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COMPACT AND WEAKLY COMPACT LIPSCHITZ OPERATORS

ARAFAT ABBAR, CLÉMENT COINE, AND COLIN PETITJEAN

Abstract. Any Lipschitz map f : M → N between two pointed metric spaces

may be extended in a unique way to a bounded linear operator f̂ : F(M) →
F(N) between their corresponding Lipschitz-free spaces. In this paper, we

give a necessary and sufficient condition for f̂ to be compact in terms of metric
conditions on f . This extends a result by A. Jiménez-Vargas and M. Villegas-

Vallecillos in the case of non-separable and unbounded metric spaces. After

studying the behavior of weakly convergent sequences made of finitely sup-

ported elements in Lipschitz-free spaces, we also deduce that f̂ is compact if

and only if it is weakly compact.

1. Introduction

Let (M,d) be a metric space equipped with a distinguished point denoted by
0M ∈ M . We let Lip0(M) be the Banach space of Lipschitz maps from M to K
(K = R or C), vanishing at 0M , equipped with the norm

Lip(f) := sup
x 6=y∈M

|f(x)− f(y)|
d(x, y)

.

For x ∈ M , we denote by δ(x) the bounded linear functional on Lip0(M) defined
by 〈f, δ(x)〉 = f(x), f ∈ Lip0(M). The Lipschitz-free space over M , denoted by
F(M), is the Banach space

F(M) := span‖·‖ {δ(x) : x ∈M} ⊂ Lip0(M)∗.

We refer the reader to [11] or [19] (where they are called Arens–Eells spaces) for
more information on these spaces, including a proof of the next fundamental “lin-
earization” property which will be the cornerstone of our study.

Proposition 1.1. Let M and N be two pointed metric spaces. Let f : M → N be
a Lipschitz map such that f(0M ) = 0N . Then, there exists a unique bounded linear

operator f̂ : F(M)→ F(N) with ‖f̂‖ = Lip(f) and such that the following diagram
commutes:

M
f //

δM
��

N

δN
��

F(M)
f̂

// F(N)

.

More precisely, for every γ =
∑n
i=1 aiδ(xi) ∈ F(M), f̂(γ) =

∑n
i=1 aiδ(f(xi)).
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2 A. ABBAR, C. COINE, AND C. PETITJEAN

In this paper, operators of the kind f̂ : F(M) → F(N) will be called Lipschitz
operators. The above linearization property carries some metric information about
f and the metric spaces M,N themselves. Of course, passing from a Lipschitz
map to a linear map has a price and the difficulty is to analyse the structure of the
associated Lipschitz-free spaces. A very natural yet widely unexplored topic consists

in the study of how metric properties of f are transferred to linear properties of f̂ ,
and vice-versa (see e.g. [1]).

In this paper, we investigate the compactness properties of f̂ and characterize
them in terms of metric conditions on f . Recall that an operator T : X → Y
between Banach spaces is compact if the image by T of the unit ball of X, denoted
by BX , is relatively compact in Y . Similarly, we say that T is weakly compact if
T (BX) is relatively weakly compact in Y . It is obvious that any compact operator
is also weakly compact, while the converse is not true in general. A disguised
study of compact Lipschitz operators has probably been initiated by Kamowitz and
Scheinberg in [15] and then pursued by Jiménez-Vargas and Villegas-Vallecillos in
[17] (see also [14] where vector-valued Lipschitz functions are considered). Indeed, in
the last mentioned papers, the authors consider composition operators on Lipschitz

spaces which appear naturally as the adjoints of our Lipschitz operators f̂ . To be
more specific, noting that

f ∈ Lip0(M) 7→

[∑
i

aiδ(xi) 7→
∑
i

aif(xi)

]
∈ F(M)∗

is an isometric isomorphism, we get that
(
f̂
)∗

= Cf , where Cf : Lip0(M) →
Lip0(N) is the composition operator given by Cf (g) = g ◦ f, g ∈ Lip0(M). Of

course, by Schauder’s theorem, f̂ is compact if and only if
(
f̂
)∗

is compact, so

one can tackle the problem either working with Cf or working with f̂ . In [17], the
authors proved the next characterization.

Theorem ([17, Theorem 1.2]). Let M be pointed separable metric spaces and let
f : M → M be a Lipschitz map vanishing at 0M . Assume that M is bounded and
separable. Then the composition operator Cf : g ∈ Lip0(M) 7→ g ◦ f ∈ Lip0(M) is
compact if and only if

(i) f(M) is totally bounded in M .
(ii) f is uniformly locally flat, that is, for each ε > 0, there exists δ > 0 such

that d(f(x), f(y)) ≤ εd(x, y) whenever d(x, y) ≤ δ.
A few comments about the above statement are necessary. First, as it is proved in

[9, Theorem 8.7.8], the very same result holds for Lipschitz maps f : M → N where
N is any pointed metric space. Notice also that the separable assumption is absent
in [17, Theorem 1.2], but, as is this written in [9], the method of the proof needs
M to be separable. Finally the above condition (ii) is called “supercontractive” in
[17], but we also sometimes see it as the “the little Lipschitz condition” (since the
space of uniformly locally flat Lipschitz functions is often called the little Lipschitz
space, see [19]).

Our first main result extends the previous theorem in the case of any metric
spaces M and N (in particular not separable and unbounded). In fact, when M is
unbounded, one needs an additional assumption to take into account the behavior

of the function f at infinity. To prove our result, we are dealing directly with f̂
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instead of its adjoint Cf . Hence, even when M is bounded, our proof is different
from that of [17].

Theorem A. Let M,N be complete pointed metric spaces, and let f : M → N be

a base point-preserving Lipschitz mapping. Then f̂ : F(M) → F(N) is compact if
and only if the next assertions are satisfied:

(P1) For every bounded subset S ⊂M , f(S) is totally bounded in N ;
(P2) f is uniformly locally flat, that is,

lim
d(x,y)→0

d(f(x), f(y))

d(x, y)
= 0;

(P3) For every (xn, yn)n ⊂ M̃ := {(x, y) ∈M ×M | x 6= y} such that
lim
n→∞

d(xn, 0) = lim
n→∞

d(yn, 0) =∞, either

• (f(xn), f(yn))n has an accumulation point in N ×N , or

• lim inf
n→+∞

d(f(xn), f(yn))

d(xn, yn)
= 0.

It turns out that in the proof of “ =⇒ ” in Theorem A, which will be provided

in Section 2, most of the time we only use the weaker assumption that f̂ is weakly
compact. This suggests that there should be a close relationship between compact
Lipschitz operators and weakly compact Lipschitz operators. Another clue is con-
tained in [13]. Let us denote lip0(M) the subspace of Lip0(M) made of uniformly
locally flat functions. Then we say that lip0(M) separates the points (of M) uni-
formly if there exists C > 0 such that, for every x 6= y, there exists a C-Lipschitz
map f ∈ lip0(M) with |f(x) − f(y)| = d(x, y). Now [13, Corllary 2.4] states that
if M is a compact metric space such that lip0(M) separates the points uniformly,
then the composition operator Cf : g ∈ Lip0(M) 7→ g ◦f ∈ Lip0(M) is weakly com-
pact if and only if it is compact. Let us point out that for a compact metric space
M , lip0(M) separates points uniformly if and only if M is purely 1-unrectifiable
(that is, does not contain any bi-Lipschitz image of a subset of R with positive
Lebesgue measure; see [5, Theorem A]). This recent characterization underlines the
fact that the assumptions in [13, Corllary 2.4] are rather restrictive. We shall prove
in Section 3 that this result is actually true for every metric space M .

Theorem B. Let M,N be complete pointed metric spaces, and let f : M → N be
a base point-preserving Lipschitz mapping. The the next conditions are equivalent

(1) f̂ : F(M)→ F(N) is compact;

(2) f̂ : F(M)→ F(N) is weakly compact;
(3) Cf : Lip0(N)→ Lip0(M) is compact;
(4) Cf : Lip0(N)→ Lip0(M) is weakly compact;
(5) Cf : Lip0(N)→ Lip0(M) is weak∗-to-weak continuous.

The key ingredient for proving Theorem B will be a structural result concerning
weakly convergent sequences of finitely supported elements in Lipschitz-free spaces.
We recall that γ ∈ F(M) is said to be finitely supported if γ ∈ span {δ(x) : x ∈M}
and then the support of γ, denoted by supp(γ), is the smallest subset S ⊂M such
that γ ∈ F(S). In what follows, for every k ∈ N, FSk(M) stands for the set of all
γ ∈ F(M) such that supp(γ) contains at most k points of M .
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Theorem C. Let M be a complete metric space. If a sequence (γn)n ⊂ FSk(M)
weakly converges to some γ ∈ F(M), then γ ∈ FSk(M) and (γn)n actually con-
verges to γ in the norm topology.

The previous theorem can be deduced as a direct consequence of the deep result
[3, Theorem 5.2] and [1, Lemma 2.10]. Since the proof from [3] is rather elaborated,
for the convenience of the reader, we shall provide a different proof which is based
on some recent developments in the theory of Lipschitz-free spaces.

Notation and background. If X is a Banach space, then we let X∗ be its
topological dual, BX be its unit ball and SX be its unit sphere.

Throughout the paper, M,N are complete pointed metric spaces and the distin-
guished points will be denoted by 0M and 0N respectively, or simply 0 if there is
no ambiguity. We will write

M̃ = {(x, y) ∈M ×M | x 6= y}.

We will use the notation

B(p, r) = {x ∈M | d(x, p) ≤ r}
rad(S) = sup{d(x, 0) | x ∈ S}

where p ∈ M and S ⊂ M . Next, if (xn)n is a sequence of elements of M , we will
say that (xn)n goes to infinity if limn d(xn, 0M ) =∞. For convenience, let us recall
the vector spaces

Lip(M) = {f ∈ KM | f is Lipschitz}
Lip0(M) = {f ∈ Lip(M) | f(0) = 0}.

We also wish to recall some important features of the Lipschitz-free space over M ,

F(M) := span‖·‖ {δ(x) : x ∈M} ⊂ Lip0(M)∗.

First, F(M) is actually an isometric predual of Lip0(M), that is F(M)∗ ≡ Lip0(M).
Moreover, if 0M ∈ K ⊂M , then F(K) is isomorphic to a subspace of F(M) in the
following way

F(K) ' span{δM (x) | x ∈ K} ⊂ F(M).

According to this identification, the support of γ ∈ F(M) is the smallest closed
subset K ⊂ M such that γ ∈ F(K). It is denoted by supp(γ). In particular and
according to the terminology introduced before, FSk(M) is the set of elements
γ ∈ F(M) such that supp(γ) is finite and |supp(γ)| ≤ k (where |A| denote the
cardinal of a subset A ⊂ M). We refer to [6, 7] for more background information
on the support. We mention here a very simple particular case of Theorem C
in the case of some sequences in FS1(M). We will use this fact in Section 2
without mention, and it can be easily proved by considering the Lipschitz function
y ∈M 7→ d(x, y)− d(x, 0M ).

Fact: If (xn)n ⊂ M is such that δ(xn) → δ(x) weakly, then δ(xn) → δ(x) in the
norm topology (which is equivalent to saying that xn → x in M).

We also wish to mention that the Lipschitz-free space over M is isometrically
isomorphic to the Lipschitz-free space over its completion M in a very natural way.
Indeed, it is readily checked that f ∈ Lip0(M) 7→ f�M ∈ Lip0(M) is a weak∗-
to-weak∗ continuous isometry. Hence, if f : M → N is the unique extension of
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f : M → N , then f̂ : F(M)→ F(N) and f̂ : F(M)→ F(N) are conjugate one to
another, so one of them is compact if and only if the other one is. The only place
where we need completeness is in Theorem A. Indeed, in the proof, we use the fact
that if N is complete, then a totally bounded subset of N is relatively compact.
However, one could restate this theorem by replacing N by its completion. So one
can deduce the general statements (without completeness) from our statements
(with completeness). Since there is no real loss of generality, we will assume that
M and N are always complete.

To conclude this introduction, let us state the next particular case of Urysohn’s
lemma that we shall use several times throughout the paper. It allows us to separate
two or more points of M by an element of Lip0(M). Since we are dealing with metric
spaces, a concrete simple formula can be given for the Lipschitz map, but it can
also be easily deduced from McShane extension’s theorem, see e.g. [19, Theorem
1.33 and Corollary 1.34].

Lemma 1.2. Let M be a pointed metric space, let p ∈ M,p 6= 0M and let ε ∈
(0, d(p, 0M )/4). Then there exists f ∈ Lip0(M) such that f = 1 on B(p, ε) and
f = 0 on M \B(p, 2ε).

2. A metric characterisation of compact Lipschitz operators

The main objective of this section is to prove Theorem A. The proof will be based
on the next easy but smart observation from [10] (see Theorem 2.3 therein). This
result concerns not only compact operators but also weakly compact operators,
and so it will be useful in Section 3 as well. We shall provide its short proof for
completeness.

Proposition 2.1 ([10]). Let M,N be pointed metric spaces and let f : M → N

be a base point-preserving Lipschitz mapping. Then f̂ : F(M)→ F(N) is (weakly)
compact if and only if {

δ(f(x))− δ(f(y))

d(x, y)
| x 6= y ∈M

}
is relatively (weakly) compact in F(N).

Proof. We will only prove the statement for compact operators, the proof being
verbatim the same in the case of weakly compact operators. Notice that{

δ(f(x))− δ(f(y))

d(x, y)
| x 6= y ∈M

}
= f̂(M),

where M =
{
d(x, y)−1(δ(x)− δ(y)) | x 6= y ∈M

}
. Since M ⊂ BF(M), if f̂ is

compact then f̂(M) must be relatively compact. Conversely, it follows from the
Hahn–Banach separation theorem that BF(M) = convM, the closure being taken
for the norm topology. Now observe that

f̂(BF(M)) ⊂ f̂(convM) ⊂ conv(f̂(M)) ⊂ conv
(
f̂(M)

)
.

So, if f̂(M) is relatively compact, then conv
(
f̂(M)

)
is compact (see e.g. [8,

Theorem 5.35]), and therefore f̂(BF(M)) is relatively compact. �



6 A. ABBAR, C. COINE, AND C. PETITJEAN

In the proof of Theorem A, we will use Proposition 2.1 repeatedly and hence,
we will work with sequences of finitely supported elements in Lipschitz-free spaces.
By [1, Lemma 2.10], the set FSk(M) of elements of F(M) whose support contains
at most k elements is weakly closed in F(M) (in particular, it is norm closed). We
will use this fact in various places.

Lemma 2.2. Let k ∈ N and (γn)n =
(∑k

i=1 ai(n)δ(xi(n))
)
n
⊂ FSk(M) be a

sequence converging weakly to an element γ ∈ FSk(M). Then, for every p ∈
supp(γ), there exists 1 ≤ m ≤ k such that lim inf

n→+∞
d(xm(n), p) = 0.

Proof. Let us write γ =
∑l
i=1 aiδ(pi) where 1 ≤ l ≤ k, ai 6= 0 and p1, . . . , pl are

pairwise distinct elements of M \ {0M}. Aiming for a contradiction, assume that
there exists 1 ≤ j ≤ l such that none of the sequences (xi(n))n, 1 ≤ i ≤ k, has a
subsequence converging to pj . Then, there exists ε > 0 and a strictly increasing
sequence (nm)m ⊂ N such that, for every m and every 1 ≤ i ≤ k, d(xi(nm), pj) ≥ ε.
Hence, by Lemma 1.2 we can find h ∈ Lip0(M) such that h(pj) = 1, h(pi) = 0 if
i 6= j and h = 0 outside of B(pj , ε/2). Now, simply notice that since γnm → γ in
the weak topology we have

0 = 〈h, γnm
〉 → 〈h, γ〉 = aj ,

which is a contradiction. �

Lemma 2.3. Let f : M → N be a Lipschitz map such that f(0M ) = 0N . Let

(xn, yn)n ⊂ M̃ and let (mn)n ⊂ F(N) be defined by

mn =
δ(f(xn))− δ(f(yn))

d(xn, yn)
.

Assume that (mn)n weakly converges to γ ∈ F(N).

(1) If d(xn, yn)→ 0 then γ = 0.
(2) If d(xn, yn)→ +∞ then γ = 0.
(3) If there exists α > 0 such that d(xn, yn) ≥ α and γ 6= 0 then (d(xn, yn))n

is bounded and (f(xn), f(yn))n has an accumulation point in N ×N .

Proof. Notice that (mn)n ⊂ FS2(N) which is weakly closed so γ = aδ(p) + bδ(q) ∈
FS2(N) where either p 6= q or p = q = 0.

Let us prove (1). If γ 6= 0 then we can assume that a 6= 0, p 6= 0N and,
according to Lemma 2.2, that (f(xn))n or (f(yn))n has a subsequence converging
to p. Since d(xn, yn) → 0, both subsequences converge, that is, there exists an
increasing sequence (nk)k ⊂ N such that (f(xnk

))k and (f(ynk
))k are converging to

p. The same lemma ensures that b = 0 so that γn → aδ(p). Now, let h ∈ Lip0(N)
be such that h takes the value 1 on a ball around p. Then, for k large enough,
〈h,mnk

〉 = 0 while the limit over k of this term is 〈h, aδ(p)〉 = a, therefore a = 0.
This is a contradiction so we must have γ = 0.

We now prove (2). We aim for a contradiction. If γ 6= 0, we may assume that
a 6= 0 and p 6= 0N and by Lemma 2.2, up to extracting a subsequence, that (f(xn))n
converges to p. Since (f(xn))n converges and d(xn, yn)→ +∞, we have

‖ · ‖ − lim
n→∞

δ(f(xn))

d(xn, yn)
= 0.
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Therefore (d(xn, yn)−1δ(f(yn)))n ⊂ FS1(N) must converge to an element γ′ =
cδ(r). We then distinguish two cases :

• If for some subsequence, (f(ynk
))k is bounded, then mnk

→ 0 and this is a
contradiction.
• If for some subsequence, d(f(ynk

), 0) → +∞, then (f(ynk
))k is eventually

far from r. Similarly as in (1), one can show that c must be equal to 0
by using a Lipschitz map taking the value 1 at p and 0 outside of a ball
centered at r. So mnk

→ 0, yet another contradiction.

Let us finish with the proof of (3). As above, since γ 6= 0 we can assume that
a 6= 0, p 6= 0N and (f(xn))n converges to p. We only need to show that (f(yn))n has
a convergent subsequence. If b 6= 0 and q is not equal to 0N or p, then Lemma 2.2
ensures that (f(yn))n has a subsequence converging to q. So assume that b = 0
or q = 0N , that is, γn → aδ(p). Up to extracting another subsequence, we may
assume that d(xn, yn) converges to ρ ∈ (0,+∞]. If ρ = +∞ then γ = 0 by (2), so
we actually have that ρ ∈ (0,+∞). Therefore

δ(f(xn))− δ(f(yn))→ a′δ(p) weakly

where a′ = aρ. Since δ(f(xn))→ δ(p), we have

δ(f(yn))→ a′′δ(p) weakly

where a′′ = 1−a′. If a′′ 6= 0 then by Lemma 2.2, f(yn) has a subsequence converging
to p, and if a′′ = 0 then f(yn)→ 0N . �

We need one last lemma before the proof of Theorem A. For convenience, let us
recall we was called (P3) in this statement.

(P3) For every (xn, yn)n ⊂ M̃ := {(x, y) ∈ M × M | x 6= y} such that
lim
n→∞

d(xn, 0) = lim
n→∞

d(yn, 0) =∞, either

• (f(xn), f(yn))n has an accumulation point in N ×N , or

• lim inf
n→+∞

d(f(xn), f(yn))

d(xn, yn)
= 0.

Lemma 2.4. Let M be an unbounded metric space, N be any metric space and
f : M → N be any map. If f satisfies (P3) then f is radially flat, that is

lim
d(x,0)→∞

d(f(x), 0)

d(x, 0)
= 0.

Proof. Assume that f satisfies (P3). Let (xn)n ⊂M be such that d(xn, 0)→ +∞.
We will show that there exists a subsequence (xnk

)k such that

d(f(xnk
), 0)

d(xnk
, 0)

−→
k→+∞

0.

In view of applying Property (P3), we first construct by induction an increasing
sequence (nk)k ⊂ N and a sequence (ynk

)k ⊂M such that for every k ∈ N
(i) d(ynk

, 0) ≥ k;
(ii) d(xnk

, ynk
) ≥ k;

(iii)
d(xnk

, ynk
)

d(xnk
, ynk

)− d(ynk
, 0)
≤ 2;

(iv)
d(f(ynk

), 0)

d(xnk
, ynk

)− d(ynk
, 0)
≤ 1

k
.
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We proceed by induction and start with the base case k = 1. Since M is
unbounded, there is an element y ∈ M such that d(y, 0) ≥ 1. We fix such y.
The inequality

d(xn, y) ≥ d(xn, 0)− d(y, 0)

yields d(xn, y) −→
n→+∞

+∞ so that

d(xn, y)

d(xn, y)− d(y, 0)
−→

n→+∞
1 and

d(f(y), 0)

d(xn, y)− d(y, 0)
−→

n→+∞
0.

Hence, we can find n1 ∈ N large enough so that

d(xn1
, y) ≥ 1,

d(xn1
, y)

d(xn1
, y)− d(y, 0)

≤ 2 and
d(f(y), 0)

d(xn1
, y)− d(y, 0)

≤ 1.

We then set yn1
= y.

Assume now that yn1
, . . . , ynk

∈ M are constructed with n1 < n2 < · · · < nk.
We can find y ∈ M such that d(y, 0) ≥ k + 1. We now proceed as above, and we
find nk+1 ∈ N such that nk < nk+1 and

d(xnk+1
, y) ≥ k+ 1,

d(xnk+1
, y)

d(xnk+1
, y)− d(y, 0)

≤ 2 and
d(f(y), 0)

d(xnk+1
, y)− d(y, 0)

≤ 1

k + 1
.

We can now set ynk+1
= y and by construction, the sequence (ynk

)k ⊂ M satisfies
the desired properties.
In particular, d(ynk

, 0) → +∞, so we can apply (P3) to (xnk
)k and (ynk

)k and we
keep denoting by (xnk

)k and (ynk
)k the subsequences that we obtain. Hence, we

either have f(xnk
) → p and f(ynk

) → q for some p, q ∈ N or
d(f(xnk

),f(ynk
))

d(xnk
,ynk

) → 0.

Note that if we are in the first case, then we also have

(1)
d(f(xnk

), f(ynk
))

d(xnk
, ynk

)
→ 0

because d(xnk
, ynk

) → +∞, and that is the property we will need. Indeed, by the
triangle inequality

d(f(xnk
), 0)

d(xnk
, 0)

≤ d(f(xnk
), f(ynk

))

d(xnk
, ynk

)− d(ynk
, 0)

+
d(f(ynk

), 0)

d(xnk
, ynk

)− d(ynk
, 0)

=
d(f(xnk

), f(ynk
))

d(xnk
, ynk

)

d(xnk
, ynk

)

d(xnk
, ynk

)− d(ynk
, 0)

+
d(f(ynk

), 0)

d(xnk
, ynk

)− d(ynk
, 0)

and the right hand side converges to 0 by (iii), (iv) and (1). �

Theorem A. Let M,N be complete pointed metric spaces, and let f : M → N be

a base point-preserving Lipschitz mapping. Then f̂ : F(M) → F(N) is compact if
and only if the next assertions are satisfied:

(P1) For every bounded subset S ⊂M , f(S) is totally bounded in N ;
(P2) f is uniformly locally flat, that is,

lim
d(x,y)→0

d(f(x), f(y))

d(x, y)
= 0;

(P3) For every (xn, yn)n ⊂ M̃ := {(x, y) ∈M ×M | x 6= y} such that
lim
n→∞

d(xn, 0) = lim
n→∞

d(yn, 0) =∞, either

• (f(xn), f(yn))n has an accumulation point in N ×N , or
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• lim inf
n→+∞

d(f(xn), f(yn))

d(xn, yn)
= 0.

Remark 2.5. Assume that the condition (P3) is satisfied. Then, if (xn, yn)n ⊂ M̃ is

such that
d(f(xn), f(yn))

d(xn, yn)
does not converge to 0, there is a subsequence (xnk

, ynk
)k

such that lim inf
k→+∞

d(f(xnk
), f(ynk

))

d(xnk
, ynk

)
> 0. This implies that (f(xnk

), f(ynk
))k and

hence (f(xn), f(yn))n, has an accumulation point in N ×N . This tells us that we
can reformulate condition (P3) by :

(P ′3) For every (xn, yn)n ⊂ M̃ := {(x, y) ∈ M × M | x 6= y} such that
lim
n→∞

d(xn, 0) = lim
n→∞

d(yn, 0) =∞, either

• (f(xn), f(yn))n has an accumulation point in N ×N , or

• lim
n→+∞

d(f(xn), f(yn))

d(xn, yn)
= 0.

Proof of Theorem A. We first prove the “ =⇒ ” direction.

We start with f̂ compact implies (P1). Let S be a bounded subset of M and let
(xn)n be a sequence in S. By assumption (and Proposition 2.1), the sequence

(mn)n :=

(
f̂

(
δ(xn)

d(xn, 0)

))
n

=

(
δ(f(xn))

d(xn, 0)

)
n

has a convergent subsequence (mnk
)k. Denote by γ the limit of (mnk

)k. If γ = 0,
then

d(f(xnk
), 0N ) = ‖mnk

‖d(xnk
, 0M ) −→

k→∞
0

because (xnk
)k is bounded. In that case, f(xnk

) → 0N and we are done. Hence,
it only remains to consider the case when γ 6= 0. By Lemma 2.3, this can only
happen if d(xnk

, 0M ) does not tend to 0. But then, we can find a subsequence, still
denoted by (nk)k for convenience, such that d(xnk

, 0M ) ≥ α > 0 for every k. By
the same Lemma, we then must have a subsequence of (f(xnk

))k which converges
and this finishes to prove (P1).

We now show that f̂ compact implies (P2). Let (xn)n, (yn)n be two sequences
in M such that d(xn, yn)→ 0. By Proposition 2.1, the sequence(

δ(f(xn))− δ(f(yn))

d(xn, yn)

)
n

has a converging subsequence. However it follows immediately from Lemma 2.3 (1)
that the limit is 0.

It remains to prove that f̂ compact implies (P3). We already know that if f̂ is
compact then f satisfies (P2), which will be of use. Let (xn)n, (yn)n ⊂M going to
infinity with xn 6= yn. Again, we let

mn :=
δ(f(xn))− δ(f(yn))

d(xn, yn)
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and (mn)n has a convergent subsequence, which we keep denoting by (mn)n, for
simplicity. Let γ be the limit of (mn)n. Notice that

‖mn‖ =
d(f(xn), f(yn))

d(xn, yn)
.

We distinguish two cases: up to extracting a further subsequence, we will need
to consider the cases when d(xn, yn) converges to 0 and when there exists α > 0
such that d(xn, yn) ≥ α for every n. In the first case, we get by (P2) that mn → 0
so that ‖mn‖ → 0. In the second case, if γ 6= 0, we have by Lemma 2.3 (3) that
there exist p, q ∈ N and an increasing sequence (nk)k ⊂ N such that f(xnk

) → p
and f(ynk

) → q. Finally if γ = 0 then again ‖mn‖ → 0. In all cases, f satisfies
(P3).

Let us now prove the “⇐= ” direction. We keep using the notation

(mn)n :=

(
δ(f(xn))− δ(f(yn))

d(xn, yn)

)
n

where xn 6= yn ∈ M for every n ∈ N. By Proposition 2.1, we have to show
that this sequence admits a convergent subsequence in F(N). Up to extracting a
subsequence, we only have to distinguish three cases : when both (xn)n and (yn)n
are bounded, when one of them is bounded while the other one goes to +∞, and
when both go to +∞.

(i) If (xn)n and (yn)n are bounded, by (P1) there exists an increasing sequence
(nk)k ⊂ N such that (f(xnk

))k converges to a point p ∈ N and (f(ynk
))k

converges to some q ∈ N . Since the sequence (d(xnk
, ynk

))k is bounded, up
to a further extraction, we may assume that it converges to some ρ ≥ 0. Since
f is uniformly locally flat, if ρ = 0 then (mnk

)k converges to 0. If ρ > 0, then
it is readily seen that (mnk

)k converges to ρ−1(δ(p)− δ(q)).
(ii) If (xn)n is bounded while d(yn, 0) → ∞, thanks to (P1) there exists an

increasing sequence (nk)k ⊂ N such that (f(xnk
))k converges to a point

p ∈ N . Therefore we may write for every k ∈ N:

mnk
=
δ(f(xnk

))− δ(f(ynk
))

d(xnk
, ynk

)

=
δ(f(xnk

))− δ(0)

d(xnk
, ynk

)
+
δ(0)− δ(f(ynk

))

d(0, ynk
)

d(0, ynk
)

d(xnk
, ynk

)
.

On the one hand,∥∥∥∥δ(f(xnk
))− δ(0)

d(xnk
, ynk

)

∥∥∥∥ =
d(f(xnk

), 0)

d(xnk
, ynk

)
−→
k→∞

0.

On the other hand, f is radially flat thanks to Lemma 2.4 so that∥∥∥∥δ(0)− δ(f(ynk
))

d(0, ynk
)

∥∥∥∥ =
d(f(ynk

), 0)

d(ynk
, 0)

−→
k→∞

0.

Since the triangle inequality implies that lim
k→∞

d(0, ynk
)−1d(xnk

, ynk
) = 1, we

obtain that (mnk
)k converges to 0.

(iii) If d(xn, 0) → +∞ and d(yn, 0) → +∞, then by (P3) there exists (nk)k ⊂ N
such that, either ‖mnk

‖ → 0 or f(xnk
) → p and f(ynk

) → q for some
p, q ∈ N . In the first case we are done since (mnk

)k converges to 0. In the
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second case, up to further extraction, we may assume that d(xnk
, ynk

)→ ρ ∈
[0,+∞]. Hence, mnk

converges to 0 if ρ = 0 or ρ = +∞ and converges to
ρ−1(δ(p)− δ(q)) otherwise.

In all cases, the sequence (mn)n admits a convergent subsequence. �

Of course, condition (P3) is always satisfied if the metric space M is bounded.
Similarly, condition (P2) is always satisfied if the space is uniformly discrete, that
is, infx6=y d(x, y) > 0. On the other hand, if M = R = N with the usual metric |.|,
this condition means that f ′ = 0 and hence f = 0 because f(0) = 0. In particular,

according to Theorem A, the only compact Lipschitz operator f̂ : F(R) → F(R)
is 0. Furthermore, (P3) may seem uneasy to check. The next result shows that
we may replace this property by a stronger yet simpler condition. Nonetheless,
Example 2.8 will show that this condition is not necessary.

Corollary 2.6. Let M,N be complete pointed metric spaces, and let f : M → N
be a base point-preserving Lipschitz mapping. If f satisfies

(P1) For every bounded subset S ⊂M , f(S) is totally bounded in N ;
(P2) f is uniformly locally flat, that is,

lim
d(x,y)→0

d(f(x), f(y))

d(x, y)
= 0;

(P4) f is flat at infinity, that is,

lim
d(x,0)→∞
d(y,0)→∞

d(f(x), f(y))

d(x, y)
= 0,

then f̂ : F(M)→ F(N) is compact.

Proof. It is readily seen that (P4) implies (P3). �

Remark 2.7. Assume that f̂ is compact. It follows from Proposition 2.1 (or the
proof of Theorem A) and Lemma 2.3 that f satisfies the following property

lim
d(x,y)→+∞

d(f(x), f(y))

d(x, y)
= 0.

This property is stronger than the condition “radially flat” from Lemma 2.4, but
weaker than the condition “flat at infinity” from the previous corollary.

Example 2.8 (Property (P4) is not necessary). Consider (M,d) = (N ∪ {0}, | · |)
and f : M → M obtained by f(2n) = 0 and f(2n + 1) = 1. Then f is clearly

Lipschitz and f̂ : F(M)→ F(M) is compact because its range is finite dimensional.
Even so, if we let xn = 2n + 1 and yn = 2n then d(xn, 0), d(yn, 0) → +∞ while
d(f(xn),f(yn))

d(xn,yn)
= 1 for every n. Consequently f does not satisfy (P4).

In fact, in the previous example, f satisfies a much stronger property: f(M) is
totally bounded.

Corollary 2.9. Let M,N be complete pointed metric spaces, and let f : M → N
be a base point-preserving Lipschitz mapping. If f(M) is totally bounded in N and

f is uniformly locally flat, then f̂ : F(M)→ F(N) is compact.
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Proof. If f(M) is totally bounded then clearly f satisfies (P1). Moreover if (xn)n
and (yn)n are two sequences in M going to infinity, then the sequences (f(xn))n
and (f(yn))n have a common convergent subsequence and so f readily satisfies (P3)
in Theorem A. �

Example 2.10 (f(M) totally bounded is not necessary). Take M = N ∪ {0}
equipped with the metric given by d(n, 0) = n! and d(n,m) = n! + m! if n 6= m.
Define f : M → M by f(0) = 0 and f(n) = n − 1 if n ≥ 1. Then f(M) = M is

clearly not totally bounded while f̂ is compact as it satisfies (P1), (P2) and (P4).

3. Weak compactness of Lipschitz operators

As we already mentioned in the introduction, Theorem B is an easy conse-
quence of Theorem C, which states that norm-convergence and weak-convergence
are equivalent for sequences in FSk(M), plus some other classical results concern-
ing (weakly) compact operators. We postpone the proof of Theorem C in order to
first discuss its use in the proof of Theorem B.

Theorem B. Let M,N be complete pointed metric spaces, and let f : M → N be
a base point-preserving Lipschitz mapping. The the next conditions are equivalent

(1) f̂ : F(M)→ F(N) is compact;

(2) f̂ : F(M)→ F(N) is weakly compact;
(3) Cf : Lip0(N)→ Lip0(M) is compact;
(4) Cf : Lip0(N)→ Lip0(M) is weakly compact;
(5) Cf : Lip0(N)→ Lip0(M) is weak∗-to-weak continuous.

Proof. The implication (1) =⇒ (2) is obvious. Next, (2) =⇒ (1) follows
from Theorem C and Proposition 2.1. Indeed, thanks to the Eberlein–Šmulian
theorem (see [4, Theorem 1.6.3] e.g.), a subset S of a Banach space X is (relatively)
weakly compact if and only if it is (relatively) weakly sequentially compact. So,
Theorem C implies that a subset S ⊂ FSk(M) is weakly compact if and only
if it is compact in the norm topology. Now observe that the set appearing in
Proposition 2.1 is a subset of FS2(M) so that compactness and weak compactness
are indeed equivalent. To conclude, (1) ⇐⇒ (3) follows from Schauder’s theorem
(see e.g. [16, Theorem 3.4.15]), (2) ⇐⇒ (4) follows from Gantmacher’s theorem
(see e.g. [16, Theorem 3.5.13]), and (2) ⇐⇒ (5) follows from a classical result
[16, Theorem 3.5.14] due to Gantmacher in the separable case and Nakamura in
the general case. �

Theorem C is essentially contained in the very deep result [3, Theorem 5.2],
even if one really needs to use the weak closeness of FSk(M) [1, Lemma 2.10]
in order to obtain the statement we give. For the sake of completeness, we will
take advantage of some recent developments in the study of Lipschitz-free spaces in
order to provide a new direct proof of this result. First, we recall two useful facts.
The first one shows that the pointwise multiplication with a Lipschitz function
of bounded support always results in a Lipschitz function and, in fact, defines a
continuous operator between Lipschitz spaces.

Lemma 3.1 (Lemma 2.3 in [7]). Let M be a pointed metric space and let h ∈
Lip(M) have bounded support. Let K ⊂ M contain the base point and the support
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of h. For f ∈ Lip0(K), let Th(f) be the function given by

(2) Th(f)(x) =

{
f(x)h(x) if x ∈ K
0 if x /∈ K

.

Then Th defines a weak∗-to-weak∗ continuous linear operator from Lip0(K) into
Lip0(M), and ‖Th‖ ≤ ‖h‖∞ + rad(supp(h)) ‖h‖L.

The function Th(f) does not depend on the choice of K, as long as it contains the
support of h. Thus the requirement that 0 ∈ K is not really a restriction, as one may
always use the set K ∪{0} instead. Since Th is weak∗-to-weak∗ continuous, there is
an associated bounded linear operator Wh : F(M)→ F(K) such that Wh

∗ = Th.

The second fact is the following, whose proof can be deduced from that of [18,
Lemma 4.5].

Lemma 3.2. Let M be a bounded metric space. If (γn)n ⊂ F(M) is a weakly null
sequence such that

∃ε > 0,∀n 6= m, d(supp(γn), supp(γm)) > ε,

then (γn)n converges to 0 in the norm topology.

We are now ready to prove the desired structural result about finitely supported
sequences in Lipschitz-free spaces.

Theorem C. Let M be a complete metric space. If a sequence (γn)n ⊂ FSk(M)
weakly converges to some γ ∈ F(M), then γ ∈ FSk(M) and (γn)n converges to γ
in the norm topology.

Proof. Since FSk(M) is weakly closed by [1, Lemma 2.10], if a sequence (γn)n ⊂
FSk(M) weakly converges to some γ ∈ F(M), then γ ∈ FSk(M). Therefore, for
every n ∈ N, γ − γn ∈ FS2k(M). Consequently, to prove the result it is enough
to show that for every complete metric space M and for every k ∈ N, any weakly
null sequence in FSk(M) is actually norm null. We will proceed by induction on
k ∈ N. Thanks to [2, Theorem A], there exists a bounded metric space B(M)
such that F(M) is linearly isomorphic to F(B(M)). Moreover the isomorphism
T : F(M) → F(B(M)) preserves finitely supported elements is the sense that
γ ∈ FSk(M) if and only if T (γ) ∈ FSk(B(M)). So, without loss of generality, we
may assume that M is a bounded metric space.

If k = 1 and (γn)n ⊂ FS1(M) is a weakly null sequence, we can write γn =
anδ(xn) where an ∈ K and xn ∈ M . Let us denote f := d(·, 0) ∈ Lip0(M). Since
(γn)n is weakly null, it is readily seen that

‖γn‖ = |an|d(xn, 0) = |〈f, γn〉| −→
n→∞

0.

Let us fix k ∈ N. Assume we have shown that, for every j ≤ k, every weakly null
sequence in FSj(M) is in fact norm null. Let us consider a weakly null sequence
(γn)n ⊂ FSk+1(M). For every n ∈ N, we will write

γn =

k+1∑
i=1

ai(n)δ(xi(n)),

where ai(n) ∈ K and xi(n) ∈ M for every 1 ≤ i ≤ k + 1. We will distinguish two
cases:
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• There exists i ∈ {1, . . . , k + 1} such that (xi(n))n has a convergent subsequence to
some x ∈ M . For simplicity, we still denote the subsequence by (xi(n))n. Notice
that i ∈ {1, . . . , k+1} as above might not be unique. So, up to a further extraction,
we may assume that there exists ε > 0 and i1, . . . , ij such that (xi(n))n converges
to x for every i ∈ I := {i1, . . . , ij}, while (xi(n))n ⊂ M \ B(x, ε) whenever i ∈
{1, . . . , k + 1} \ I.

If j = k+ 1, that is I = {1, . . . , k+ 1}, then the set K := {xi(n) | n ∈ N and 1 ≤
i ≤ k+1}∪{x}∪{0} is a countable compact metric space such that (γn)n ⊂ F(K).
Thanks to [12, Theorem 3.1] (see also [5]), F(K) has the Schur property so that
(γn) is actually norm null, which is what we wanted to prove.

If j < k+1, we let h be the map defined by h(z) = 1 if z ∈ B(x, ε/2) and h(z) = 0
if z ∈M \B(x, ε). It is easy to prove that h is Lipschitz on B(x, ε/2)∪M \B(x, ε)
and using McShane’s extension theorem (see e.g. [19, Theorem 1.33 and Corollary
1.34]), we can extend h to the all M . Clearly, supp(h) ⊂ K := B(x, ε) ∪ {0}. Now
let Th be as in Lemma 3.1 and Wh : F(M)→ F(K) be its pre-adjoint operator. It is
a routine check to see that if µ ∈ F(B(x, ε/2)∪{0}) then Wh(µ) = µ. Furthermore,
there existsN0 ∈ N such that for every n ≥ N0 and every i ∈ {i1, . . . , ij}, (xi(n))n ⊂
B(x, ε/2). Thus, by construction, we have:

∀n ≥ N0, Whγn =

k+1∑
i=1
i∈I

ai(n)δ(xi(n)).

Since Wh is continuous and since (γn)n is weakly null, the sequence (Whγn)n ⊂
F(K) is weakly null as well. As j < k+ 1, we may use the induction hypothesis to
deduce that (Whγn)n is norm null in F(K). Recall that F(K) is a closed subspace
of F(M) so that (Whγn)n can be seen as a norm null sequence in F(M), which in
turn implies that the sequence (µn)n given by

µn :=

k+1∑
i=1
i 6∈I

ai(n)δ(xi(n))

has to be weakly null. So we use once more our induction hypothesis to get that
(µn)n is norm null and finally

(γn)n = (Whγn)n + (µn)n

is norm convergent to 0 as the sum of two such sequences.

• There is no i ∈ {1, . . . , k + 1} such that (xi(n))n has a convergent subsequence.
Then each set {xi(n) | n ∈ N}, 1 ≤ i ≤ k + 1, is not totally bounded. Hence
there exists ε > 0 and an infinite subset M of N such that for every i and every
n 6= m ∈ M: d(xi(n), xi(m)) > ε. We now claim that we can extract an infinite
subset M1 of M such that for every i 6= j and every n 6= m ∈M1: d(xi(n), xj(m)) >
ε/2. Let us briefly sketch this extraction. We write M = {n1, n2, . . .} and we let
m1 := n1. Since the sequences (xi(n`))`, 1 ≤ i ≤ k + 1, are ε-separated, by the
triangle inequality they must “escape” the balls B(xj(m1), ε/2), 1 ≤ j ≤ k + 1,
eventually. In other words, there exists m2 ∈ M such that m1 < m2 and for every
n ∈ M and 1 ≤ i, j ≤ k + 1, n ≥ m2 =⇒ d(xi(n), xj(m1)) ≥ ε/2. By the
same argument, there exists m3 ∈ M such that m3 > m2 and for every n ∈ M,
n ≥ m3 =⇒ d(xi(n), xj(m1)) ≥ ε/2 and d(xi(n), xi(m2)) ≥ ε/2. Continuing this
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construction by induction provides the required M1 = {m1,m2, . . .}. To conclude,
notice that for every n 6= m ∈M1, d(supp(γn), supp(γm)) > ε/2. Since (γn)n∈M1 is
weakly null, we may apply Lemma 3.2 to conclude that (γn)n∈M1 is norm null.

�
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[18] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math.

55 (2004), 171–217.

[19] N. Weaver, Lipschitz algebras, 2nd ed., World Scientific Publishing Co., River Edge, NJ,
2018.

(A. Abbar) LAMA, Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, F–77447,
Marne-la-Vallée, France

Email address: arafat.abbar@univ-eiffel.fr

(C. Coine) Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France
Email address: clement.coine@unicaen.fr

(C. Petitjean) LAMA, Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, F–77447,
Marne-la-Vallée, France

Email address: colin.petitjean@univ-eiffel.fr


	1. Introduction
	2. A metric characterisation of compact Lipschitz operators
	3. Weak compactness of Lipschitz operators
	References

