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ABSTRACT

The stability of lens-shaped vortices is revisited in the context of an idealized quasigeostrophic model. We

compute the stability characteristics with higher accuracy and for a wider range of Burger numbers (Bu) than

what was previously done. It is found that there are four distinct Bu regions of linear instability. Over the

primary region of interest (0.1, Bu, 10), we confirm that the first and second azimuthal modes are the only

linearly unstable modes, and they are associated with vortex tilting and tearing, respectively. Moreover, the

most unstable first azimuthal mode is not precisely captured by the linear stability analysis because of the

extra condition that is imposed at the vortex center, and accurate calculations of the second azimuthal

mode require higher resolution than was previously considered. We also study the nonlinear evolution of

lens-shaped vortices in the context of this model and present the following results. First, vortices with a

horizontal length scale a little less than the radius of deformation (Bu . 1) are barotropically unstable and

develop a wobble, whereas those with a larger horizontal length scale (Bu, 1) are baroclinically unstable and

often split. Second, the transfer of energy between different horizontal scales is quantified in two typical cases

of barotropic and baroclinic instability. Third, after the instability the effective Bu is closer to unity.

1. Introduction

The dynamical importance of interior mesoscale eddies

in the oceanic energy budget and transport is well docu-

mented in the literature and excellent reviews can be found

in McWilliams (1985) and Carton (2001). Examples of

deep mesoscale eddies can be found west of the Strait of

Gibraltar where a bottom-dwelling current detaches from

the floor at a level of neutral buoyancy. The high speeds of

this current lead to the formation of vortices, which are

bothwarm and salty since the sourcewater originates from

the Mediterranean Sea (Serra et al. 2005; Aiki and

Yamagata 2004). These Mediterranean eddies are pre-

dominantly anticyclonic in nature and are referred to as

Meddies. Other examples of subsurface mesoscale eddies

can be found in the Arctic Canadian Basin, recently in-

vestigated by Zhao and Timmermans (2015), the Red Sea

(Reddies), the Persian Gulf (Peddies), and others [see

Ciani (2016) and Ciani et al. (2015) for a review of surface

and interior mesoscale lens vortices].

Meddies are long-lived features that may collapse on sea

mounts or remain coherent and cross the Atlantic Ocean

(Serra et al. 2002; Serra and Ambar 2002). Observations

estimate the lifespan of Meddies to be approximately one

year for those that impact sea mounts and four years oth-

erwise; as many as 29 Meddies can be expected to exist at

any given time (Richardson et al. 2000). Prater and Sanford

(1994, their Fig. 19) suggest that a reasonable range of

Burger (Bu) and Rossby (Ro) numbers for mature Med-

dies is 0.1 , Bu , 0.5 and 20.5, Ro , 20.1, with some

observed Meddies falling outside that range. There are

relatively few observations of recently formed Meddies

compared to mature Meddies that are found propagating

far from the coastlines in the Atlantic Ocean. Meddies that

are observed over many months are presumably quite

stable and would only permit very slowly growing pertur-

bations. The analysis in this manuscript goes beyond the

Meddy regime and considers a significantly wider param-

eter range. Moreover, we are looking to qualitatively
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identify the instabilities, which is why we idealize the

Meddy shape into a simplified baroclinic Gaussian lens.

Motivated by the nature of Meddies, Arctic eddies,

Reddies, and Peddies, we investigate the stability of lens-

shaped vortices over a wide range of Burger numbers.

Previously, with a focus onMeddies, Nguyen et al. (2012)

did a linear stability analysis (LSA) for lens-shaped vor-

tices in the context of the quasigeostrophic (QG) model.

They determined that there were different types of in-

stabilities that could occur depending on the Bu. Our

results focus on the same vortex solution in theQGmodel

and confirm many of their conclusions but also better

refine some of their findings, thereby giving us a more

accurate picture of the linear stability characteristics of

this particular type of vortex. Subsequently, the dynamics

of these lens-shaped vortices was studied in the non-

hydrostatic primitive equations for a wide range of

Rossby, Froude (or Burger), and Reynolds numbers, in

the context of nonhydrostatic Boussinesq equations

(Mahdinia et al. 2016; Yim et al. 2016). They identified

many more different types of instabilities that can occur,

but they focused on the dissipative dynamics and there-

fore did not quite touch on the regime on which we focus.

It will be shown that in the QG model there are pri-

marily four distinct regions of linear instability in param-

eter space, and they are (where ku is the azimuthal

wavenumber) 1) 1 , Bu , 10, where ku 5 1 is the only

unstable mode, is associated with vortex tilting, and is not

accurately described by the linear theory presented here or

inNguyen et al. (2012); 2)Bu� 1,where bothku5 1, 2 are

unstable; 3) 0.1,Bu, 1,whereku5 2 is the only unstable

mode, is connected to vortex tearing events, and requires

higher resolution than was used in previous results; and

4) Bu, 0.1, where there aremany unstablemodes, but we

note that this is reaching beyond the QG limits.

The paper is organized as follows. Section 2 presents

the problem formulation, model equations, and initial

conditions that are considered. Section 3 discusses the

linear stability analysis and compares our results with

previous works. Section 4 considers two specific fully

nonlinear three-dimensional simulations and provides an

in-depth discussion of the time evolution. Azimuthal

decompositions of the nonlinear simulations are pre-

sented in section 4c. Section 4d considers the energetics

and growth rates for a suite of nonlinear simulations.

Power spectra andwavelength-dependent rates of change

of energy for selected simulations are then discussed in

section 4e. Conclusions and discussion are in section 5.

2. Model equations and numerical methods

In this section we present the continuously stratified

QGmodel as well as the equations for the linear stability

problem. The details of the numerical methods for both

the linear stability calculations and nonlinear simula-

tions are provided.

a. Quasigeostrophic equations

For the QG model to be valid, it is sufficient that the

Rossby number and aspect ratio are small and the

Burger number is order one (Vallis 2006, p. 207). In its

conservative form, it states that potential vorticity

(PV) is conserved following the flow [Eq. (1)], the PV

is a sum of the relative vorticity and vertical stretching

[Eq. (2)], and the leading-order velocity is in geo-

strophic balance [Eq. (3)]. In the following, the partial

symbols denote partial derivatives, q denotes the po-

tential vorticity, uH denotes the horizontal velocity

vector, $H is the horizontal gradient operator, $2
H is the

horizontal Laplace operator, c is the streamfunction, ẑ

is the vertical unit vector, f0 is the constant Coriolis

frequency corresponding to the f-plane assumption,

and N0 is the constant buoyancy frequency:

›
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q1 u

H
� $

H
q5 0, (1)

q5
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H 1

f 20
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c, and (2)

(u, y)5 ẑ3$c . (3)

b. Initial conditions

The physical geometry is chosen to be the rectangular

domain given by x 2 [2(1/2)Lx, (1/2)Lx], x 2 [2(1/2)Ly,

(1/2)Ly], and z 2 [2Lz, 0]. The lens-shaped vortex

has horizontal and vertical length scales of Lh and Ly,

respectively. A list of model parameters is given in

Table 1. We choose to nondimensionalize space using

these length scales around the center of the vortex

[0, 0, 2(1/2)Lz]:

(~x, ~y, ~z)5
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We choose the nondimensional parameter in the

QG model to be the Burger number, which can be

written as Bu 5 (LD/Lh)
2 with a deformation radius

of LD 5 N0Ly/f0. For a particular Bu, one can then

determine the corresponding horizontal length scale

using Lh 5 (N0Ly)/(f0
ffiffiffiffiffiffiffi
Bu

p
). While the derivation of

the QG model requires a very small Rossby number,

since the basic state has a nonzero velocity we can

define an associated Rossby number and relate them

by U0 5 f0LhRo. The dimensional PV in terms of the

nondimensional coordinates is given by
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q52
U

0

L
h

�
~r2 2 11

1

Bu
(~z2 2 0:5)

�
e(2~r22~z2) , (4)

where ~r2 5 ~x2 1 ~y2. Dimensional values that are appro-

priate for Meddies are f0 5 8 3 1025 s21, N0 5ffiffiffi
5

p
3 1025 s21, U0 5 0.25ms21, and Ly 5 400m (Hua

et al. 2013), corresponding to a deformation radius of

Ld ’ 11km. In this investigation we consider O(1) #

Lh # O(100) km. A summary of the parameters used in

the nonlinear simulations is in Table 2.

c. Formulation and numerical method for linear
stability problem

The generalized eigenvalue problem is given by

Eq. (A1), the derivation of which can be found in the

appendix. The spectrum of the generalized eigenvalue

problem is computed with an indirect Krylov method

implemented using the Scalable Library for Eigenvalue

Problem Computations (SLEPc). A fourth-order finite-

difference scheme is used to discretize both the radial

and vertical spatial derivatives. To speed up conver-

gence on higher-resolution grids, seed values were pro-

vided from calculations on coarser grids. It is important

to note that the linear stability computations use cylin-

drical coordinates centered about the vortex core and

are achieved for a given azimuthal mode number ku.

Doing so reduces the problem to two dimensions,

greatly simplifying the numerical calculations at the cost

of added boundary condition at r 5 0.

The boundary conditions at the rigid lid and flat bot-

tom is zero buoyancy, which ensures that there is no

vertical velocity through the boundaries. Written in

terms of the streamfunction, this becomes ›zc 5 0 at

z 5 2Lz, 0 (Nguyen et al. 2012). As discussed in Baey

and Carton (2002), the condition at r 5 0 is that the

pressure anomaly vanishes, c 5 0, for all nonzero azi-

muthal mode numbers. This can be obtained from Yim

(2015) in theQG limit. Furthermore, the streamfunction

is assumed to vanish in the far field, yielding c 5 0 at

r 5 Lr.

d. Numerical method for the nonlinear dynamics

Nonlinear simulations are performed using the Spec-

tral Parallel Incompressible Navier–Stokes Solver

(SPINS) model (Subich et al. 2013), which uses spectral

TABLE 1. Description of parameters and notation.

Parameter Dimensions Description

Lh m Horizontal length scale of the vortex

Ly m Vertical length scale of the vortex

N0 s21 Buoyancy (Brunt–Väisälä) frequency
f0 s21 Coriolis f-plane parameter

U0 m s21 Characteristic velocity of the vortex

Bu Dimensionless Burger number 5 [(N0Ly)/(f0Lh)]
2

x, y, z m Dimensional Cartesian coordinates
~x, ~y, ~z Dimensionless Nondimensional Cartesian coordinates

q s21 Potential vorticity

c m2 s21 Streamfunction

Q s21 Background potential vorticity

C m2 s21 Background streamfunction

ku Dimensionless Azimuthal mode number

TABLE 2. Simulation parameters. In each simulation, the fol-

lowing physical parameters are held constant: f0 5 0.8 3 1024 s21,

N0 5
ffiffiffi
5

p
3 1023 s21, and Ly 5 400m. Note that the linear strati-

fication corresponds to a total density change of less than 1%. The

filter parameters were a5 20, b5 2, and kcut 5 0.7, indicating that

70% of the wavenumbers are unchanged.

Bu Nx, Ny, Nz Lh (m) Lx, Ly (m) Lz (m)

0.01 512 111 803.0 2 236 070.0 4000

0.03 256 64 549.7 1 290 990.0 3000

0.05 256 50 000.0 650 000.0 3000

0.1 256 35 355.3 707 107.0 3000

0.14 512 29 880.7 448 211.0 3000

0.22 256 23 836.6 476 731.0 3000

0.3125 256 20 000.0 400 000.0 3000

0.4 256 17 677.7 353 553.0 3000

0.5 256 15 811.4 316 228.0 3000

0.6 256 14 433.8 288 675.0 3000

0.75 256 12 909.9 258 199.0 3000

1.2 256 10 206.2 204 124.0 3000

1.54 256 9 009.37 180 187.0 3000

2.0 256 7 905.69 158 114.0 3000

3.0 256 6 454.97 129 099.0 3000

4.0 256 5 590.17 111 803.0 3000

5.0 256 5 000.0 100 000.0 3000

7.0 256 4 225.77 84 515.4 3000

10.0 256 3 535.53 70 710.7 3000

15.8489 256 2 808.37 56 167.5 3000

25.1189 256 2 230.77 44 615.4 3000

39.8107 256 1 771.96 35 439.3 3000

63.0957 256 1 407.52 28 150.4 3000

100.0 256 1 118.03 22 360.7 3000
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collocation methods to numerically integrate the non-

hydrostatic and incompressible Navier–Stokes equa-

tions. To perform simulations using QG dynamics, the

authors developed a QG variant of the SPINS code,

which integrates the three-dimensional, linearly strati-

fied, QG equations (B. Storer et al. 2018, unpublished

manuscript). Specifically, the code solves Eq. (1) using

an adaptive third-order Adams–Bashforth scheme for

the time stepping, fast Fourier transforms (FFTs) in

each horizontal direction and a discrete cosine trans-

form (DCT) in the vertical for the streamfunction. The

horizontal FFTs correspond to periodic boundary con-

ditions in x and y, while the DCT in the vertical corre-

sponds to rigid-lid and free slip conditions in z. In

contrast to the LSA calculations, no conditions are im-

posed at r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 y2

p
5 0. To maintain nearly inviscid

dynamics, the model equations do not include any vis-

cous terms. To ensure numerical stability, an exponen-

tial filter is applied to remove energy from all

wavenumbers that exceed a specified cut-off.

3. Linear stability analysis: Dependence on the
Burger number

To better understand the types of lens vortices that

can remain coherent for a long span of time, we begin

with linear stability analysis. This analysis is presented

here, not as the focus of the study but to provide context

for the nonlinear results.

Using the method discussed in section 2c, linear sta-

bility calculations are performed over a broad range of

Burger numbers, with 250 points distributed logarith-

mically over 1022 , Bu , 10 and 75 points over 10 ,
Bu , 102. The results of our calculations will be com-

pared with previous studies of linear stability as well as

the growth rates estimated by the fully nonlinear simu-

lations presented in this paper.

Nguyen et al. (2012) found that there were three dif-

ferent ranges of Burger number that yield qualitatively dif-

ferent behaviors. The different stability characteristics in the

regimes are well illustrated in their Figs. 1a,c. If Bu5 1, it is

shown that the eddy is stable, indicating that the vortex scale

is equal to that of the Rossby radius of deformation, Lh 5
LD5N0Ly/f0. If Bu, 1 (Bu. 1), corresponding to vortices

larger (smaller) than the deformation radius, the most un-

stablewavehasamode2 (mode1) in theazimuthal direction

with a symmetric (asymmetric) structure in the vertical.

Figure 1c in Nguyen et al. (2012) focuses on the regime of

very large length scales and shows that there are multiple

unstablemodes,ku2 {1, 2, 3, 4, 5}, and that their growth rates

(s) are comparable, with 0.03, s(4/Ro), 0.05.

We confirm that the linear stability results of Nguyen

et al. (2012) are robust using calculations with greater

accuracy by making two important changes: we use

fourth-order discretization as well as a spatial resolution

of 10243 1024, which is roughly 10 times finer than what

they present. In general we find good qualitative

agreement in the range of Bu that they considered, al-

though we find that there are four different regions of

instability. Through doing a convergence study we de-

termined that the results presented in Fig. 1 are robust;

the only exceptions are the growth rates for ku 5 3, 4, 5

when the growth rate is below 2 3 1022.

a. Growth rates of eigenmodes and comparisons to
previous works

Figure 1 presents a summary of both the linear and

nonlinear growth-rate analyses. The linear stability

analysis is plotted in small dots for the first five nonzero

azimuthal modes, showing only the fastest-growing in-

stability for each azimuthal mode. Squares indicate es-

timates of the growth rates produced by Nguyen et al.

(2012), with grid resolution of 100 3 100, and large cir-

cles show the growth rates predicted by the nonlinear

simulations in QG SPINS (see section 4d).

(i) For very large vortices (Bu, 1021) the LSA reveals

that ku 5 1, 2, 3, 4, 5 are each unstable with roughly

comparable growth rates as Bu / 1022. In the

nonlinear simulation with Bu 5 1022 (not shown) it

was determined that the first five azimuthal modes

were the only ones that experienced exponential

growth at the early stages. This is the rationale for

only considering these modes in the linear stability

analysis since these calculations were computation-

ally demanding. The stability of ku 5 3, 4, 5 is com-

puted for the full parameter range, but theywere only

found to be unstable for very small Burger numbers

and are stable in each of the following regimes.

(ii) For moderately large vortices (1021 , Bu , 1) the

primary instability has a ku 5 2 structure and is

vertically symmetric about the middepth (see

Fig. 3a; below). Throughout, the growth rates com-

puted from the nonlinear simulations agree well

with those found in the linear calculations but are

larger than those predicted by Nguyen et al. (2012).

The disagreement with previous LSA results could

be attributed to resolution. It has been recently

shown that lens-shaped vortices in this regime can be

stabilized by modifying the vortex profile (Sutyrin

andRadko 2016), which could explain how small Bu

Meddies persist for long times.

(iii) Vortices on the order of the deformation radius

(Bu ’ 1) are stable in the linear stability calcula-

tions, agreeing with Nguyen et al. (2012) and the

nonlinear simulations.
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(iv) Vortices smaller than the deformation radius (1 ,
Bu , 10) have an unstable mode with a mode-1

azimuthal structure. In this case the growth rates

predicted by the LSA agree with the predictions of

Nguyen et al. (2012), but are significantly smaller

than those observed in the nonlinear simulations.

The nonlinear simulations used a three-dimensional

Cartesian coordinate system and only imposed

boundary conditions in the far field, in contrast to

the cylindrical coordinates used in the linear stability

problem. As discussed in Ash and Khorrami (1995),

the geometry of the problem means that the ku 5 1

mode alone can present nonzero flow at r 5 0, a

feature that is present in the nonlinear simulations

but not the linear stability calculations. Further, in

the nonlinear simulations the perturbation stream-

function grows exponentially along r 5 0 at a rate

that is roughly comparable to the instability growth

rate. A strict ku 5 1 mode could not present this,

since an oddmode necessarily vanishes at the origin.

Aswill be discussed in section 5, the instability in this

regime produces vortex tilting through depth-

varying horizontal translations of the vortex. These

translations/tilting cause the vortex axis to become

distinct from the r 5 0 axis, producing nonzero

streamfunction perturbations along r5 0. Since the

reference axis has changed, the original projection

onto azimuthal modes becomes invalid, suggesting

that linear stability analysis using azimuthal decom-

position is inherently flawed when considering ku 5
1 modes. We have also solved the linearized QG

equations in a modified version of QG SPINS in

order to capture the true most unstable mode.

Unfortunately, our preliminary investigations have

only recovered the same mode as is predicted from

the LSA, which perhaps suggests that nonlinearity is

important in the dynamics. This is something thatwe

will investigate in future work.

(v) For very thin vortices (Bu . 10) both ku 5 1, 2 are

unstable. The growth rates from the nonlinear

simulations agree with the LSA for the two right-

most points, for which the ku5 2mode is dominant.

These results agree qualitatively with Mahdinia et al.

(2016), who found that for jRoj � 1 the dominant in-

stability transitions from a symmetric ku5 2 mode when

Bu , 1 to an asymmetric ku 5 1 mode when Bu . 1.

When Bu� 1, Mahdinia et al. (2016) predict the return

of an asymmetric ku 5 1 mode. Our linear stability re-

sults confirm that an asymmetric mode-1 instability does

arise for Bu � 1. However, taking the Burger number

smaller still (Bu & 0.04), the mode-1 instability is again

symmetric and presents an (r–z) spatial structure similar

to the ku 5 1 mode of comparable Bu. The following

section compares the spatial structures with Yim (2015)

and Yim et al. (2016) in order to identify the observed

instabilities.

b. Identification of unstable modes

Barotropic instabilities develop from an unstable

horizontal shear and predominantly extract kinetic en-

ergy from the background flow. In contrast, baroclinic

instabilities occur when perturbations can extract po-

tential energy from a basic state, for which there must

be a vertical shear. Rayleigh’s theorems give a necessary

condition for each type of instability to occur in planar

flow (Pedlosky 1987), and these can be adapted to cir-

cular geometries (Gent and McWilliams 1986). The

necessary condition for a vortex in the stratified QG

model to be barotropically unstable is that the radial

gradient of the background PV, what we call ›rQ,

changes sign along the radial direction. In contrast,

FIG. 1. Linear stability analysis. Results from linear stability analysis (points), nonlinear simulations (yellow cir-

cles), and estimates of the Nguyen et al. (2012) result (squares).
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the corresponding necessary condition for baroclinic

instability in QG is that the radial gradient of the PV

changes signs in the vertical direction (Gill 1982, p. 564).

For the particular Gaussian profile under consider-

ation here, both necessary conditions are satisfied for all

Bu. However, for large enough Bu, the radius where the

sign changes in the vertical is far above the vortex since

it is dominated by horizontal shear. Similarly, for small

enough Bu the radius at which ›rQ changes sign is far

removed from the center because vertical shear is

dominant. The change of shear dominance is why, even

though the necessary criteria for both barotropic and

baroclinic instabilities are satisfied for all Bu, we expect

the instabilities for large (small) Bu to be mostly baro-

tropic (baroclinic).

Some care needs to be taken regarding the classifi-

cation of the unstable modes. This paper follows the

nomenclature presented in Yim et al. (2016). A brief

description of some of the important unstable modes is

provided here. The term Gent–McWilliams mode re-

fers to the barotropic instability that Gent and

McWilliams (1986) called an internal mode, or a mode

whose maximum growth rate occurs for a nonzero

vertical wavenumber. In comparison, baroclinic Gent–

McWilliams mode refers to an instability that is

characteristically very similar to a traditional Gent–

McWilliams mode, but occurs in the regime of baro-

clinic instabilities (Bu , 1), and so is necessarily a

baroclinic instability.

The modal structures that are presented here are not

new, but are included in order to classify the unstable

modes through comparison with Yim et al. (2016). The

plots of the unstable modes, Figs. 2 and 3, use color

maps provided by Thyng et al. (2016). (These color

maps are used later in Figs. 9 and 10). Note that in

Figs. 2 and 3 no color bar is shown since the magnitude

of the linear modes is not important. However, the

color bar is kept consistent across all figures for the

purpose of comparison.

(i) For 1022 , Bu , 1021, there are two regimes of

interest, the transition between which occurs at

roughly Bu 5 0.04. Figures 2a,b present the spa-

tial structure of the ku 5 1 mode for Bu 5 0.03.

Interestingly, the spatial structure of all five

computed modes (ku 2 {1, 2, 3, 4, 5}) are quali-

tatively very similar. Following Yim et al. (2016),

this regime corresponds to a baroclinic instability

mode. Figures 2c,d show the spatial structure for

ku5 1 when Bu5 0.05. This mode falls within the

regime of what Yim et al. (2016) call a baroclinic

Gent–McWilliams mode (see their Fig. 39d). In

contrast to the baroclinic instability mode, this

mode is vertically asymmetric and has a lower

radial mode number.

(ii) For 1021 , Bu , 1, the only unstable mode corre-

sponds to ku 5 2. Figures 3a,b plot the stream-

function for Bu 5 0.14. This is a baroclinically

unstable mode and corresponds to the baroclinic-

shear mode, as named by Yim et al. (2016). This is

readily verified by comparing these structures with

the pressure field in Fig. 5.46 of Yim (2015).

(iii) For 1 , Bu , 10, consider the unstable mode with

ku 5 1 and Bu 5 5, the streamfunction of which is

presented in Figs. 2e,f. This is the only unstable

mode in the range 1 , Bu , 10 and is due to the

barotropic shear that is dominant in this parameter

regime. This mode is asymmetric about the center

and is referred to as the Gent–McWilliams mode,

as first introduced in Gent and McWilliams (1986)

and further studied in Yim et al. (2016). These plots

are similar to those of Figs. 2c,d; however, it should

be emphasized that the underlying mechanism is a

barotropic instability. Correspondingly, this mode

is less radially constrained and more vertically

constrained than the corresponding Baroclinic

Gent–McWilliams mode. Note that the stream-

function agrees qualitatively with the pressure field

in Fig. 5.43 of Yim (2015).

(iv) For 10 , Bu , 100, both ku 5 1 and ku 5 2 are

unstable. Figures 2g,h plot the streamfunction of

the most unstable ku 5 1 mode for Bu 5 100. It is

readily seen that the mode is symmetric about the

center, in contrast to Bu 5 5, but more impor-

tantly there are much smaller vertical scales that

develop near the top and bottom of the vortex,

with the mode vanishing near the vortex core.

Figures 3c,d present the spatial structure of the

ku 5 2 instability in this regime. This mode is

barotropic in nature, again based on the stability

criteria previously mentioned. The real part of

this is very similar to the shear mode studied in

Yim et al. (2016).

4. Impact of the Burger number on nonlinear
evolution

By using sufficiently small perturbations, typically six

to eight orders of magnitude smaller than the basic state

extrema, the simulated instabilities undergo an expo-

nential growth phase (hereinafter termed the linear re-

gime) in accordance with what is predicted from linear

theory, thereby providing a means to confirm pre-

dictions of the linear stability analysis. In addition, the

three-dimensional simulations provide several other

942 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 48

Unauthenticated | Downloaded 10/06/23 06:06 AM UTC



diagnostic tools, including three-dimensional render-

ings of the instability (VisIt; see Childs et al. 2012),

measuring the extent and direction of energy transfers,

computing wavenumber-dependent rates of change of

energy, and quantifying the generation of small-scale

energy.

In this section, two nonlinear simulations are pre-

sented. The first is a representative for the moderately

large Burger regime, with Bu 5 5, corresponding to a

5 km vortex. The second case presented is a represen-

tative of the moderately small Burger regime, with

Bu 5 0.14 and corresponding to a 30-km vortex. While

many more nonlinear simulations were performed,

these two simulations provide a good representation of

the two primary regions of interest and the corre-

sponding instabilities: ku 5 1 for large Bu and ku 5 2 for

small Bu.

a. Large Burger number regime

Figures 4a–d present four three-dimensional render-

ings of the vortex in various stages of destabilization.

Each plot presents volume renderings of potential vor-

ticity q, where gold denotes anticyclonicity and teal in-

dicates cyclonicity. Note that the displayed aspect ratio

differs greatly from the true aspect ratio.

Figure 4a illustrates the initial conditions, in this case

with Bu 5 5, hereinafter referred to as the large Burger

case. Physically, a large Burger number restricts the

FIG. 2. Contours of the (left) real and (right) imaginary components of the dominant ku5 1 instability for selected

Bu values. In each plot the color bar is normalized to [21, 1] for comparison. The solid black contour line indicates

the 10% streamfunction level. The dashed black contour line indicates when the radial gradient of the background

potential vorticity (›rQ) changes sign.
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amount of vortex tube stretching that can occur. In Eq.

(2), this corresponds to decreasing the influence of the

vertical derivative of the streamfunction. As a result, the

vortex is dominated by horizontal shear, as demon-

strated by the initial horizontal shielding of the anticy-

clonic core by a cyclonic layer.

Figure 4b shows the initial destabilization at the end

of the linear regime when the system is transitioning

into nonlinear saturation. The anticyclonic core begins

to tilt, which results in tail-like features at the vertical

periphery as the vortex continues to rotate about the

original axis. As the tilted vortex rotates, there is strong

tearing, or shedding, of the cyclonic shielding as the

strong anticyclonic core interacts with the outer

cyclonic layer.

Later, in Fig. 4c, the tails have elongated and have

begun to separate from the vortex core, while the

shielding deteriorates further. The remnants of the cy-

clonic shield show interesting spatial patterns at the

length scale of the original vortex as well as much

smaller-scale filamentary features. Ultimately, Fig. 4d

reveals the quasi-steady end state. The tilted anticy-

clonic core has lost the vertical end tails, which collapsed

into small anticyclones. The cyclonic shielding has been

greatly reduced, with mostly filamentary structures re-

maining along the center. The simulation illustrates that

for large Burger number, the mode-1 instability results

in vortex tilting. Moreover, while the anticyclonic core

remainsmostly coherent, the cyclonic shielding is mostly

removed.

The perturbation potential vorticity, extracted from

the linear phase, is presented in Fig. 4e. As anticipated

from the linear stability analysis, themode demonstrates

vertical asymmetry and has an azimuthalmode of ku5 1.

The dominant instability is composed of two twinned

cores of opposing polarity in the center, with thinner

ribbons wrapping along the vortex periphery. The

twinned cores and vertical asymmetry correspond to the

vortex tilting, a mechanism that is further discussed in

section 5.

Gent and McWilliams (1986) studied the stability of

columnar vortices and found that ku 5 1 (their l 5 1)

corresponds to an instability with a baroclinic helical

vertical structure. The instability presented here is

comparable to the Gent–McWilliams ku 5 1 instability

in that both present baroclinic helical structures, with

one difference being the ‘ribbons’ along the vortex pe-

riphery in the nonlinear simulation.

b. Small Burger number regime

Figures 5a–d present four three-dimensional ren-

derings of the vortex in various stages of destabili-

zation. Since the fields are typically symmetric about

the middepth, only the lower half domain is presented

in order to provide a more detailed view of the

system.

Figure 5a illustrates the initial conditions, a Bu5 0.14

interior vortex. In the small Bu regime, vortex tube

stretching is anticipated to be an important mechanism

in contrast to horizontal shear. Indeed, the vortex is

dominated by vertical shear, as demonstrated by the

trilobe structure in the vertical (recall that only the

lower half domain is presented, so the trilobe appears

as a 1.5-lobe). That is, for small Burger numbers the

cyclonic shielding appears in the vertical, while the

shielding is in the horizontal for large Burger numbers.

The initial destabilization of the vortex is shown

in Fig. 5b and the formation of arms in both the

FIG. 3. As in Fig. 2, but for the dominant ku 5 2 instability.
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anticyclonic and cyclonic lobes is visible. Ménesguen
et al. (2012) present seismic readings that indicate

the presence of similar arm features in observed

Meddies. Then, Fig. 5c shows that the core vortex has

torn into two vortices of roughly equal size, with a trail

of small vortices remaining, remnants of the vorticity

filament that connected the two new vortices prior to

the tearing event. Ultimately, Fig. 4d reveals the

quasi-steady end state in which the initial vortex has

been reduced to vortices with greatly reduced hori-

zontal scales. During the linear regime, the dominant

unstable mode can be extracted and is presented in

Figs. 5e,f. In contrast with Fig. 4e, this mode is pri-

marily restricted to the vortex periphery. Figure 5f,

FIG. 4. Three-dimensional plots of a Bu 5 5 vortex at select times. Renderings are of the potential vorticity,

with gold denoting anticyclonicity and teal denoting cyclonicity. (a) Initial conditions, (b) 570 days, (c) 640 days,

(d) 1060 days, and (e) perturbation field at 190 days. Aspect ratio not to scale.
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FIG. 5. Three-dimensional plots of the inferior half-domain of a Bu5 0.14 (30 km) vortex at select times. Renderings are of the potential

vorticity, with gold denoting anticyclonicity and teal denoting cyclonicity. (a) Initial conditions, (b) 2530 days, (c) 2860 days, (d) 3200 days,

(e) perturbations at 1000 days, and (f) perturbations at 2500 days. Aspect ratio not to scale.
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which shows the perturbation field at 2500 days, shows

how the ku 5 2 mode generates the arm structures.

This is classified as a baroclinic-shear instability mode

(Yim et al. 2016).

c. Azimuthal decomposition: A comparison with
linear theory

While the growth rates presented in Fig. 1 provide the

overall growth rate of the perturbation fields in the

nonlinear simulations, it does not distinguish between

azimuthal modes. To compute the growth rates of the

individual modes, the perturbation field of each three-

dimensional simulation is projected onto a cylindrical

coordinate basis, where the center of the coordinate

system corresponds to the center of the initial vortex. A

Fourier transform is applied to the azimuthal dimension

to decompose the perturbation into ku components. The

transformed system is then integrated in r and z in order

to compute the net contribution of each azimuthal

mode. That is, for each ku the contribution p(ku) of each

azimuthal mode is computed as follows:

p(k
u
)5

ðz50

z52Lz

ðr5Lr

r50

q̂(r,k
u
, z)2 dr dz,

where q̂ denotes the u-Fourier-transformed potential

vorticity perturbation, so that, following Parseval’s

theorem, p(ku) measures the ku component of the per-

turbation enstrophy (q 2 Q)2. Figure 6 presents a

summary of the growth of the first 10 azimuthal modes

for a selection of nonlinear simulations. In each plot, the

vertical dotted lines indicate the beginning and end of

the linear phase, while the vertical dashed line marks an

approximation to the nonlinear saturation time. Note

that the azimuthal projections may be unreliable after

the linear regime, as the vortices may tear or shift,

causing the projection to cylindrical coordinates to be

inappropriate.

In agreement with the linear stability analysis, the

projections show that the large Burger number regime

(1,Bu& 10; small vortex widths) is initially dominated

by growth of the ku5 1mode, while small Burger number

(0:1&Bu, 1; large vortex widths) is dominated by a

ku 5 2 mode, and very small Burger number (Bu& 0:1;

very large vortex widths) demonstrates growth in both

ku 5 1 and ku 5 2 modes. Toward the end of the linear

phase, the nondominant modes experience very rapid

growth, corresponding to nonlinear interaction.

d. Main stages of nonlinear QG evolution

Studying the growth of the total perturbation does not

require a projection into cylindrical coordinates, and so in

this subsection the full perturbation is considered instead

of individual azimuthal modes. Further, the growth rate

of the fastest-growing azimuthal mode in each of the four

cases presented in Fig. 6 was compared to those of the full

perturbation and the two were found to agree to at least

two significant digits. Note that Fig. 6 uses a log scale and

that during the linear growth phase the dominant mode is

several orders of magnitude stronger than the other

modes. The growth-rate diagnostics as well as integrated

energy diagnostics are used to describe the different

stages of the evolution of the unstable vortices.

Figure 7 presents the evolution of the norms of the full

perturbation and associated growth rates (left column) and

domain-integrated energetics (right column) for nonlinear

simulations with Bu 5 5, 0.31, 0.14, and 0.05. For the left

column, the red curve is associated with the left-hand y

axis and presents the normalized normof the perturbation:

(kq2Qk2)/(kqk2 1 kQk2). Correspondingly, the blue

curve is associated with the right-hand y axis and presents

the time derivative of the norm of the perturbation

scaled by the Rossby number: (1/Ro)(d/dt)(logkq2Qk2).
The growth rate is scaled by Ro since, following Vallis

(2006, p. 207), the dimensionless time tf0 scales as Ro21.

In both metrics, q refers to the full potential vorticity

field, while Q refers to the initial vortex solution. For the

right column, kinetic energy (KE) and potential energy

(PE) are computed as follows:

KE5
1

2
r
0

ððð
V

u2 1 y2 dV5
1

2
r
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ððð
V

(›
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c)2 1 (›
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c)2 dV,

and (5)

PE5
1

2
r
0

ððð
V

�
f
0

N
0

›
z
c

�2

dV . (6)

In each simulation, the motion is nearly conservative,

which is reflected by the fact that the net energy loss is

less than 1%.

The vertical dotted lines indicate an estimate for the

beginning and end of the linear regime. The vertical

dashed line estimates the nonlinear saturation time by

finding the time after which the net energetics change by

no more than 2.5% in either direction. Meunier et al.

(2015) describe threemain stages of vortex destabilization:

the linear stage, the splitting stage, and the restabilized

stage. These stages correspond with what we term the

linear stage, the nonlinear transition phase, and the non-

linearly saturated phase.

The first simulation (Fig. 7, top row) corresponds to

Bu 5 5. This system is initially KE dominant and

experiences a net transfer to PE. The energy transfer be-

gins after the linear regime ends. As discussed in

section 4a, this system is dominated by vortex tilting. As

regards the perturbation growth, the system undergoes

smooth exponential growth after which the perturbation
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growth declines and the system enters a quasi-equilibrated

regime. The latter three simulations correspond to Bu 5
0.31, 0.14, and 0.05. These cases are initially PE dominant,

with the initial disparity increasing as Bu decreases. In

each case, there is a net transfer of PE to KE, corre-

sponding to a baroclinic instability. The last two simu-

lations experience sufficiently strong energy conversions

so as to cause a change in the distribution of energy: the

quasi-steady regime is KE dominant while the initial

state is PE dominant. In these cases, the time of the

change in energy dominance corresponds to the vortex

tearing event. The Bu 5 0.31 simulation, in contrast,

remains PE dominant in the quasi-steady regime and

does not undergo vortex splitting. In each of these cases,

the linear regime terminates in a rapid but brief increase

of the perturbation growth rate. The spike in the per-

turbation growth rate is associated with the formation of

the arms as seen in Fig. 5a.

Figure 8a provides measures of how large the in-

stability grows before the system reaches nonlinear

saturation. The black curves plot the magnitude of the

nonlinearly saturated perturbation norms, while the

magenta and cyan curves, respectively, plot the net

amount of PE and KE transferred. For Bu , 1, the

system is characterized by a conversion of PE to KE; in

contrast, for Bu. 1 the system demonstrates aKE to PE

transfer. These are respectively indicative of a baroclinic

and barotropic instability.

Interestingly, the barotropic-type instability for 1 ,
Bu, 10 demonstrates much weaker energy conversion

than the baroclinic instability for 1021 , Bu , 1, de-

spite the two instabilities having comparable growth

rates in the nonlinear simulations. Additionally, the

proportion of converted energy for Bu . 1 increases

when the ku 5 2 instability returns. Combined, these

results suggest that it is not simply that baroclinic

FIG. 6. Azimuthal decompositions for four selected nonlinear simulations, depicting the growth of the separate

modes. Burger numbers are given in the figure labels. The vertical dotted lines indicate an estimate for the be-

ginning and end of the linear regime. The vertical dashed line estimates the nonlinear saturation time. The first

three subfigures show that the linear theory correctly predicts the most unstable mode that grows initially. The

fourth subfigure demonstrates that there are initially two unstable modes.
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FIG. 7. Growth rates of the (left) full perturbation and (right) nondimensional energies for four nonlinear QG simulations. Burger

numbers are given in figure labels. In (left), the red curves indicate the perturbation norms and the blue curves outline the growth rates.

These growth rates are included in Fig. 1 as ‘‘nonlinear (SPINS)’’ (i.e., yellow circles). For (right), the blue, green, and red curves denote

KE, PE, and half the total energy, respectively, each normalized by the initial total energy. The vertical dotted lines indicate an estimate

for the beginning and end of the linear regime. The vertical dashed line estimates the nonlinear saturation time by finding the time after

which the net energetics change by no more than 2.5% in either direction.
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instabilities are stronger at converting energy than

barotropic instabilities, but instead that the ku 5 2

mode is able to convert more energy than the

ku 5 1 mode.

The norms of the nonlinearly saturated perturbation

show qualitatively similar behavior to the net energy

transfers. However, in the case of vortex splitting, the

nonlinearly saturated perturbation may not be mean-

ingful as the system has deviated too strongly from the

initial condition.

Figure 8b plots the initial and terminal global Bu for

the system. For these purposes,

Bu
measured

’
1

2

KE

APE
5

1

2
[(›

x
c)2 1 (›

y
c)2]

�
f

N
0

›
z
c

�22

.

That the blue dots, which indicate the initial Burger

number under this metric, coincide with the identity

function serves to validate the metric. The dynamics

can be divided into three regimes. For Bu ’ 1, there is

no discernible change in Bu, corresponding with the

stability of the system. When Bu , 1, the horizontal

vortex scale exceeds the deformation radius, and the

baroclinic instability acts to reduce the horizontal

scales, thereby increasing Bu (Vallis 2006, p. 277).

When Bu . 1, the horizontal vortex scale is less than

the deformation radius. The primary instability then

tilts the vortex, causing an increase in the horizontal

length scales and a net decrease in Bu (Gent and

McWilliams 1986). It is interesting to note that, while

the instability always serves to drive the system

toward the stable neighborhood of Bu 5 1, stronger

instabilities drive the system closer to Bu 5 1 than

weak instabilities. As mentioned, the vortex tearing

events for ku 5 2 and Bu , 1 correspond to the energy

parity event, when KE 5 APE. This suggests that

Bumeasured 5 0.5 is the Burger number during the vor-

tex tearing event.

FIG. 8. (a) Net energy conversions (cyan and magenta) and final perturbations norms (black). For the energy

transfers, magenta indicates net KE production while cyan indicates net PE production. This reinforces the idea

that baroclinic instabilities correspond to Bu, 1 while barotropic instabilities occur for Bu. 1. (b) The initial and

terminal Burger number for each nonlinear simulation.
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There are four major results in this subsection. First,

theGent–McWilliams and shear instabilities for Bu. 1

have a net conversion of KE to PE, while the

baroclinic-shear and baroclinic instabilities for Bu , 1

have a conversion of PE to KE. Second, instabilities in

the limit of very small Bu convert a greater proportion

of initial total energy than in the limit of very large Bu.

Third, in the simulation of the instability with ku 5 2

presented here, the energy parity event corresponds

to the tearing event. Finally, sufficiently strong

instabilities drive the system toward Bu 5 1, which is

stable, and stronger instabilities can drive the system

closer to Bu 5 1 than weaker instabilities. This implies

that the instability events tend to generate structures

whose horizontal length scales are commensurate to the

Rossby radius of deformation.

e. Spectral distribution of energy and energy transfers

Figures 9 and 10 present the wavenumber-dependent

time rate of change of the potential and kinetic energies

for the large and small Burger number vortices corre-

sponding to Figs. 4 and 5. Figure 9 is restricted to only

consider the linear regime (the portion between the

vertical dotted lines in Fig. 7), while Fig. 10 considers the

nonlinear portion of the simulation (everything after

the second vertical dotted line in Fig. 7). In each plot, the

vertical axis is time and the horizontal axis represents

inverse horizontal length scale. To produce the spectra,

the full three-dimensional power spectra were azi-

muthally integrated and depth averaged to produce a

mean horizontal power spectrum. The vertical cyan,

magenta, and black lines indicate the vortex length Lh,

the deformation radius LD, and the filter cutoff, re-

spectively. The horizontal dashed line indicates the es-

timated nonlinear saturation time, as in Fig. 7.

Note that Figs. 9 and 10 each use two different loga-

rithmic scales, with red (blue) indicating that energy

is increasing (decreasing) in time. In each of Figs. 9

and 10, the upper row corresponds to the large Burger

case, while the lower row corresponds to the small

Burger case.

Recall that the large Bu case presents a net transfer

of KE to PE. Throughout the linear regime (Figs. 9a,b),

KE increases at deformation scales and decreases at

vortex scales, while PE increases at both deformation

and vortex scales. Both KE and PE present positive

energy fluxes to smaller scales. The beginning of the

nonlinear regime (Figs. 10a,b) is marked with a positive

flux toward small scales in both KE and PE, the mag-

nitudes of which well exceed the generation of small

scales presented in Figs. 9a,b. At the conclusion of the

downscale energy flux, the system enters into a quasi-

steady regime, in which PE alternates between

increasing and decreasing at all scales. While KE

demonstrates similarly periodic features, the sign of

the flux alternates between subvortex scales and

superdeformation scales.

The lower rows, Figs. 9c,d and 10c,d, present the

spectra for the small Burger case shown in Fig. 5. The

fluxes in the linear regime are characterized by a loss of

PE and gain of KE at vortex and supervortex scales, as

well as a gain of both KE and PE at subvortex scales. In

the nonlinear regime, there is a loss of PE and a gain of

KE at the vortex scale. Similar to the large Bu case, the

system demonstrates a positive energy flux toward small

scales within the nonlinear transition regime, with the

small-scale generation reaching smaller scales for ki-

netic energy than potential energy; the positive flux to

small scales can be seen in Fig. 10 in the red regions at

scales smaller than the vortex length. Leading up to the

production of small scales, the small Bu system

exhibits a loss of PE and gain of KE at supervortex

lengths and a gain of both KE and PE at super-

deformation and subvortex lengths. These fluxes corre-

spond to the loss of energy at large length scales and the

production of energy at small length scales as a result of

the vortex splitting event. Again, similar to the large Bu

case, in the quasi-steady regime the small Bu case ex-

hibits temporally periodic oscillations in flux. However,

in the small Bu case the oscillations change sign more

rapidly with both time and wavenumber than in the

large Bu case. The oscillating fluxes below the de-

formation scale are significantly weaker and oscillate

with a higher frequency than the fluxes above the de-

formation scale. In total, there is a noticeable increase in

large-scale KE and loss of PE at large scales over the

duration of the simulation.

Figure 11 presents a time mean of the spectral en-

ergy fluxes during the linear regime, which corre-

sponds to the times shown in Fig. 9, for a selection of

simulations. Note that the horizontal axis is held con-

stant across each plot for the purpose of comparison

and that the spectra do not necessarily span the whole

domain for each plot. As a result, the vertical magenta

lines, which indicate the respective deformation radii,

are aligned.

For each simulation, the fluxes during the linear and

first portion of the nonlinear phases (the portion before

the termination of the positive flux toward small scales)

demonstrate qualitatively similar flux patterns (not

shown). The main distinction is that, as seen in Figs. 9

and 10, the strength of the fluxes in the nonlinear re-

gime are several orders of magnitude stronger than the

fluxes in the linear regime. This suggests that the linear

phase simply ‘‘initializes’’ the instability but does not

significantly impact the energetics.
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FIG. 9. Wavenumber-dependent time rate of change of (left) kinetic energy and (right) potential energy for (top) Bu5 5 and (bottom)

Bu5 0.14 during the linear regime. In each plot, the horizontal axis is inverse length scale (m21) and the vertical axis is time (days). Note

that the color bar is divided into a positive (red) and negative (blue) log scale. The vertical cyan, magenta, and black lines indicate the

vortex length, the deformation radius, and the filter cutoff, respectively.
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FIG. 10.Wavenumber-dependent time rate of change of (left) kinetic energy and (right) potential energy for (top) Bu5 5 and (bottom)

Bu 5 0.14 after the linear regime ends. In each plot, the horizontal axis is inverse length scale (m21) and the vertical axis is time (days).

Note that the color bar is divided into a positive (red) and negative (blue) log scale. The vertical cyan, magenta, and black lines indicate the

vortex length, the deformation radius, and the filter cutoff, respectively. The horizontal dashed line indicates the estimated nonlinear

saturation time.
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For large Bu (Fig. 11, left column) the instability is

characterized by a net loss of total energy (TE) and KE

at vortex scales, with a corresponding increase of TE,

KE, and PE at the deformation scale. The positive flux

of energy toward larger scales corresponds to a vortex-

tilting mechanism, which increases horizontal length

scales. As the vortex scale increases, the wavenumber

corresponding to the greatest negative energy flux also

increases so that the two remain essentially coincident.

The right column of Fig. 11 corresponds to Bu , 1.

In these cases, there is a loss of TE and PE at scales

equal to or greater than the vortex scale, while TE and

KE are produced at scales between the vortex length

and deformation radius. Some PE is also produced at

subvortex scales, but the energy generation is pre-

dominantly kinetic. The net energy transfer toward

subvortex scales corresponds to a vortex-splitting

mechanism, which produces smaller vortices with

length scales more comparable to the deformation ra-

dius. Further, consider the wavenumber corresponding

to the greatest positive energy flux. As the vortex length

increases, the wavenumber of greatest positive flux

also increases so that it remains roughly halfway

(in a logarithmic sense) between the vortex and

deformation scales.

In both cases, the nonlinear dynamics create a strong

positive energy flux to small scales in both KE and PE.

Figure 12 presents three quantifications of the production

of small scales: the proportion of energy in length scales

smaller than one-third of the vortex scale (blue squares),

smaller than one-fifth of the vortex scale (orange aster-

isks), and smaller than the deformation radius (magenta

triangles). When Bu. 1, the vortex itself is smaller than

the deformation radius, and so the third metric is not

meaningful. Note that the figure uses a log scale. The two

vortex-based metrics show two main trends. The Bu , 1

instabilities tend to be able to produce significantly more

subvortex-scale energy than when Bu. 1, corresponding

to a bias toward generating deformation-scale energy.

Further, subvortex-scale production increases as Bu de-

viates from 1, suggesting that larger vortices, which cor-

respond to higher growth rates, also demonstrate a

downscale energy flux that reaches a wider range of

wavenumbers. In contrast, the deformation-scale metric

is maximized on 1021 &Bu& 33 1021. Above that, the

amount of produced small scales decreases rapidly with

increasing Bu, corresponding to the stabilization of the

system. Below Bu 5 0.1, the amount of produced small-

scale energy increases weakly with Bu.

We are not able to provide a definitive explanation as

to why Bu 2 [0.1, 0.4] maximizes the generation of

subdeformation radius energy. The spatial structure of

the unstable modes do not present significant changes in

small-scale features, which is why the subdeformation

scale energy that is created must arise because of the

nonlinearity of the system. This is not something that

can be described in the context of linear theory and is

beyond the scope of our manuscript to explain this ob-

servation. A scale argument may help to explain why

there is a region with maximized subdeformation-scale

generation: as Bu decreases, the separation between the

vortex scale and the deformation scale increases, and

so a stronger energy transfer is required to produce

subdeformation energy for smaller Bu.

5. Conclusions and discussion

LSA is conducted using both high spatial and para-

metric resolution and is compared to both Nguyen et al.

(2012) and nonlinear simulations. It is determined that

FIG. 11. Time averages of net wavenumber-dependent time rates of change of energy across the full linear phase

(as defined in Fig. 7 and illustrated in Fig. 9) for four different Bu values. The solid red, green, and blue curves

provide the time-mean flux of total, potential, and kinetic energy, respectively. Vertical cyan lines denote the vortex

length, vertical black dotted lines indicate the filter cutoff, and vertical magenta lines identify the vortex length.
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there are four different instability regimes. For moder-

ately small Bu (1021 , Bu, 1), the linear and nonlinear

results are in good agreement, but differ from the growth

rates predicted by Nguyen et al. (2012) for decreasing

Bu, a discrepancy that is explained by the requirement for

high resolution to accurately resolve the finescale fea-

tures. For moderately large Bu (1 , Bu , 10), the pre-

sented LSA agrees well with Nguyen et al. (2012), but

both LSA calculations disagree with the nonlinear sim-

ulations. As discussed in section 3a(iv), this is in part

caused by the additional condition that is imposed on the

perturbation at the center of the vortex. Comparison with

the linear modes presented by Yim et al. (2016) revealed

that the instabilities in those regimes are the baroclinic

shear instability and Gent–McWilliams instability, re-

spectively. Further, the presented LSA considered an

expanded range of Bu: 1022 , Bu , 102. For very large

Bu (Bu . 10), the ku 5 2 mode is again unstable, for

which the LSA agrees with the nonlinear calculations,

reinforcing that the discrepancy is inherent to the ku 5 1

mode. For very small Bu (Bu, 0.1), all of the computed

azimuthal modes are unstable, and it is anticipated that

higher azimuthal modes are also unstable.

For moderately small Burger numbers (0.1 , Bu , 1),

or moderately large vortex scales, the dominant instability

is vertically symmetric about the vortex center, has azi-

muthal mode 2, and, following the nomenclature of Yim

et al. (2016), is a baroclinic shear instability. When the

instability is sufficiently strong, as illustrated in Figs. 5e,f,

the ku 5 2 mode causes the formation of arms and a

pinching of the vortex core, which can lead to vortex

splitting. When a splitting does occur, it corresponds to

parity between kinetic and potential energy. Vortices in

this regime have horizontal scales that exceed the de-

formation radius; as a result, vortex tearing produces vor-

tices on scales that are more commensurate with the first

deformation radius. The small Bu instability is character-

ized by a net transfer of potential energy into kinetic en-

ergy, which is consistent with a baroclinic instability.

Corresponding to the decrease in horizontal scales, there is

an overall transfer of energy from vortex scales and larger

toward subvortex and superdeformation scales (Fig. 11).

Moderately large Burger numbers (1 , Bu , 10), or

moderately small vortex scales, contrastingly present a

dominant instability that is vertically asymmetric about

the vortex center, has azimuthal mode 1, and is a Gent–

McWilliams instability (following Yim et al. 2016). The

ku 5 1 mode strengthens one side of the vortex while

weakening the other, which yields an effect similar to

horizontal translation. As a result of the vertical asym-

metry, the upper portion of the vortex is translated in

the opposite direction of the lower portion, resulting

in vortex tilting. Since vortices in this regime have

subdeformation horizontal scales and vortex tilting

increases horizontal scales, the tilting mechanism

produces vortices on scales closer to the deformation

radius. Corresponding to the increase in horizontal

scales, kinetic and total energy transition from vortex

lengths toward deformation lengths, while potential

energy is generated at all scales with an emphasis on the

deformation radius. Overall, there is a net transfer of

kinetic energy into potential energy.

In the small Bu regime (0.1,Bu, 1) the cyclonic and

anticyclonic portions of the vortex undergo similar

FIG. 12. Three metrics for the production of small-scale energy. Points indicate the pro-

portion of initial total energy that is at scales equal to or less than one-third of the vortex scale

(blue squares), one-fifth of the vortex scale (orange asterisks), or the deformation radius

(magenta triangles), at the end of the simulation.
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evolution. In contrast, the large Bu regime (1 , Bu ,
10) has markedly different evolutions for the two por-

tions: the anticyclonic core undergoes vortex tilting,

while the cyclonic shielding is heavily dispersed.

As Bu decreases, a greater proportion of the initial

energy is transferred to subvortex scales, correspond-

ing to the increased strength of the instability. How-

ever, 1021 &Bu& 33 1021 maximizes the amount of

subdeformation radius energy that is produced. Here,

Bu . 1 produces significantly less subvortex energy

than Bu , 1, corresponding to the net upscale energy

transfer.We do not have a physical explanation for why

1021 &Bu& 33 1021 maximizes the production of

small scales, although it is interesting to note that this

regime corresponds with the range for observed

Meddies.

Many studies considered Meddies in the context of a

Gaussian vortex, and we begin with the same basis, but

find that the model is problematic. The observed long-

lasting Meddies have Bu considerably less than one,

while a Gaussian vortex would be unstable in that re-

gime.Meddies that do not encounter seamounts can live

up to four years (Richardson et al. 2000). In the region

0.1 , Bu , 0.3, the growth rate estimated by both the

presented LSA and nonlinear simulations is approxi-

mately 0.05Roday21 so the time scale for the instability

is 200 days if Ro 5 0.1. As a result, small (1%) pertur-

bations may yield a lens vortex lifetime of 1000 days,

while larger (10%) perturbations may shorten the life-

time to 200–400 days.

Other assumptions made throughout this investigation

were the following: the ambient rotation (f0) is very

strong compared to that of the vortex, the stratification is

strong, and it is only the density that is important, not the

temperature–salinity distribution. In future work we will

study lens vortices in a primitive equation model, which

will allow us to determine the merit in making some of

these assumptions. This will allow for a more accurate

description of the unstable modes in the very small Bur-

ger number regime.

In this manuscript we sought to understand how lens

vortices, idealized with a Gaussian streamfunction, de-

stabilize over a wide range of Burger numbers. We be-

gan by presenting a more precise view of the linear

theory and what growth rates and spatial structures are

expected as a function of Burger number. Then, by

looking at the nonlinear evolution, we quantify the

transfer of energy across the different length scales to

better understand how submesoscale features are gen-

erated as a function of Burger number.We hope that the

combination of these two studies will lead to better pa-

rameterizations of unstable lens-shaped vortices that

arise in the World Ocean.
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APPENDIX

Derivation of Linear Stability Problem

This derivation of the linear stability problem fol-

lows Nguyen et al. (2012). The quasigeostrophic po-

tential vorticity equation can be written in terms of the

Jacobian J as follows:

›
t
q1 J(c,q)5 0.

If we assume that the basic state is periodic in the

u coordinate, then the basic-state fields can be expressed

as follows:

c5C(r, z), u
r
5 0, u

u
5 ›

r
C,

q5Q(r, z)5
1

r
›
r
(r›

r
C)1

f 20
N2

›
zz
C ,

We consider perturbations around this background

state in the form:

c5C(r, z)1c0(r, u, z, t), and

q5Q(r, z)1 q0(r, u, z, t),

as well as assume a normal mode solution, given by

[q0,c0]5Rf[q̂, ĉ](r, z) ei(ku2vt)g.
Upon substitution into the quasigeostrophic evolution

equation and linearizing, we get the normal mode

equation in terms of ĉ as follows:
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ĉ .

(A1)

In matrix form, this can be written as the generalized

eigenvalue problem:

Aĉ5 cBĉ , (A2)
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where c 5 v/k and

A5

�
1
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›
r
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1
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