Bay of Seine" (OBoS) and "Central English Channel" 136 137 (EC) from coast to offshore. These regions clearly depicted a coast-to-offshore gradient, with 138 the most coastal region more resilient and complex and the farther regions less so. We defined 139 two other structural regions based on the OWF of Courseulles-sur-Mer inside the CBoS

- 140 functional region and named them "Offshore wind farm" (OWF) and "Spillover region" (Spill).
- 141 All the regions were mutually exclusive (Figure 1).
- 142

143

144Figure - 1 Map of the eastern part of the English Channel and location of145the eBoS Ecospace model.

146The Ecospace model was divided into five regions: CBoS (Coastal Bay of147Seine), OBoS (Offshore Bay of Seine), and EC (Central English Channel), OWF148(Offshore wind farm) and Spill (Spillover region surrounding the OWF). All149regions are exclusive.

150 2.2 Ecospace spatialized food web modeling

The eBos food web was modeled with a modified version of Ecopath with Ecosim (*EwE* 6) software (Pauly *et al.*, 2000). This software can be used to model marine food webs: in a static way with Ecopath (Pauly *et al.*, 2000), in a time-dynamic way with Ecosim (Christensen and Walters, 2004), and temporal-spatial way with Ecospace (Walters *et al.*, 1999; Christensen *et al.*, 2014). The *EwE* 6 version we used was specially modified to compute food web indices (Nogues *et al.*, 2022). Following Nogues *et al.* (2022), this study is based on Halouani *et al.* (2020) to model the eBoS ecosystem (*Figure* - 2.A).

158 The original eBoS Ecopath was composed of 42 groups, including 40 living groups with a 159 wide variety of marine species – from phytoplankton and bacteria to bottlenose dolphins and 160 sea birds – and two non-living groups; Detritus and Discards (Supplementary materials 1 Table

161 S1 - 1). This Ecopath model served as a basis to build an Ecosim time-dynamic model using 21 162 time series of catches (Système d'Information Halieutique, 2017) and eight time series of 163 biomass from multiple stock assessment surveys (2000 to 2015) (Halouani et al., 2020). An 164 Ecospace model was later built to spatially model the eBoS ecosystem. The eBoS model map was composed of 4,907 cells with a resolution of 0.015° x 0.015°, and each cell modeled a time-165 166 dynamic Ecosim food web. Species distributions inside the eBoS Ecospace model were driven 167 using a depth map from the General Bathymetric Chart of the Oceans (GEBCO: 168 https://www.gebco.net/), a primary production map from SeaWifs representing the relative 169 chlorophyll *a* concentration in the bay in 2000 (https://podaac.jpl.nasa.gov/) and multiple 170 environmental driver maps for 27 of the 40 trophic groups (Supplementary materials 1 Table S1 – 1 to S1 - 3; Figure S1 – 2 to S1 – 36; Bourdaud et al., 2021; Halouani et al., 2020; Nogues 171 172 et al., 2022). Environmental driver maps were built from suitability index maps computed from 173 niche models by Ben Rais Lasram et al. (2020), and were used to define habitat suitability for 174 the specified species (Christensen et al., 2014). Suitability index maps were computed using 175 2005 – 2012 climate and habitat parameters (temperature, salinity, type of substrate, depth, 176 seafloor slope, and orientation to the north). All the parameters of the eBoS model are available in Halouani et al. (2020), Bourdaud et al. (2021), and Nogues et al. (2022). 177

178 2.3 Modeling of anthropogenic drivers: effects of climate change the offshore wind179 farm of Courseulles-sur-Mer and fishing.

180 We focused on two main anthropogenic drivers in the eBoS Ecospace model (Nogues et181 al., 2022): climate change and the operation of an offshore wind farm.

182 To model the effects of CC, the spatio-temporal framework of EwE (Steenbeek et al., 183 2013) was used. This Ecospace tool can modify Ecospace inputs over time, such as 184 environmental driver maps. In the present study, it was used to replace the initial suitability 185 index maps computed from 2005 - 2012 climate parameters of the baseline eBoS Ecospace 186 model, with new suitability index maps simulating the effects of CC on species distribution 187 (Nogues et al., 2022). Two conditions were tested — using two new sets of suitability index 188 maps computed at two different horizons (2050 and 2100) — of the IPCC "Business as usual" 189 climate change projection (RCP 8.5, considered the most likely scenario; Schwalm et al., 2020). 190 One condition represented the 2050 decade (2041 – 2050), while another represented the 2100 decade (2091 - 2100) (Nogues et al., 2022, Figure - 2). By replacing the reference 191

192 "current" suitability index maps of the baseline eBoS model during the Ecospace model run, 193 with either the 2050 or the 2100 condition suitability index maps, we changed the habitat 194 suitability for the eBoS trophic groups according to the effect of CC on their suitability. After 195 replacing the suitability index for each CC condition (2050 and 2100), the Ecospace model was 196 run to equilibrium. In doing so, CC-induced changes to the environmental parameters which 197 affected the habitat suitability of the impacted groups in Ecospace. Following the foraging 198 arena theory (Walters et al., 1997, 1999), changes in habitat suitability affect consumption by 199 the groups in the cells and modify their production and biomass and thus their distribution and 200 dynamic (Christensen et al., 2014).

201 The long-lasting effects of the future offshore wind farm of Courseulles-sur-Mer were 202 modeled following previous works including Halouani et al. (2020) who first modeled the 203 reserve effect of the OWF. We improved on Halouani et al. (2020): by modeling a limited 204 closure of the farm following the owners' proposal to "optimize" fishing inside the farm (~15 205 %, Raoux et al., 2018, 2019) and by modeling the potential reef effect of the OWF (Nogues et 206 al., 2022). The reef effect was simulated based on Raoux et al. (2017), which used Ecosim to 207 simulate the introduction of new hard substrates to the Courseulles-sur-Mer ecosystem 208 (Figure - 2.A). Using the spatial-temporal framework of EwE (Steenbeek et al., 2013), biomass 209 changes observed in Raoux et al. (2017) due to the reef effect were transposed to new environmental driver maps to increase the habitat suitability of multiple benthic and demersal 210 groups inside the OWF (Table - 1 and supplementary materials 1 Table S1 - 4; Nogues et al., 211 212 2022). Combined with the 15% closure to fishing, this means that this study focuses on both 213 the reef and the reserve effects of the OWF, two effects considered as highly structuring on 214 the ecosystems (Langhamer, 2012; De Mesel et al., 2015).

215

216

217

218

Table - 1 Value of the environmental drivers used in Ecospace to model the reef effect on the habitat suitability of the eBoS trophic groups based on Raoux et al. (2017).

OWF presence	eBoS groups	Ecospace reef environmental driver	
No	All	1.00	
	Surface feeders seabirds	6.11	
	Fish Atlantic cod	3.49	
	Fish whiting	4.18	
	Fish pouting	2.32	
	Fish benthos feeders	2.07	
Yes	Fish sole	1.93	
	Fish flounder	4.37	
	Fish dab	4.37	
	Benthic inv. Predators	1.02	
	Benthic inv. filter feeders	1.53	
	Benthic inv. Bivalves	2.20	

In Nogues et al. (2022), three fishing scenarios based on the potential effect of Brexit on 219 fishing were tested. These scenarios either decreased or increased the fishing effort of trawls 220 and other gears, and decreased dredge effort (Supplementary materials 1 Table S1 - 5 to S1 -221 222 7). They were built to simulate the potential effect of Brexit on fishing in the area. These 223 scenarios had negligible effects on the ecosystem (Nogues et al., 2022) and preliminary results showed that when combined with CC and the OWF, there was little difference in the 224 cumulative response between fishing scenarios (Supplementary materials 2 Figure S2 - 17 to 225 S2 - 32). Therefore, we did not consider fishing scenarios explicitly in the assessment of CEs. 226 227 Instead, all fishing scenarios were combined with each other to build two cumulative scenarios, combining the effect of the OWF and of CC under the 2050 and 2100 conditions. These two 228 229 cumulative scenarios were designed to study the combined effects of CC and the OWF, while 230 considering potential fishing variations in the eBoS. They were called "Combined 2050" and 231 "Combined 2100:

232 233 Combined 2050: CC 2050 + the OWF with each fishing scenario (F_ref, F_inc and F_red). Combined 2100: CC 2100 + the OWF with each fishing scenario (F_ref, F_inc and F_red).

234

235

Figure - 2 Diagram of the modeling framework. Describes vertically: A) previous work leading up to this study and their relationships (solid: same model; dashed: same approach; dotted: used data), B) the modeling framework used in this study, C) the cumulative effects assessment procedure.

241 2.4 Ecological network analysis

The scenarios built in Nogues *et al.* (2022) were used to compute maps of ENA indices using the "EnaR" Ecospace plugin (Nogues *et al.*, 2022). This plugin available in a modified version of *EwE* 6 is used to create Scientific Committee for Ocean Research (SCOR) formatted files for each cell of the Ecospace model at each time step. SCOR files contain all the data

246 needed to create maps of ENA indices using the R package "EnaR" (Borrett and Lau, 2014). 247 Each cell of the Ecospace model had ENA values that were used to build ENA maps using the 248 same resolution as Ecospace (Supplementary materials 1 Figure S1 - 1). We selected four ENA 249 indices to describe and understand the functioning and organization of the food web (Table -2), based on previous lists of ENA indices considered promising for ecosystem management 250 251 due to their insights into ecosystem functioning and ecosystem resilience (Fath et al., 2019; 252 Safi et al., 2019). Each cumulative scenario had three sets of ENA results - one per fishing 253 scenario.

254 255

Table - 2 ENA indices computed with EnaR from Ecospace SCOR files (see Supplementary materials Table S – 8 for formulas).

Name	Objective	References
Relative flow redundancy (RDC)	Quantify the relative redundancy of the flows in the system.	(Ulanowicz and Norden, 1990; Christensen, 1995)
System omnivory (SOI)	Determine the level of omnivory of the system, <i>i.e.</i> , to what extent the groups in the system consume multiple other groups.	(Libralato, 2013)
Finn cycling index (FCI)	Specify how much energy of the system passes through cycles.	(Finn, 1980)
Mean trophic level (MTL 2)	Quantify the mean trophic level of the system and thus the ecological community structure.	(Latham, 2006)

256

257 2.5 Assessment of cumulative effects

ENA indices can assess the cumulative effects on the ecosystem properties, as described in Nogues *et al.* (2020). The methodology of Travers-Trolet *et al.* (2014) and Fu *et al.* (2018) was applied to determine the type of CE. This method considers that CEs can be synergistic, antagonistic or dampened. It also considers the direction of the effect on the studied index (positive or negative relative to the reference). To determine CEs, we computed the relative index change (delta) between the reference scenario and each independent driver (eq. 1, *e.g.*, the OWF alone or one of the CC conditions (2050 or 2100) or one of the fishing scenarios) for all ENA indices.

$$\Delta I_s^{sep} = \frac{I_s - I_r}{I_r} \tag{1}$$

where I_r is the index value of the reference model and I_s the index value of a single-effect model
(OWF only or CC only).

Then, we summed the ΔI_s^{sep} of each driver (CC, OWF and fishing) for each combination (F_red, F_inc, F_ref) in each cumulative scenario (cumulative 2050 and cumulative 2100, *Figure* - 2.B and C). This yielded three additive effects $\sum \Delta I_s^{sep}$ per cumulative scenario ($\sum \Delta I_s^{sep}$ F_red, the $\sum \Delta I_s^{sep}$ F_inc and the $\sum \Delta I_s^{sep}$ F_ref). To characterize CEs, we compared the three additive effects ($\sum \Delta I_s^{sep}$ F_red & $\sum \Delta I_s^{sep}$ F_inc & $\sum \Delta I_s^{sep}$ F_ref) to the three corresponding combined effects (ΔI_c^{cum} F_red & ΔI_c^{cum} F_inc & ΔI_c^{cum} F_ref), (Figure - 3, eq. 2) for the 2050 and 2100 cumulative scenarios.

$$\Delta I_c^{cum} = \frac{I_c - I_r}{I_r} \tag{2}$$

where I_r is the index value of the reference model and I_c the index value of the combined drivers (CC effects + OWF effects + one fishing scenario).

277 2.6 Comparison of additive effects and combined effects

278 To assess cumulative effects, the additive effects were compared to the combined 279 effects. The CEs under the 2050 and the 2100 cumulative scenarios were determined using two methods. First, the effects were determined for each region (functional and structural) of 280 the eBoS (Figure - 1) by comparing the average additive effect ($\overline{\sum \Delta I_s^{sep}}$ averaging each 281 combination *per* cumulative scenario) with the average combined effect ($\overline{\Delta I_c^{cum}}$ averaging 282 283 each combination per cumulative scenario) under each cumulative scenario, using barplots. If the two averaged effects ($\overline{\Sigma \Delta I_s^{sep}}$ and $\overline{\Delta I_c^{cum}}$) were equal, we considered that no CE resulted 284 285 from the combined drivers (Figure - 3, case 1), and if there was differences, than there was CEs (Figure - 3). 286

288Figure - 3 Comparison of the additive and combined effects of drivers to289determine the resulting cumulative effect of drivers on ENA indices.

Case 1: no cumulative effect; case 2: positive dampened; case 3: positive
synergistic; case 4: negative synergistic; case 5: negative dampened; case 6:
positive antagonistic; case 7: negative antagonistic.

293 The Cliff delta (Cliff, 1993; Tecchio et al., 2016) effect size metric was also used to 294 compare the additive effect and the combined effect for each cumulative scenario (Cumulative 2050 and 2100), in each cell of the eBoS Ecospace model (4,907 comparisons). It was chosen 295 because it is a non-parametric effect size metric that can be used to compare datasets with 296 different treatments. The Cliff delta determined if the difference between the $\sum \Delta I_s^{sep}$ and the 297 ΔI_c^{cum} (per cumulative scenario) was large, medium, small or negligible. If the difference was 298 299 considered large, based on the threshold given by Romano et al. (2006) (| ∂Cliff | < 0.474), 300 then the CE was considered significant in the cell. This allowed a more precise discrimination 301 of CEs within the eBoS, and enabled the mapping of CEs despite variability inside the regions 302 and between fishing scenarios.

In Ecospace, the habitat suitability drives the distribution and dynamic of trophic groups. It is the product of the group responses to each environmental driver: here climate change and to the OWF reef effect. Due to the fact that the habitat suitability is a product, the relative effects of CC and the OWF on the suitability are constant, but can have different absolute effects. Let's take for example two drivers, A and B, with a response of 0.5 and 0.1 respectively in the reference model. If driver B's response increases to 0.6, then the group capacity will

309 increase to 0.3, a 500% increase compare to the reference. If, on the other hand, driver A's 310 response is increased simultaneously to 0.8, then the habitat capacity will increase to 0.48. 311 While this will still result in a 500% increase of the habitat capacity, the absolute increase of 312 the habitat capacity will be different due to driver A (a 0.25 increase in the first case, and a 0.4 313 increase in the second case). Compared to the reference, the combine effect of drive A and B 314 will thus have a higher absolute effect than each effect taken separately. This difference in the 315 absolute effect of the drivers on the habitat suitability is akin to a cumulative response, where 316 the intensity of one driver may impact the intensity of another. In this case, however, this is 317 governed by the Ecospace equations. To determine what are the consequences of the habitat 318 suitability model on CEs, the same cumulative assessment method was used to distinguish CEs on the habitat suitability and on the biomass of the different groups. This assessment was 319 320 made by combining the effect of climate change in both conditions (2050 and 2100) and the reef effect of the OWF. 321

322 3 Results

323 3.1 Cumulative effects in the eBoS regions

The graphical comparison of the additive and combined effects under the two cumulative scenarios (combined 2050 and combined 2100; Figure - 4) showed that only the OWF appeared to be affected by CEs. This was similar to what is observed on the habitat capacity. Out of the 10 groups displaying CE on their habitat capacity, four and five displayed different CEs on their biomass, with greater differences in 2100 (Table - 3). Moreover, all 40 groups appeared to show CEs on their biomass.

330 The average additive effect was an outlier to the average combined effect for the 331 recycling index (FCI), the mean trophic level (MTL2) and relative flow redundancy (RDC), despite variability (i) inside the OWF sub-region and (ii) among the three fishing scenarios 332 333 within each cumulative scenario (Figure - 4). Under the 2050 cumulative scenario, CEs inside the OWF were always positive – positive synergistic for the FCI and positive dampened for the 334 335 MTL2 and RDC. Under the 2100 cumulative scenario, CEs within the OWF were similar to those 336 under the 2050 cumulative scenario for FCI and MTL 2 – positive synergistic for the FCI and 337 dampened positive for the MTL2 (Figure - 4). However, a negative CE – negative synergistic for 338 relative redundancy (RDC, Figure - 4) - was found under the 2100 cumulative scenario that was

- not found under the 2050 cumulative scenario. Another region that seemed to exhibit a CE
- 340 was the Spillover region under the 2050 cumulative scenario, for the system omnivory (SOI).
- 341 However, this effect was not as clear-cut as in the OWF region because there was greater
- 342 variability within the region.
- 343Table 3 Comparison between the cumulative effects (CE) visible on the
habitat capacity and on the biomass of the groups in 2050 and 2100.
- 345 Red color indicates the degree of difference between CE (different CE with
- 346 same direction < opposite CE direction). Abbreviations include: positive
- 347 (pos.), negative (neg.) and invertebrate (inv.).

	2050		2100	
eBoS Groups	CE in Habitat capacity	CE in Biomass	CE in Habitat capacity	CE in Biomass
Fish Atlantic cod	Dampened pos.	Dampened pos.	Antagonistic neg.	Antagonistic neg.
Fish whiting	Dampened pos.	Dampened pos.	Antagonistic neg.	Antagonistic neg.
Fish pouting	Dampened pos.	Synergistic pos.	Antagonistic neg.	Synergistic neg.
Fish benthos feeders	Dampened pos.	Synergistic pos.	Antagonistic neg.	Synergistic pos.
Fish sole	Dampened pos.	Synergistic pos.	Dampened pos.	Synergistic pos.
Fish flounder	Dampened pos.	Dampened pos.	Antagonistic neg.	Antagonistic neg.
Fish limande	Antagonistic neg.	Antagonistic neg.	Antagonistic neg.	Antagonistic neg.
Benthic inv. predators	Synergistic neg.	Synergistic neg.	Synergistic neg.	Synergistic pos.
Benthic inv. filter feeders	Dampened pos.	Dampened pos.	Synergistic neg.	Synergistic neg.
Benthic inv. bivalves	Dampened pos.	Synergistic pos.	Antagonistic neg.	Synergistic neg.

348

349

350

351 352

354

Figure - 4 Regional differences in percent between the averaged additive effect (blue) and the averaged combined effect (red) under the two cumulative scenarios (2050 left column and 2100 right column). Regions

355include: English Channel (EC); Offshore Bay of Seine (OBoS); Coastal Bay of356Seine (CBoS); Spillover (Spill); Offshore wind farm (OWF).

- The standard deviation for the cumulative scenario was calculated with the values of all the cells of the given region, for all the combinations of drivers (F_ref, F_inc and F_red), and was pictured with error bars. Error bars show the standard deviations within the regions and among the driver combinations under each cumulative scenario.
- **362** 3.2 Spatial cumulative effects

363 Cumulative effects were spatially closely linked with the OWF, with varying sensitivity of 364 the indices and scenarios. The MTL2 was the only index that displayed CEs far outside the OWF 365 region, in all the regions of the model. Even though a lot of cells showed CEs, they were mixed 366 (positive synergistic with positive dampened, negative synergistic with negative dampened), 367 resulting in the absence of visible CEs at the regional scale (Figure - 4) despite the large 368 amplitude of the effects.

The OWF region consistently displayed most of the CEs in the eBoS, but results at the cell 369 370 level showed that cumulative effects could also occur elsewhere (Figure - 5). The OWF region 371 displayed uniform CEs. The Spillover region showed intra-regional variability of CEs, especially 372 under the 2050 scenario, with a uniform positive synergistic effect on the FCI and RDC, but 373 heterogeneous effects on the SOI – positive synergistic, positive antagonistic and negative dampened effects all mixed together across the region (Figure - 5). Under the 2100 scenario, 374 375 CEs were more homogeneous across the region. This trend was not just visible at the regional 376 scale: CEs were altogether more homogeneous under the 2100 scenario than under the 2050 377 scenario (Figure - 5 & 6).

Cumulative effects in both scenarios varied according to ENA indices (Figure - 5 & 6). Both scenarios displayed a similar positive synergistic effect within and around the OWF for the FCI, but the SOI and RDC had different CEs under each scenario, with positive effects under the 2050 scenario and negative ones under the 2100 scenario. The effects under the 2100 scenario were also higher than the effects under the 2050 scenario: CEs had a 5 % positive synergistic effect on the FCI in the OWF sub-region under the 2100 scenario, *versus* a 2% synergistic increase of the FCI under the 2050 scenario (Figure - 5 & 6).

385

386

387Figure - 5 Strong cumulative effects under the 2050 cumulative scenario388according to the Cliff delta metric.

The averaged cumulative effects were mapped when the difference between the additive effect and the combined effect was considered large by the Cliff delta. Maps were sorted *per* row (ENA indices) and *per* column (cumulative effect). Warm colors, positive cumulative effects relative to the reference model; cold colors, negative cumulative effects relative to the reference model. Dashed line, OWF; dotted line, spillover region; full line, functional region.

397Figure - 6 Strong cumulative effects under the 2100 cumulative scenario398according to the Cliff delta metric.

The averaged cumulative effects were mapped when the difference between the additive effect and the combined effect was considered large by the Cliff delta. Maps were sorted *per* row (ENA indices) and *per* column (cumulative effect). Warm colors, positive cumulative effects relative to the reference model; cold colors, negative cumulative effects relative to the reference model. Dashed line, OWF; dotted line, spillover region; full line, functional region.

406 4 Discussion

396

This study proposed an innovative method to characterize CEs on the functioning of an ecosystem using holistic indices. However, we must consider the limitations of the approach. First, we did not account for the explicit role of fishing as our fishing scenarios were not substantial enough to have significant effects on the ecosystem (see Nogues et al. 2021). Understanding the relationships between fishing and CC is indeed a priority (Gissi *et al.*, 2021). Both may have strong interactions and could lead to significant changes to marine ecosystem

(Ainsworth *et al.*, 2011). Unfortunately, our fishing scenarios did not enable us to do so directly,
but rather through the consideration of fishing variability.

415 Other limitations include the one detrimental to Ecopath, which were discussed in 416 Christensen and Walters (2004) and Ainsworth and Walters (2015). Some of these limitations 417 may limit our ability to model climate change like the inhability to take into account 418 environemental drivers variability or the constant physiological ratios of trophic groups in 419 Ecospace. CC modeling would greatly benefit from the ability to take species adaptation into 420 account (Hoffmann and Sgró, 2011) as well as to better integrate input variability. Other 421 benefits would be to consider the arrival of non-indigenous species in the system (Corrales et 422 al. 2018; Le Marchand et al., 2020). These limitations were not resolved in this study due to 423 methodological reasons, in order to keep the number of scenarios as small as possible, to 424 facilitate CE assessment (Nogues et al., 2022). Despite these limitations, studying CEs on whole 425 ecosystem functioning remains a priority often overlooked when using ecosystem approaches, 426 even though such ecosystem approaches are increasingly used (Gissi et al., 2021).

427 4.1 Mapping of cumulative effects using ecosystem approaches

Cumulative effects mainly occurred within the OWF region, were both anthropogenic 428 429 drivers – CC and the OWF – coincide. This was mainly visible inside the OWF region, where the 430 differences between the habitat capacity of the separate and combined effects were observed. 431 However, CE were not only visible on the species impacted by both drivers, but on the 432 functioning and structure of the entire ecosystem. Multiple ecosystem indices showed this, 433 including the recycling (FCI), the mean trophic level of the consumers (MTL 2) and the relative 434 redundancy of the flows (RDC). This further confirmed the importance of considering larger-435 scale drivers like climate change when assessing the environmental impact of local strategic 436 activities (Willsteed et al., 2017). Indeed, local and global drivers may interact with each other 437 through trophic cascading, leading to unsuspected consequences on the ecosystem at the local scale (Brown et al., 2013). Even at the trophic group scale, when the habitat capacity model 438 439 predicted one type of cumulative response, the CE visible on the biomass of the group was 440 different due to trophic relationships with other groups. This highlights the importance of 441 considering the combined effects of local and global drivers on complex systems such as food 442 webs (Boyd and Hutchins, 2012; Nogues et al., 2021), whether in space or in the system itself.

443 Cumulative effects were important across the OWF region, but it was not the only region 444 with noticeable effects. They were also visible in multiple cells outside the OWF region -445 regions that did not display CE on the habitat capacity - such as in the spillover region 446 surrounding the farm and the coastal region. Moreover, the extent of these effects differed among ENA indices, with heterogeneous CEs inside and outside the OWF region. The varying 447 448 CEs per ENA index, already observed by Nogues et al. (2020), indicated that CEs can differ 449 depending on the ecosystem property, and that CEs result from different trophic relationships 450 which can be related to multiple cumulative pathways (Spaling, 1994). A cumulative impact 451 may affect differently each species of an ecosystem (Fu et al., 2018; Ortega-Cisneros et al., 452 2018), and the same goes for ecosystem properties (e.g., recycling, omnivory or flow 453 redundancy). For example, CEs on flow redundancy may be linked to simultaneous changes at 454 multiple trophic levels, which can result in a different CE on the system omnivory. As habitat 455 and ecological communities are not homogeneous in space and ecological responses to drivers 456 differ among trophic groups (Schiel et al., 2014; Epstein and Smale, 2018), such coordination 457 may vary across space. Moreover, trophic groups may not move at the same rate in the 458 ecosystem. Therefore, ecosystem responses to multiple drivers should not be generalized: two 459 given drivers may interact differently in different ecosystems (Cocklin et al., 1992; Gissi et al., 460 2021), and may not interact uniformly within a given ecosystem. Current cumulative assessment works often overlook such variability (Ban et al., 2010; Halpern and Fujita, 2013; 461 462 Kotta et al., 2020). Therefore, ecosystem approaches should be promoted to model these 463 structures and properly assess the multiple effects of combined drivers on the ecosystem. This 464 could also greatly help the mapping of the potential interactions between two large-scale 465 drivers like fishing and CC because they may have complex spatial patterns of CEs depending 466 on ecosystem heterogeneity that conventional CE assessment may not be able to grasp.

467 4.2 Cumulative effects and climate change

Ecosystem approaches also benefit from their ability to detect potential ecosystem restructuring, which plays a key role on CEs at the ecosystem level. Drivers themselves can indeed restructure the food web by changing the ecological community and through trophic cascading (Tomczak *et al.*, 2013; Heymans and Tomczak, 2016). This is due to the structuring power of some drivers on the ecosystem and may be one of the main processes leading to CEs at the ecosystem level of organization, as observed in Nogues *et al.* (2020) and Niiranen *et al.*

474 (2013). This was visible on recycling under both CC cumulative scenarios. Taken separately, the 475 OWF reduced system recycling, while CC increased it with varying intensities under the two 476 2050 and 2100 cumulative scenarios. When combined, CC and the OWF resulted in a 477 synergistic increase of recycling under both cumulative scenarios (2050 and 2100). Therefore, the effect of the OWF may change under the influence of CC. CC is already known to 478 479 restructure food webs (Montoya and Raffaelli, 2010; Walther, 2010) due to varying velocities 480 of species drift (Van Der Putten et al., 2010; Brose et al., 2012). Such restructuring of the 481 system can change energy distribution in the food web through trophic cascades (Carpenter 482 et al., 1985), and modify the effect of the OWF on recycling and lead to a positive synergistic 483 effect. Ecosystems need to be monitored using holistic indices (Tomczak et al., 2013) to detect potential ecosystem restructuring (Rilov et al., 2020). Our results show that ignoring the 484 485 plasticity of ecosystems to drivers and their effects on species relationships may hinder the detection of CEs on ecosystem functioning. 486

487 A driver effect on the ecosystem may also change over time, especially in the case of CC and its effect on species distribution (Martinez-Meyer, 2005). As the magnitude of the effect 488 489 of CC on the ecosystem changed over time, the role of CC in the CE with the OWF changed too. 490 This was visible through the different CEs of the two cumulative scenarios on omnivory and 491 flow redundancy. The effect was also distinguishable on the mean trophic level of the OWF 492 region: while both cumulative scenarios displayed the same positive dampened effect on the 493 mean trophic level, they are the result of different mechanisms. Under the 2050 cumulative 494 scenario, the dampened positive effect resulted from the aggregation of fish by the OWF that 495 mitigated the negative effect of CC on the mean trophic level (Supplementary materials 2 496 Figure S2 - 5); under the 2100 cumulative scenario, the effect of CC on the ecosystem structure 497 limited the aggregating effect of the OWF on the mean trophic level (Supplementary materials 498 2 Figure S2 – 6 & Figure S2 - 8). Thus, the dampened effect resulted from the aggregating effect 499 of the OWF (Halouani et al., 2020) under the 2050 scenario, while it resulted from the changed 500 community structure across the entire eBoS under the 2100 scenario (Fulton, 2011; Pinsky et 501 al., 2013; Kleisner et al., 2016). Climate change may indeed produce "winners" and "losers", 502 and modify ecosystem structures up to a point where CE may change. Therefore, CEs should 503 not be considered consistent over time because drivers like CC may change, so that continuous 504 monitoring of ecosystems is required (Cocklin et al., 1992; Spaling, 1994).

505 CC seems to have a preponderant role in the formation of CEs, especially under the 2100 506 scenario compared to the 2050 scenario, when the effect of CC becomes much stronger. For 507 many ENA indices, the direction of CEs nearly always followed the direction of CC rather than 508 the direction of the OWF. The only exceptions occurred under the 2050 cumulative scenario, 509 when the effects of CC were weaker because ecosystem properties were less impacted by CC 510 than in 2100 (Nogues et al., 2022). This was visible for the negative dampened effect on the 511 omnivory of the spillover region and for the positive dampened effect on the mean trophic 512 level of the OWF region. This can be explained by the fact that CC under the 2050 scenario had 513 limited or no effect compared to the effects of the OWF (Supplementary materials 2 Figure S2 514 - 5 & S2 - 13). In the other cases, CE acted in the same direction as CC did, with effects varying 515 from synergistic to dampened along with limited antagonistic effects, despite the variability in 516 fishing. Such results remain difficult to compare to meta-analyses of cumulative impacts (e.g., 517 Hodgson and Halpern, 2019) because we used a new method to characterize combined effects. 518 However, our results are in line with the idea that the cumulative responses to multiple drivers 519 are often non-additive (Darling and Côté, 2008). Overall, the fact that CC appeared to be the 520 predominant effect compared to the OWF, resulting in CEs closer to the effect of CC than to the effect of the OWF, further emphasized the need to consider the significant effects of CC in 521 522 cumulative impact assessment and to better understand its potential structuring effects on species relationships (Wernberg et al., 2012). 523

524 The increasing effect of CC on the ecosystem between the 2050 and the 2100 scenarios impacted the ecosystem's resilience. Under the 2050 scenario, the combined drivers tend to 525 526 increase recycling, mean trophic level, omnivory and relative redundancy of the flow, 527 indicating a more resilient system to potential future disturbances. Higher system omnivory 528 and relative flow redundancy could indeed be beneficial to the system's resilience, indicating 529 an increased flexibility of the system. The complexity associated to the system omnivory has 530 been linked to the system flexibility, which makes the ecosystem more resilient to disturbances 531 (Fagan, 1997; Lobry et al., 2008). Relative flow redundancy is also associated to ecological resilience because flow redundancy can act as a reserve to be used when the system is 532 533 perturbed, and makes it more resistant to disturbances (Ulanowicz et al., 2009). Recycling can 534 further improve ecosystem resilience, acting as a buffer to perturbation further indicating that 535 the OWF could limit the effect of CC on the ecosystem's resilience in the spillover region (Saint-

536 Béat et al., 2015). The increased resilience of the system due to the OWF and its combined 537 effect with CC is again in line with the idea that the habitat heterogeneity brought by the OWF 538 can improve ecosystem resilience (Munguia et al., 2011). However, with a strong effect of CC, 539 this can only be true until CC restructures the system to a point where the OWF will potentially not have any effect on the ecosystem's resilience. Under the 2100 scenario, the lower system 540 541 omnivory and the lower relative redundancy constitute signs of a lower ecological resilience 542 compared to the 2050 scenario. The combined effect of the two drivers impairs the system's 543 resilience under the 2100 scenario. This needs to be considered carefully as Ecospace – like 544 Ecopath – does not take the potential adaptability of species into account, but follows trends 545 of the relationship between CC and ecosystem resilience at different levels of organization (Harley et al., 2006; Côté and Darling, 2010; Wernberg et al., 2011). 546

547 Conclusion

548 Using ENA indices to study cumulative effects on ecosystem functioning provides new 549 insights into the functional pathways of cumulative responses. Such pathways seem inherently 550 ecosystem-dependent, driver-dependent but more importantly effect-dependent. This is 551 emphasized by the consequences of climate change on species distribution: the location of the 552 ecosystem and the differential sensitivity levels of the different species are unique to each case 553 study. As such, the resulting structuring effect is specific to the community assemblage of the ecosystem. Thus, relations among drivers can be highly dependent on the studied system. This 554 555 was previously theorized by Cocklin et al. (1992) and Spaling (1994), and shows that such 556 studies should be encouraged all around the world to explore the wide variability of functional 557 response to CEs (Gissi et al., 2021). In the extended Bay of Seine, CEs resulting from the 558 offshore wind farm and climate change seem to change through time. While in 2050, CEs tend to benefit the ecosystem functioning, in 2100, with the increased impact of CC, CEs tend to 559 560 negatively impact the ecosystem functioning. Studying the combine effects of multiple drivers 561 on the functioning of ecosystems could allow us to better grasp the complexity of CEs and 562 better guide ecosystem monitoring and management in the future.

Acknowledgements

This work was funded by the Normandy Region (RIN Trophi-Services project), and follows the TROPHIK project, which benefited from France Energies Marines and State financing managed by the National Research Agency under the Investments for the Future program (reference ANR/FEM EMR-ITE ANR-10-IED-0006-12). This study is also supported by the APPEAL project (ANR-10-IED-0006-25). Finally, we would like to thank the reviewers.

Data availability statement

The data underlying this article will be shared on reasonable request to the corresponding author.

Author contribution

All authors developed the ideas, conceptualized and revised the manuscript. Q.N. was the lead author and main contributor. E.A., G.H., P.B. and Q.N. built the model. N.N. supervised and with F.L.L. and F.L. secured funds.

Competing interest statement

The authors have no conflict of interest to declare.

References

- Ainsworth, C. H., Samhouri, J. F., Busch, D. S., Cheung, W. W. L., Dunne, J., and Okey, T. A. 2011. Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES Journal of Marine Science, 68: 1217–1229.
- Ainsworth, C., and Walters, C. J. 2015. Ten common mistakes made in Ecopath with Ecosim modelling. Ecological Modelling, 308.
- Baird, D., and Ulanowicz, R. E. 1993. Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Marine Ecology Progress Series, 99: 221–237.
- Ban, N. C., Alidina, H. M., and Ardron, J. A. 2010. Cumulative impact mapping: Advances, relevance and limitations to marine management and conservation, using Canada's Pacific waters as a case study. Marine Policy, 34: 876–886. Elsevier. http://dx.doi.org/10.1016/j.marpol.2010.01.010.
- Ben Rais Lasram, F., Hattab, T., Noguès, Q., Beaugrand, G., Dauvin, J., Halouani, G., Le Loc'h,
 F., et al. 2020. An open-source framework to model present and future marine species distributions at local scale. Ecological Informatics: 101130.
- Bidstrup, M., Kørnøv, L., and Partidário, M. R. 2016. Cumulative effects in strategic environmental assessment: The influence of plan boundaries. Environmental Impact Assessment Review, 57: 151–158. Elsevier Inc. http://dx.doi.org/10.1016/j.eiar.2015.12.003.
- Borrett, S. R., and Lau, M. K. 2014. enaR : An r package for Ecosystem Network Analysis. Methods in Ecology and Evolution, 5: 1206–1213. http://doi.wiley.com/10.1111/2041-210X.12282.
- Borrett, S. R., and Scharler, U. M. 2019. Walk partitions of flow in Ecological Network Analysis: Review and synthesis of methods and indicators. Ecological Indicators, 106: 105451. Elsevier. https://doi.org/10.1016/j.ecolind.2019.105451.
- Bourdaud, P., Ben Rais Lasram, F., Araignous, E., Champagnat, J., Grusd, S., Halouani, G., Hattab, T., *et al.* 2021. Impacts of climate change on the Bay of Seine ecosystem: Forcing

ICES Journal of Marine Science, Volume 80, Issue 4, May 2023, Pages 1129–1142. DOI: <u>https://doi.org/10.1093/icesjms/fsad043</u>

a spatio-temporal trophic model with predictions from an ecological niche model. Fisheries Oceanography, 12: 1–19.

- Boyd, P. W., and Hutchins, D. A. 2012. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Marine Ecology Progress Series, 470: 125–135.
- Breitburg, D. L., Baxter, J. W., Hatfield, C. A., Howarth, R. W., Jones, C. G., Lovett, G. M., and
 Wigand, C. 1998. Understanding Effects of Multiple Stressors: Ideas and Challenges.
 Successes, Limitations, and Frontiers in Ecosystem Science: 416–431.
- Brose, U., Dunne, J. A., Montoya, J. M., Petchey, O. L., Schneider, F. D., and Jacob, U. 2012.
 Climate change in size-structured ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367: 2903–2912.
- Brown, C. J., Saunders, M. I., Possingham, H. P., and Richardson, A. J. 2013. Managing for Interactions between Local and Global Stressors of Ecosystems. PLoS ONE, 8.
- Buhl-Mortensen, L., Galparsoro, I., Vega Fernández, T., Johnson, K., D'Anna, G., Badalamenti,
 F., Garofalo, G., *et al.* 2017. Maritime ecosystem-based management in practice: Lessons learned from the application of a generic spatial planning framework in Europe. Marine Policy, 75: 174–186.

http://www.sciencedirect.com/science/article/pii/S0308597X16000373.

- Carpenter, S. R., Kitchell, J. F., and Hodgson, J. R. 1985. Cascading Trophic Interactions and Lake Productivity. BioScience, 35: 634–639.
- Christensen, V. 1995. Ecosystem maturity towards quantification. Ecological Modelling, 77: 3–32. https://linkinghub.elsevier.com/retrieve/pii/0304380093E0073C.
- Christensen, V., and Walters, C. J. 2004. Ecopath with Ecosim: Methods, capabilities and limitations. Ecological Modelling, 172: 109–139. Elsevier. https://www.sciencedirect.com/science/article/pii/0304380093E0073C (Accessed 6 September 2019).
- Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., and Walters, C. J. 2014. Representing Variable Habitat Quality in a Spatial Food Web Model: 1397–1412.

- Cliff, N. 1993. Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin, 114: 494–509. American Psychological Association Inc.
- Cocklin, C., Parker, S., and Hay, J. 1992. Notes on cumulative environmental change I: Concepts and issues. Journal of Environmental Management, 35: 31–49.
- Corrales, X., Coll, M., Ofir, E., Heymans, J. J., Steenbeek, J., Goren, M., Edelist, D., et al. 2018. Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean under the impacts of fishing, alien species and sea warming. Scientific Reports, 8: 1–16. Springer US. http://dx.doi.org/10.1038/s41598-018-32666-x.
- Côté, I. M., and Darling, E. S. 2010. Rethinking ecosystem resilience in the face of climate change. PLoS Biology, 8.
- Crain, C. M., Kroeker, K., and Halpern, B. S. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11: 1304–1315.
- Darling, E. S., and Côté, I. M. 2008. Quantifying the evidence for ecological synergies. Ecology Letters, 11: 1278–1286.
- Dauvin, J.-C. 2019. The English Channel: La Manche. In pp. 153–188.
- Dauvin, J. C. 2015. History of benthic research in the English Channel: From general patterns of communities to habitat mosaic description. Journal of Sea Research, 100: 32–45. Elsevier B.V. http://dx.doi.org/10.1016/j.seares.2014.11.005.
- De Mesel, I., Kerckhof, F., Norro, A., Rumes, B., and Degraer, S. 2015. Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species. Hydrobiologia, 756: 37–50.
- Epstein, G., and Smale, D. A. 2018. Between-habitat variability in the population dynamics of a global marine invader may drive management uncertainty. Marine Pollution Bulletin, 137: 488–500. Elsevier. https://doi.org/10.1016/j.marpolbul.2018.10.055.
- Fagan, W. F. 1997. Omnivory as a stabilizing feature of natural communities. American Naturalist, 150: 554–567.
- Fath, B. D., Asmus, H., Asmus, R., Baird, D., Borrett, S. R., de Jonge, V. N., Ludovisi, A., *et al.* 2019. Ecological network analysis metrics: The need for an entire ecosystem approach in

management and policy. Ocean and Coastal Management, 174: 1–14.

- Finn, J. T. 1980. Flow Analysis of Models of the Hubbard Brook Ecosystem. Ecology, 61: 562–571.
- Folt, C., and Chen, C. 1999. Synergism and antagonism among multiple stressors. Limnology and ..., 44: 864–877. http://www.avto.aslo.info/lo/toc/vol_44/issue_3_part_2/0864.pdf.
- Fu, C., Travers-Trolet, M., Velez, L., Grüss, A., Bundy, A., Shannon, L. J., Fulton, E. A., *et al.* 2018.
 Risky business: The combined effects of fishing and changes in primary productivity on fish communities. Ecological Modelling, 368: 265–276. Elsevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2017.12.003.
- Fulton, E. A. 2011. Interesting times: Winners, losers, and system shifts under climate change around Australia. ICES Journal of Marine Science, 68: 1329–1342.
- Gissi, E., Manea, E., Mazaris, A. D., Fraschetti, S., Almpanidou, V., Bevilacqua, S., Coll, M., *et al.* 2021. A review of the combined effects of climate change and other local human stressors on the marine environment. Science of the Total Environment, 755: 142564. The Authors. https://doi.org/10.1016/j.scitotenv.2020.142564.
- Gușatu, L. F., Menegon, S., Depellegrin, D., Zuidema, C., Faaij, A., and Yamu, C. 2021. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin. Scientific Reports, 11: 1–18.
- Halouani, G., Villanueva, C.-M., Raoux, A., Dauvin, J., Lasram, F., Foucher, E., Le Loc'h, F., *et al.*2020. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. Journal of Marine Systems, 212: 103434.
- Halpern, B., and Fujita, R. 2013. Assumptions , challenges , and future directions in cumulative impact analysis. Ecosphere, 4 (10).
- Harley, C. D. G., Hughes, A. R., Hultgren, K. M., Miner, B. G., Sorte, C. J. B., Thornber, C. S., Rodriguez, L. F., *et al.* 2006. The impacts of climate change in coastal marine systems. Ecology Letters, 9: 228–241.
- Heymans, J. J., and Tomczak, M. T. 2016. Regime shifts in the Northern Benguela ecosystem: Challenges for management. Ecological Modelling, 331: 151–159. Elsevier B.V.

ICES Journal of Marine Science, Volume 80, Issue 4, May 2023, Pages 1129–1142. DOI: <u>https://doi.org/10.1093/icesjms/fsad043</u>

http://dx.doi.org/10.1016/j.ecolmodel.2015.10.027.

- Heymans, J. J., Bundy, A., Christensen, V., Coll, M., de Mutsert, K., Fulton, E. A., Piroddi, C., *et al.* 2020. The Ocean Decade: A True Ecosystem Modeling Challenge. Frontiers in Marine Science, 7: 1–5.
- Hodgson, E. E., and Halpern, B. S. 2019. Investigating cumulative effects across ecological scales. Conservation Biology, 33: 22–32.
- Hoffmann, A. A., and Sgró, C. M. 2011. Climate change and evolutionary adaptation. Nature, 470: 479–485.
- IFREMER SIH. 2017. Système d'Information Halieutique, Données de production et d'effort de pêche (SACROIS).
- IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
- Kleisner, K. M., Fogarty, M. J., McGee, S., Barnett, A., Fratantoni, P., Greene, J., Hare, J. A., *et al.* 2016. The effects of sub-regional climate velocity on the distribution and spatial extent of marine species assemblages. PLoS ONE, 11: 1–21.
- Kotta, J., Fetissov, M., Aps, R., and Martin, G. 2020. Online tool to integrate evidence-based knowledge into cumulative effects assessments : Linking human pressures to multiple nature assets, 2. Elsevier Ltd.
- Langhamer, O. 2012. Artificial reef effect in relation to offshore renewable energy conversion: State of the art. The Scientific World Journal, 2012.
- Langlet, D., and Rayfuse, R. 2018. The Ecosystem Approach in Ocean Planning and Governance. Brill | Nijhoff, Leiden, Nederland. https://brill.com/view/title/54021.
- Latham, L. G. 2006. Network flow analysis algorithms. Ecological Modelling, 192: 586–600.
- le Marchand, M., Hattab, T., Niquil, N., Albouy, C., le Loc'h, F., and ben Rais Lasram, F. 2020. Climate change in the Bay of Biscay: Changes in spatial biodiversity patterns could be driven by the arrivals of southern species. Marine Ecology Progress Series, 647: 17–31.
- Le Tissier, M. 2020. Unravelling the Relationship between Ecosystem-Based Management,

Integrated Coastal Zone Management and Marine Spatial Planning BT - Ecosystem-Based Management, Ecosystem Services and Aquatic Biodiversity: Theory, Tools and Applications. *In* pp. 403–413. Ed. by T. G. O'Higgins, M. Lago, and T. H. DeWitt. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-45843-0_20.

- Libralato, S. 2013. System Omnivory Index. *In* Encyclopedia of Ecology, pp. 481–486. Elsevier. https://linkinghub.elsevier.com/retrieve/pii/B9780124095489006059.
- Lobry, J., David, V., Pasquaud, S., Lepage, M., Sautour, B., and Rochard, E. 2008. Diversity and stability of an estuarine trophic network. Marine Ecology Progress Series, 358: 13–25.
- MacQueen, J. 1967. Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1: http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=

MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ-ITNHu1HncmOFOkM#v=onepage&q=MacQueen some methods for classification&f=false.

- Martinez-Meyer, E. 2005. Climate Change and Biodiversity: Some Considerations in Forecasting Shifts in Species' Potential Distributions. Biodiversity Informatics, 2: 42–55.
- Montoya, J. M., and Raffaelli, D. 2010. Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2013–2018.
- Munguia, P., Osman, R. W., Hamilton, J., Whitlatch, R., and Zajac, R. 2011. Changes in habitat heterogeneity alter marine sessile benthic communities. Ecological Applications, 21: 925–935.
- Niiranen, S., Yletyinen, J., Tomczak, M. T., Blenckner, T., Hjerne, O., Mackenzie, B. R., Müller-Karulis, B., *et al.* 2013. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web. Global Change Biology, 19: 3327–3342.
- Nogues, Q., Araignous, E., Bourdaud, P., Halouani, G., Raoux, A., Foucher, É., Loew-Turbout, F., et al. (2022). Spatialized ecological network analysis for ecosystem-based management: effects of climate change, marine renewable energy and fishing on

ICES Journal of Marine Science, Volume 80, Issue 4, May 2023, Pages 1129–1142. DOI: <u>https://doi.org/10.1093/icesjms/fsad043</u>

ecosystem functioning in the Bay of Seine. ICES Journal of Marine Science.

- Nogues, Q., Raoux, A., Araignous, E., Hattab, T., Leroy, B., Ben Rais Lasram, F., Le Loc'h, F., *et al.* 2020. Cumulative effects of marine renewable energy and climate change on ecosystem properties : Sensitivity of ecological network analysis. Ecological Indicators.
- Ortega-Cisneros, K., Cochrane, K. L., Fulton, E. A., Gorton, R., and Popova, E. 2018. Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework. Fisheries Oceanography, 27: 489–503.
- Pauly, D., Christensen, V., and Walters, C. 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES Journal of Marine Science, 57: 697–706.
 Oxford University Press. https://academic.oup.com/icesjms/article-lookup/doi/10.1006/jmsc.2000.0726 (Accessed 11 June 2018).
- Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., and Levin, S. A. 2013. Marine taxa track local climate velocities. Science, 341: 1239–1242.
- Raoux, A., Dambacher, J. M., Pezy, J. P., Mazé, C., Dauvin, J. C., and Niquil, N. 2018. Assessing cumulative socio-ecological impacts of offshore wind farm development in the Bay of Seine (English Channel). Marine Policy, 89: 11–20.
- Raoux, A., Lassalle, G., Pezy, J. P., Tecchio, S., Safi, G., Ernande, B., Mazé, C., et al. 2019. Measuring sensitivity of two OSPAR indicators for a coastal food web model under offshore wind farm construction. Ecological Indicators, 96: 728–738.
- Rilov, G., Fraschetti, S., Gissi, E., Pipitone, C., Badalamenti, F., Tamburello, L., Menini, E., *et al.*2020. A fast-moving target: achieving marine conservation goals under shifting climate and policies. Ecological Applications, 30.
- Rombouts, I., Beaugrand, G., Fizzala, X., Gaill, F., Greenstreet, S. P. R. R., Lamare, S., Le Loc'h,
 F., et al. 2013. Food web indicators under the Marine Strategy Framework Directive: From complexity to simplicity? Ecological Indicators, 29: 246–254. Elsevier Ltd. http://dx.doi.org/10.1016/j.ecolind.2012.12.021 (Accessed 12 June 2018).
- Safi, G., Giebels, D., Arroyo, N. L., Heymans, J. J., Preciado, I., Raoux, A., Schückel, U., *et al.* 2019. Vitamine ENA: A framework for the development of ecosystem-based indicators

for decision makers. Ocean and Coastal Management, 174: 116–130. Elsevier. https://doi.org/10.1016/j.ocecoaman.2019.03.005.

- Saint-Béat, B., Niquil, N., Asmus, H., Ragnhild Asmus, Bacher, C., Pacella, S. R., Johnson, G. A., et al. 2015. Trophic networks: How do theories lin ecosystem structure and functioning to stability properties? A review. Ecological Indicators, 52: 458–471. Elsevier Ltd. http://linkinghub.elsevier.com/retrieve/pii/S1470160X14005937 (Accessed 7 June 2017).
- Schiel, D. R., Steinbeck, J. R., and Foster, M. S. 2014. Ten Years of Induced Ocean Warming Causes Comprehensive. Ecology, 85: 1833–1839.
- Schwalm, C. R., Glendon, S., and Duffy, P. B. 2020. RCP8.5 tracks cumulative CO2 emissions.
 Proceedings of the National Academy of Sciences, 117: 19656 LP 19657.
 http://www.pnas.org/content/117/33/19656.abstract.
- Spaling, H. 1994. Cumulative effects assessment: Concepts and principles. Impact Assessment, 12: 231–251.
- Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski, J., and Christensen, V.
 2013. Bridging the gap between ecosystem modeling tools and geographic information systems : Driving a food web model with external spatial temporal data. Ecological Modelling, 263: 139–151. Elsevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2013.04.027.
- Stelzenmüller, V., Coll, M., Mazaris, A. D., Giakoumi, S., Katsanevakis, S., Portman, M. E., Degen, R., et al. 2018. A risk-based approach to cumulative effect assessments for marine management. Science of the Total Environment, 612: 1132–1140. The Author(s). http://dx.doi.org/10.1016/j.scitotenv.2017.08.289.
- Tecchio, S., Chaalali, A., Raoux, A., Tous Rius, A., Lequesne, J., Girardin, V., Lassalle, G., et al.
 2016. Evaluating ecosystem-level anthropogenic impacts in a stressed transitional environment: The case of the Seine estuary. Ecological Indicators, 61: 833–845. Elsevier Ltd.
- Tomczak, M. T., Heymans, J. J., Yletyinen, J., Niiranen, S., Otto, S. A., and Blenckner, T. 2013. Ecological Network Indicators of Ecosystem Status and Change in the Baltic Sea, 8: 1–11.

ICES Journal of Marine Science, Volume 80, Issue 4, May 2023, Pages 1129–1142. DOI: <u>https://doi.org/10.1093/icesjms/fsad043</u>

- Travers-Trolet, M., Shin, Y. J., Shannon, L. J., Moloney, C. L., and Field, J. G. 2014. Combined fishing and climate forcing in the southern Benguela upwelling ecosystem: An end-to-end modelling approach reveals dampened effects. PLoS ONE, 9: 1–9.
- Ulanowicz, R. ., and Norden, J. . 1990. Symmetrical overhead in flow networks. International Journal of Systems Science, 21: 429–437. Taylor & Francis. https://doi.org/10.1080/00207729008910372.
- Ulanowicz, R. E. 1986. Growth and Development : Ecosystems Phenomenology. Springer New York.
- Ulanowicz, R. E., Goerner, S. J., Lietaer, B., and Gomez, R. 2009. Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity, 6: 27– 36.
- Ulrike, S., Victor, de J., Alessandro, L., Diana, G., Sabine, H., Nathalie, N., Harald, A., *et al.* 2018. Use of coastal and estuarine food web models in politics and management: The need for an entire ecosystem approach. 26 pp.
- Van Der Putten, W. H., Macel, M., and Visser, M. E. 2010. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2025–2034.
- Vinebrooke, R., L. Cottingham, K., Norberg, Marten Scheffer, J., I. Dodson, S., C. Maberly, S., and Sommer, U. 2004. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos, 104: 451–457. http://dx.doi.org/10.1111/j.0030-1299.2004.13255.x.
- Walters, C., Christensen, V., and Pauly, D. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Fish Biology and Fisheries, 7: 139–172.
- Walters, C., Pauly, D., and Christensen, V. 1999. Ecospace : Prediction of Mesoscale Spatial Patterns in Trophic Relationships of Exploited Ecosystems , with Emphasis on the Impacts of Marine Protected Areas: 539–554.

- Walther, G. R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2019–2024.
- Wernberg, T., Russell, B. D., Moore, P. J., Ling, S. D., Smale, D. A., Campbell, A., Coleman, M.
 A., et al. 2011. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology, 400: 7–16. Elsevier B.V. http://dx.doi.org/10.1016/j.jembe.2011.02.021.
- Wernberg, T., Smale, D. A., and Thomsen, M. S. 2012. A decade of climate change experiments on marine organisms: Procedures, patterns and problems. Global Change Biology, 18: 1491–1498.
- Willsteed, E., Gill, A. B., Birchenough, S. N. R., and Jude, S. 2017. Assessing the cumulative environmental effects of marine renewable energy developments: Establishing common ground. Science of the Total Environment, 577: 19–32. Elsevier B.V.