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Abstract : 
 
The link between harmful algal blooms, phytoplankton community dynamics and global environmental 
change is not well understood. To tackle this challenging question, a new method was used to reveal 
how phytoplankton communities responded to environmental change with the occurrence of an harmful 
algae, using the coastal waters of the eastern English Channel as a case study. The great interannual 
variability in the magnitude and intensity of Phaeocystis spp. blooms, along with diatoms, compared to 
the ongoing gradual decrease in anthropogenic nutrient concentration and rebalancing of nutrient ratios; 
suggests that other factors, such as competition for resources, may also play an important role. A 
realized niche approach was used with the Outlying Mean Index analysis and the dynamics of the 
species’ realized subniches were estimated using the Within Outlying Mean Indexes calculations under 
low (L) and high (H) contrasting Phaeocystis spp. abundance. The Within Outlying Mean Indexes allows 
the decomposition of the realized niche into realized subniches, found within the subset of habitat 
conditions and constrained by a subset of a biotic factor. The two contrasting scenarios were 
characterized by significantly different subsets of environmental conditions and diatom species (BV-step 
analysis), and different seasonality in salinity, turbidity, and nutrients. The subset L environmental 
conditions were potentially favorable for Phaeocystis spp. but it suffered from competitive exclusion by 
key diatom species such as Skeletonema spp., Thalassiosira gravida, Thalassionema nitzschioides and 
the Pseudo-nitzchia seriata complex. Accordingly, these diatoms species occupied 81% of Phaeocystis 
spp.'s existing fundamental subniche. In contrast, the greater number of diatoms, correlated with the 
community trend, within subset H exerted a weaker biological constraint and favored Phaeocystis spp. 
realized subniche expansion. In conclusion, the results strongly suggest that both abiotic and biotic 
interactions should be considered to understand Phaeocystis spp. blooms with greater consideration of 
the preceeding diatoms. HABs needs must therefore be studied as part of the total phytoplankton 
community. 
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Highlights 

► Phaeocystis spp.’ has a smaller realized subniche in events of low abundance blooms. ► 
Phaeocystis spp.’ small realized subniche is due to an important biological constraint. ► Higher 
diversity of the diatom community as a weaker biological constraint. ► The preceeding key diatom 
community seemed controlled by the environment. ► The preceeding diatom competitive ability controls 
the bloom of Phaeocystis spp. 

 

Keywords : Harmful algae bloom, WitOMI, Subniche, Diatoms, Biotic interaction, Eastern English 
Channel 
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the preceeding diatoms. HABs needs must therefore be studied as part of the total phytoplankton community.

Key words: Harmful algae bloom , WitOMI , subniche , diatoms , biotic interaction , Eastern English Channel,

1. Introduction:1

The unprecedented rate of global environmental change (Drijfhout et al., 2015), is potentially increasing the2

spread and impact of harmful algae blooms (HAB) worldwide (Fu et al., 2012; Hallegraeff, 2010; Wells et al.,3

2015). Attempts to link HABs or undesirable species and anthropogenically-altered environments have often4

been unclear and contradictory (Anderson, 2009; Davidson et al., 2012; Gowen et al., 2012; Wells et al., 2015).5

Moreover, the role of biotic interactions in shaping HABs, such as competition for resources, is still poorly studied.6

Yet, the variability in the magnitude and duration of reported HAB blooms emphasizes the idea that other factors,7

aside from abiotic variables, play an important role in driving HABs (Bianchi et al., 2000; Borkman et al., 2016;8

Yin, 2003). Previous research strategies, methods and hypotheses of how environmental pressures mechanistically9

affect HAB species (Wells et al., 2015) have used modelling (Passy et al., 2016), experiments (Veldhuis et al.,10

1991), in situ measurements (Houliez et al., 2013), and remote sensing imaging (Kurekin et al., 2014) to explore11

these links. The former studies were based on the hypothesis that HABs could be predicted from environmental12

variables only.13

Hutchinson’s niche concept (1991) allows studying the link between global changes and the phytoplankton14

community in relation to HABs. Among several multivariate methods available for niche analysis (Braak, 1986;15

e.g. Calenge et al., 2005; Ter Braak, 1987), Hernández-Fariñas et al. (2015) used the niche through using the16

Outlying Mean Index (OMI) (Dolédec et al., 2000), assessing the niche of 35 phytoplankton species, including17

diatoms, along the French coast. Recently, the Within Outlying Mean Indexes calculations (WitOMI; Karasiewicz18

et al., 2017) was developed as a refinement of the OMI analysis and provides estimations of niche shift and/or19

conservatism of a community under different subsets of habitat conditions (temporal and/or spatial). The WitOMI20

calculates the species’ realized subniche dynamics (species’ niche occupation within subset habitat conditions)21

within the realized niche resulting from the OMI analysis after selecting subsets. The realized subniches are,22

therefore, comparable under the same environmental gradients. The decomposition of the niche into subniches,23

with the WitOMI allows one to observe and measure the part of the existing fundamental subniche that is not used24

by the species despite being available. The unused part of the existing fundamental subniche is considered as the25

subset’s biological constraints (e.g. competition, predation, mutualism, dispersal and colonization) (Karasiewicz26

et al., 2017). This last method deciphers the effect of selected environmental factors from unknown biotic factors27

and is fully adapted to explore the phytoplankton community response to climate change along with HABs.28
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The study aim was to use the Within Outlying Mean Indexes calculations (Karasiewicz et al., 2017) to understand29

how the environment influences harmful species realized niches. The method should reveal how the phytoplankton30

community before and/or during HABs, can influence the harmful algae realized niche. The estimation of the31

biological constraint should reveal the impact of biological processes on the HAB, providing further insight into32

the implications on potential competitors. This new method of HAB investigation will be tested with the case33

study of Phaeocystis spp. in the Eastern English Channel. In these waters, the bulk of biomass is represented by34

the diatom community and Phaeocystis spp. (Grattepanche et al.,2011). The genus Phaeocystis is one of the35

most globally distributed marine haptophytes (Lancelot et al., 1994). Although non-toxic (Cadée and Hegeman,36

2002), it is classified as undesirable because three species (i.e. P. globosa, P.pouchetii and P.antarctica) are37

capable of forming large gelatinous colonies, creating impressive foam layers along beaches during bloom collapse38

(Blauw et al., 2010). This accumulation of excessive organic matter could result in alteration both in the benthic39

and pelagic compartments. More recently, Breton et al. (2017) suggested with a trait-based approach, that40

competitive exclusion prevails during Phaeocystis spp.’s blooms. The diatoms’ taxonomic level, however, was not41

fine enough to reveal the potential resource competitors of Phaeocystis spp. (Breton et al. 2017). To date, no42

studies have considered the competitive interactions as a possible HAB control.43

2. Methods:44

2.1. Data set:45

The data were collected as part of the French REPHY-IFREMER (Réseau d’Observation de Surveillance du46

Phytoplancton et des Phycotoxines) and the Regional Nutrients Monitoring Network (SRN, 2017). Water47

samples were acquired from a fortnightly to monthly frequency from 1996-2012, between 0 and 1 m depth,48

along with physical measurements, and were completed with chemical analyses. The environmental variables49

measured included, seawater temperature (°C), salinity (measured using the Practical Salinity Scale), turbidity50

(NTU), inorganic nutrient concentrations (dissolved inorganic nitrogen, silicate, and phosphate in µmol.L-1) and51

photosynthetically active radiation (PAR, W.m-2). Note that PAR is the cumulative sum over the five days52

preceding phytoplankton sampling. In regards to the quantitative phytoplankton analyses, samples were fixed with53

Lugol’s solution and counted according to the Utermöhl method (Utermöhl, 1958). Organisms were identified to54

the lowest possible taxonomic level. Taxa that are difficult to discriminate with optical microscopy were grouped55

(e.g. Pseudo-nitzschia seriata complex). In addition, experts identified and counted (cells/L) phytoplankton taxa56

bigger than 20 mm, and also smaller size species that create chain structures or form a colonies (e.g. Phaeocystis57

spp.). Further details about sampling and processing of phytoplankton and physicochemical parameters are58
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available in the literature (Lefebvre et al., 2011; Belin and Neaud-Masson, 2012). Unlike Hernández-Fariñas et59

al. (2015), this study focused on the coastal station 1 of Boulogne-sur-mer because the waters are known for60

recurrent Phaeocystis blooms (Figure 1).61

2.2. Subsets creation:62

In order to understand the impact of biotic and abiotic factors on the Phaeocystis spp. realized niche, two data63

subsets that gathered years of high and low Phaeocystis spp. annual mean abundance events were created (named64

hereafter subset H and L for high and low respectively). The years of Phaeocystis spp. intermediate mean annual65

abundance were left-out for the rest of the study. This methodology enables deciphering the conditions and the66

potential resources used by the diatom community and Phaeocystis spp. in contrasted events. Each subset has its67

own environmental habitat conditions and phytoplankton communities (n=53 sampling units for subset L and68

n=71 for subset H). Additionally, a non-random BV-STEP analysis (Clarke et al., 2001) with 10000 reiterations69

was performed to extract the species that correlated most with the entire diatom community during subsets L and70

H. The diatom species best representing the community under both subsets were used to describe the succession71

under each subset. Herein, the study does not try to determine the conditions under which the ecosystem is72

dominated by Phaeocystis spp. (e.g., the ratio between diatoms species biomass and Phaeocystis spp.) as in73

(Lefebvre et al., 2011), but rather the habitat conditions within which the species can reach high abundances.74

The environmental habitat conditions are the environmental conditions measured at time t of the sampling.75

2.3. Niche and subniche analysis:76

An OMI analysis (Dolédec et al., 2000) was performed including all the sampling dates in order to reflect most of77

the environmental variability within the OMI axes. Only the significant species identified by the BV step analysis78

above were used further in the study. The subniche estimations within the subsets H and L (see below) were79

calculated with the Within Outlying Mean Indexes calculations (WitOMI) (Karasiewicz et al., 2017). Species’80

subniche dynamics were estimated by comparing the subniche parameters (marginality and tolerance) to the81

origin G (WitOMIG and Tol), which is the representation of a uniformly distributed theoretical species that82

would occur at all available habitat conditions (i.e. ubiquitous) (Dolédec et al.,2000). Second, the estimation83

of the subniche parameters to the subset origin GK (WitOMIGK and Tol), which is the representation of the84

subset mean habitat conditions used by a hypothetical species (Karasiewicz et al., 2017), revealing the species85

distribution within the subset habitat conditions. The statistical significance of marginality was tested using a86

Monte Carlo permutation procedure (Manly, 1997) with 10000 permutations.87
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2.4. Biological constraint:88

The existing fundamental subniche, SP , corresponds to the realized niche, NR, which is reduced abiotically by the89

subset habitat conditions, K. Therefore, SP includes the subset biotic factor, SB , reducing SP into the realized90

subniche, SR (Figure 2). In summary:91

SR

⋃
SB=SP = K

⋂
NR

SB represents negative biological interactions (e.g., predation, competition, parasitism, etc.), the species dispersal92

limitation (i.e., lack of time for migration), or occupancy by another species (Peterson, 2011) (Figure 2). The SB93

unit is in percentage of SP , and represents the biological constraint exerted on the subniche. Therefore, under94

the subset habitat conditions H or L, the biological constraint exerted on Phaeocystis spp. subniches, and the95

effect of some other unselected abiotic variables, can be discussed.96

All analyses and graphical representations were performed using R software (R Core Team, 2013) with the packages97

“ade4” (Dray and Dufour, 2007) and “subniche” available for free on the CRAN repository www.cran.r-project.org98

and on GitHub www.github.com/KarasiewiczStephane/WitOMI.99

3. Results:100

3.1. Subset habitat conditions:101

Low (<50 cells.L-1) and high (>160 cells.L-1) mean annual Phaeocystis spp. abundance events (named hereafter102

subset L and H) occurred on four and five occasions, respectively (L: 1996, 1997, 2000, and 2005, H: 2001, 2004,103

and 2010-2012; Figure 3). The non-random BV-step analysis revealed that 7 diatom species were correlated to104

the overall pattern of the community (Gud, Gus, Par, Pss, Ske, Thn, and Thg, with ρ=0.97; See code in Table105

1) in subset L, while 9 diatom species were relevant in subset H (Cha, Dyt, Gud, Gus, Led, Nit, Par, Ske, and106

Thn, with ρ=0.96). Five species, Gud, Gus, Par, Ske, Thn were common to the two contrasting environmental107

conditions, leading to 11 species of interest for the rest of the study. Two species occurred only in subset L (Thg108

and Pss) and four species occurred only in subset H (Dit, Cha, Led, and Nit)(See code in Table 1).109

Although the two subsets showed similar increases in temperature and PAR, varying from 5.8 to 19.9°C and from110

8.5 to 6.1 103.W.m2 respectively (Figure 4A and 4B), the two subsets differed in turbidity, salinity and nutrient111

concentrations. Accordingly, subset L displayed higher turbidity but lower salinity than subset H (Figure 4C-D).112

Moreover, nutrient concentrations were significantly lower and decreased faster in subset H than in subset L113
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during late winter-early spring (Figure 2 E-H). Phosphate concentration had an overall higher concentration in114

subset L (Figures 4F). The sum of nitrate and nitrite concentrations was similar in January and December in115

both subset L and H, but the overall concentration was higher in subset L than in H (Figure 4G). The seasonal116

trends of silicate concentration were similar in the two subsets, although it decreased faster the rest of the year117

in subset H than in subset L (Figure 4H). The DIN:PO4 followed a unimodal trend with a maximum in April118

(DIN:PO4: 88) and March ( DIN:PO4: 70) for subset L and H respectively (Figure 4I). The DIN:Si was higher in119

subset L than in H with a maximum in April (DIN:Si: 59) and March (DIN:Si: 30) respectively.120

3.2. Niche analysis (OMI):121

The OMI analysis revealed that the realized niches of the 11 diatom species of interest, depicted by the BV-step122

analysis, and of Phaeocystis spp. were significant (Table 1). The first two axis of the OMI analysis represented123

87% of projected inertia, of which OMI1 represented 74%. OMI1 was mainly explained by nutrients and turbidity124

(Figure 5C), while OMI2 was mainly explained by PAR, temperature and salinity. The seasonal effect can be125

visualized by the environmental trajectories of subset H and L (Figure 5B). The environmental trajectory of126

subset H had a higher position and better resembled a full cycle than subset L, which went “back on track”127

(Figure 5B).128

The species Ske, Thg and Thn were typical of late winter-early spring and were, as expected, low on the OMI1129

axis (on the left side, Figure 5A). Their niches were explained by high nutrient concentrations and turbidity, but130

low temperature, PAR and salinity. These three species have the highest niche breadth (Tol Ske: 3.52, Thn: 3.35,131

Thg: 3.14) (Table1). The niches of Dit and Cha, Par and Nit were related to intermediate values of OMI1 (lower132

values of nutrients and turbidity; Figure 5A). They distributed themselves vertically along the OMI2 by their133

preferences for higher salinity, temperature and PAR (higher temperature and PAR downwards ; Figure 5A). The134

species with the lowest marginality were Nit and Par (OMI: 0.06 and 0.09 for Nit and Par respectively). The135

niches of Pss, Gud, Gus and Phae were characterized by low nutrient concentrations and turbidity but differed136

from each other in salinity, PAR and temperature affinities. The niche position of Phae was characterized by137

relatively high salinity but intermediate temperature and PAR, while the other species were rather defined by138

lower salinity and higher temperature and PAR along the OMI2 axis. The niche of Led, which is typically a139

summer diatom species was characterized by the lowest nutrient concentrations and turbidity, high salinity, and140

intermediate temperature and PAR. As a result, Led was characterized by a high marginality (OMI: 2.231).141
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3.3. Subniche calculations (WitOMI):142

Phaeocystis spp.’s subniche position significantly shifted and the subniche breadth expanded from subset L to143

H (WitOMIG: 2.64 and 2.11; Tol: 0.59 and 0.64 for subset L and H respectively) (Figure 6). The marginality144

(WitOMIG) showed that Phaeocystis spp. used a more common habitat in subset H than in L. This suggest145

that the species has a preference for the environmental habitat conditions found in subset H over L (Figure 6).146

Considering the subsets independently, the subniche position from the average subset habitat conditions, GK was147

much greater in subset L than H (WitOMIGK : 3.24 and 0.59 from subset L and H respectively). In subset H,148

Phaeocystis spp. used a more common habitat favoring its development (237 cells.L-1, Table 2). On the other149

hand, the habitat preference in subset L, which is atypical for the environmental habitat conditions within subset150

L, is not well suited for Phaeocystis spp. (29 cells.L-1, Table 2).151

The different WitOMIG values for the common diatom species (Ske, Thn, Par, Gud, Gud), expressed a change152

in subniche position (Table 2). Meanwhile, the tolerance from G increased for Gud, while it decreased for Gus,153

Par, Ske and Thn (Table 2). The low WitOMIGK values in the environmental habitat conditions subset H were154

preferable for Thn, Par, Gud, and Gus, compared to the environmental habitat conditions of subset L. The155

opposite pattern occurred for Ske (Table 2). Ske had a preference for the environmental habitat conditions of156

subset L, as the species’ mean abundance, which was higher in subset L, likely reflected the species’ habitat157

suitability. The species Par and Thn had higher mean abundance in subset H, while Gud and Gus had stable158

mean abundances (Table 2).159

Concerning species that occurred in only one subset, Pss had one of the lowest marginalities and intermediate160

tolerance (WitOMIGK : 0.28 and Tol: 1.69), while Thg had an intermediate marginality with high tolerance161

(WitOMIGK :0.78 and Tol: 4.13), in subset L (Table 2). In subset H, marginality of low for Nit and Cha,162

intermediate for Dit, and high for Led (WitOMIGK : 0.14, 0.31, 0.58, and 2.05 for Nit, Cha, Dit and Led163

respectively) (Table 2). Led had an intermediate tolerance while Nit, Cha and Dit had high tolerance in subset H164

(Table 2).165

The environmental habitat conditions of subset H enhanced the common diatoms and Phaeocystis spp. mean166

abundances, as these species had greater affinities for these environmental habitat conditions. Phaeocystis spp.167

still managed to reach high abundance despite the increase of the relevant number of diatom species. Skeletonema168

spp. was the only common diatom species that was disfavored by the change in environmental habitat conditions,169

and better responded to the environmental habitat conditions of subset L.170

A succession of the diatom subniche was observed in the two habitat subsets (Figure 7A and B), as expected171

from the niche analysis (Figure 4). In subset L, the late-winter early-spring species (Ske, Thn and Thg) were172
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blooming first because they were affiliated with winter like conditions, i.e., low temperature, PAR and salinity,173

but high nutrient concentrations and turbidity. Then, Par was second to bloom followed by Pss, Gud, Gus and174

Phae (Figure 7A). The first species to appear in subset H was Ske, while Thn, Cha, Dit, Par and Nit appeared175

second. The succession of diatoms continued with Gud, Gus and Led (Figure 7B). In subset H, the subniche176

of Phaeocystis spp. overlapped most of the diatoms’ niche positions, but still managed to have a larger niche177

breadth than in subset L. The diatom-Phaeocystis spp. succession did not take place in subset H, as Phaeocystis178

spp. managed to develop concomitantly with the diatom species (Figure 7B).179

3.4. Biological reducing factor:180

The Phaeocystis spp. subniche in subset L occupied 19% of the existing fundamental subniche. Therefore the181

biological constraint was equal to 81% (Figure 8B). The subniche occupation of Phaeocystis spp. in subset H182

within the existing fundamental subniche, represented 75%. Thus, the subniche biological constraint was of 25%183

of the existing fundamental subniche (Figure 8A). Therefore, the unused available conditions of the Phaeocystis184

spp. existing fundamental subniche could have been occupied by competing diatom species, such as Skeletonema185

spp., Thalassionema nitzschioides, Thalassiosira gravida and the Pseudo-nitzschia seriata complex (Figure 8A).186

By contrast, the Phaeocystis spp. subniche overlapped the diatoms subniches in subset H (Figure 8B).187

4. Discussion:188

The OMI analysis revealed that nutrient concentrations (phosphate, silicate, nitrite, nitrate and ammonia)189

played an important role in the diatom community distribution (Figure 5A and 5C). Subset H was characterized190

both by lower nutrient concentrations and faster decreases than subset L (Figure 5E to 5H). Therefore, the191

realized subniche of Phaeocystis spp. shifted in position and increased in breadth from subset L to H. The192

diatom-Phaeocystis spp. succession occurred in subset L but not in H. The realized subniche of Phaeocystis193

spp. seemed to be more controlled by the preceeding diatom community than by the subset habitat conditions.194

Furthermore, the increasing diversity in the diatom community exerted a lower biological constraint on the195

Phaeocystis spp. realized subniche. The results suggest that key diatom species possibly competed for resources196

with Phaeocystis spp., especially nitrogen, phosphate and light, but only when silicate was available. Hereafter,197

the robustness of actual hypotheses related to the Phaeocystis spp. niche in the literature are discussed followed198

by an examination of the possible biotic interaction explaining the fluctuating abundances.199
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4.1. Phaeocystis spp. hypotheses:200

The “silicate-Phaeocystis hypothesis” (Lancelot et al., 1987; Reid et al., 1990) has historically been a major201

explanation in the appearance of Phaeocystis spp. Environmental silicate concentration may determine the202

duration and stability of the diatom community. For instance, in both subsets, Phaeocystis spp. started to bloom203

when the silicate concentration dropped below 1.5 µmol.L-1. This threshold was reached later, in April, for subset204

L compared to March for subset H (see Figure 4). The “silicate-Phaeocystis hypothesis” (Lancelot et al., 1987;205

Reid et al., 1990) was only partly verified since Phaeocystis spp. was already present in the subset H in January,206

but did not bloom until the silicate concentration dropped below the threshold. The lower inorganic P demand207

of Phaeocystis spp. compared to diatoms (Riegman et al., 1992) could explain the constant presence in subset208

H, characterized by low phosphate concentration from January to June. On the contrary, the “eutrophication209

hypothesis,” which stipulates that Phaeocystis spp. abundance increases with higher N concentration, was not210

validated in this study. Subset L was characterized by higher concentrations of nitrite, nitrate and ammonia211

than subset H, leading to a dominance of diatom species, but resulting in lower abundances of Phaeocystis spp.212

Furthermore, even though in subset L, leftover N from diatoms remained high, Phaeocystis did not bloom as213

much. Phaeocystis spp. might use the excess N leftover by the diatoms for growth, but this does not seem to214

determine the outbreaks of high abundance bloom events. The hypotheses linking Phaeocystis spp. appearances215

to N:Si (Tett et al., 1993; Tett and Walne, 1995) and N:P (Riegman et al., 1992) better at predicted the HAB216

timing. The maximum in N:Si or N:P corresponded to the start of Phaeocystis spp. bloom in both habitat subset217

conditions.218

According to Borkman et al. (2016), higher salinity characterized the year of high P. pouchetii abundance and219

could also explain the years of high Phaeocystis spp. abundance. The higher salinity also reflected a lower220

precipitation flow rate from rivers and wind turbulence which can also take part in the turbidity level. Subset H221

was characterized by higher salinity and lower turbidity than subset L. Photosynthetically active radiation and222

temperature exhibited similar variations throughout the season. Temperature did not seem to impact Phaeocystis223

spp. appearance, because in subset H, Phaeocystis spp. was present in January, the coldest month (6.5°C). The224

higher turbidity level in subset L suggested that the real amount of photosynthetically active radiation reaching225

the community was less than in subset H. Despite these conditions, Phaeocystis spp. still appeared under low226

PAR. This contradicts the hypothesis suggesting that Phaeocystis spp. dominates over diatoms when conditions227

resemble early summer along the Dutch coast (Peperzak, 1993).228
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4.2. Biotic interactions:229

The unused available conditions in the Phaeocystis spp. existing fundamental subniche is considered as the subset230

biotic reducing factor. Infection by viruses can also cause the biological constraint. Experimental results showed231

that P. pouchetii cell mortality rates by virus infection can reach 0.8 d-1 (Brussaard et al., 2005) but viruses do232

not infect healthy colonies (Bratbak et al., 1998).233

Predation is a possible biological interaction that can affect Phaeocystis spp. forms. The high plasticity of234

Phaeocystis spp. capacity to change life forms, single-cells and colonies in response to grazing is well known235

(Nejstgaard et al., 2007). Futhermore, it can respond to different chemical cues released by different consumer236

species (Wang et al., 2015). For instance, Phaeocystis spp. is capable of switching from single-cells to colonies237

when grazed by ciliates (Long et al., 2007). Oppositely, when confronted by grazing copepods, Phaeocystis spp.238

can significantly decrease its colony numbers by 60–90% (Long et al., 2007). Grazer abundances and diversity239

with different Phaeocystis spp. life forms should be considered in future studies, as they can directly impact240

HABs. The information on the different life-forms of Phaeocystis spp. and potential consumers were not available241

in the used dataset.242

Another appropriate biological constraint in this study appeared to be competition, as the diatom community243

directly competes for resources with Phaeocystis spp. From late-winter to summer, the succession in blooms244

of the diatoms and their appearance depends on their preferences regarding environmental habitat conditions,245

further driving Phaeocystis spp. appearances and blooms. For instance, Skeletonema spp., T. nitzschioides,246

and T. gravida are known to be bloom forming species (Pratt, 1959; Smayda, 1958). They are considered as247

winter diatoms, according to their respective niche positions with preference for high nutrient concentrations and248

turbidity in association with low temperature, PAR and salinity. Their leading appearance, bloom magnitude249

and persistence determined the composition of the following community. The growth of Skeletonema spp. is250

known to be 25% faster when on sustained ammonia than on nitrate (Suksomjit et al., 2009; Tada et al., 2009).251

In addition, T. nitzschioides has also been shown to grow faster in ammonia and nitrate enriched conditions252

(Mochemadkar et al., 2013). In subset L, the high concentration of ammonia could have potentially helped253

Skeletonema spp., T. nitzschioides and T. gravida, which are pioneers, to grow faster and bloom, establishing their254

dominance in the community (Suksomjit et al., 2009; Tada et al., 2009) (Figure 5B). Furthermore, the P. seriata255

complex occurrence is also known to be nitrogen-limited, and more than capable of using ammonia (Fehling et256

al., 2006). The growth of Phaeocystis spp. is faster on ammonia than on nitrate (Tungaraza et al., 2003), but257

seemed to be out-competed by the diatoms in these environmental habitat conditions. Other factors, such as258

silicate and phosphate were not limiting and favored the diatoms. The establishment of the diatom species, with259

a preference for ammonia, possibly out-competed Phaeocystis spp., until the concentration of silicate became260
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limiting, succeeded by the Phaeocystis spp. bloom.261

In subset H, Phaeocystis spp. managed to flourish despite the presence of the five same species (Skeletonema spp.,262

T. nitzschioides, Paralia sulcata, Guinardia delicatula and Guinardia striata) and four other species (Chaetoceros263

danicus, Ditylum brightwellii, Nitzschia longissima and Leptocylindrus danicus). The lower concentration of264

phosphate favored Phaeocystis spp.’s presence over diatoms likely through Phaeocystis spp.’s capacity to store265

phosphate within its colony matrix (Schoemann et al., 2001; Veldhuis et al., 1991) coupled with its lower P demand266

(Riegman et al., 1992). Moreover, the strong competitive ability of Phaeocystis spp. to obtain nitrogen (Riegman,267

1995), along with lower concentration of silicate, inhibited the diatom community from bloomming as much as in268

subset L. Silicate limitation is thought to have resulted in an increase in magnitude and continuity Phaeocystis269

spp. blooms (Cadée and Hegeman, 1986; Lancelot, 1990; Lancelot et al., 1987). The silicate limitation dually270

selected diatom species which are less silicified, such as Leptocylindrus danicus, Chaetoceros danicus and Nitzschia271

longissima (Hasle et al., 1996). Furthermore, the N-source dependency of diatom silicate competitiveness, which272

determines the dominant species of the community (Ruth, 2012), reinforced the idea that Skeletonema spp., T.273

nitzschioides, T. gravida and P. seriata complex are decisive species for Phaeocystis spp. blooms.274

The readjustment of nutrient concentrations rendered more than one resource limiting for the diatoms, resulting275

in a biodiversity increase (Hillebrand et al., 2014), as shown with the BV-step analysis (7 to 11 species from276

subset L to H). The niche expansion of Phaeocystis spp. (Tol: 0.59 and 0.64 for subset L and H respectively)277

can be partly explained by a relaxation in biological constraints (Table 2). The possible decrease in diatom278

competitive abilities resulted in the 25% of unused available environmental habitat conditions of the Phaeocystis279

spp. existing fundamental subniche.280

4.3. Further perspectives:281

Further investigations on diatom competitive abilities can be done experimentally (Ruth, 2012), and with the282

trait-based approach (Litchman and Klausmeier, 2008). The major components of the trait-based approach are283

the species’ traits, environmental gradients, species’ interactions and performance currency, which determines284

the species’ niche within the community (McGill et al., 2006). In this study, the niche and subniche dynamics285

within the overall environmental habitat and subset environmental habitat conditions were studied for the entire286

community. Furthermore, the quantification of the biological constraints exerted on Phaeocystis spp.’s subniches287

was made possible. The direct relationships between traits and the species’ response to environmental conditions288

(Lavorel and Garnier, 2002) can give us clues on the mechanisms driving community composition. In parallel, the289

patterns of functional-trait distribution (Bello, 2009; Weiher et al., 1998) can help explain how the community290

functional-traits controls the following Phaeocystis spp. bloom. Some methods, which link niche analysis and291
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trait-based approaches already exist. The OMI-GAM analysis (Kleyer et al., 2012) determines species’ responses292

to environmental conditions using the OMI analysis (Dolédec et al., 2000), and additionally could explain these293

responses using generalized additive models (GAM) with the traits as explanatory variables (Kleyer et al., 2012).294

Such analyses can help solve the Phaeocystis spp. riddle and other HAB related issues. In future studies, more295

precise ecological dynamics models could be built as the diatoms can be split into different functional groups.296

Models, such as the MIRO model (Lancelot et al., 2014), which also studies the spring-diatom-Phaeocystis297

bloom, considers diatoms as a large pool responding homogeneously to nutrient concentrations and/or ratios.298

As shown in this study, the mechanism driving the bloom of Phaeocystis spp. is multifactorial, suggesting a299

greater consideration of diatom diversity, including their respective traits and competitive abilities. Trait-based300

understanding of plankton distribution started with the paradox of the plankton (Hutchinson, 1961). Margalef301

was the first to understand the balance between the physical and nutritional forces relating to different life forms302

of phytoplankton with the classical “mandala” (Margalef, 1978; Margalef et al., 1979). Since then, the concept of303

the “mandala” has found its way into predicting HABs (Smayda and Reynolds, 2001) and nowadays incorporates304

twelve dimensions (Glibert, 2016). Herein, the environmental trajectory can help predict the high abundance305

events of Phaeocystis spp. in future “mandala” like models, by using the WitOMI calculations.306

5. Conclusion:307

The appearance of Phaeocystis spp. depends on multiple environmental factors, and moreover, on the preceding308

diatom community, which first appear in late winter. Within both habitat subsets, Phaeocystis spp. could have309

potentially realized a large subniche. The reduction and/or expansion of its subniche mostly depended on the310

winter environmental conditions and on the biological constraints. The competitive ability of diatoms appearing311

in late-winter are suspected to take part in the biological constraint of the Phaeocystis spp. subniche. The312

establishment of the leading species in the bloom succession, here Skeletonema spp., Thalassionema nitzschioides313

and Thalassiosira gravida seemed to be driven by nutrient concentration. Under non-limiting P environmental314

conditions, competition among diatoms for silicate will be N-source dependent. The high concentration of315

ammonia allowed a rapid growth and bloom of the later-winter diatoms (i.e. Skeletonema spp.) (Figure 3E), while316

Si limited their bloom magnitude. The effect of winter conditions on the Phaeocystis spp. bloom requires further317

investigation. The trait-based approach in relation with the community response to changing environmental318

conditions could be a promising field for studying the future of Harmful Algae Bloom.319
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Figure 1: Map of North of France with the main station location of the French REPHY-IFREMER network
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Figure 2: The subniche concept from Karasiewicz et al. (2017). E1 and E2 are the environmental gradients calculated after an
ordination technique. E is the realized environmental space (filled light orange minimum convex polygon). NR is the species’ realized
niche (dotted dark orange contour). K is the subset realized environmental space (blue minimum convex polygon). SP is the existing
fundamental subniche (the red contour)-a union of SB and SR. SB is the subset biotic reducing factor (the part of K found within
the orange contour), or biological constraint, and SR is the realized subniche (the green minimum convex polygon).
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Figure 3: Temporal variation of the annual mean abundance of P haeocystis spp. (cell.L−1) from 1996 to 2012. The dashed line
represents the upper threshold (160 cell.L−1) and the dotted line represents the lower threshold (50 cell.L−1). Abundance was then
divided the abundance in three categories (Low, intermediate, high). Only high (empty triangles) and low (filled triangles) annual
mean abundance events were kept for the rest of the study
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Figure 4: Monthly mean (± SD) of each environmental variable for the subset H (empty circles) and L (filled circles), low and high
annual mean abundance of Phaeocystis spp., respectively.



27

OMI1 (74%)

A

Ast

Cha

Dit

Gud

Gus

Led
Meu

Nit
Par

Pss

Ske
Thn

Thg

Phae

O
M

I2
 (1

3%
)

B

O
M

I2

Jul

JunSepNov

May

Aug

Jan

OctDec

Feb

Mar

Apr

Feb

Jan
Mar

Apr

May

Jun

Jul
Aug

Sep

Oct

Nov

Dec
OMI1

C

Ammonia

Nitrite + Nitrate

Phosphate

Silicate

Temperature

Salinity

Turbidity

PAR

OMI1

O
M

I2

Figure 5: OMI analysis of the 11 diatom species and P haeocystis spp. A) The orange polygon represents the overall habitat
environmental space. The species’ labels represent the species’ niche positions (see Table 1 for codes). B) The environment trajectory,
from January to December, under the two subsets L (blue arrows) and H (green arrows). C) The canonical weights of environmental
variables.



28

Subniches Phae subset H

A

PhaeL

B

PhaeH

O
M

I2

O
M

I2

OMI1 OMI1

subset L

C

PhaeL

O
M

I2

OMI1

PhaeH

Figure 6: P haeocystis spp. subniches’ dynamics. A) The illustration of the P haeocystis spp. subniches’ dynamics found within the
niche (the dotted orange contour). The green polygon represents P haeocystis spp. subniches. The orange polygon represents the
overall habitat environmental space. The labels represent the subniches’ positions and the arrows represent the marginality. B and C
are the graphical representations of P haeocystis spp. subniches within the environmental subsets (blue polygons). The red contour
represents the P haeocystis spp. existing fundamental subniche. The red dots represent the mean environmental conditions found
within each subset.



29

subset L subset H

A

Gud Gus

Par
Pss

SkeThn
Thg Phae

Jul

Jun
SepNov

May

Aug

Jan
Oct

Dec

Feb

Mar

Apr

B

Cha
Dit

Gud Gus

LedNit

ParSke Thn Phae

Feb

Jan

Mar
Apr

May

Jun

Jul

Aug
Sep

Oct

Nov

Dec

O
M

I2

O
M

I2

OMI1 OMI1

Figure 7: P haeocystis spp. subniches within the two subsets L and H. The green polygon represents the P haeocystis spp. subniche.
The orange polygon represents the habitat conditions space. The dotted orange contour represents the P haeocystis spp. realized
niche. The red contour represents the P haeocystis spp. existing fundamental subniche. The labels represent the subniches’ positions
of the relevant species resulting from the BV-step analysis. The arrows represent the trajectory taken by the habitat conditions from
January to December under their respective subsets.



30

subset L

OMI1

O
M

I2

subset H

OMI1

O
M

I2

B

Dit

Ske Phae

Thn

Thn
Cha

A

Pss
Ske

Thg
Phae

Figure 8: P haeocystis spp. and possible competitors’ subniches within the two subsets L and H. The orange polygon represents
the habitat conditions space. The blue polygon represents the subset habitat conditions space. The green polygon represents the
P haeocystis spp. subniche. The red contour represents the P haeocystis spp. existing fundamental subniche. The colored dots and
the corresponding polygon represent the subniche position and breadth respectively. Not all relevant species of each subset were
represented for the sake of clarity.



31

List of Tables560

1 Niche parameters calculated with the OMI analysis for 11 diatoms species and Phaeocystis spp.561

The parameters are the inertia, the marginality (OMI), the tolerance (Tol) and the residual562

tolerance (Rtol). The P values were calculated with 1000 permutations, see methods for further563

details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32564

2 Subniche parameters of the 11 diatom species of interest and Phaeocystis spp. The marginality565

(WitOMI), tolerance (TOL) and mean abundance were calculated under the two subsets, L and566

H. The niche parameters were calculated from G and GK . For code see Table 1. All subniches567

were significant (P ≤ 0.001). - not applicable means that the species were absent in one of the two568

subsets, or not significant with the BV step analysis. For further details see Materials and Methods. 33569



32

Table 1: Niche parameters calculated with the OMI analysis for 11 diatoms species and P haeocystis spp. The parameters are
the inertia, the marginality (OMI), the tolerance (Tol) and the residual tolerance (Rtol). The P values were calculated with 1000
permutations, see methods for further details.

Species Code Inertia OMI Tol Rtol P

Chaetoceros danicus Cha 7.09 0.36 0.98 5.76 0.03
Ditylum brightwellii Dit 7.48 1.07 1.14 5.26 0.00
Guinardia delicatula Gud 7.28 0.22 2.51 4.56 <0.001
Guinardia striata Gus 6.65 0.79 1.62 4.24 <0.001
Leptocylindrus danicus Led 6.61 2.23 1.31 3.07 <0.001
Nitzschia longissima Nit 7.73 0.06 0.77 6.89 0.05
Paralia sulcata Par 7.82 0.09 2.24 5.49 0.00
Pseudo− nitzschia seriata complex Pss 7.25 0.20 0.96 6.09 0.01
Skeletonema spp. Ske 10.12 1.64 3.52 4.96 <0.001
Thalassionema nitzschioides Thn 9.02 0.93 3.35 4.74 <0.001
Thalassiosira gravida Thg 9.23 1.15 3.14 4.95 <0.001
Phaeocystis spp. Phae 6.58 0.83 1.36 4.39 <0.001
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Table 2: Subniche parameters of the 11 diatom species of interest and P haeocystis spp. The marginality (WitOMI), tolerance (TOL)
and mean abundance were calculated under the two subsets, L and H. The niche parameters were calculated from G and GK . For
code see Table 1. All subniches were significant (P ≤ 0.001). - not applicable means that the species were absent in one of the two
subsets, or not significant with the BV step analysis. For further details see Materials and Methods.

Code WitOMI Tol Mean abundance
Origin G GK G GK (cells.L−1)
Data subset L H L H L H L H L H
Cha - 1.34 - 0.31 - 0.56 - 1.95 - 111
Dit - 1.93 - 0.58 - 0.45 - 1.26 - 100
Gud 0.6 1.26 0.2 0.16 0.62 1.28 2.97 1.97 295 298
Gus 1.09 2.07 1.3 0.65 1.43 0.91 2.05 1.49 226 222
Led - 4.11 - 2.05 - 0.61 - 0.65 - 118
Nit - 0.86 - 0.14 - 0.58 - 2.14 - 268
Par 1.48 0.63 0.52 0.16 1.73 0.45 1.68 2.85 138 284
Pss 0.83 - 0.28 - 0.6 - 1.69 - 173 -
Ske 3.17 2.88 1.71 3.85 3.83 2.14 3.86 2.45 206 126
Thn 6.61 0.77 4.36 0.63 2.17 1.19 2.22 3.03 163 197
Thg 2.02 - 0.78 - 3.83 - 4.13 - 139 -
Phae 2.64 2.11 3.24 0.59 0.59 0.64 0.67 0.46 29 237
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