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In the last three decades, quantitative approaches that rely on organism traits

instead of taxonomy have advanced different fields of ecological research through

establishing the mechanistic links between environmental drivers, functional traits,

and ecosystem functions. A research subfield where trait-based approaches have

been frequently used but poorly synthesized is the ecology of seagrasses; marine

angiosperms that colonized the ocean 100M YA and todaymake up productive yet

threatened coastal ecosystems globally. Here, we compiled a comprehensive

trait-based response-effect framework (TBF) which builds on previous concepts

and ideas, including the use of traits for the study of community assembly

processes, from dispersal and response to abiotic and biotic factors, to

ecosystem function and service provision. We then apply this framework to the

global seagrass literature, using a systematic review to identify the strengths, gaps,

and opportunities of the field. Seagrass trait research has mostly focused on the

effect of environmental drivers on traits, i.e., “environmental filtering” (72%),

whereas links between traits and functions are less common (26.9%). Despite

the richness of trait-based data available, concepts related to TBFs are rare in the

seagrass literature (15% of studies), including the relative importance of neutral and
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niche assembly processes, or the influence of trait dominance or complementarity

in ecosystem function provision. These knowledge gaps indicate ample potential

for further research, highlighting the need to understand the links between the

unique traits of seagrasses and the ecosystem services they provide.
KEYWORDS

functional ecology, trait-based approach, seagrass traits database, ecosystem service
vulnerability, response-effect framework
1 Introduction

Trait-based response-effect frameworks (hereafter TBFs) have been

extensively used in terrestrial plant ecology (Suding et al., 2008; Dıáz

et al., 2013). TBFs are based on the study of traits, which capture the

form and function of organisms, and are defined as “any

morphological, physiological or phenological heritable feature

measurable at the individual level, from the cell to the whole

organism, without reference to the environment or any other level of

organization” (Violle et al., 2007 as modified by Garnier et al., 2016).

Traits are categorized into response and effect traits. Hence, the

structure of a plant community is the result of the environmental

filters and biotic interactions that exclude phenotypes that do not

possess appropriate response trait values (Weiher and Keddy, 1995;

Dıáz et al., 1998; Belyea and Lancaster, 1999). Effect traits, on the other

hand, influence how the organism affects ecosystem functions and they

are therefore controlled by the distribution of trait values shaping the

community (Garnier et al., 2016).

There are many examples of the use of TBFs in terrestrial plant

ecology. Functional trait diversity explains more variation of

community biomass than species richness (Roscher et al., 2012);

community‐weighted means of leaf dry matter content can be

used to explain variations in digestibility, which is a critical

component of herbage nutritive value, a major service delivered

by grasslands (Gardarin et al., 2014); litter decomposition is not

only controlled by the abiotic environment, but mostly by species-

level plant traits (Cornwell et al., 2008; Tardif et al., 2014). The

general relevance of the TBF to the study of terrestrial plant

ecology has triggered its development in marine ecology (e.g.

Solan et al., 2004; Follows et al., 2007; Andersen and Pedersen,

2009; Edwards et al., 2013; Elleouet et al., 2014). TBFs enable

generalized predictions of community composition and function

of any type of ecosystem across organizational and spatial scales,

independent of taxonomy (Shipley et al., 2016), which allows for

the testing of a variety of ecological hypotheses. To illustrate the

concepts that have been developed in trait-based research, a

conceptual TBF has been compiled (Figure 1), based on the

seminal works by Lavorel and Garnier (2002) and Suding et al.

(2008), which also considers phylogeny (Dıáz et al., 2013) and

intraspecific variability (Violle et al., 2012) using modern

analytical methods (Mouillot et al., 2013).

First, community assembly processes encompass the

mechanisms underlying the composition and structure of
02
communities in response to environmental variation (McGill

et al., 2006; Weiher et al., 2011; Grime and Pierce, 2012), from

dispersal to the influence of abiotic and biotic factors. For plants,

dispersal into a local community (Figure 1: Filter 1) is partly

controlled by stochastic processes occurring at a geographical

scale and random local events, which drive colonization and local

extinctions respectively and are poorly related to the traits of

organisms (Weiher et al., 2011). The abiotic filter (Figure 1: Filter

2) determines which species can establish due to the influence of

local environmental conditions, the availability of resources, and the

disturbance regime (Wilson, 2011). This defines the fundamental

niche of the species. The biotic filter (Figure 1: Filter 3) corresponds

to the positive and negative interactions between living organisms

within communities and determines the set of coexisting

neighboring species (Tilman, 1985). It is the realized niche of the

species along the range of possibilities from competitive exclusion

(Gause, 1937) to facilitation (Maxwell et al., 2017). These niche

assembly processes define how local communities assemble from

the regional species pool through the filtering of abiotic and biotic

factors (Keddy, 1992) that, together with stochastic processes,

explain the characteristics of local communities (Vellend, 2010).

To understand which metrics might be useful for detecting

which assembly process predominates in shaping a community, it is

helpful to envisage species trait values as coordinates (e.g. along axes

of variation in multivariate analysis such as principal component

analysis) locating species in the functional space (see Mouillot et al.,

2013). Studying whether the functional coordinates of a species are

sorted out from the local pool is random or the consequence of their

response to the environmental drivers provides the grounds to test

the niche and neutral assembly theories (Garnier et al., 2016)

(Figure 1: Hypothesis #1).

The functional trait structure of the local community can be

convergent (showing high similarity among functional traits in co-

existing species) or divergent (showing dissimilarity among

functional traits in co-existing species) (Grime, 2006; Cornwell

and Ackerly, 2009; Bernard-Verdier et al., 2012; Gross et al.,

2013) depending on the relative importance of the abiotic and

biotic filtering on the community (Figure 1: Hypothesis #2). Abiotic

factors tend to dominate the trait distributions when they set major

physico-chemical constraints on the ecosystem, which then leads to

a convergent distribution, whereas biotic factors dominate when

there are few or weak abiotic constraints and there is room for

increasing competition (Weiher et al., 1998; Grime, 2006), which
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tends to lead to competitive exclusion and thereby a divergent

distribution (but see discussion in Mayfield and Levine, 2010).

Functional traits can be phylogenetically conserved or they can

diverge strongly at the tips of the phylogeny, thereby reflecting

relatively recent evolutionary trait change (Figure 1: Hypothesis #3).

Therefore, the measurement of phylogenetic diversity (PD) can be

an indicator of functional trait diversity (FD) (Forest et al., 2007),

even though there is a considerable debate on this topic (Garnier

et al., 2016). Indeed, the correlation between PD and FD is not

universal, and high PD can generate many assemblages that have a

lower FD than randomly chosen sets of species (Mazel et al., 2018).

Intraspecific trait variability can constitute a relatively large part

of overall community-level trait variability (Violle et al., 2012).
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Therefore, it is fundamental to determine the relative importance of

inter- vs intraspecific variability (Figure 1: Hypothesis #4). Violle

et al. (2012) showed the importance of including intraspecific

variability to get a better understanding of the environmental

filters acting on the vegetated community rather than using mean

trait values per species present in the community. This was a

revision of the concepts of alpha and beta niches (Pickett and

Bazzaz, 1978), which allow understanding the effects of

environmental filters on intraspecific and interspecific trait

variability (Ackerly and Cornwell, 2007).

Effect traits allow to scale up from the functioning of an individual

to that of ecosystems (Grime, 1998; Chapin et al., 2000; Lavorel and

Garnier, 2002; Dıáz et al., 2007). Two different and non-exclusive
FIGURE 1

Conceptual TBF (trait-based response-effect framework) synthetized combining the concepts introduced by Lavorel and Garnier (2002); Suding
et al. (2008); Violle et al. (2012); Dıáz et al. (2013) and Mouillot et al. (2013). A given array of species at the regional level (Sp1-Sp6) are influenced by
several filters until the final local community assemblage. The circles indicate the species abundance at the regional level (top) and at the local level
after the filters (bottom). Traits can be used to study if community assemblage is a neutral or niche assembly process, meaning that it is mainly
stochastic or affected by environmental drivers (Filters 1 and 2, Hypothesis #1). Once settled, the relative importance of the abiotic filter (i.e.
environmental drivers) and the biotic filter (Filter 3) (i.e. competition for resources and biotic interactions) can be studied through trait convergence
and divergence (Hypothesis #2). Functional trait abundance (CWM) and diversity (FD) can be calculated in a community to study the influence of
traits in ecosystem function delivery (Hypothesis #5). Functional traits can, however, be phylogenetically controlled (Hypothesis #3) and their inter-
and intraspecific variability may change among species and communities (Hypothesis #4). Ecosystem function delivery not only depends on traits,
but also the environmental constraints may play a central role in it (Hypothesis #6). The correlation of the ecosystem function delivery and response
will determine the function vulnerability (Hypothesis #7). Finally, ecosystem functions and their perception by humankind determine the ecosystem
services provided and, therefore, their vulnerability.
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hypotheses have been formulated to relate the functional structure of

communities to ecosystem properties: dominance (mass-ratio effect)

and niche complementarity. The dominance hypothesis stipulates that

the functional traits of the dominant species will be the predominant

influence on the ecosystem function (Grime, 1998; Smith and Knapp,

2003), this being proportional to its abundance in the community

(Garnier et al., 2004; Dıáz et al., 2007; Violle et al., 2007). The metric

used to test this hypothesis is the community weighted mean (CWM).

By contrast, the niche complementarity hypothesis stipulates that the

presence of functionally different species, which use environmental

resources in a complementary manner, will positively influence

ecosystem functioning (Loreau and Hector, 2001; Tilman, 2001;

Eviner and Chapin, 2003; Dıáz et al., 2006; Petchey and Gaston,

2006). It is therefore hypothesized that positive relations exist

between ecosystem functions and functional diversity (FD). These

two hypotheses are not mutually exclusive, and it is possible that

both are important in influencing ecosystem functions (Dıáz et al.,

2007, Figure 1: Hypothesis #5). More evidence has been found,

however, for a relation between dominance and function (Garnier

et al., 2016). A drawback in the study of function provision is that some

functions may not be correlated with traits under constraining

environmental factors, not allowing for the determination of

causality between trait and function. Environmental factors should

be, therefore, controlled for in a “common garden” or statistically with

structured equationmodels (Grace et al., 2007; Shipley, 2010) (Figure 1:

Hypothesis #6) to disentangle the links between environment, trait

and function.

Ecosystem services are defined as the capacity of natural

processes and components to provide goods and services that

satisfy human needs, directly or indirectly (de Groot et al., 2002).

The definition of an ecosystem service is contingent upon human

perception and needs, and therefore each ecosystem service has

underlying functions that are biologically measurable. The

importance of the concept of ecosystem service is the possibility

to integrate ecosystem functions in management and policy. Dıáz

et al. (2013) introduced the concept of ecosystem service

vulnerability, based on the idea that the security of ecosystem

functions depends on how the effects and tolerances of organisms

(which both depend on combinations of functional traits) correlate

across species. Therefore, the correlation of the response and effect

traits of organisms can determine the vulnerability of an ecosystem

function (Figure 1: Hypothesis #7). The final step in the TBF

proposed above is the translation of effect traits from ecosystem

functions to ecosystem services. Effect traits driving ecosystem

service provision are, therefore, a tool to understand the link

between organism, function and service, and the vulnerability of

the service provision under a changing environment.

Despite the wide application of TBFs in terrestrial plant ecology, its

application has been very scarce in seagrasses. Seagrasses are a

polyphyletic group of basal monocotyledonous angiosperms

belonging to four families in the Alismatales: Posidoniaceae,

Zosteraceae, Cymodoceaceae and Hydrocharitaceae. Limited to

coastal areas, they occupy a global surface of about 160 387 km2

(<0.2% of the ocean’s surface, McKenzie et al., 2020). The colonization

of marine habitats from terrestrial wetland habitats occurred

exclusively from this monocotyledonous order and took place in four
Frontiers in Plant Science 04
independent and parallel evolutionary events (Les et al., 1997; Janssen

and Bremer, 2004; Waycott et al., 2006). From an evolutionary

timescale perspective, this colonization was contingent upon a

number of critical adaptations, which partially reverted many of the

original key adaptations of flowering plants to terrestrial life. These

adaptations are reflected in specific genomic losses and gains (Golicz

et al., 2015; Lee et al., 2016; Olsen et al., 2016; Lee et al., 2018), with

adaptive changes in sets of genes associated with central biological

pathways (Wissler et al., 2011). Despite their successful adaptation to

the marine realm and wide distribution in most coastal areas around

the world, seagrasses exhibit very low species richness (60-70 species)

compared to other groups in the Alismatales, which is possibly partially

compensated by pronounced local adaptation (or intraspecific

variability) within species (e.g. Jueterbock et al., 2016; Dattolo et al.,

2017; Jahnke et al., 2019).

All seagrass species share a similar morphology with basal

meristems that form strap-like leaves grouped in shoots connected

by rooted rhizomes in the sediment. Their low morphological

diversity is possibly the result of a convergent evolution to the

submerged lifestyle in a hydrodynamically active and saline

environment (Arber, 1920; Les et al., 1997). Unfortunately, the

coastal habitat colonized by seagrasses is under high and increasing

anthropogenic pressure. Consequently, seagrasses are under decline

worldwide due to multiple local (Burkholder et al., 2007; Unsworth

et al., 2018; Moreira-Saporiti et al., 2021a) and global pressures (Orth

et al., 2006; Waycott et al., 2009; Turschwell et al., 2021). Reversal of

this negative trend, however, is possible (Lefcheck et al., 2018; de los

Santos et al., 2019; Sousa et al., 2019; Dunic et al., 2021; Turschwell

et al., 2021) when appropriate management and conservation actions

are implemented.

Much seagrass research to date has measured responses in various

plant traits to environmental variation, to i) better understand seagrass

biology and ecology (Sousa et al., 2017), ii) prevent their decline

(Fernandes et al., 2019), iii) restore degraded ecosystems (Paulo

et al., 2019; Lange et al., 2022), or iv) predict their fate under future

global change scenarios (Hyndes et al., 2016). Synthesis of the existing

data on seagrass response to the environment has been used to identify

potential indicators for assessing the health of seagrass ecosystems

(Roca et al., 2016). Additionally, there is a good understanding that the

sole presence of seagrass is enough for the provisioning of functions like

invertebrate habitat (Virnstein et al., 1983) or the modification of the

inorganic carbon system (Unsworth et al., 2012). The provisioning of

these functions, however, must be underpinned by the traits of the

component species or genotypes, but the link between seagrass traits

and functions has been resolved in only a handful of examples (e.g.

Fonseca and Callahan, 1992; Hendriks et al., 2008; Gustafsson and

Boström, 2011; Hendriks et al., 2014). At present, we lack a

comprehensive picture and predictive framework of how key

seagrass traits underpin the resistance and resilience of seagrass

species to current and future pressures, and their relation to

ecosystem functions and services.

In order to push seagrass research forward, we compiled the

existing knowledge on seagrass trait research and pointed its

knowledge gaps and research possibilities. We carried out a

systematic review of the seagrass literature with the goal of

quantifying the use of TBFs in the assessment of seagrass
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responses, ecosystem functions and services and to identify the

gaps of knowledge in this field, including (1) how frequently trait-

based research has been adopted in seagrass ecological research

and how many of these studies could be classified as TBFs (as

defined by the seminal work from Lavorel and Garnier, 2002),

(2) which of the methodologies, hypotheses and theories

introduced by TBFs have been already studied in seagrass

communities in relation to their traits and (3) identify under-

and over-studied traits, drivers and functions in seagrass research,

with examples from the literature. The conceptualization of the

results of the literature review under a TBF will allow the

exploration of the research gaps and indicate future research

pathways in seagrass ecology, specifically focusing on the

ecosystem function and service provision and vulnerability.
2 Methods

We followed the ROSES protocol (Haddaway et al., 2018) for a

literature review (metadata of the review can be found in the

Supplementary Material 1). We identified 21,100 publications of

potential relevance within the Google Scholar database using the

query “Seagrass trait” and “Seagrass species trait” (“Seagrass species”

being the currently accepted names of all seagrass species). To

guarantee that the focus of the publication was on the study of trait-

based research, the word trait had to be present in the title, abstract

and/or keywords of the publication, elsewise the publication was

not included in the review process. We acknowledge that this search

query would leave out literature studying seagrass traits, but not

using the terminology “trait”. However, this was the only way to

ensure the focus of the review in the study of seagrass traits and

trait-based research. The number of publications was limited to

those in English. The temporal range of the sample was restricted to

the limitations of the database itself, i.e. publications included the

range from 1988 through March 2022. Using the above screening

criteria, the initial number of publications was reduced to 380. From

these 380 publications, 137 were discarded as they referred to the

study of seagrass-associated fauna, benthic macroalgae within

seagrass meadows and seagrass epiphytes; 12 duplicates and 19

misclassified publications were also discarded. 19 more publications

were discarded as they were gray literature. The final database was

sized down to 193 relevant publications. The complete database

with the categorization of the publications can be found in the

Supplementary Material 2.

For goal (1), we counted the number of studies including the

word “trait” and the number of studies in which an existing TBF (as

defined by Lavorel and Garnier, 2002) was used to test a hypothesis

or research question. For goal (2), we categorized the studies in a

priori categories derived from the TBF presented above (Figure 1).

Lastly, for goal (3), we created an a priori classification of seagrass

traits and a posteriori classification with the environmental drivers

and ecosystems functions found in the literature. We made the final

figures using the software R with the package ggplot (Wickham,

2016; R Core Team, 2022) and InkScape (v 0.92).
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3 Results and discussion

3.1 Seagrass TBF studies and studies
including the word trait

Trait-based response-effect frameworks, TBFs, are currently

underexplored in seagrass research. The number of studies

including the word “trait” increased steadily since the first study

from the year 1988, reaching a maximum in the last five years (n=73,

Figure 2A). Only 29 studies were found to use existing TBFs,

accounting for only 15% of the total. The “trait-based approach”

was first developed in 2002 (Lavorel and Garnier, 2002) for terrestrial

plants, and it does not appear in the seagrass literature until 2012.

This indicates that the body of knowledge available from terrestrial

plant ecology has been under-utilized by seagrass researchers.

Studies focusing on seagrass traits have been mainly developed

in the Mediterranean bioregion (27%, Figure 2B), while the Tropical

Atlantic (9%) and Temperate Southern Oceans (11%), showed the

lowest number of studies. TBF studies have been homogeneously

performed in all bioregions, with the Temperate North Pacific

showing the highest number (24%). Differences across bioregions

could be attributed to the differential use of the term “trait” across

research groups and the seagrass species that are the focus of their

study. As a consequence, while the widespread species Zostera

marina accounted for 30% of trait studies, Posidonia oceanica,

endemic to the Mediterranean Sea, accounted for 19% (Figure 2C).

This result indicates a certain bias in the use of the trait

nomenclature in certain species like P. oceanica, while it

simultaneously highlights the problem of research bias and

inference from unique species to the others, specifically when trait

responses (Viana et al., 2020) can be species-specific.
3.2 Dispersal and settlement in seagrass
communities: Challenging the neutral
assembly theory

We found seven studies that linked seagrass dispersal and

settlement to traits (3.6% of the total, Figure 3), suggesting that

seagrass dispersal can be predicted by the traits. Target traits can

change according to the life stage of the seagrass plant (seed or

vegetative fragment) (Orth et al., 2007; McMahon et al., 2014;

Bryan-Brown et al., 2017). In the case of seeds, traits such as

flotation capacity and digestibility determine the distance they

can disperse and the effectiveness of using animal vectors,

respectively (Wu et al., 2016). Seeds also show a high degree of

intraspecific variability in size, which determines their settling

velocity and dispersal potential (Delefosse et al., 2016). When it

comes to settlement, traits like germination rate can be site specific

and negatively affected by increasing temperature in Z. marina

(Cabaço and Santos, 2010). In addition, the current velocity in the

settlement area and the stiffness and flexibility of surrounding

shoots limit the settlement capacity of seagrass seeds (Bouma

et al., 2009). In the case of vegetative fragments, the plant
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morphology can partially control their dislodgement resistance,

whereas the age and rooting rate determine their capacity for

settlement (Lai et al., 2018). Vegetative fragments have the

potential for long distance dispersal thanks to long lasting shoot

buoyancy and survival, allowing the colonization of new areas

(Berković et al., 2014). Additionally, fruits of certain seagrass

species allow for long distance dispersal as well, as it is the case of

Posidonia australis (10s to 100s of kilometers, Ruiz-Montoya

et al., 2015).

The identification of traits controlling dispersal and settlement

of seeds and vegetative fragments challenges the perception of

dispersal as a stochastic and unpredictable process. In addition,

abiotic (temperature, current velocity, wave disturbance and

exposure) and biotic (animal vectors, shoot stiffness) factors as

well as a combination of these exemplified by the seascape mosaic

formed by the plants on an unvegetated substrate affect their

dispersal and settlement success. The neutral assembly process

hypothesis (Figure 1: Hypothesis #1), while not formally tested,

seems to be false in the case of seagrasses (Table 1). However, only a

small number of studies investigated this question. Further research
Frontiers in Plant Science 06
is needed to test this hypothesis at different scales, with null models

as a fundamental tool to assess the relative importance of purely

stochastic and niche assembly processes (Mori et al., 2015). This

hypothesis has been tested in other marine organisms, including

fish communities (Ford and Roberts, 2018), which assemble

neutrally at the regional scale but not at the local scale, and

woody plants, whose dispersal and settlement are primarily trait-

driven (Duarte et al., 2010).
3.3 Community assembly processes:
The abiotic and biotic filters in
seagrass communities

Much research has been performed on the responses of seagrass

traits to environmental drivers, making a total of 72% of the studies

found in the literature review. There was, however, a large

imbalance between the study of seagrass traits under the abiotic

(89%) vs the biotic (11%) filter (Figure 3). This indicates that the

knowledge of seagrasses is focused on the study of its fundamental
A B

C

FIGURE 2

Number of studies included in the systematic review classified by (A) Year, (B) Bioregion and (C) Seagrass species. The light gray color indicates the
number of studies including the word “trait” and the dark gray color the number of studies classified as using a trait-based frameworks (TBF). Studies
from the year 2022 (n=5 until March 31st) are not included in this figure.
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niche, i.e. the major physico-chemical constraints in the system. For

example, the vertical zonation of tropical seagrasses was explained

by physiological traits controlling their ability to tolerate high

irradiances and nutrient inputs (Björk et al., 1999). Other

examples focus on the assessment of the fundamental niche of

individual species. Halophila decipiens occupies a wide range of

irradiances and temperatures, due to its phenotypic plasticity

(Gorman et al., 2016). Z. marina has a low niche specialization in

the Baltic Sea, allowing this species to exist under variable

environmental conditions in comparison to other macrophytes

(Herkül et al., 2018). The three most frequent abiotic drivers
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studied were temperature (28.3%), nutrients (24.4%) and light

(17.3%), whereas the least studied include the effect of freshwater

input (1.5%) or metal pollution (2.4%).

Traits have been therefore used as indicators of environmental

change, and their response is both driver and species-specific. This

can be illustrated using the example of temperature. An increase in

temperature within the optimal range fosters leaf growth (Thalassia

hemprichii: Viana et al., 2020; Enhalus acoroides: Artika et al., 2020)

and leaf size (Z. marina: Young Kim and Seob Choi, 2004;

Ondiviela Eizaguirre et al., 2018; DuBois et al., 2019; Halodule

wrightii: Sordo et al., 2011; Zostera noltei: Ondiviela Eizaguirre et al.,
FIGURE 3

Results of the systematic literature review adapted to the conceptual TBF proposed by this manuscript. The studies were classified in “Study types”
(top), “Study subcategories” (middle, a posteriori classification with the environmental drivers and ecosystem functions found in the review process)
and “Trait categories” (bottom, trait classification decided before the review process). The size of the circle indicates the number of trait studies. The
darker circles within indicate the number of studies classified as using TBFs. The horizontal lines indicate the number of connections among the
“Study types”. The darker lines indicate the number of connections among study types using a TBF.
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2018; T. hemprichii: Viana et al., 2020; Cymodocea serrulata: Viana

et al., 2020; E. acoroides: Artika et al., 2020; Artika et al., 2021;

Zostera capensis: Beltrand et al., 2022). However, when the optimal

temperature for a species is surpassed, heat stress reduces these two

traits (Posidonia oceanica: Traboni et al., 2018; Halophila ovalis:

Ontoria et al., 2020, Halophila stipulacea: Viana et al., 2020). Co-

inhabiting species can have different thermal optima (Collier et al.,

2011), and their trait responses can give fundamental information

on how future warming will affect seagrass communities. Traits can

therefore inform about the responses of seagrass to environmental

change, these responses being species-specific or general among

seagrass species. The diversification of research to different species

and bioregions is therefore fundamental to predict how seagrasses

will deal with future global change scenarios, as even co-inhabiting

species may respond in different ways (Agawin et al., 2001).

The prevalence of the use of morphological traits (55.9%)

among all other trait categories is worth mentioning (biochemical

31.5%; physiological 29.1%; growth 28.3%; mechanical 15.7%;

reproductive 10.2%). This is likely explained by their relatively

easy and inexpensive measurements compared to physiological

measurements of e.g., photosynthetic efficiency (Hernán et al.,

2016; Llagostera et al., 2016) or enzymatic activity (Alexandre

et al., 2004; Alexandre et al., 2010), which require specialized

equipment, technical staff and laboratories. There are, therefore,

extrinsic economical and technical reasons that constrain scientific

questions in seagrass research. This trait type imbalance may

impede a deeper understanding of responses of seagrasses to

abiotic drivers, as physiological and biochemical indicators are

recommended over morphological ones for early stress detection

in seagrasses (Roca et al., 2016).

The study of morphological (52%), biochemical (50%) and

growth traits (34.8%) under the biotic filter was more balanced

compared to the abiotic filter. Most of the traits were studied in

response to eutrophication (36.9%) and/or herbivory (23.9%).

Eutrophication is considered one of the main threats to seagrasses,

as it can lead to a phase shift in primary producers from seagrass to

macroalgal dominance (Duarte, 1995; Orth et al., 2006; Burkholder

et al., 2007; Waycott et al., 2009). Eutrophication affects different

compartments of the ecosystem (seagrass, micro- and macroalgae,

epiphytic organisms), changing their relative abundances and causing
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changes in the light penetration or the redox potential in the sediment

(Burkholder et al., 2007). Seagrass species respond to eutrophication

through their traits, again highlighting their value as environmental

change indicators. Under eutrophication, Cymodocea nodosa

increases the nutrient content in its leaves, while reducing its fiber

content and biomechanical properties (Jiménez-Ramos et al., 2018a).

Similarly, P. oceanica increases the nutritional quality of its leaves

under fertilization, while reducing plant growth (Ravaglioli et al.,

2018). In the case of herbivory, seagrass plants respond to this driver

using a comprehensive array of traits, including growth

compensation, changes in their nitrogen content or mobilization of

carbohydrates (Sanmartı ́ et al., 2014) and their morphology and

growth form can predict grazing impacts on a global scale (Poore

et al., 2012).

One of the main questions posed in the conceptual TBF is the

relative importance of the abiotic vs the biotic filters (Figure 1:

Hypothesis 2) to better understand the fundamental and realized

niches of seagrass species. The available trait-based studies have

focused separately on the fundamental and realized niches of

seagrass species. We found that only 17.1% of the studies

included both biotic and abiotic factors simultaneously, which

indicates the existence of a knowledge gap in this topic. Trait-

based approaches suggest the study of the convergence and

divergence of trait distributions to unravel the relative effects of

the abiotic and biotic filters (see review by Grime, 2006).

Herbaceous plant communities tend to diverge at the species level

but converge at the trait level (Fukami et al., 2005), indicating that

environmental forces select for functional groups but not for species

identities, which are historically contingent. This finding

exemplifies the two schools of thought in ecological community

assembly. On one hand, it has been suggested that different species

coexist, occupying different niches (Diamond, 1975). On the other

hand, members of the same plant community tend to exhibit

similarity in plant traits, therefore showing overlapping niches

(Clements, 1916).

The drivers that shape communities, namely environmental

drivers, competition, and disturbance regime, can act at different

spatial scales (Dıáz et al., 1998; Pierce et al., 2007). To disentangle

these effects, it is necessary to calculate the functional diversity (FD)

and, specifically, functional trait dissimilarity among species within
TABLE 1 Studies included in the literature review that linked dispersal and settlement with seagrass traits.

Hypothesis #1 Neutral assembly process: Preliminary rejected

Process Dispersal
unit

Relevant traits Abiotic filter Biotic filter Sources

Dispersal Seed Sinking rate, seed size Current velocity Animal vectors Berković et al. (2014); Delefosse
et al. (2016); Wu et al. (2016); Lai
et al. (2018)Vegetative

fragment
Shoot buoyancy, shoot viability, fragment breakage,
shoot growth rate, spathe release rate, dislodgement
resistance

Current velocity,
burial conditions

–

Settlement Seed Seed weight, germination rate Temperature,
current velocity,
scouring

Shoot size and
stiffness of
surrounding seagrass

Bouma et al. (2009); Cabaço and
Santos (2010); Lai et al. (2018)

Vegetative
fragment

Fragment age, rooting rate Current velocity –
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and among communities (Petchey and Gaston, 2002; De Bello et al.,

2009). If the functional dissimilarity is lower than a set of random

species (null model, see Götzenberger et al., 2016), this indicates

trait convergence due to environmental filtering, whereas the

opposite indicates trait divergence, and therefore a dominance of

competition and/or a disturbance regime allowing for differential

life-history strategies (Mason et al., 2007; Mouillot et al., 2007;

Petchey et al., 2007). Despite the knowledge that seagrass traits

change under environmental drivers (Roca et al., 2016) and that

these traits affect interspecific competition (Moreira-Saporiti et al.,

2021b), there are only a handful of examples in which trait

convergence and divergence (Figure 1: Hypothesis #2) have been

tested, and uniquely in Z. marina at the intraspecific level. Z.

marina communities have a higher trait diversity with higher

genetic relatedness among genotypes, indicating that trait

divergence may be selected among competing genotypes

(Stachowicz et al., 2013). Similarly, niche differentiation through

trait divergence is suggested as an explanation for the positive

correlation between its genotypic and trait diversity (Abbott et al.,

2017). However, transplant experiments have shown that the

species morphology changes under local environmental

conditions, resembling the morphology of local populations

(Ruesink, 2018). The results of these studies indicate that

divergence occurs at the local level among competing plants,

while convergence seems to occur at a larger scale.

The large body of literature on response traits under abiotic and

biotic factors shows that there is a wealth of data that can be

reassessed to answer questions in the context of the TBF presented

here. In addition, the study of response traits uses a variety of

nomenclature that could not be included in this review (e.g.

indicators, responses…), further increasing the volume of data

available. Despite the presentation of neutral and niche assembly

theories separately, both are not incompatible. While some species

can be stochastically eliminated from the local community (not

reaching a suitable habitat or a random event leading to local

extinction, see Sp6 in Figure 1), the subset of species that

successfully colonized a community undergo a process of niche

assembly. The disentanglement of fundamental and realized niches

under a TBF is currently unexplored in seagrasses, providing an

opportunity to answer fundamental research questions under global

change that includes both abiotic and biotic drivers.
3.4 Phylogenetic and genotypic control of
seagrass traits

The study of the phylogenetic and genotypic control of traits is

quite prevalent in the seagrass literature (23.3% of studies, Figure 3).

There is ample evidence that genotypic richness covaries with

phenotypic variation in functionally relevant traits, such as leaf

morphology and shoot productivity within P. australis (Evans et al.,

2016). In contrast, genetic diversity is a poor proxy for trait

differentiation in Z. marina (Abbott et al., 2018). In P. oceanica a

reproductive trait like flower abundance was negatively correlated

to genotypic diversity and positively correlated to heterozygosity

(Jahnke et al., 2015a), while there was a correlation of genetic
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indices and their response to environmental conditions (Jahnke

et al., 2015b). Ecosystem functions like the accumulation of biomass

and susceptibility to herbivory are also genotypically controlled in

Z. marina (Tomas et al., 2011), with genotypes differing in key traits

related to these processes. Similarly, nutrient uptake rates differed

among genotypes of Z. marina (Hughes et al., 2009).

These studies confirm that there is genetic control of seagrass

traits (Figure 1: Hypothesis #3) and, consequently, of ecosystem

functions and services (Dıáz et al., 2013). However, this control is

species-specific. Knowledge gaps in this area lay in the lack of

information from most of the seagrass species, as the genus Zostera

and Posidonia accumulate 82.2% of the studies.
3.5 Intraspecific trait variability in
seagrasses is key to their survival

In seagrass ecosystems, characterized by low plant species

richness, intraspecific variation is likely to play a more important

role than in terrestrial ecosystems. In comparison to terrestrial plant

lineages, the taxonomic diversity of seagrass is low with all species

belonging to four Alismatales families. Indeed, many temperate

meadows are monospecific, and most tropical meadows consist of

only a handful of co-occurring species (Short et al., 2007).

Species and populations can differ for the level of plasticity (i.e.,

amplitude of the genotypes’ reaction norm), which is a fundamental

trait affecting genotype persistence in changing environments

(Pazzaglia et al., 2021). The plasticity of populations and genotypes

is given by different levels of genetic variability, encompassing clonal

somatic mutations and epigenetic changes. Several studies have

indicated that the intraspecific trait variability of seagrass species is

key for their survival. For example, the plant size of Z. marina (the

predominant species in the northern hemisphere) spans more than

two orders of magnitude across its distribution range (Ruesink, 2018),

and different genotypes show large differences in nutrient uptake

capacity and key photosynthetic parameters when grown in a

“common garden” (Hughes et al., 2009). Even putatively less plastic

species such as P. oceanica display a large variation in the acclimation

to environmental factors (e.g. heat, Marıń-Guirao et al., 2018). This

feature, potentially supported by high intra-specific and intra-clonal

(epi-)genetic diversity, enables seagrasses to cope with major

environmental changes (Maxwell et al., 2014) and has most likely

contributed to their successful colonization of shallow coastal zones

along five continents, despite their low taxonomic diversity.

Intraspecific variability in traits does not only occur at the species

level, but also at the shoot, rhizome and clone levels. Epigenetic

differences are even present within the same rhizome, which foster

clonal persistence both within the same shoot (Ruocco et al., 2021)

and within the same leaf (Ruocco et al., 2019a; Ruocco et al., 2019b).

Recent evidence even points out that within single clones, somatic

mutations lead to differentiation of ramets (= clone mates), with the

potential to result in phenotypic differences within clones (Yu

et al., 2020).

This body of literature highlights the importance of intraspecific

trait variability in the response of seagrasses to disturbances, their

resilience and capacity for ecosystem functions provision. However,
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we found only one example of the simultaneous study of intra- and

interspecific variability of structural and nutritional traits, which

drive palatability and herbivory in seagrasses (Jiménez-Ramos et al.,

2018b). Future research assessing the relative importance of inter-

vs intraspecific variability in both response and effect traits

(Figure 1: Hypothesis #4) will be necessary to understand the

relative role of intra- and interspecific diversity in seagrass

ecosystem functions.
3.6 Effect traits and seagrass ecosystem
functions: Understanding complementarity,
dominance, and environmental control of
ecosystem functions

The links between effect traits and ecosystem functions were

tested in 26.9% of the studies (Figure 3). Herbivory (38.4%) and

primary production (23%) were the most studied functions.

Morphological (53.8%) and biochemical (46.1%) traits were the

most used in the assessment of functions (Figure 3). Examples

include wave attenuation, which is explained by a combination of

morphological and mechanical traits including blade stiffness, shoot

density and leaf length (Bouma et al., 2005; Paul et al., 2012) or

herbivory of Z. noltei, which is mediated by both structural and

nutritional leaf traits (Martıńez-Crego et al., 2016). Examples of

more nuanced, indirect interactions between traits and functions

include the reduction of the canopy height in P. oceanica by grazing,

thereby increasing the predation risk on associated sea urchins

(Pagès et al., 2012).

There are, therefore, clear mechanistic links between seagrass

effect traits and ecosystem functions. However, at the community

level, there is the question of whether effect traits control ecosystem

functions through dominance (CWM) or complementarity (FD)

(Figure 1: Hypothesis #5). In addition, the link between traits and

ecosystem functions can be environmentally constrained (Figure 1:

Hypothesis #6). A great number of studies on ecosystem functions

included environmental metrics (71.1%).

The hypothesis of the control of ecosystem functions by functional

complementarity (FD) versus dominance (CWM) have been barely

tested in seagrass ecosystems, with only a handful of examples found

in the literature review (Table 2). Regarding the dominance

hypothesis, CWM has been found as a reliable predictor of primary

production in marine and brackish plant communities, including Z.

marina (Gustafsson and Norkko, 2019). Particularly, plant height had

positive effects on primary production, while the effects of other traits

were environmentally constrained (Table 2). In the case of carbon

storage, geophysical attributes seem to constrain any effect of seagrass

traits (Belshe et al., 2018). Complementarity alone was tested in one

study (Abbott et al., 2017, Table 2), showing that the Rao quadratic

entropy index of trait diversity can predict invertebrate abundance.

We found only two studies assessing simultaneously the effect of

dominance and complementarity on ecosystem functions. In the case

of habitat provision for fishes, trait complementarity had no effect,

while the dominance of structurally more complex plants positively

affected fish abundance (Jones et al., 2021). In the case of primary

production, dominance of taller plants with bigger leaves positively
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affected production (Angove et al., 2020), while complementarity was

discarded as a significant driver.

There were, however, several studies on Z. marina assessing both

the dominance and complementarity effects of genotypic diversity on

ecosystem functions. Primary production is influenced by genotypic

diversity of Z. marina at the plot level (Abbott et al., 2017). There is also

evidence of intraspecific niche complementarity in the partitioned

nutrient uptake of genotypes of Z. marina (Hughes et al., 2009).

Dominance and complementarity hypotheses have been tested

simultaneously in one study in Z. marina (Hughes and Stachowicz,

2011). Biomass production was higher in polycultures (i.e., higher

complementarity) at high disturbance levels, whereas under no

disturbance, monocultures (i.e., dominance) outperformed

polycultures. Additionally, polycultures outperformed monocultures

in shoot and biomass production under a macroalgal bloom. It is worth

mentioning that, despite not being included in the literature review due

to not being focused on the study of traits, there have been studies in

communities including Z. marina linking taxonomic richness to

resistance to shading (Gustafsson and Boström, 2013) and

complementarity to increased biomass production (Salo et al., 2009).

The scarcity of trait complementarity vs dominance data on

seagrasses highlights the complexity of assessing their relative

importance, particularly under a changing environment. To test

the dominance and complementarity hypotheses it is fundamental

to find effect traits with proven mechanistic relationships with

ecosystem functions. These relationships may be environmentally

controlled and therefore it is necessary to include relevant

environmental metrics in the study of ecosystem functions (van

der Plas et al., 2020). This has been barely tested in seagrass

communities and only in the case of three ecosystem functions

(primary production, habitat provision for invertebrates and fishes

and carbon storage, see Table 2). There is therefore a big knowledge

gap in our understanding of how the functional traits of seagrass

communities are linked to ecosystem functions, and how this

provision will be altered under global change.
3.7 Vulnerability of seagrass ecosystem
function and service provision under
global change

The worldwide rate of seagrass loss and the numerous threats to

seagrass ecosystems (Orth et al., 2006; Waycott et al., 2009) call for

the assessment of the vulnerability of the ecosystem functions

provided by seagrasses. Therefore, it is necessary to study the

correlation between response and effect in seagrass ecosystems

(Figure 1: Hypothesis #7).

As stated in previous sections, the study of the response of traits

to environmental drivers is common, particularly in the case of

temperature or light (Tanaka and Nakaoka, 2006; Mota et al., 2018).

Traits are sensitive indicators of plant stress under environmental

change (Roca et al., 2016). When it comes to ecosystem functions,

their vulnerability is generally discussed in terms of seagrass loss,

i.e., the loss of the seagrass meadows would mean the end of certain

ecosystem function provision (Trevathan-Tackett et al., 2018).

However, one important missing link is the identification of
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TABLE 2 Studies included in the literature review which test ecosystem function provision by seagrass communities through trait dominance,
complementarity, and environmental constraints (Figure 1: Hypothesis #5 and 6).

Ecosystem
function

Seagrass
species

Effect trait(s) Hypothesis tested Conclusion Reference

Dominance Complementarity Environmental
constraint

Carbon
storage

T. ciliatum,
C. serrulata,
C. rotundata,
T. hemprichii,
S. isoetifolium,
H. uninervis,
H. ovalis,

H. stipulacea

Above- and
belowground

biomass, nitrogen
content, shoot

density

Yes No Geophysical
attributes

Environmentally
constrained. No trait
dominance effects

Belshe et al.
(2018)

Primary
production

Z. marina,
R. cirrhosa,

other brackish
plant species

Maximum
vegetative height,
specific leaf area,
leaf and root

nitrogen, leaf and
root d15N and
d13C, maximum

root length

Yes No Exposure gradient Dominance effect and
environmental

constraints. Vegetative
height had a positive
effect on primary

production. Effects of
root N and leaf d15N

were constrained by the
exposure gradient.

Gustafsson
and Norkko

(2019)

Z. marina,
algae species,
brackish plant

species

Life habit
(longevity,

environmental
position),

morphology
(growth form,
size), tolerance

(salinity and wave
exposure

tolerance) traits

Yes No No Dominance effect of
the three trait categories

included.

Jänes et al.
(2017)

Z. marina,
R. cirrhosa,

other brackish
plant species

Median height,
leaf area, median
maximum root
length, specific
root length, leaf
nitrogen content,
leaf d15N and

d13C

Yes Yes No Dominance effect of
plant height and leaf

area. Effect of functional
richness due to presence
of extreme trait values,

not because of
complementarity effect.

Angove et al.
(2020)

Habitat
provision for
fishes

T. ciliatum,
C. serrulata,
C. rotundata,
T. hemprichii,
S. isoetifolium,
H. uninervis,
H. ovalis,

H. stipulacea,
E. acoroides

Meadow structure
(shoot density,
leaves per shoot,
canopy height,
leaf length, leaf
width), seagrass

cover

Yes Yes Depth Dominance effect of
meadow structural

complexity.
Environmental effect of

depth. No
complementarity effects.

Jones et al.
(2021)

Habitat
provision for
invertebrate
grazers

Z. marina
(intraspecific
study using
different
Z. marina
genotypes)

17 traits,
summarized:
biomass

accumulation,
growth rate,
morphology,

nutrient uptake
rate, leaf phenolic

content,
photosynthetic
parameters

No Yes No Complementarity effect
(Rao quadratic entropy)
of trait diversity on
invertebrate grazer

abundance.

Abbott et al.
(2017)
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response traits that drive function effects. The rationale is that,

despite the presence of seagrasses, a change in their trait values or

the replacement by another species or taxa with different traits may

alter ecosystem function provision. This hypothesis has not been

explicitly tested in seagrass ecosystems (Figure 1: Hypothesis #7).

The concept of ecosystem service has gained increasing

importance in the last two decades, as a tool to couple science with

environmental policymaking and management (Costanza et al., 1997;

Costanza et al., 2017). The identification of effect traits responsible for

the provision of ecosystem services is of fundamental importance to

develop a taxon-independent metric that could be incorporated into

policymaking and guide coastal management strategies. Ruiz-Frau

et al. (2017) classified ecosystem functions performed by seagrass in

ecosystem services based on the TEEB - The Economics of

Ecosystems and Biodiversity categorization created in TEEB (2009).

For example, fisheries are classified as food provision, while carbon

burial and storage are classified as gas and climate regulation.

Knowing which functions underlie each ecosystem service, and

how to relate simple trait metrics to ecosystem function and service

vulnerability, is fundamental to achieve a holistic view of seagrass

response, function provision and service provision under a

changing environment.
4 Conclusion

TBFs (trait-based response-effect frameworks) are a powerful tool

to address ecological questions in all fields of study, both terrestrial

andmarine. The synthesis of a comprehensive TBF based on previous

knowledge allowed for a holistic view of traits, from their response to

environmental drivers to ecosystem service provision.

The proposal to apply a TBF to seagrass ecology acknowledges

the importance of considering the scientific advances of other

research fields in order to push marine research forward. The

application of a TBF to seagrasses appears as a powerful avenue

to unveil new insights on the functioning of these important

ecosystems, particularly in face of their special evolutionary

history and narrow phylogenetic origin. We revealed that there is

a wealth of data on seagrass response and effect traits, and on

seagrass ecosystem functions, which allow a great potential to re-

analyze existing data under a TBF perspective so that new research

questions and hypotheses may be tested. In addition, there is a

variety of nomenclature to refer to traits in seagrass research,

further increasing the volume of data that could be reassessed

under a TBF perspective but was not included in this review.

Most of the hypotheses of the TBF have not yet been formally

tested. There is much evidence that stochastic processes (Hypothesis

#1) have a lower relative importance than niche-based processes, both

in the dispersal and vegetative stages of community assembly

(Hypothesis #2). Additionally, traits are under a certain level of

genotypic control (Hypothesis #3), but this could be highly trait

dependent. Intraspecific diversity seems to be one of the mechanisms

by which seagrasses respond to environmental drivers, and its

understanding will prove fundamental to predict the response of

seagrass to global change (Hypothesis #4). Ecosystem function
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provision by seagrass communities is generally controlled by trait

dominance, but genotypic complementarity has also been shown to

affect ecosystem functions, showing the need to understand the link

between genotypic and functional trait diversity (Hypothesis #5).

Additionally, only a handful of functions have been studied and the

importance of dominance or complementarity can be

environmentally constrained, as it is the case for primary

production and carbon storage (Hypothesis #6).

Despite the positive signs of seagrass recovery in Europe and the

United States, we cannot ignore the fact that the world is

experiencing fast and unprecedented changes. The use of a TBF

that assesses the vulnerability of ecosystem function and service

provision (Hypothesis #7) can help to understand which ecosystem

services may be compromised by the changes in species traits or

species abundances. Therefore, the translation of biological and

ecological seagrass research into a framework explicitly considering

ecosystem services will prove fundamental for the development of

comprehensive policies and for the informed management of

seagrass ecosystems. However, mechanistic links between traits,

functions and services will have to be resolved, further indicating

the need for the mechanistic understanding of the traits that

underpin ecosystem functions and services.

In an era in which global open data storage and sharing is

becoming a central part of research, there is real need for a seagrass

trait database, which has been developed at the Centro de Ciências

do Mar (CCMAR, Portugal) in collaboration with the Portuguese

national bioinformatics research infrastructure (http://biodata.pt/

Elixir.pt). The Seagrass TraitDB (https://bio.tools/seagrasstraitdb)

adopts standardized file formats, metadata, vocabularies, and

identifiers so that it is compatible with global plant trait databases

such as TRY (Kattge et al., 2020). It validates, stores, and

disseminates MIAPPE-compliant data (https://www.miappe.org)

and uses plant trait ontology to describe phenotypic traits of

seagrasses. This tool will prove fundamental for the development

of holistic and global research on seagrasses and a great opportunity

for the application of the proposed TBF. We urge seagrass scientists

to contribute to this data base.

We believe that the adoption of the concepts presented in this

manuscript in seagrass research will aid the assessment of

ecosystem services provision, improving the awareness of

humankind on the importance of seagrass meadows worldwide.
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Jiménez-Ramos, R., Egea, L. G., Vergara, J. J., and Brun, F. G. (2018a). Nutrient load
and epiphytes are drivers of increased herbivory in seagrass communities. Mar. Ecol.
Prog. Ser. 599, 49–64. doi: 10.3354/meps12622

Jones, B. L., Nordlund, L. M., Unsworth, R. K., Jiddawi, N. S., and Eklöf, J. S. (2021).
Seagrass structural traits drive fish assemblages in small-scale fisheries. Front. Mar. Sci.
8. doi: 10.3389/fmars.2021.640528

Jueterbock, A., Franssen, S. U., Bergmann, N., Gu, J., Coyer, J. A., Reusch, T. B., et al.
(2016). Phylogeographic differentiation versus transcriptomic adaptation to warm
temperatures in Zostera marina, a globally important seagrass. Mol. Ecol. 25 (21),
5396–5411. doi: 10.1111/mec.13829

Kattge, J., Bönisch, G., Dıáz, S., Lavorel, S., Prentice, I. C., Leadley, P., et al. (2020).
TRY plant trait database–enhanced coverage and open access. Global Change Biol. 26
(1), 119–188. doi: 10.5194/egusphere-egu2020-20191

Keddy, P. A. (1992). Assembly and response rules: two goals for predictive
community ecology. J. Vegetation Sci. 3 (2), 157–164. doi: 10.2307/3235676

Lai, S., Yaakub, S. M., Poh, T. S., Bouma, T. J., and Todd, P. A. (2018). Unlikely
nomads: settlement, establishment, and dislodgement processes of vegetative seagrass
fragments. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00160

Lange, T., Oncken, N. S., Svane, N., Steinfurth, R. C., Kristensen, E., and Flindt, M. R.
(2022). Large-Scale eelgrass transplantation: a measure for carbon and nutrient
sequestration in estuaries. Mar. Ecol. Prog. Ser. 685, 97–109. doi: 10.3354/meps13975

Lavorel, S., and Garnier, E. (2002). Predicting changes in community composition
and ecosystem functioning from plant traits: Revisiting the holy grail. Funct. Ecol. 16,
545–556. doi: 10.1046/j.1365-2435.2002.00664.x

Lee, H., Golicz, A. A., Bayer, P. E., Jiao, Y., Tang, H., Paterson, A. H., et al. (2016).
The genome of a southern hemisphere seagrass species (Zostera muelleri). Plant
Physiol. 172 (1), 272–283. doi: 10.1104/pp.16.00868

Lee, H., Golicz, A. A., Bayer, P. E., Severn-Ellis, A. A., Chan, C. K. K., Batley, J., et al.
(2018). Genomic comparison of two independent seagrass lineages reveals habitat-
driven convergent evolution. J. Exp. Bot. 69 (15), 3689–3702. doi: 10.1093/jxb/ery147
Frontiers in Plant Science 15
Lefcheck, J. S., Orth, R. J., Dennison,W. C., Wilcox, D. J., Murphy, R. R., Keisman, J., et al.
(2018). Long-term nutrient reductions lead to the unprecedented recovery of a temperate
coastal region. Proc. Natl. Acad. Sci. 115 (14), 3658–3662. doi: 10.1073/pnas.1715798115

Les, D. H., Cleland, M. A., and Waycott, M. (1997). Phylogenetic studies in
alismatidae, II: Evolution of marine angiosperms (Seagrasses) and hydrophily. Syst.
Bot. 22, 443–463. doi: 10.2307/2419820

Llagostera, I., Cervantes, D., Sanmartı,́ N., Romero, J., and Pérez, M. (2016). Effects
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(2019). Open coast seagrass restoration. can we do it? Large scale seagrass transplants.
Front. Mar. Sci. 6. doi: 10.3389/fmars.2019.00052

Pazzaglia, J., Reusch, T. B., Terlizzi, A., Marıń-Guirao, L., and Procaccini, G. (2021).
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