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Abstract : 
 
For over a decade, several research groups have been developing air-sea heat flux information over the 
global ocean, including latent (LHF) and sensible (SHF) heat fluxes over the global ocean. This paper 
aims to provide new insight into the quality and error characteristics of turbulent heat flux estimates at 
various spatial and temporal scales (from daily upwards). The study is performed within the European 
Space Agency (ESA) Ocean Heat Flux (OHF) project. One of the main objectives of the OHF project is 
to meet the recommendations and requirements expressed by various international programs such as 
the World Research Climate Program (WCRP) and Climate and Ocean Variability, Predictability, and 
Change (CLIVAR), recognizing the need for better characterization of existing flux errors with respect to 
the input bulk variables (e.g. surface wind, air and sea surface temperatures, air and surface specific 
humidities), and to the atmospheric and oceanic conditions (e.g. wind conditions and sea state). The 
analysis is based on the use of daily averaged LHF and SHF and the associated bulk variables derived 
from major satellite-based and atmospheric reanalysis products. Inter-comparisons of heat flux products 
indicate that all of them exhibit similar space and time patterns. However, they also reveal significant 
differences in magnitude in some specific regions such as the western ocean boundaries during the 
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Northern Hemisphere winter season, and the high southern latitudes. The differences tend to be closely 
related to large differences in surface wind speed and/or specific air humidity (for LHF) and to air and 
sea temperature differences (for SHF). Further quality investigations are performed through 
comprehensive comparisons with daily-averaged LHF and SHF estimated from moorings. The resulting 
statistics are used to assess the error of each OHF product. Consideration of error correlation between 
products and observations (e.g., by their assimilation) is also given. This reveals generally high noise 
variance in all products and a weak signal in common with in situ observations, with some products only 
slightly better than others. The OHF LHF and SHF products, and their associated error characteristics, 
are used to compute daily OHF multiproduct-ensemble (OHF/MPE) estimates of LHF and SHF over the 
ice-free global ocean on a 0.25° × 0.25° grid. The accuracy of this heat multiproduct, determined from 
comparisons with mooring data, is greater than for any individual product. It is used as a reference for 
the anomaly characterization of each individual OHF product. 

 

Highlights 

► Establishing reference input dataset maximizing the use of remotely sensed data ► Performing a 
cross-comparison of different heat flux algorithms and approaches ► Generating an ensemble of 
turbulent fluxes, including multiple approaches ► Evaluating the quality and consistency of ensemble 
realizations ► Exploiting integral heat constraints at local, regional and global scales 

 

Keywords : Ocean Heat Flux, Latent heat flux, Sensible heat flux, Ocean heat content, Scatterometer, 
Surface wind, Specfic air humidity, OceanSites, Remotely sensed data 
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 Introduction 

Accurate estimation of the ocean surface turbulent and radiative fluxes is of great 

interest for a variety of air-sea interaction and climate variability issues. Surface fluxes of 

heat, moisture, momentum, and gases play a key role in the coupling of the Earth’s climate 

system and control many important feedbacks between the ocean and the atmosphere (Gulev 

et al. 2013).  Furthermore, consistency studies of turbulent flux estimates and ocean heat 

storage estimates are also essential for constraining the Earth’s energy budget in order to 

“track” the energy flows through the climate system, which in turn is critical for improving 

understanding of the relationships between climate forcings, the Earth system responses, 

climate variability and future climate change (Trenberth et al., 2009; von Schuckmann et al., 

2016). The longest time series of surface fluxes going back to the mid 19
th 

century can be 

derived from the Voluntary Observing Ship (VOS) data (Woodruff et al., 2011, Gulev et al., 

2013). However, these data are characterized by insufficient and time-dependent sampling 

(Gulev et al. 2007), and by inaccuracies in state variables used for flux computation (e.g. 

Josey et al. 1999, 2014). In contrast, atmospheric re-analyses, as well as remotely sensed data, 

potentially provide much more homogeneous time series of atmospheric state variables for 

surface flux computation. However, remotely sensed data are limited in time to a few decades 

while reanalyes can be strongly influenced by variations in the type and amount of data 

assimilated, particularly across the transition to the satellite era in the early 1980s. 

 

In addition, surface flux products from reanalyzes and remote sensing are also subject to 

biases and uncertainties and require further improvement for turbulent flux determination. 

These include; improvements in spatial and temporal resolution, the accuracy, and the 

characterization of the spatial and temporal distribution of errors of each flux component. It is 



2 

 

one of the priorities of the World Climate Research Program (WCRP) to improve the 

accuracy of surface fluxes for climate studies to within “a few W/m²” and 10 W/m² for 

individual flux components and the large scale net heat fluxes, respectively (e.g. WGASF, 

2000, Bradley and Fairall, 2007).. The Southern Ocean Observing System (SOOS) group 

recommends a better flux observation density for improving heat flux accuracies at regional 

scales (Gilles et al, 2016).  These requirements impose challenges including the development 

of new parameterizations, achievement of global and regional heat budget closure, reducing 

sampling uncertainties, and better scaling parameters for surface flux estimates. 

To meet these community requirements, the European Space Agency (ESA) launched a 

project called Ocean Heat Flux (OHF (http://www.oceanheatflux.org/ ) aiming at 

development, validation, and evaluation of satellite-based estimates of surface turbulent 

fluxes and their documentation, particularly those derived from ESA satellite/mission earth 

observation (EO) data, as well as all bulk parameters needed for turbulent flux calculations 

over the  global ocean. OHF involves a number of objectives and studies. The main OHF 

objectives include (but are not limited to); establishing a reference surface flux dataset (to 

maximize the use of remotely sensed data including ESA products), development and 

accuracy assessment of an ensemble of ocean heat turbulent flux products available over 

decadal or longer timescales (in order to foster the use and validation of ESA mission data). 

For these purposes, OHF uses in-situ, satellite-based, blended or synthetic, and 

reanalysis-derived surface fluxes over the global ocean, with synoptic and sub-synoptic 

spatial resolution for the period 1999 – 2009. The project makes use of the most modern 

global satellite surface flux data sets such as those from IFREMER (Institut Français pour la 

Recherche et l’Exploitation de la MER; France), HOAPS (the Hamburg Ocean Atmosphere 

Parameters and Fluxes from Satellite; Germany), SEAFLUX (Woods Hole Oceanographic 

Institution, Woods Hole (WHOI); USA), and J-OFURO (Japanese Ocean Flux Data sets with 

http://www.oceanheatflux.org/
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Use of Remote Sensing Observations; Japan). These are used along with surface turbulent 

fluxes from three modern reanalyzes: ERA-Interim (Dee et al., 2011), NCEP-CFSR (Saha et 

al., 2010) and NASA MERRA (Rienecker et al., 2011), as well as the synthetic OAFLUX 

product (Yu and Weller 2008) and the VOS based NOCS2 surface flux climatology (Berry 

and Kent, 2009). Because these flux products were derived using different approaches and 

data sources, they all have their strengths and weaknesses. Wide use of these products for 

different climate applications such as (among others) forcing ocean models (e.g., Ayina et al., 

2006), analyzing ENSO dynamics (Mestas-Nuñez et al., 2006, 2013), and/or evaluating the 

intra-seasonal variability (Grodsky et al, 2009) requires a detailed quantitative assessment of 

each product’s limitation and of and inter-product differences.  

This study presents pilot results from the OHF project that describe uncertainties of the 

different flux products. Such intercomparison is supplemented by the validation of individual 

surface flux components against estimates based on in-situ buoy and ship data, especially  

buoy data included in the Flux reference OceanSites network (http://www.oceansites.org/). 

Consideration is also given to a new approach to using observations that are themselves 

incorporated into the flux products that are being validated. 

The datasets used in this study are described in Section 2, while OHF products, all 

available at the same space and time resolution, are described in Section 3. Section 4 

demonstrates the impact of recalibration on each OHF product. Regional product inter-

comparisons are introduced in Section 5. The accuracy and quality of each OHF flux product, 

and the ensemble mean flux product, is discussed in Sections 6 and 7.  

http://www.oceansites.org/
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 Flux products 

2.1 IFREMER 

In this study, we use the new IFREMER turbulent fluxes (version 4) available daily 

over the global ocean on a 0.25° regular grid. It is an updated version of (Bentamy et al, 

2013). The bulk variables such as surface wind speed (U10) and specific air humidity (qa) at 

10 m height are estimated from remotely sensed observations. U10 is mainly obtained from 

scatterometers onboard ERS-1 (1992 – 1996), ERS-2 (1996 – 2001), and QuikSCAT (1999 – 

2009) satellites. More specifically, the main change with respect to IFREMER version 3 

described in Bentamy et al. (2013) is the use of new ERS-1 and ERS-2 wind retrievals 

(Bentamy et al, 2013 and 2016). To enhance the sampling of surface winds, version 7 of wind 

speed from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological 

Satellite Program (DMSP) F10, F11, F13, F14, and F15 satellites (Wentz, 2013)is used as 

ancillary data. 

Specific air humidity is derived, over special sensor microwave imager (SSM/I) 

radiometer swaths, based on the use of the model relaying brightness temperature 

measurements (Tb) and qa  (Bentamy et al, 2013). For this study, a new reprocessing of qa is 

performed with respect to the use of the recently reprocessed fundamental climate data record 

(FCDR) brightness temperatures (Sapiano et al, 2012).  

2.2 HOAPS 

Data used in this project are from  HOAPS-3, which utilizes passive microwave data 

from  SSM/I to retrieve bulk variables. HOAPS-3 latent heat flux is based on the bulk 

COARE3 algorithm (Fairall et al., 2003) This algorithm requires atmospheric specific 

humidity (implemented after Bentamy et al., 2003), sea surface saturation specific humidity 
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(qs), as well as near surface wind speed (U10). Sea surface temperature (SST)  for qs estimation 

is taken from the NODC/RSMAS Pathfinder SST (Casey et al, 2010), which uses AVHRR 

observations adjusted to drifting buoy data. This is, therefore, a ‘bulk’ SST, whereas ideally qs 

should be estimated from a skin temperature, which can differ by a few tenths of degree 

Kelvin. HOAPS 3 near surface wind speed is retrieved from SSM/I measurements by a neural 

network approach. The HOAPS 3 LHF and SHF fluxes, as well as the related bulk variables, 

are derived from the newly daily analyses of HOAPS fluxes. They are calculated from swath 

retrievals based on the use of space and time interpolation method over a grid map of 

0.50°×0.50°.  

2.3 SEAFLUX 

The SEAFLUX data are available over the global ice free ocean at high space 

(0.25°×0.25°) and time (3-hourly) resolution. Data are available from January 1998 through 

December 2007 (Clayson et al, 2013, see also http://SEAFLUX.org). Latent and sensible heat 

fluxes are estimated using the COARE3.0 algorithm. Wind speed at z=10m is obtained from 

the Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Components data (Atlas et 

al., 2011). CCMP wind is calculated from cross-calibration and assimilation of wind 

retrievals from SSM/I, TMI, AMSR-E, QuikSCAT, and SeaWinds onboard ADEOS-2. These 

satellite wind retrievals are combined with atmospheric ECMWF ERA-40 and ECMWF 

operational analysis (January 1999 through June 2009). CMMP data are available at synoptic 

times (00h:00, 06h:00, 12h:00, 18h:00 UTC) on a 0.25°×0.25° grid. The specific air humidity 

at 10m and air temperature (Ta) are both retrieved from microwave brightness temperature 

(Tb) using the neural network method described in Roberts et al., (2010). The method 

requires SST that is taken from NOAA SST  (Reynolds et al., 2007). 

http://seaflux.org/
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The SEAFLUX product is three-hourly (averaged from 0000-0300Z, 0300-0600Z, 

0600-0900Z, etc.). All variables are currently available from January 1, 1998, through 

December 31, 2007.  

2.4 J-OFURO 

Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO)  

provides global ocean latent and sensible heat fluxes and related bulk variables. In this 

project, J-OFURO version 2 referred as HF004 (http://dtsv.scc.u-tokai.ac.jp/j-ofuro/) is used. 

The fluxes are obtained based on the COARE3.0 bulk algorithm. The input parameter qa10 is 

derived from F10, F11, F13, and F14 SSM/I Tb using the empirical model (Schlussel  et al, 

1995). Wind speed at 10m is estimated using all available satellite data (Tomita and Kubota, 

2006) including radiometers such as SSM/I, Aqua/AMSR-E, and TRMM/MI, and 

scatterometers onboard ERS-1, ERS-2, and QuikSCAT. Air temperature is derived from 

NCEP-2 re-analysis. Finally, J-OFURO2 SST is obtained from the newly merged Japan 

Meteorological Agency (JMA) multi-satellite and in situ product (MGDSST, Kurihara et al., 

2006, see also http://dtsv.scc.u-tokai.ac.jp/j-ofuro/index.html ). 

2.5 OAFLUX 

The OAFLUX data are available for the 1985-2014 at daily resolution on a 1°× 1° grid 

(Yu et al., 2008). For the flux computations OAFLUX uses the NOAA daily 0.25° SST 

(Reynolds et al, 2007). In addition to the NOAA SST dataset, OAFLUX also utilizes SST 

values from ERA-40 and NCEP-1 reanalyses. The SST data from the re-analyses are re-

gridded by WHOI to 1° resolution for ease of synthesis with the Reynolds SST data through 

the objective analysis based on the Gauss-Markov approach and used for all surface 

meteorological variables. For estimation of specific air humidity at 2m (qa2,) OAFLUX 

http://dtsv.scc.u-tokai.ac.jp/j-ofuro/
http://dtsv.scc.u-tokai.ac.jp/j-ofuro/index.html
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applies the Chou et al. (2003 and 2004) algorithm. Further blending of humidity fields 

employs also specific humidity from the NCEP and ECMWF re-analyses as inputs to 

objective analysis. For wind speed, OAFLUX uses QuikSCAT and version 6 of SSM/I data. 

The algorithm used to derive the SSM/I data is described in Wentz (1997). Wind data used in 

OAFLUX are 12-hourly averages at a swath resolution of 25 km. In addition, OAFLUX also 

utilizes AMSR-E data as well as data from NCEP and ECMWF re-analyses. A variational 

method applied in OAFlux is subjective due to the determination of weights. For flux 

computations, the analyzed winds are adjusted to the 10 m height and to the neutral stability. 

Air temperatures in OA-Flux are from NCEP and ECMWF re-analyses. Starting from 2002 

OA-Flux air temperature is based on ERA-interim only. Bulk variables are converted to 

turbulent fluxes using the COARE-3 algorithm. Further details of OAFLUX development 

procedures are available in Yu et al. (2008) and at http://oaflux.whoi.edu/data.html. 

2.6  ERA-Interim 

Era-Interim  (Simmons et al., 2006)  refers to one of the reanalyses of atmospheric 

parameters produced by the ECMWF. It uses 4D-variational analysis on a spectral grid. This 

reanalysis covers the period from 1989 to the present day. The ERA-Interim data used in this 

study are on a 0.75° regular grid. The main parameters used  are dew temperature and air 

temperature at 2m height available at synoptic times (00h:00, 06h:00, 12h:00, 18h:00 UTC), 

which are converted to qa10 and to Ta10  utilizing the  COARE3.0 algorithm.  The quality of 

qa10 and of Ta10 is checked through comparisons with moored buoy estimates. The main 

finding of interest  is that ERA-I based Ta10 is underestimated for buoy Ta10 exceeding 20°C. 

A bias correction is determined from linear regression between ERA Interim and buoy Ta10 

estimates.  

http://oaflux.whoi.edu/data.html
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The dedicated web site for ERA Interim data and documentation is 

(http://apps.ecmwf.int/datasets/data/interim_full_daily/ ) 

2.7 CFSR 

NCEP Climate Forecast System Reanalysis (CFSR) (http://rda.ucar.edu/pub/cfsr.html), 

developed by the US NOAA NCEP. The data used for this study are from the NOAA's 

National Operational Model Archive and Distribution System (NOMADS), which is 

maintained by the NOAA's National Climatic Data Center (NCDC) (Saha et al, 2010).  The 

coupled model consists of a spectral atmospheric model at a resolution of T382 (38km) with 

64 hybrid vertical levels and the GFDL Modular Ocean Model. The atmosphere and ocean 

models are coupled with no flux adjustment. The NCEP-CFSR uses the gridded statistical 

interpolation (GSI)  data assimilation system for the atmosphere. Flow dependence for the 

background error covariances is included as well as first order time interpolation to the 

observation. Variational quality control of observations (Andersson and Järvinen, 1999) is also 

included. An ocean analysis for SST is also performed using Optimal Interpolation (OI). A 

full range of observations is used as in the other re-analyses which are quality controlled and 

bias corrected, including satellite radiances. Observations of ocean temperature and salinity 

are also used. 

Details of CFSR data are available in (http://cfs.ncep.noaa.gov/cfsr/ ) 

2.8 MERRA 

The Modern-Era Retrospective Analysis for Research and Applications (MERRA; 

Bosilovich, 2008) is a reanalysis from NASA extending from 1979 to the present. It is 

routinely used to analyze NASA Earth Observing System (EOS) satellite data as well as 

conventional observations and operational satellite data in support of NASA science and field 

http://apps.ecmwf.int/datasets/data/interim_full_daily/
http://rda.ucar.edu/pub/cfsr.html#_blank
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missions. Rienecker et al (2011) provide an overview of MERRA. Surface winds are 

assimilated over the ocean using data from Special Sensor Microwave Imager (SSM/I) and 

scatterometer retrievals. Sea surface temperature and sea ice are prescribed from the Reynolds 

dataset (Reynolds et al, 2002). The prognostic variables atmospheric temperature and 

moisture at the lowest model level are used for computing the vertical gradients in moisture 

and temperature needed for calculation of the latent and sensible heat fluxes. The planetary 

boundary layer (PBL) scheme parameterization uses the Lock et al. (2000) and the Louis et 

al. (1982) schemes for unstable and stable conditions, respectively. Neutral transfer 

coefficients are computed based on standard similarity relationships using a momentum 

roughness length based on (Charnock, 1955), a roughness length for heat based on (Beljaars, 

1995), and a roughness length for moisture that is a factor of 1.5 larger than the roughness 

length for heat. Air humidity and temperature at 10m height are estimated as diagnostic 

outputs based on the computed fluxes and transfer coefficients. MERRA data are available 

hourly on a 0.625°0.5° longitude × latitude  grid.  

2.9 Moorings 

Data from about 200 moored buoys were collected and investigated prior to any use for 

flux product validation purposes. 

Buoy measurements provide several oceanic and/or atmospheric variables required for 

turbulent flux estimation. Twelve moorings located off the French and England coasts are 

maintained by UK Met-Office and/or Météo-France (MFUK), 96 buoys located off and near 

U.S coasts are maintained by the U.S. National Data Buoy Center (NDBC), 66 buoys of the 

TAO array are located in the equatorial Pacific, 13 buoys of the PIRATA network are located 

in the equatorial Atlantic, and 6 RAMA moorings in the Indian Ocean. TAO, PIRATA, and 

RAMA buoys will be hereafter referred as Tropical buoys (Figure 1). Buoy data are hourly 
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available at heights varying between 3m and 10m. Buoy wind speeds, specific air humidity, 

air temperature are converted to values at the standard 10m height by the COARE3.0 

algorithm. The latter is also used to estimate buoy turbulent fluxes from buoy bulk variables. 

High quality bulk variable measurements are obtained from the OceanSites buoy 

network (http://www.oceansites.org). These moorings are an integral part of the Global Ocean 

Observing System (GOOS).  Most of the OceanSites buoys are located in the tropical zones of 

the Atlantic, the Indian, and the Pacific oceans. Only Kuroshio Extension Observatory (KEO) 

buoys are extra-tropical moorings. The number of OceanSites buoys increased from 7 in 1999 

to 37 in 2009 (Figure 1).  

One should notice that most of the measurements from moorings used in this study such 

as 10m wind, 2m air temperature, and 2m relative humidity are assimilated by ERA Interim, 

CFSR, and MERRA. 

 

 

 

http://www.oceansites.org/
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Turbulent fluxes are calculated from validated hourly buoy 10m wind speed, specific air 

humidity, and air temperature in combination with sea surface temperature. The adjustment to 

the 10m height of basic variables (U10, qa10, Ta10) as well the estimation of turbulent fluxes is 

performed using COARE3.0 algorithm. For each day, daily averaged buoy estimates of bulk 

variables and heat fluxes are calculated if at least 6 hourly measurements are available during 

day and night. 

2.10 ICOADS ships and buoys 

A compilation of in situ surface marine observations in the International 

Comprehensive Ocean–Atmosphere Data Set (ICOADS Version 3; Freeman et al. 2017) is 

also considered as a reference for analyses.  ICOADS includes quality controlled ship and 

mooring data collected over years by various countries.  ICOADS quality indicators are used 

to select observations between January 2000 and December 2007 that are within 2.8 standard 

 
Figure 1: Moored buoy Locations 
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deviations of a smoothed monthly climatology.  Turbulent heat fluxes are calculated using the 

COARE 3.0 algorithm for each ship and/or buoy observation with the required bulk variables 

(i.e., sea level pressure, SST, wind speed, air temperature, and dew point).  Each ICOADS 

heat flux is then associated with the center of the nearest grid box of the standardized analysis 

(at ¼-degree resolution) and daily averaged.  About 2.6 million collocations that are common 

to all OHF products are then retained. The resulting distribution of daily observations (Figure 

2) provides relatively good spatial coverage in the Northern Hemisphere midlatitudes but 

mostly poor coverage elsewhere particularly in the Southern Ocean which is largely 

unsampled. Good temporal coverage occurs only at mooring locations (Figure 1) and along 

major ship routes. .  It is convenient to divide this dataset by even and odd year and by 

common and extreme flux.  The odd year subset permits an independent check on 

calculations.  Below, only the even-year subset is discussed but all conclusions apply equally 

to the odd-year subset (and all heat flux collocations are available at Danielson 2017).  

Extreme fluxes (greater than a few hundred Wm
-2

) are further ignored in the calculation of 

covariance, following Hubert et al. (2012).  Because covariance is sensitive to outliers 

(McColl et al., 2014; Su et al., 2014), collocation groups are trimmed by about 10% before 

other calculations are performed. 



13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Determination of Ocean Heat Flux products 

3.1 Standardized flux products 

Table 1 provides the spatial and temporal resolution characteristics of flux products 

used in this study. The spatial resolution of products varies from 0.25 to 1 degree and the 

highest temporal resolution varies from 3 hourly to daily. For further intercomparisons, we 

interpolated all products onto  a standard 0.25 degree grid and at daily time resolution. 

 

Figure 2: Number of selected ICOADS (Version 3) ship and buoy 

observations between January 2000 and December 2007 (order of magnitude in 

color).  The two criteria for selection are that a) valid collocations exist with all OHF 

products and their ensemble and b) all ICOADS variables required to calculate a 

COARE flux estimate are within 2.8 estimated standard deviations of their respective 

smoothed monthly climatology.  Shown are values at the ¼-degree resolution of the 

project’s reference grid. 
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Each flux product listed in Table 1 is interpolated onto the same regular 0.25° 

latitude/longitude grid, using two methods, namely spline interpolation and the modified 

method of local procedures (Akima 1970). The latter is based on a piecewise function with 

slopes at the junction points determined locally by a set of polynomials. Both methods are 

found to be suitable for the re-gridding of flux products and give very similar results. Linear 

regression slopes between the original and standardized daily LHF product, are 0.99 or higher 

with the intercepts being lower than 1 W/m². Similar results are found for SHF assessments. 

The interpolated daily flux products (including bulk atmospheric state variables and heat 

fluxes) are referred to hereafter as the standardized products.  

 

Table1:  Spatial and temporal characteristics of flux products available for 

OHF project. 

 Spatial 

resolution 

Temporal 

resolution 

Period of 

availability 

IFREMER 0.25°×0.25° Daily 1992 – 2012 

HOAPS 0.5°×0.5° 

6-hourly 

Daily 

Monthly 

1987 - 2008 

OAFLux 1°×1° Daily 1985 - 2014 

SEAFLUX 0.25°×0.25° 3-hourly  1998 - 2007 

J-OFURO 

1°×1°   

0.25°×0.25°  

 

Daily  

Monthly 

1988 - 2008 

ERA Interim 0.75°×0.75° 6-hourly 1992 - Present 

CFSR 0.38°×0.38° 6-hourly 1992 - Present 
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MERRA 0.50°×0.66° hourly 1992 - Present 

 

To assess the impact of the space interpolation on the resulting fields, comparisons  the 

standardized and original data are performed. To avoid any further errors related to space and 

temporal collocation of the original and interpolated data, the interpolation impact is only 

investigated based on the comparison of original and interpolated statistical distributions. 

Figure 3 illustrates the distribution comparisons based on the statistical quantiles estimated 

from original and interpolated LHF data, respectively. Comparisons are shown for IFREMER 

(Figure 3a), HOAPS (Figure 3b), OAFLUX (Figure 3c), SEAFLUX (Figure 3d), J-OFURO 

(Figure 3e), and ERA Interim (Figure 3f). The comparisons are performed for data occurring 

over the global oceans on 3rd of January 2000. These examples indicate that the two kinds of 

LHF distribution are comparable for most of the variable ranges. As expected, the best 

agreement is found for interpolated data estimated from products available with 0.25° spatial 

resolution (Table 1). Slight departures are found for extreme values. The interpolated values 

tend to be underestimates compared to the original data.  

Further controls are performed to assess the quality of the interpolated data. For 

instance, the original and the standardized LHF and SHF distribution quantiles are calculated 

for every day in 2000 from global and regional data (high latitudes of the Atlantic ocean 

(55°N – 65°N), Gulf Stream, the Atlantic tropical zone (15°S-15°N), and the Mediterranean 

Sea). We found that the slope of linear regression between quantiles from the original and 

interpolated data varies between 0.96 and 0.99 for LHF and between 0.95 and 0.98 for SHF 

(not shown). The associated intercepts are lower than 1W/m² for both LHF and SHF. 
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Figure 3 : Comparisons of Original and interpolated LHF from IFREMER (a), HOAPS (b), 

OAFlux (c), SEAFLUX (d), J-OFURO (e), and ERA Interim (f). They are estimated from 

global data occurring on 3 January 2000. x- and y- axis indicate the original and standardized 

data, respectively. 
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The main spatial and temporal features of the resulting standardized products are also 

assessed through comparisons with LHF and SHF patterns estimated from original data, as 

investigated in previous publications (e.g. Grodsky et al, 2009; Mestas et al, 2013; Smith et 

al, 2011). For instance, Figure 4 (similar to Figure 3 of Smith et al, 2011) shows the global 

spatial distributions of LHF and SHF estimated from the eight standardized daily products 

averaged over the period 2000 – 2007. All products exhibit similar large LHF spatial patterns 

(Figure 4, 1
st
 column) mostly characterized by high values localized along western boundary 

currents (Gulf Stream and Kurishio currents), the southern African zone (Agulhas current), 

under the subtropical highs, and in the north Indian Ocean. The eight products show that the 

lowest LHF values are mostly located along the cold tongues in the Atlantic and Pacific 

equatorial zones, along the main upwelling zones, and at high latitudes. As in previous 

studies, the main differences between product LHF patterns are seen in   the magnitude and 

are associated with specific air and/or surface humidity issues (e.g. Grodsky et al, 2009, 

Bentamy et al, 2013). For SHF (Figure 4, 3
rd

 column), differences are of the same order as  

those found in (Smith et al, 2011). The spatial variability of LHF and SHF (Figure 4, 2
nd

 and 

4
th

 columns) is  also similar to results found previously from the original data. Although, all 

products exhibit quite similar LHF and SHF standard deviation patterns, significant 

magnitude differences are revealed.  
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3.2 Ensemble flux product 

The OHF multiproduct ensemble (OHF/MPE) is estimated based on the use of the 

standardized IFREMER, HOAPS, OAFLUX, SEAFLUX, J-OFURO, ERA Interim, and 

 
Figure 4 : Mean and associated standard deviation (STD) of LHF (1

st
 and 2

nd
 columns) and SHF (3

rd
 

and 4
th

 columns) estimated from the standardized OHF products for the period 2000 – 2007. Panels 

shown in 1
st
 trough 8 rows are related to IFREMER, HOAPS, OAFLUX, SEAFLUX, J-OFURO,  

ERA Interim, CFSR, and MERRA, respectively. 
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CFSR daily fluxes. It is calculated on a daily basis over the standardized OHF product grid 

map (0.25°×0.25°) over the ice free global ocean. MERRA-2 is not included in the OHF/MPE 

ensemble and is kept for further inter-comparison issues.  

More specifically, for each day and  at each grid point the median and the associated 

standard deviation of each bulk variable 10m wind speed, specific air humidity, air 

temperature and surface specific humidity and temperature, are calculated from available and 

valid U10, qa10, Ta10,  qs, and SST, derived from the standardized product mentioned above. In 

order to minimize the impact of outliers, median values are considered as OHF/MPE bulk 

variable estimates. The latter are used to estimate latent and sensible heat fluxes for each day 

of 2000 – 2007 period and at each grid 0.25°×0.25° over global oceans. COARE3.0 

parameterization is used for OHF/MPE LHF and SHF calculation. 

 Inter-Comparisons 

The nine LHF products exhibit quite similar latitudinal variations in the zonal means, 

averaged over the Atlantic, Indian, and Pacific Oceans (Figure 5). Notably, all standardized 

LHF products, including MERRA, are within one STD from OHF/MPE. For the three basins, 

a local minimum in LHF is present near the equator due to the combination of low wind speed 

and relatively small range of surface humidity departures from saturation. This equatorial 

minimum is apparent in the Atlantic and Pacific where the cold tongue SST is responsible for 

lower qa – qs. In general, stronger LHF occurs over warmer SST due to the temperature 

dependence of the saturated humidity. Local maxima of LHF correspond to the combination 

of relatively warm SST and rather strong winds. Such a combination is present in the trade 

wind belts in all basins. In the Atlantic, all products indicate that the highest LHF are centered 

around 15°N and 12°S, due to trade winds, and near 38°N due to the combination of high 

wind speed and large differences between qs and qa in the western boundary SST frontal 
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region (e.g. Bentamy et al, 2013). Similarly good agreement of the highest LHF is found in 

the Pacific around 34°N (Kuroshio zone) as well as around 15°N and 18°S (trade wind related 

maxima). In the Indian Ocean, all nine highest LHF values are observed in the vicinity of 

17°S (southeasterly trade wind zone). The largest spread of LHF products is found at latitudes 

corresponding to the western boundary currents. In particular, the spread reaches 40 W/m² at 

38°N in the Atlantic and at 34°N in the Pacific. LHF from IFREMER and ERA Interim tend 

to be consistently lower or higher than the other products, except in the equatorial area for 

IFREMER.  

SHF zonal means compare well north of 20°S (Figure 5), whereas their spread is larger 

at more southerly latitudes. This agrees with results found by Smith et al. (2011), except for 

the IFREMER product. In the new version 4 of IFREMER, SHF has been significantly 

improved in comparison with the previous version 3 and the SHF is now close to the 

ensemble mean. Some other products (notably J-OFURO, SEAFLUX, and HOAPS) show 

large SHF variations south of 40°S that are not present in other products. These large 

variations are indicative of spurious differences in the air-sea temperature difference.   
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Figure 5 : Latitudinal behaviors of OHF  LHF (top) and SHF (bottom) products estimated as averages of daily 

data occurring over the Atlantic (left), Indian (middle), and Pacific (right) Oceans during the period 2000 – 

2007. Shaded area indicates one STD of OHF/MPE LHF and SHF data  indicating their longitudinal 

variability. 
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 Product calibration considering correlated errors 

Spatial and temporal coverage of the intersection of two (or more) datasets can be 

orders of magnitude smaller than the coverage of just one gridded dataset.  In this sense, 

collocations only allow one to infer the bias and performance of a full dataset and sometimes 

such inferences may be lacking (cf., Josey et al, 2014).  However, it is common for gridded 

products to benefit from observations in assimilation windows that are typically as large or 

larger, than the grid interval on which a true or target variable is represented.  Nonlocal, 

propagated, or shared signal and noise is the norm and inferences based on collocations can 

be useful.  Although some frameworks for assessing bias (e.g., conventional regression and 

triple collocation) assume independent errors (Stoffelen 1998, McColl et al. 2014), a 

corresponding framework for slowly varying and well resolved (correlated) error is worth 

exploring (Su et al. 2014, Gruber et al. 2016).  Accommodation of truth/signal (t), error/noise 

(ε), as well as error propagation (λ) is needed, via analyses that incorporate observational 

error at the time of observation, with decreasing, but roughly symmetric impact at times 

before and after.  There appears to be a family of error models (of which the following is a 

member) that provide the simplest possible framework for further exploration: 

 

(1) 
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 This error model consists of two heat flux datasets: an in situ estimate and an OHF 

estimate, where the OHF nowcast is collocated in space and time with the ICOADS in situ 

estimate and the forecast and revcast are simply samples taken at adjacent locations on the 

OHF grid (e.g., “persistence” over one or two days is our forecast/revcast method).  With an 

ICOADS heat flux estimate as the calibration reference, each of the OHF samples (NFERS) 

has its own additive and multiplicative bias (α and β).  Although product error variance 

changes under a recalibration to remove bias neither ICOADS error nor true variance 

(common to both ICOADS and product) changes.  As all products are calibrated to the same 

ICOADS collocations (Figure 2), this permits a separate comparison of truth (and error) 

across products. 

Heat flux analyses assimilate ICOADS observations of SST, wind speed, etc.  Although 

they do not assimilate our estimate of heat flux, we accommodate an assimilation of ICOADS 

information above.  Specifically, a parameterization of shared or propagated error into and 

across an analysis (NFERS) is quantified by a retrieval of the λ coefficients.  Note that error in 

the INFERS model employs an AR-1 autoregressive form because this is arguably the 

simplest.  It follows from our application of an AR-1 error model that the minimum number 

of equations (or samples of the gridded dataset) to match the total number of unknowns is 

four (NFER or NFRS).  The symmetry of five samples (NFERS) simply facilitates a retrieval 

of the model parameters.  Retrieval is done using the full covariance matrix, with the INFERS 

variance terms and all covariance terms involving I and N defining all parameters except true 

variance, σt
2
, and nowcast multiplicative bias, βN.  As in Danielson et al. (2017), a familiar 

approximation of βN is obtained by matching OHF variance to that of ICOADS.  This 

corresponds to the assumption that signal to noise ratio (SNR) is the same for both OHF and 

ICOADS flux estimates (Su et al. 2014).  Numerical estimation of true variance  is obtained 
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from the remaining six terms of the covariance matrix, denoted the autocovariance equations 

as they involve only the OHF forecast and revcast samples (FERS).  Given that all retrieved 

variance is expected to be positive, the locus of minima in the LHS minus the RHS of the 

autocovariance equations yields the σt
2
 estimates. 

Table 2 provides metrics of calibration (additive and multiplicative bias) and 

performance (common signal, SNR, and noise) for sensible and latent heat flux for the eight 

global analyses and their ensemble.  Parameters of the INFERS error model are obtained 

using all collocations from the even years between 2000 and 2007; odd years are retained for 

validation and yield the same ranking as below.  Pairs of numbers refer to the uncalibrated 

(left) and calibrated (right) parameters.  A striking result is that common signal/truth is quite 

small compared to error/noise for all products, so SNR is uniformly negative.  This is the 

result of accommodating both correlated and uncorrelated error in (1).  SNR varies between 

products mainly owing to the large relative variation in signal and small relative variation in 

noise. 

Recalibration of each flux product involves subtraction of its additive bias and division 

by multiplicative bias.  Recalculation of all metrics yields changes only in product bias and 

noise, and as expected (cf. Eq. 1), noise varies roughly inversely with multiplicative bias.  

After recalibration, ICOADS and OHF product noise is the same, by design (as SNR is the 

same), but common signal is unchanged (i.e., ICOADS and OHF flux estimates are quite 

different in spite of the OHF recalibration).  Ranking by common signal  reveals relatively 

good performance in sensible heat flux by HOAPS, J-Ofuro, and ERA, with good 

performance in latent heat flux by the MERRA, HOAPS, and the ensemble products.  We 

conclude from this preliminary exercise that error models permitting a direct comparison 

between observations and the products that employ them is both feasible and instructive, with 
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the obvious caveat that inferences cannot be made where observations are not available.  

Clearly, however, there are observations that can be employed to address known regional 

product biases (cf. Fig. 2 and Josey et al, 2014), where a discussion of local error propagation 

(λ in Eq. 1) can now also be included. 

 

Table 2. Performance (common signal, SNR, and noise) and nowcast calibration (additive 

and multiplicative bias) metrics for collocations of sensible and latent heat flux of ICOADS 

observations and eight global products and their ensemble.  Only the ICOADS performance 

metrics are given as these data are taken to be calibrated already (Eq. 1).  All product 

metrics employ collocations from even years only between 2000 and 2007 (odd year 

averages are retained for validation and are qualitatively the same; not shown).  Pairs of 

numbers refer to pre- and post-calibration (i.e., only nowcast error and bias vary).  Signal 

and noise (as standard deviations) and additive bias are in Wm
-2

 and SNR (Gruber et al. 

2016) is in dB. 

Product Common 

Signal 

Common 

SNR 

ICOADS 

Noise 

Product 

Noise 

Product 

Bias Addit 

Product 

Bias Multi 

sensible heat flux 

CFSR 2.58 -18.18 20.94 15.28/20.94 4.89/0.00 0.73/1.00 

ERA 4.96 -12.36 20.57 14.42/20.57 9.42/0.00 0.70/1.00 

HOAPS 5.46 -11.66 20.89 16.13/20.89 7.71/-0.00 0.77/1.00 

Ifremer 0.94 -26.99 20.91 17.26/20.91 5.81/-0.00 0.83/1.00 

J-Ofuro 5.45 -11.51 20.53 13.90/20.53 5.50/0.00 0.68/1.00 

Merra 3.08 -16.69 21.07 12.03/21.07 7.33/-0.00 0.57/1.00 

OAFlux 1.89 -20.94 21.05 14.55/21.05 6.30/-0.00 0.69/1.00 

SeaFlux 3.52 -15.57 21.12 14.99/21.12 12.00/-0.00 0.71/1.00 

Ensemble 2.11 -19.96 21.01 13.98/21.01 6.93/0.00 0.67/1.00 

latent heat flux 

CFSR 18.24 -11.88 71.61 62.20/71.61 27.76/0.00 0.87/1.00 

ERA 11.47 -16.10 73.18 61.72/73.18 30.31/0.00 0.84/1.00 

HOAPS 25.35 -8.74 69.35 64.47/69.35 13.84/0.00 0.93/1.00 
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Ifremer 16.08 -12.88 70.87 48.24/70.87 28.73/0.00 0.68/1.00 

J-Ofuro 17.34 -12.36 71.90 61.95/71.90 21.04/0.00 0.86/1.00 

Merra 43.81 -2.62 59.23 42.99/59.23 26.70/0.00 0.73/1.00 

OAFlux 19.05 -11.51 71.71 55.37/71.71 26.15/0.00 0.77/1.00 

SeaFlux 17.02 -12.53 71.97 55.35/71.97 23.86/0.00 0.77/1.00 

Ensemble 25.64 -8.62 69.15 52.97/69.15 28.22/0.00 0.77/1.00 

 

 Buoy comparisons 

6.1 Statistical results 

The statistics aiming at the characterization of comparisons between buoy and flux 

products (and the associated bulk variables) are determined from collocated buoy (see section 

2.9) and product data. Daily fluxes for each product are collocated in space with buoy 

estimates. The collocation criterion separating buoy and product is that the distance should be 

less than the product spatial resolution (Table 1). For the standardized products, the spatial 

criterion is 25km. The statistics are computed for different daily parameters such as 10m wind 

speed (U10), specific air humidity, sea surface temperature, air temperature, latent heat flux  

and sensible heat flux.  The comparisons of daily satellite (IFREMER, HOAPS, SEAFLUX, 

and J-OFURO) and buoy data are challenging. Each source type is estimated with a specific 

temporal sampling that may lead to significant differences between buoy and satellite daily 

data. For instance, Bentamy et al. (2011) provide a characterization of temporal sampling 

impact on daily wind estimation. Table 3 shows the results established for the OceanSites 

LHF and SHF comparisons with remote sensing data for original and standardized flux 

products. They indicate that comparisons based on the standardized products are very close to 

those based on the original data. Similar results are found for all buoy networks (not shown). 

The highest departures in Table 3 are associated with ERA Interim (about 12W/m²), 
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SEAFLUX (7W/m²), and MERRA (6W/m²). However, these bias values should be considered 

with caution. Indeed, the same product may have lower or higher biases depending on the 

mooring used as a reference. For instance, ERA Interim LHF bias estimated versus MFUK 

buoys is about 6W/m², but the bias is <1W/m² and not significant for NDBC comparisons.  

Similar inferences could be drawn for almost all products.  Links between LHF biases and 

associated bulk variable (U10, qa, SST, Ta) biases (not shown) are not straightforward, for 

example although U10 and qa biases are higher for IFREMER than for SEAFLUX, the 

resulting  LHF bias is lower for IFREMER (Table 3).  

Globally mean SHF bias is generally smaller (<4W/m²) than for LHF, due to a generally 

smaller magnitude of SHF in comparison with LHF.   

The root mean square (RMS) difference values of LHF from buoy data vary between 

21W/m² and 51W/m² (Figure 6). All products exhibit high RMS values at NDBC buoys 

moored in the western Atlantic area off the USA coast in the vicinity of the Gulf Stream. This 

is the region of maximal LHF variability. Indeed, LHF exceeds 180W/m² in this specific 

region, whereas globally mean LHF is about 87W/m². The main factor leading to the observed 

departures is related to the difference between buoys and product specific air humidity along 

the western boundaries (not shown). One should notice that most NDBC buoys do not provide 

qa (or relative humidity).  The specific air humidity, qa , is estimated from air and dew point 

temperatures using an empirical model.  The patterns of LHF difference (Figure 6) indicate 

that re-analyses (ERA Interim, CFSR, and MERRA) exhibit lower RMS values in comparison 

with satellite or synthesis products. Such results could be associated with the assimilation of 

buoy measurements into these reanalyses, which would make the current comparisons not 

truly independent. Previous studies assess the assimilation impact into numerical models (e.g. 

Josey et al, 2014).  Most RMS values for IFREMER and OAFLUX, excluding those for the 

western Atlantic zone, are lower than 30W/m². As expected the lowest and highest RMS are 
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found in northern and tropical basins, respectively, in agreement with known transient LHF 

patterns in the tropics (Grodsky et al, 2009). However, both products have high RMS 

differences at buoys located off the Japanese coast (OceanSites KEO buoys). They are, for 

instance, about 55W/m² for IFREMER and 45W/m² for OAFLUX. At these specific extra-

tropical locations, bulk variables experience large temporal variation related to synoptic-scale 

weather systems, and consequently lead to high variability in turbulent fluxes. The mean and 

STD values of the daily LHF time series for the OceanSites buoy located at 32°N; 145°E are 

about 156W/m² and 113W/m², respectively. Such high variability is not found for  tropical 

buoys experiencing similarly high time mean LHF values (exceeding 150W/m²) such as 

buoys located at 15°N; 90°E, and 10°S; 10°W. The LHF STD values at these two locations 

are about 50W/m², and 38W/m², respectively. The main sources of KEO LHF variability, and 

therefore of discrepancies between buoy and OHF products, are the high variabilities of (qs - 

qa) and/or U10. Indeed, high daily variability of (qs – qa) and/or U10 (estimated as STD from 

hourly buoy data) leads to high differences between KEO buoy and product LHF estimates. 

Such results highlight the OHF product errors associated with temporal sampling. 

Furthermore, it is found (not shown) that most of LHF daily maxima are underestimated by 

the products leading to an enhancement of root mean square. 
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As expected, RMS SHF differences estimated at each buoy location (Figure 7) are 

lower than those found for LHF. They are lower than 10W/m² and may not exceed 5W/m² at 

most tropical locations. The highest RMS SHF differences are drawn from NDBC 

comparisons. These locations, moored along northeast off US coast, experience high SST and 

Ta differences as well as high wind conditions. Furthermore, the enhancement of RMS values 

would be due to a mismatch in SST derived from a buoy (local measurement) and from the 

gridded product. The lowest values are found for ERA Interim and CFSR estimates. 

 
Figure 6 : Root Mean Square difference between daily buoy and OHF LHF (in W/m

2
) standardized products  

estimated for the period 2000 – 2007. Details on the buoy measurements are introduced in section 2.9. 
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Table3: Statistics characterizing the comparisons between OceanSites and satellite product 

(original and standardized) daily fluxes. They are calculated for latent heat flux (LHF in 

W/m²), and sensible heat flux (SHF in W/m²). Statistics are calculated for each product when 

available during the associated time interval of the 1999-2009 period. Statistics relied on 

standardized products are calculated for the 1999 – 2007 period 

Statistics Products LHF SHF 

  Original Standardized Original Standardized 

Bias 

 (W/m²) 

IFREMER -2.20 -3.34 0.09 -0.63 

HOAPS -5.25 -3.76 -1.27 -0.64 

OAFLUX 4.26 1.76 1.31 0.65 

SEAFLUX 7.63 7.76 -1.93 -1.76 

J-OFURO 1.29 0.98 2.27 1.86 

ERA Interim -12.01 -13.67 -2.42 -2.14 

CFSR -0.12 -0.28 0.32 1.06 

MERRA 6.76 6.46 -0.12 -0.34 

RMS 

(W/m²) 

IFREMER 30.03 28.16 7.16 6.75 

HOAPS 42.21 41.21 9.63 9.63 

OAFLUX 31.49 29.42 5.49 4.96 

SEAFLUX 30.93 30.16 6.73 6.47 

J-OFURO 36.31 34.67 7.19 6.56 

ERA Interim 27.34 27.00 5.55 5.11 

CFSR 26.12 25.14 4.77 4.56 

MERRA 26.37 25.56 4.86 4.74 

Correlation 

IFREMER 0.87 0.88 0.91 0.90 

HOAPS 0.81 0.83 0.75 0.78 

OAFLUX 0.87 0.89 0.92 0.92 

SEAFLUX 0.88 0.88 0.88 0.88 
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J-OFURO 0.85 0.86 0.86 0.87 

ERA Interim 0.90 0.90 0.92 0.93 

CFSR 0.90 0.90 0.91 0.91 

MERRA 0.88 0.88 0.88 0.87 

Symmetrical  

regression  

coefficient 

IFREMER 0.83 0.83 1.15 1.14 

HOAPS 1.12 1.06 1.14 1.08 

OAFLUX 0.88 0.86 0.95 0.99 

SEAFLUX 0.94 0.94 0.98 0.99 

J-OFURO 1.02 1.01 0.96 0.99 

ERA Interim 0.94 0.92 0.99 0.99 

CFSR 0.99 0.99 1.07 1.08 

MERRA 0.78 0.78 0.96 0.96 
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Similar statistics are estimated from collocated buoy and the OHF/MPE flux data. For 

instance, the results found for OceanSites comparisons are summarized in Figure 8 showing 

Taylor diagrams (Taylor, 2001) of LHF and SHF. They indicate the standard deviation (STD) 

of LHF or SHF derived from OceanSites buoys and from the standardized and OHF/MPE 

products, the correlation coefficient (), and the root mean square difference (RMSD) 

between the buoy and each product. For instance, for a buoy (used as reference) STD, , and 

RMSD associated with  LHF patterns (resp. to SHF) are of 70W/m² (resp. 20W/m²), 1 (resp. 

1), and 0 (resp. 0), respectively. Both diagrams show that the OHF/MPE LHF and SHF have 

 
Figure 7 : Root Mean Square difference between daily buoy and OHF SHF standardized products 

estimated for the period 2000 – 2007. 
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the best comparison with the buoy data compared to other products (Figure 8). LHF and SHF 

STD are of 66W/m² and 20W/m², respectively. Furthermore, OHF/MPE exhibits the highest 

correlations (about 0.95) and the lowest RSMD values (24W/m² for LHF and 5W/m² for 

SHF).  

 

  

 A : OceanSite buoy 
B : Ifremer 
C : Hoaps 
D : OAFlux 
E: SeaFlux 
G: J-Ofuro 
H: Era Interim 
I: Cfsr 
J: Nocs2 
K: Ensemble(OHF/MPE) 
 

 
 

 
Figure 8 : Taylor diagram summarizing intercomparisons between daily OceanSites buoy and 

OHF  LHF (top) and SHF (bottom) for the period 2000 - 2007 



34 

 

 

Statistics for the ensemble mean OHF/MPE product are also evaluated for each buoy 

network separately and should be compared to those obtained for the standardized products 

(Table 3,  Figures 6 and 7).  For instance, OHF/MPE RMSD generally tend to be lower than 

those for the standardized products (except IFREMER for MFUK, IFREMER and OAFLUX 

for NDBC, and ERA Interim for OceanSites and Tropical networks). One should notice that 

OHF/MPE always improves statistics in comparison with the MERRA, which is not used for 

the OHF/MPE determination.  Characterization of differences between OceanSites data and 

OHF data is illustrated in Figures 9 and 10 for LHF and SHF, respectively. They show RMS 

differences at selected moorings for the nine standardized products and the OHF/MPE. The 

latter leads to significant decrease of RMS differences for LHF and SHF in comparison with 

corresponding values obtained for the standardized products. Indeed, OHF/MPE RMS 

differences for LHF and SHF are lower than 30W/m² and 6W/m², respectively, at all 

locations, except at KEO (32°N, 145°E), and at (15N 90E) where SHF bias is marginally 

greater that 6W/m². One interesting result that could be drawn from Figures 9 and 10, is that 

the OHF/MPE is not dominated by any one product. Instead, all individual products 

contribute to the determination and thus to the accuracy of the OHF/MPE. 
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Figure 9 : LHF root mean square difference (RMSD) between individual selected OceanSites buoy and 

each OHF product. Buoy coordinates are provided at the top of each panel. The tow numbers within 

brackets in each panel indicate LHF buoy mean and standard deviation values (in W/m²), respectively. 

The horizontal black line indicates 30W/m².  Statistics are estimated from all available collocated data 

during the 2000 – 2007 period. 
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Figure 10 : SHF root mean square difference (RMSD) between individual selected OceanSites 

buoy and each OHF product. Buoy coordinates are provided at the top of each panel. The tow 

numbers within brackets in each panel indicate SHF buoy  mean and standard deviation values 

(in W/m²), respectively. The horizontal black line indicates 6W/m².  Statistics are estimated 

from all available collocated data during the 2000 – 2007 period. 
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 Ensemble versus Standardized Products 

The results of the buoy data comparisons indicate that OHF/MPE is more accurate than 

any of the contributing products. Hence, it is now employed for the characterization of the 

spatial and temporal errors of each standardized product.   

The evaluation is first performed over global oceans for the period 2000 through 2007.  

Mean and the associated STD characterizing the difference between OHF/MPE and each 

product (in this order) are shown in Figure 11 for LHF and SHF.  About 95% of LHF (resp. 

SHF)  mean biases are within -5W/m² and 18W/m² (resp. -7W/m² and 4W/m²) for IFREMER, 

-22W/m² and 10W/m² (-26W/m² and 8W/m²) for HOAPS, -7W/m² and 14W/m² (-2W/m² and 

4W/m²)  for OAFLUX, -5W/m² and 21W/m² (-24W/m² and 2W/m²) for SEAFLUX, -16W/m² 

and 13W/m² (-5W/m² and 16W/m² ) for J-OFURO, -19W/m² and 1W/m² (-7W/m² and  

1W/m² ) for ERA Interim, -20W/m² and 1W/m² (-1W/m² and 10W/m² )  for CFSR, and           

-6W/m² and 15W/m² (-10W/m² and 3W/m² ) for MERRA.  Although all products show 

similar large scale spatial patterns (Figure 4), their differences versus OHF/MPE (Figure 11) 

lead to different and significant spatial distributions of mean biases and  STD for LHF and 

SHF.  IFREMER LHF error patterns found along the Atlantic and Pacific western boundary 

currents rely mainly on the specific air humidity being wetter (Bentamy et al, 2013) and along 

equatorial areas due to higher surface winds and dryer qa.  LHF HOAPS patterns meet those 

shown in (Anderson et al, 2010) and obtained from comparison with in-situ LHF estimates. 

HOAPS LHF tends to be higher along the tropical and southern oceans. Both LHF OAFLUX 

and J-OFURO exhibit patterns related to surface wind distributions, but with opposite signs. 

LHF patterns derived for SEAFLUX tends to be highly correlated with qa spatial patterns. 

Indeed, the highest qa values are localized in the tropics, being wetter in SEAFLUX. ERA 
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Interim and CFSR LHF exhibit systematic biases versus OHF/MPE over most oceanic 

regions. Their differences are largest in the tropical and sub-tropical regions. MERRA, not 

used in OHF/MPE determination, shows LHF bias and STD quite similar to those obtained 

for IFREMER.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 : Spatial distributions of mean bias (first and third column) and STD (second and fourth  column) 

in LHF and SHF difference between OHF/MPE and  each standardized product (rows 1 through 8).  They 

are estimated for the 2000 – 2007 period. 
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 Overall, SEAFLUX SHF has larger bias and STD in mid and high latitudes, whereas 

OAFLUX and ERA Interim both show quite small biases, but with different signs, and quite 

similar STDs. MERRA SHF  and STD features show  fairly good agreement  with OHF/MPE.  

Differences between OHF/MPE and each individual product are shown as monthly 

mean  averaged over the global ocean and over four selected Atlantic latitude bands (Figure 

12).  Over the global oceans most products show a smooth decrease or increase over time. For 

instance, IFREMER LHF bias changes slightly over time, decreasing from 9.47W/m² to 

4.77W/m².  Time variation in J-OFURO is more pronounced with a factor of about 6 between 

beginning and end of study period. Time changes of  LHF biases relied on LHF time changes. 

For instance, IFREMER LHF bias is  found associated with a positive trend characterizing 

IFREMER LHF time features (not shown). A similar positive trend is also found from 

OHF/MPE (not shown).  IFREMER LHF biases estimated over (40°N-60°N) and (20°N-

40°N) latitude bands, both exhibit a seasonal signal mainly related both to  atmospheric and 

oceanic seasonal features. High bias values are seen in (20°N–40°N) mainly due to the 

seasonal changes of LHF occurring over western boundary currents eg. the Gulf Stream. The 

IFREMER LHF bias shows a peak during the winter season when LHF is maximized and 

reduces to small values in summer (<1W/m²). Similar seasonal features are seen in all 

products, but with lower magnitudes, except for J-OFURO. In the tropical zone (20°S-20°N) 

SEAFLUX and re-analysis models (ERA Interim and CFSR) LHF are consistently lower and 

higher, respectively. For SHF time series, the main departures are found for  SEAFLUX and 

HOAPS which both exhibit  increasing negative biases, and for  J-OFURO and CFSR which 

are consistently biased lower than OHF/MPE. Significant departures are also found for 

SEAFLUX over the sub-tropical area (20°N-40°N), and for HOAPS and ERA Interim over 

the tropical zone. 
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 Probability distribution results 

For the validation of different surface turbulent flux products against buoy 

measurements we also applied an approach developed by Gulev and Belyaev (2012) focused 

on the analysis of probability distributions of surface turbulent fluxes. In this approach, 

 

 
 

Figure 12 : Time series of monthly-averaged differences between LHF  OHF/MPE and standardized products. 

The biases are shown for LHF (left panels) and SHF (right panels). They are calculated for global oceans (a) 

and f)) and for four Atlantic latitude bands 40°N-60°N (b) and g)), 20°N-40°N (c) and h)), 20°S-20°N (d) and 

i)), and 60°S-40°S (e) and j)) . 
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probability distributions of surface turbulent heat fluxes are approximated by the 2-

parameteric MFT (Modified Fisher-Tippett) distribution which allows for the analysis of the 

probability density functions (PDFs) and high percentiles of surface fluxes. Details of the 

derivation of the MFT PDF are presented in Gulev and Belyaev (2012). In this study, 

application of this framework allows for identification of flux products which demonstrate 

significant differences in the PDFs with the buoys. For instance, it is possible to identify those 

products which are comparable with each other in terms of mean values but demonstrate 

significant differences in surface flux extremes. Satellite products may have problems to 

effectively capture extreme surface fluxes due to representativeness error inherent in the 

procedure of pre-processing of satellite products and the impact of this can be effectively 

studied by analyzing PDFs of surface fluxes.  

To apply the analysis of PDFs to the OHF products and buoy data we used co-located 

time series of surface fluxes for the 9 satellite and reanalysis products (including the 

OHF/MPE ensemble product) and buoy time series. Here we present the results for the 

Northern Hemisphere winter season (JFM) when high frequency variability of turbulent 

fluxes is the strongest and, thus, surface flux extremes are most pronounced. Co-location of 

the gridded products with buoy time series at daily resolution was applied as in Section 6.1. 

Because the computation of PDF parameters implies quite strict sampling requirements, for 

this analysis we used only buoys providing sufficient data; specifically we required that at 

least 2 winter seasons were present in the buoy record and each seasonal record has at least 10 

daily values of surface fluxes. This resulted in elimination from the analysis of a considerable 

subset of the buoy array used in the previous sections. Thus we used 11 of 12 MFUK buoys, 

29 of 96 NDBC buoys, 62 of 68 TAO buoy and 7 of 13 PIRATA buoys. Also most of the 

OceanSites buoys, specifically in the Indian Ocean, were excluded from the analysis. 

Estimation of the MFT parameters and derivation of PDFs from daily time series was similar 
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to that in Gulev and Belyaev (2012) for 6-hourly data. According to Gulev and Belyaev 

(2012) the 2-parameter MFT PDF is given by: 

))exp(exp()exp()( xxxP   ,                                                           (2)  

Where probability density function )(xP , x being turbulent flux, is modelled by the non-

dimensional location parameter α and the dimensional scale parameter β. Of these,  controls 

the squeeze of the MFT distribution and  determines the modal value of the distribution 

(under fixed ). In most locations, except for a few tropical locations, goodness of fit of the 

MFT PDF was higher than 95%, according to both the K-S test and the Michael’s test. Figure 

13 shows MFT PDFs for several buoy locations over the global ocean. The subpolar location 

in the Bering Sea (Figure 13a) is an example when buoy latent heat flux is smaller on average 

compared to most satellite and reanalysis products. Nevertheless, it demonstrates much 

stronger extreme values, with PDF characterized by a heavier tail than the global products. 

Here the strongest winter mean flux of 70 W/m
2
 revealed by HOAPS exceeds the buoy mean 

by about 20 W/m
2
. At the same time flux values corresponding to 99.9

th
 percentile give 306 

and 265 W/m
2
, respectively for buoy and HOAPS. This reflects strong synoptic and 

mesoscale atmospheric variability in the subpolar regions, which is not reproduced by 

reanalyses or satellite products, but is well captured by buoy measurements.  
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The California buoy (Figure 13b) demonstrates the opposite effect: Buoy seasonal mean 

flux was considerably stronger compared to all other products (72 vs 65 W/m
2
 for buoy and 

HOAPS respectively), while for the 99.9
th

 percentile the buoy shows a latent flux value of 220 

W/m
2
 that is about 170 W/m

2
 smaller than HOAPS and also smaller than all other products 

with the differences from 20 (for MERRA and IFREMER) to 150 (for J-OFURO) W/m
2
. 

Importantly, this change in the PDF cannot be attributed to inadequate sampling in the buoy 

data, as all co-located products were sub-sampled in time according to the buoy data sampling 

characteristics (see section 6.1). Inadequate sampling may indeed impact on PDF 

characteristics (see, e.g. Gulev et al. 2007a,b; Gulev and Belyaev 2012), however for this 

purpose non co-located data sets should be considered. According to Gulev et al. (2007a,b) 

 

Figure 13: Examples of MFT PDF fitted to the winter turbulent heat fluxes revealed by different OHF 

products for the four buoy locations: 177.58° W, 57.05° N (a), 130.00° W, 38.03° N (b), 78.48° W, 

28.95° N (c) and 95.00° W, -5.00° N (d). Inlays show PDFs in log-scale (for probability density) in 

order to better indicate differences in the tails of distributions. 
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sampling errors in turbulent fluxes derived from VOS data in poorly sampled areas may 

amount to several tens W/m
2
, with about 60% of this being attributed to the random sampling 

error. Gulev and Belyaev (2012) demonstrated that sampling error in VOS based fluxes 

seriously affects extreme fluxes, and to a lesser extent mean values. In our study sampling 

may affect PDFs of fluxes derived from satellite products with the impact being two-fold. 

First, there are very few missed daily grid values in some satellite products, however this 

effect does not result in significant error with respect to the fully sampled satellite product. 

Secondly, even when daily grid data are provided in satellite products, these gridded values 

may be affected by interpolation procedures and gap-filling algorithms employed in every 

product (see Section 2). In this respect our further analysis of PDFs is focused on quantifying 

this effect. The satellite products, and to a lesser extent the reanalyses, reveal stronger flux 

extremes even when the mean values in these products are smaller than those revealed by the 

buoy data. The Gulf Stream area (Figure 13c) gives an example of generally consistent 

differences between the buoy data and the different products for both the means and the high 

order percentiles. In this area the OAFLUX product performs remarkably better than in the 

other regions in capturing extreme fluxes. In the tropical location (Figure 13d) the buoy 

shows the mean value very close to the CFSR and somewhat smaller compared to the 

HOAPS. At the 99.9th percentile the buoy and CFSR values remains consistent with the 

relation between the means, which is not the case for the HOAPS showing 18 W/m2 stronger 

extreme fluxes than the buoy.  

We have to note here, that for this study original buoy data available for most locations 

at 10-minute resolution were averaged to obtain daily time series consistent with a temporal 

resolution of satellite products. Similarly, reanalyses time series were also converted to daily 

values while their original resolution varies from 1 to 6 hours. This fits to our focus on 

validation of satellite-based fluxes, developed at daily resolution in most products. However, 
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this puts aside the analysis of sub-daily variability in turbulent fluxes, which is quite large and 

may seriously affect probability distributions. Thus, monthly maxima in the latent heat flux 

derived from the original 10-minute data may exceed estimates derived from daily data by 

about 50-70% in the tropics and several times in subpolar latitudes. Further analysis of this 

issue relates to the temporal scaling problem for surface fluxes, which was addressed for 

synoptic scales (see, e.g. Gulev 1994, Wu et al. 2016), but still requires understanding in the 

minute-to-hourly sub-range. For this problem buoy data (and other high resolution in-situ 

measurements are very useful, which is not the case for most satellite datasets (at least with 

the present performance).  

The inconsistencies in representation of mean and extreme fluxes in different products 

is illustrated in Figure 14 showing the 2-dimensional diagram of the MFT PDF in the 

coordinates of the distribution parameters of which α is a location parameter and β is the scale 

parameter (eq. 2). In this space mean and extreme fluxes may have different relations as 

shown by Gulev and Belyaev (2012). For the location in the Bering Sea the buoy flux is 

associated with relatively small values of α and β, implying strong decrease in the mean 

value, but holding quite strong extreme values, exceeding those for all satellite and reanalysis 

products whose means were larger than reported by the buoy. For the location of the 

California buoy, on the other hand, the buoy fluxes are associated with high values of α and β, 

implying relatively high mean values (exceeding or comparable with the means reported by 

the other products), but much weaker extreme fluxes. 
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Figure 14. Estimates of winter latent heat flux from different products for the buoy 

locations 177.58° W, 57.05° N (red) and 130.00° W, 38.03° N (green) shown in the 

coordinates of the location and scale parameters of the MFT distribution. Black solid 

lines correspond to mean flux values and blue dash lines stand for 99
th

 percentile of 

MFT distribution. Diagram shows that under the same differences in mean flux values 

differences in extreme fluxes may have different signs dependent on the tendencies in 

the location and scale parameters.  
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Figure 15 presents comparisons of means and 99.9
th

 percentiles of sensible and latent 

turbulent heat fluxes between the buoys on one hand and CFSR and HOAPS on the other. 

Selection of CFSR and HOAPS for this comparison was justified by the fact that both are 

locations for which the differences between the means and between the 99
th

 percentile values 

are consistent with each other (i.e. have the same sign) and are also locations where the 

differences in extreme fluxes are qualitatively different from the differences in mean values. 

Importantly, the relations between the mean and extreme fluxes are not everywhere consistent 

even qualitatively. For  CFSR some subpolar locations, as well as a few locations in the 

equatorial Pacific Ocean, show stronger extremes recorded by buoys even if the mean fluxes 

are higher in the reanalysis. The California buoys and the east Atlantic Ocean buoys are also 

characterized by stronger extremes in the reanalysis but with means being higher in the buoy 

fluxes. This is especially evident for the sensible heat flux. HOAPS (Figure 15 b, d) tends to 

demonstrate stronger extremes than those for the buoy fluxes in many locations, even if the 

means are higher at the buoys. Note that even in the case when the signs of differences 

between the HOAPS and the buoy fluxes are consistent, the extreme fluxes in HOAPS always 

differ from the buoy values quite significantly (not shown). Selection of CFSR and HOAPS 

for this comparison was justified by the fact that in most locations CFSR and HOAPS show 

the highest extreme fluxes among reanalyses and satellite products respectively, and also 

show different sign of differences with each other at most buoy locations. Similar analysis 

was performed for the other data sets (figure not shown). Generally, IFREMER and 

SEAFLUX are tending to underestimate surface flux extremes (see Figure 12), but also show 

more consistency with reanalyses in e.g. the East Atlantic and East Pacific regions where 

CFSR and HOAPS demonstrate strong differences in the shape of PDFs. 
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In Figure 16 we show comparisons of different percentiles of the latent heat flux for the 

different products for the mid latitude East Pacific Ocean and the Tropical Atlantic. For this 

comparison we considered averaged PDFs for all buoys in the selected regions. Remarkably 

in the North East Pacific all satellite products tend to demonstrate larger values of high fluxes 

and smaller values for lower percentiles compared to the buoys. This is also clearly evident 

for the OHF/MPE product, showing the closest to buoy values at 50
th

 and 75
th

 percentiles.  

OAFLUX generally follows the buoy values with somewhat weaker values for lower 

percentiles and somewhat stronger flux extremes. Among the satellite-based products  

HOAPS and the J-OFURO demonstrate the strongest flux extremes while IFREMER shows 

the lowest extremes, although consistent at most percentiles with buoy data. The CFSR and 

ERA-Interim performance in the East Atlantic Ocean is comparable to the satellite products, 

showing stronger flux extremes than the buoys and OAFLUX, and considerably smaller 

 

Figure 15. Characteristics of the consistency of differences between CFSR and buoy (a, c) and 

between HOAPS and buoy (b, d) for the mean and extreme latent (a, b) and sensible (c, d) heat fluxes. 

Green squares show the locations where the differences between the means and between the 99.9
th

 

percentiles hold the same sign and their PDFs are matching each other at 90% significance (k-s test). 

Blue (red) squares indicate the locations where buoy shows smaller (higher) mean fluxes compared to 

CFSR or HOAPS, but extreme fluxes are higher (smaller) in buoy time series.  
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fluxes of lower percentiles. In comparison, MERRA demonstrates good consistency with the 

OAFlux in absolute values and with both OAFLUX and the buoys in the PDF behavior. In the 

Tropical Atlantic only the HOAPS satellite-based products show significant differences from 

the buoys and from the OAFLUX PDF, with weaker lower percentiles and stronger high 

percentile values. The OHF/MPE product fits well to both the buoy and OAFLUX at all 

percentiles. Comparison of the reanalysis fields for the tropical Atlantic Ocean shows general 

consistency with the buoy and the OAFLUX PDFs, with the differences for the different 

percentiles being primarily due to deviations in the means. 
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Figure 16. Comparison of different percentiles of the MFT distribution of the latent heat flux for different 

flux products for the East Pacific region (a, b) and the tropical Atlantic region (c, d). Panels (a) and (c) 

show satellite products in comparison with buoys and OAFLUX, panels (b) and (d) show comparisons for 

reanalyzes. 
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 Summary and Conclusion 

Over the last twenty years, there have been various attempts to estimate accurate LHF 

and SHF over the global ocean with high space and time resolution.  LHF and SHF are 

estimated based on the use the aerodynamic bulk approach requiring the knowledge of 

variables such as surface wind speed, specific air and surface humidities, and air and surface 

temperatures. The LHF and SHF characteristics taking into account space and time 

resolutions may lead to significant differences between available heat flux products derived 

from remotely sensed observations or from atmospheric models.  

One of the main motivations of this study is to further assess the quality of the products 

widely used by the scientific community based on the same validating method regardless of 

space and time characteristics of each product. This is achieved through the calculation of 

standardized heat flux  products from the original IFREMER, HOAPS, OAFLUX, 

SEAFLUX, J-OFURO, ERA Interim CFSR, and MERRA data. All standardized data are 

estimated as daily averages on a regular 0.25° grid over the global ocean. The accuracy of the 

resulting LHF and SHF, as well as of the associated bulk variables, is mainly determined 

through comprehensive comparisons with daily data at more than 200 moorings in different 

areas of the world ocean during the period 2000-2007 when all products are available.  In 

particular, the results for LHF and SHF quality indicate that the buoys and products compare 

well, with cross correlations all above 95% significance level, ranging between 0.83 

(HOAPS) and 0.90 (ERA Interim) for SHF, and 0.78 (HOAPS) and 0.92 (OAFLUX) for 

LHF. The lowest RMS differences, about 25W/m² for LHF and 5W/m² for SHF, are found for 

numerical models. Such result would be related to the assimilation of bulk variable 

measurements into the models. Similar RMS differences are found for satellite-based 
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IFREMER, SEAFLUX and J-OFURO products. They are about 30W/m² and 7W/m² for LHF 

and SHF, respectively. However systematic bias between standardized product and the buoys 

were small to moderate (less than 10% of the mean values) across all moorings locations. 

Somewhat stronger biases in means were found for the buoy locations in the Gulf Stream and 

Kurishio boundary currents, these likely result from inaccurate product surface wind speed 

and/or specific air humidity.  

The quality of each product was used for the determination of the multi-product 

ensemble (OHF/MPE) from the standardized LHF and SHF estimates. The ensemble product 

has the best agreement with the buoys in both LHF and SHF, with RMS differences not 

exceeding 25W/m² and 5 W/m², respectively. Even though the availability of in-situ heat flux 

datasets suitable for  an extensive  validation of flux products is quite limited, the use of 

OceanSites buoy estimates allowed the determination of flux characteristics in the tropical as 

well in extra-tropical locations. The derived results demonstrate that OHF/MPE exhibit the 

best statistics at almost all mooring locations. They also demonstrate that the combination of 

OHF flux products into a multi-product ensemble is a useful tool for further investigating the 

quality of each product at various spatial and temporal scales. The main result is that each 

product exhibits specific and significant regional departures that are varying in time. 

A model for regression with correlated error, with sufficient information to constrain a 

relationship between two datasets by multiple samples from large gridded analyses, has been 

proposed.  The model does not suffer from a neglect of autocorrelated errors, as in ordinary 

regression and triple collocation, but instead requires them (cf. Su et al. 2014).  Statistical 

comparisons between observations and the products that employ these observations yield a 

complementary view on product performance.  Relative performance among OHF products 

has been determined by the extent to which they share variations in a true flux that is common 

to ICOADS estimates.  However, the main conclusion is that this common truth is quite small 
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and that the combination of correlated and uncorrelated error is large.  This conclusion is 

subject to the caveat that extreme fluxes (greater than a few hundred Wm
-2

) are omitted, but 

there is nevertheless good evidence that quantification of correlated (and total) error requires 

more attention (e.g., Gruber et al. 2016).  

Analysis of the statistical distributions of surface turbulent fluxes performed using MFT 

distribution shows that differences in mean flux values across different products may be 

qualitatively different from the differences in flux extremes, implying differences in PDFs of 

fluxes. Generally, the behavior of PDFs of turbulent fluxes at buoys, in satellite products and 

reanalyzes is more consistent in the tropics compared to the mid and subpolar latitudes. 

Importantly, buoy values do not always demonstrate stronger surface flux extremes as might 

be anticipated for the high resolution point measurements. This is particularly observed in the 

eastern Pacific where most satellite products, as well as two of the three reanalyzes (CFSR 

and ERA-Interim), show stronger surface flux extremes compared to buoys, while buoy data 

report higher mean values. Differences in extreme fluxes (99.9
th

 percentile) at some locations 

between HOAPS and J-OFURO on the one hand, and buoy records on the other, may amount 

to 200-300 W/m² with the mean values being smaller in satellite products compared to buoy 

data. The reasons why satellite products may demonstrate stronger surface flux extremes 

compared to in situ observations should be discussed in terms of satellite retrievals of surface 

humidity and wind speed under extreme conditions. The OHF/MPE product designed and 

evaluated in this study is quite consistent with buoy data in terms of PDFs in the tropics and 

demonstrates a change in PDF in mid and subpolar latitudes towards underestimation of lower 

percentiles and overestimation of high percentiles.  

We looked in this paper into the characteristics of satellite and reanalysis surface fluxes 

and standardized products compared to the buoy data mostly without going into details of the 

impact of individual variables and bulk algorithms used. While the analyzed satellite products 
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and OAFLUX employ the COARE-3.0 algorithm for the flux computations (as did also the 

buoy and ICOADS data), reanalysis fluxes are based on application of different algorithms. In 

this respect further comparison of the effect of individual variables in reanalyses by applying 

a standard algorithm (e.g. COARE-3.0) to the reanalyses state variables will be useful. For 

instance, recently Brodeau et al. (2017) reported significant differences between the fluxes 

derived by 3 algorithms applied to the same set of state variables. Such a comparison may 

help to establish more truth in understanding of the regional biases with respect to the buoy 

data. Another challenging task is to analyze the impact of data assimilation onto fluxes in 

reanalyses by considering output from the reanalyses models without data assimilation. In this 

respect results of comparisons of reanalyzes with buoys should be taken with the caveat that 

surface air temperature and humidity are constrained to a much lesser extent that surface 

winds and sea surface temperatures which can be well observed by satellite. Moreover, where 

surface air data are available at buoy locations this can lead to inhomogeneities as noted by 

Josey et al. (2014) who shows that the effect of dual assimilation of the humidity from TAO 

buoys in ERA-Interim can results in up to 50 Wm
2
 flux anomalies during 1990s.  

Based on these study results some general conclusions can be drawn. Further research 

aiming at the improvement and validation of bulk variables (surface wind speed, specific air 

humidity, and sea surface and air temperatures) at various space and time scales are highly 

recommended. More specifically, deeper calibration and validation of remotely sensed U10 

and qa should be performed over regions where most of the flux products show significant 

discrepancies in both LHF and SHF, such as near western boundaries and tropical regions.  

The expected results are to obtain improved characterization of all required bulk variable 

errors. Methods and algorithms dealing with bulk variable retrievals should be applied to 

generate consistent long time series of remotely sensed measurements (backscatter 

coefficients, brightness temperatures). Future improvements in the algorithms and the 
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associated flux product development are critically dependent on longer time series of in-situ 

data from different global sites in order to be representative of the full range of oceanic and 

atmospheric conditions.. 
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