
HAL Id: hal-04201875
https://hal.science/hal-04201875

Submitted on 12 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equation-Directed Axiomatization of Lustre Semantics
to Enable Optimized Code Validation

Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, Xavier Thirioux

To cite this version:
Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, Xavier Thirioux. Equation-Directed Axiomati-
zation of Lustre Semantics to Enable Optimized Code Validation. ACM Transactions on Embedded
Computing Systems (TECS), 2023, 22 (5), pp.151. �10.1145/3609393�. �hal-04201875�

https://hal.science/hal-04201875
https://hal.archives-ouvertes.fr

Equation-Directed Axiomatization of Lustre Semantics to
Enable Optimized Code Validation

LÉLIO BRUN, National Institute of Informatics, Japan
CHRISTOPHE GARION, ISAE-SUPAERO, University of Toulouse, France
PIERRE-LOÏC GAROCHE, ENAC, University of Toulouse, France
XAVIER THIRIOUX, ISAE-SUPAERO, University of Toulouse, France

Model-based design tools like SCADE Suite and Simulink are often used to design safety-critical embedded
software. Consequently, generating correct code from such models is crucial. We tackle this challenge on
Lustre, a dataflow synchronous language that embodies the concepts that base such tools. Instead of proving
correct a whole code generator, we turn an existing compiler into a certifying compiler from Lustre to C,
following a translation validation approach.

We propose a solution that generates both C code and an attached specification expressing a correctness
result for the generated and optionally optimized code. The specification yields proof obligations that are
discharged by external solvers through the Frama-C platform.

CCS Concepts: • Computer systems organization→ Real-time languages; Embedded systems; • Software
and its engineering → Compilers; Source code generation; Formal software verification; Model-
driven software engineering; Data flow languages.

Additional Key Words and Phrases: Lustre, Frama-C, ACSL

ACM Reference Format:
Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux. 2023. Equation-Directed Axioma-
tization of Lustre Semantics to Enable Optimized Code Validation. ACM Trans. Embedd. Comput. Syst. 1, 1
(September 2023), 24 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Model-based design tools like SCADE Suite [2] or Simulink [33] are widely used to design control
software. They provide engineers with an interface to build high-level applications based on block
diagrams and state machines, and with code generators that translate these models into sequential
code. These tools are based on synchronous dataflow languages [6] such as Lustre [17]. Lustre
provides specific constructs to compose functions over infinite streams of values, making it well-
suited for designing control software targeting embedded systems. It is used as a kernel language
for SCADE Suite [22] and can encode a subset of the discrete part of Simulink [38, 16, 45, 10].
Languages of the dataflow synchronous family usually share well studied formal semantics

and compilation techniques, allowing traceability, industrial certification and verification. In the

Authors’ addresses: Lélio Brun, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan,
lelio_brun@nii.ac.jp; Christophe Garion, ISAE-SUPAERO, University of Toulouse, 10, avenue Édouard-Belin, Toulouse, 31055,
France, garion@isae-supaero.fr; Pierre-Loïc Garoche, ENAC, University of Toulouse, 7, avenue Édouard-Belin, Toulouse,
31055, France, garoche@enac.fr; Xavier Thirioux, ISAE-SUPAERO, University of Toulouse, 10, avenue Édouard-Belin,
Toulouse, 31055, France, thirioux@isae-supaero.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1539-9087/2023/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

HTTPS://ORCID.ORG/0000-0002-0642-6008
HTTPS://ORCID.ORG/0000-0002-4467-2939
HTTPS://ORCID.ORG/0000-0002-0513-6076
HTTPS://ORCID.ORG/0009-0002-1126-6835
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-0642-6008
https://orcid.org/0000-0002-4467-2939
https://orcid.org/0000-0002-0513-6076
https://orcid.org/0009-0002-1126-6835
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

domain of safety-critical embedded software design, these features are paramount to ensure strong
guarantees on the generated executable code. In particular, the existence of a well-founded math-
ematical model to express the semantics of these languages makes them intrinsically suitable to
the application of formal methods. While recent work formalizes the semantics of a Lustre subset
in a prototype compiler [12, 11] whose correctness is verified once and for all in Coq [41], we
choose another approach to verified compilation: translation validation [34]. In this approach the
preservation of the semantics between the source program and the compiled one is checked for
each run, after the compilation. In this paper, we show how we modify an existing Lustre to C
compiler, LustreC [42], into a generator of both executable code and associated specification. This
specification encodes a complete state / transition semantics of the source Lustre code, and states
that the generated code complies with this semantics, asserting the correctness of the generation
process. The specification is yet abstract enough to support different levels of code optimizations.
As an application, we target the Frama-C platform [5] and its specification language ACSL. Frama-C
allows interfacing with external SMT solvers to check that the generated C code complies with
its specification. Both the generated C code and its specification as pre / post function contracts
follow the node modular approach [8] which prevails in modern Lustre code generators such as
SCADE Suite. While some Lustre model-checking tools [28, 19] provide a node-modular axiom-
atization of Lustre semantics, the produced predicates, typically built as a large conjunction of
flow equations semantics formulas allowing to check the correctness of the corresponding Lustre
program, are usually difficult to prove. In this paper we rather propose a logical encoding that relies
on composition rather than conjunction. This approach, while semantically equivalent, is shown to
be compatible with proof at code level. Our approach spares the burden of proving correct a whole
feature-rich compiler in an interactive proof assistant by delegating the proof effort.

To summarize, with respect to the state of the art, our contribution is:

• a node-modular, equation-driven, axiomatization of Lustre semantics,
• associated to each generated instruction, enabling automatic validation,
• and that is compatible with several optimizations at code level.

The paper is organized as follows. Section 2 presents an overview of related works. Section 3
gives a description of the syntax, semantics and compilation process of the Lustre input language.
Section 4 explains how we axiomatize Lustre semantics as a composition of equation-specific
predicates and define a certifying compiler by adding specification to the generated code. Section 5
details optimization of generated code and associated annotations. We present some experimental
results in section 6 and give concluding remarks and perspectives in section 7.

2 RELATEDWORK
There have been endeavors for building verified compilers for synchronous languages. The goal of
the GeneAuto project [43, 44] was to develop a qualified code generator for a subset of Simulink,
with parts proved in Coq. Some preliminary work [46] showed semantics preservation results
for some passes of a compiler for the Signal language [7]. To our knowledge the more advanced
solutions focus on Lustre: [40, 39] give an end-to-end correctness proof from an imperatively
defined dataflow semantics to the semantics of C, while the Vélus compiler [12, 11] uses a stream-
based dataflow semantics and is built on the verified C compiler CompCert [32]. These solutions
are proof-of-concepts prototypes, that treat a restricted subset of the input languages. Our aim is
different, since we want to extend a feature-rich existing compiler with certifying abilities. The
main advantage is to sidestep the burden of having to re-prove systematically the compiler when a
variation is made in the compilation process. Indeed, LustreC is a rather large software with about
40000 lines of OCaml code, as it is designed as an experimental playground for Lustre compilation,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 3

with several additional features. On the other hand, Vélus is equally large with about 40000 lines
of Coq code, but the extracted code used to build the actual compiler only amounts to about 1500
lines of OCaml code [14]. This comparison highlights the fact that the two approaches actually aim
for different goals. Vélus is an experimental proof that it is possible to prove the correctness of the
compilation of Lustre in its simplest form. As the main effort is on the formalization and proofs,
the compilation scheme is designed with the correctness proof in mind and is kept as simple as
possible. Our work seeks to demonstrate using translation validation techniques the verification of
the correctness of an existing feature-rich compiler, without impacting the compilation scheme in
itself, which can remain arbitrarily complex. In this paper, we nonetheless focus on a subset close
to the one treated by Vélus, to assess the feasibility of our approach. The level of insurance in the
generated code verified using translation validation techniques or a verified compiler is the same if
the validation process, i.e. the validator, is itself formally verified. Notice it is not strictly the case
in this work: the trust is deferred onto the SMT solvers. While a reasonable level of trust can be
placed in them, these solvers are not formally proved correct.
Translation validation is an approach that was early applied to synchronous languages [35].

Following this approach, the semantics preservation is not proved once and for all by proving
a compiler, but verified a posteriori for each run of the compiler. Research in this domain about
synchronous languages concentrates mainly on Signal [1, 20, 36] and on Simulink [18, 37]. In
particular, [18] proposes a framework to show refinement relations between Simulink discrete-time
block diagrams and SPARK / Ada implementations. These works and our solution, that specifically
targets compilation from Lustre to C, are in the same vein. The authors of [27] follow essentially the
same approach than ours: frommonitors written in the Lola stream-based synchronous specification
language, they generate Rust code annotated with specification targeting the verification platform
Viper. The authors mainly focus on miminizing the memory footprint of generated monitors. Both
[18] and [27] handle a rather simple input language, lacking advanced control structures such as
clock sampling, resetting and state machines. Furthermore, it seems that the proposed approaches
have been tested against a limited set of modest examples. In contrast, we use modern Lustre as
input, with all the aforementioned features. As we also put emphasis on scalability, we applied our
method to hundreds of use cases, including real-life industrial examples.
While we restrict our approach to discrete-time synchronous systems, there exist proposals

combining several approaches to tackle specifically design and verification of hybrid systems. The
MARS [21] framework extends [47, 48] to provide an integrated solution to design and verify hybrid
Simulink models. Several rewriting steps are used and verification is performed by simulation.
VeriPhy [9] is a toolchain focusing on hybrid cyber-physical systems, built around several provers,
that provides a proof that properties are preserved from high-level models to controller executables.
VeriPhy is closer to verified compilers: a chain of rewriting steps that are individually proven
correct in different provers.

3 THE LUSTRE LANGUAGE AND ITS COMPILATION
We present the Lustre language on the simple example below.
node count () returns (out: bool)

var time , ptime: int; init , b: bool;

let
init = true -> false;

b = (ptime = 3);

time = if init then 0 else if b then 0 else ptime + 1;

out = (time = 2);

ptime = pre time;

tel

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

4 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

init) � � � � � � · · ·
b ⊥ � � �) � � · · ·
time 0 1 2 3 0 1 2 · · ·
out � �) � � �) · · ·
ptime ⊥ 0 1 2 3 0 1 · · ·

⊥
)

0
�

1
�

2
�

3
�

0
�

1
�

. . .

� �) � � �)

Fig. 1. Two representations of the execution of the example

We define a node called count that is a stream function without input that outputs a boolean
stream out. The output and local streams are defined by equations whose order is insignificant.
The local streams b, time and the output stream out are defined using simple equations: literal
constants represent constant streams, arithmetic operators operate point-wise and if/then/else

is a multiplexer. The stream init is defined with the -> operator: it has the value) (true) at the
initial instant and the value � (false) otherwise. Finally, the stream ptime is defined with the pre

operator that represents an uninitialized delay.
Two ways of representing the execution are shown in fig. 1. On the dataflow representation

on the left, each variable is associated to its corresponding stream. The columns give the values
of the streams indexed at a each successive instant. We can clearly describe the behavior of the
pre operator: the stream associated with ptime is the stream associated with time delayed by one
instant, where ⊥ represents the uninitialized value. On the right is represented a state / transition
system execution. Under this view, the node is considered as a system with an internal state, whose
evolution is dictated by transitions. The successive transitions, labeled with the indexed output
values, encode the node equations.

count

ptime ->

first

The state of the count node is represented as the tree on the left and is comprised
of the state variable ptime, the only variable defined by a unit delay (pre opera-
tor), and by a sub-tree corresponding to the -> operator. Indeed, we consider
this operator as a special node with its own state variable first.

3.1 Compiler architecture
The standard Lustre compilation approach, described in [8], consists in a single-loop modular
scheme where a sequential step function is generated for each node, and where the program runs in
an infinite loop that alternates reading inputs, calculating a step of the system and writing outputs.
As it is adapted to both industrial certification and formal reasoning, this approach is followed by
several implementations like SCADE Suite, Vélus, and other academic compilers [31, 26]. This is
also the one that is taken here.

The architecture of the compiler is displayed in fig. 2. In the remaining of the section, we describe
the successive passes and present a formal definition of the involved languages. We skip the parsing,
elaboration and Lustre optimization steps since they are irrelevant to this work. We also do not

Lustre
1 parsing

2 elaboration 3 optimizations

4 normalization5 scheduling

Machine
6 translation

Spec

7 optimizations

C
8 generation

ACSL6
8

Fig. 2. Architecture of the compiler

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 5

4 := expression
| 2 constant
| G variable
| �(−→4) operators
| 4 when �(G) sampling

2: := clock
| • base clock
| 2: on �(G) sub-clock

24 := control expression
| 4 expression
| ifG then 24 else 24 conditional

| mergeG
−−−−−−−−→
(� -> 24) merge

4@ := equation
| G =2: 24 definition
| G =2: pre(4) pre
| −→G =2: 5 (−→4) [everyG] instantiation

Fig. 3. Normalized Lustre abstract syntax

detail normalization and scheduling, to simplify the presentation. Hence, we will focus in the
following on the steps 6 , 7 and 8 . In particular, the light grey boxes Spec and ACSL represent
our main contribution. In addition to the regular generation of C code, we generate a specification
encoding the semantics of the input Lustre nodes, attached to translated sequential code in the
Machine intermediate language. This specification is then translated into ACSL, the specification
language of the Frama-C platform, and attached to the generated C code. This will be further
developed in section 4.

3.2 Normalized Lustre
Normalization and scheduling are two source-to-source rewriting steps used to enable generation
of imperative code. Normalization is used to identify and isolate state and stateful operations in
dataflow nodes, by introducing auxiliary variables and equations to split complex expressions into
simple sub-expressions. Scheduling is only a matter of re-ordering equations in preparation for
the generation of sequential code. The ordering is based on a topological sort reflecting syntactic
dependencies between variables as described, e.g. in [8].
The abstract syntax of normalized Lustre is shown in fig. 3. In the remaining, we write −→0 for

the list 00 · · ·0= . The expression 4 when �(G) is a sampling operation that describes the stream of
4 filtered at instants when the value of the variable G is equal to the enumerated type variant � .
Such sampled sub-streams can be combined using the merge operator. These operators highlight
the notion of clock, i.e. a boolean stream used to indicate when a computation is performed or not.
The LustreC clock system follows the usual presentation from [23]: succinctly, a clock is either
the base clock—a stream that is always true—or a sub-clock—a sampled boolean stream. There
are three forms of equations in normalized Lustre, each annotated with such a clock. Control and
stateful operations appear at top-level, respectively through definition with a control expression
and through pre and node instantiation (optionally with modular reset represented by the every

keyword) equations. Modular reset [30, 12] is a construct used to restart a node instance on some
condition G .

3.3 Translation to Machine code
In the modular approach [8], scheduled normalized Lustre code is translated into an intermediate
imperative language with object-oriented features. Each Lustre node is translated into an object with
an internal state and a method that executes one cycle of computation. The sequential statements
of this step method are translated from the normalized and scheduled equations.

The abstract syntax of Machine, our version of the language, is shown in fig. 4, and the translation
function for expressions, control expressions and equations is summarized in fig. 5. Expression
translation T4 () is straightforward: a constant becomes a constant; a variable is turned into either a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

6 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

4 := expression
| 2 constant
| G variable
| state(G) state variable
| �(−→4) operators

B := statement
| B; B sequence
| G := 4 assignment
| state(G) := 4 state assignment
| if (4) { B } else { B } conditionals

| case (4) {
−−→
�: B }

| −→G := 8.step(−→4) step method call
| 8.reset() reset method call

Fig. 4. Machine abstract syntax

T4
(
2
)
= 2

T4
(
G
)
=

{
state(G) if G is defined by a pre,

G otherwise.

T4
(
�(−→4)

)
= �(

−−−→
T4

(
4
)
)

T4
(
4 when �(G)

)
= T4

(
4
)

T ~
24

(
4
)
= ~ := T4

(
4
)

T ~
24

(
ifG then 241 else 242

)
= if (G) {T ~

24

(
241

)
} else {T ~

24

(
242

)
}

T ~
24

(
mergeG

−−−−−−−−→
(� -> 24)

)
= case (G) {

−−−−−−−−−→
�:T ~

24

(
24

)
}

T4@
(
G =2: 24

)
= C2:

(
T G
24

(
24

))
T4@

(
G =2: pre(4)

)
= C2:

(
state(G) := T4

(
4
))

T4@
(−→G =2: 5 (−→4)

)
= C2:

(
−→G := 8.step(

−−−→
T4

(
4
)
)

)
where 8 is fresh

T4@
(−→G =2: 5 (−→4) every~

)
= C2:

(
if (~) { 8.reset() };
−→G := 8.step(

−−−→
T4

(
4
)
)

)
where 8 is fresh

C• (B) = B

C2: on �(G) (B) = C2:
(
case (G) { �: B }

)
Fig. 5. Translation function from Lustre to Machine

simple variable or a state variable if it is defined using a pre; an operator application is recursively
translated; and when s are simply erased because the clock behavior is handled at the level of
equations, as explained in the following. Control expression translation T ~

24 (), parameterized by
the variable ~ being written, is defined recursively: conditional and merge expressions are turned
into conditional statements, with assignments at their leaves. The statement resulting from the
translation of an equation annotated with clock 2: is wrapped by the C2: () function in possibly
nested conditionals, in order to implement the control structure that the clock calculus describes.
Hence, a definition equation is turned into an assignment; a pre equation into a state assignment;
and a node instantiation into a step method call, optionally preceded with a reset method call in
case of reset. The instance name 8 is uniquely generated and designates the object associated with
this particular instantiation of the node 5 .

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 7

Figure 6 presents the Machine code translated from the example node.The variable ptime, defined
by a pre, is transformed into a state variable (state keyword). The -> operation is transformed
into a call to the step method of the corresponding sub-instance a (instance keyword; _arrow is
the name of the special machine that implements the behavior of the -> operation, considered as a
special node instantiation). The step method is generated with the same signature as the node and
is comprised of a sequence of statements directly translated from the Lustre equations.

3.4 Generation of C code
The generation of C99 compliant C code is rather straightforward and follows again the scheme
described in [8]. A structure is recursively generated for each machine, with fields for each state
variable and each instance. The structure generated from the count example is shown below on the
left, with the structure generated for the special machine _arrow.
struct _arrow_mem { _Bool _first; };

typedef struct count_mem {

_Bool _reset;

int ptime;

struct _arrow_mem *a;

} S;

Fields for sub-instances are pointers, to handle
state update and separate compilation. A pointer
to such a structure holding the state is passed to
functions generated from Machine methods.

We now explain the role of the field _reset. In fig. 7 the set_reset macro is used to notify a
sub-instance that it must be reset on the next cycle, by setting its _reset flag. The clear_reset

function is called at the beginning of the step function: if the instance has to be reset, i.e. the
_reset flag is true, then it actually reinitializes its arrow sub-instances and notifies its other node
sub-instances for reset. Note that only one arrow sub-instance appears in this example.
The step method is transformed into a step function in a direct way. Outputs are passed by

pointers to handle multiple outputs that are allowed in Machine code. Each Machine statement is
transformed into a C statement. State variables and sub-instances are accessed through the self

pointer to the state structure.

4 SEMANTICS AXIOMATIZATION
The original semantics for Lustre is the classic denotational dataflow semantics, where nodes are
transformers of infinite streams as illustrated on the left side of fig. 1. Whereas on the right-side, the
state / transition operational semantics obtained by the compilation process described in section 3
feels very concrete. Unfortunately, axiomatizing stream transformers seems a rather difficult task
since every property must finally be expressed as mere C code assertions. Under the assumption it
is possible, it is very likely that it would be inadequate or put too much stress on first-order backend
solvers used to discharge such assertions. Therefore, we choose to axiomatize instead a relational
state / transition semantics, which lies in between. On the one hand, it is totally independent of the
code optimizations described in section 5. On the other hand, it exposes a notion of state that is not
part of the original semantics, yet state is simply made visible through normalization as explained
in section 3.2, partially bridging the gap between our relational semantics and the dataflow one.
We thus claim our semantics may perfectly serve as a reference semantics for Lustre.

This kind of semantics has also the advantage of being easy to describe in a typed first-order
logic with arithmetic [29] and is used internally by the Kind 2 Lustre model checker [19], and also
by the Stc intermediate language of the Vélus compiler [12].
The semantics of a node can be represented as a relation that constrains input values, output

values, a start state tree (and an end state tree (′. The relation for the previous example is shown
in fig. 8, where we write ((?C8<4) for accessing the value of the state variable ptime, and ([0] for
accessing the sub-tree corresponding to the state of the arrow node instance. The fig. 8a corresponds

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

8 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

machine count {

state ptime: int;

instance: a: _arrow;

step() returns (out: bool)

var time: int; init , b: bool

{

b := state(ptime) = 3;

init := a.step(true , false);

if (init) {

time := 0

} else {

if (b) {

time := 0

} else {

time := state(ptime) + 1

}

}

out := time = 2;

state(ptime) := time;

}

}

Fig. 6. Machine code

#define count_set_reset(self) \

{ self ->_reset = 1; }

void count_clear_reset(S *self) {

if (self ->_reset) {

self ->_reset = 0;

_arrow_reset(self ->a);

}

}

void count_step(_Bool *out , S *self) {

int time;

_Bool init , b;

count_clear_reset(self);

b = self ->ptime == 3;

init = _arrow_step(self ->a);

if (init) {

time = 0;

} else {

if (b) {

time = 0;

} else {

time = self ->ptime + 1;

}

}

*out = time == 2;

self ->ptime = time;

}

Fig. 7. C code

2>D=C_tr ((, G, >DC, (′) ,
∃C8<4, 8=8C, 1,

(′ (?C8<4) = C8<4

∧ 1 = (((?C8<4) = 3)
∧ 0AA>F_tr (([0] , 8=8C, (′ [0])
∧ 8=8C =⇒ C8<4 = 0
∧ (¬8=8C ∧ 1) =⇒ C8<4 = 0
∧ (¬8=8C ∧ ¬1) =⇒
C8<4 = ((?C8<4) + 1

∧ >DC = (C8<4 = 2)

(a) As a conjunction.

2>D=C_tr ((, G, >DC, (′) ,
∃C8<4,

(′ (?C8<4) = C8<4

∧ >DC = (C8<4 = 2)
∧ ∃8=8C, 1,

8=8C =⇒ C8<4 = 0
∧ (¬8=8C ∧ 1) =⇒ C8<4 = 0
∧ (¬8=8C ∧ ¬1) =⇒
C8<4 = ((?C8<4) + 1

∧ 0AA>F_tr (([0] , 8=8C, (′ [0])
∧ 1 = (((?C8<4) = 3)

(b) As a composition.

Fig. 8. Node semantics as a predicate.

to a typical predicate encoding the node semantics, as produced by Lustre model-checking tools [28,
19]. This prenex normal form predicate describes the logical relationship between the state before
and after the transition, and between the input and the output variables. All local variables are
existentially quantified. In our proposal, displayed in fig. 8b, the scheduling of the variables—here
1 · 8=8C · C8<4 ·>DC · (′—is used to build a more structured but equivalent predicate. The innermost
bottom-up evaluation of the formula corresponds to the sequence of statements in the machine
code. Quantifiers are introduced as soon as possible to tighten the scope of local variables. Our
form (a) enables an incremental description of the transition relation, statement after statement,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 9

q
2
y
4
= 2

q
G
y
4
=

{
((G) if G is defined by a pre,

G otherwise.
q
�(−→4)

y
4
= �(

−−−→q
4
y
4
)q

4 when �(G)
y
4
=

q
4
y
4

q
4
y~

24
= (~ =

q
4
y
4
)q

ifG then 241 else 242
y~

24
= If G Then

q
241

y~

24
Else

q
242

y~

24r
mergeG

−−−−−−−−→
(� -> 24)

z~

24
=

∧−−−−−−−−−−−−−−−−−−−→
(G = �) =⇒

q
24

y~

24

q
G =2: 24

y
4@

= S2:
(q
24

yG
24

)
q
G =2: pre(4)

y
4@

= S2:
(
(′ (G) =

q
4
y
4

)
q−→G =2: 5 (−→4)

y
4@

= S2:

(
5 _tr

(
([8] ,

−−−→q
4
y
4
,−→G , (′ [8]

))
q−→G =2: 5 (−→4) every~

y
4@

= ∃(A ,S2: ©«
If ~ Then 5 _rst ((A) Else (A = ([8]

∧ 5 _tr
(
(A ,

−−−→q
4
y
4
,−→G , (′ [8]

) ª®¬
S• (

%
)
= %

S2: on �(G) (
%
)
= S2:

(
(G = �) =⇒ %

)
Fig. 9. State / transition semantics of Lustre

and therefore (b) allows verification tools to focus only on a local assertion context around each
statement, as an efficient heuristic to discharge proof obligations entailed by the specification.

4.1 Formalization of flow equations semantics
Each equation in the node is expressed as a constraint: definition and pre equations as equality
constraints between variables (existentially quantified if they are local) where state variables are
read in the start state (and written in the end state (′, and node instantiations as corresponding
transition relations constraining sub-states.
Figure 9 gives the formal state / transition semantics of normalized Lustre in first-order logic.

The given definitions are parameterized by the states (and (′ corresponding to the current node
instance. The semantics functions resemble the translation functions described in fig. 5. A constant
is evaluated to its value; a variable is mapped to either its symbol or to its access path in the start
state (if it is a state variable; an operator application is recursively evaluated; and when s are
again erased. Control expression evaluation is parameterized by the variable being written and
defined recursively: conditional and merge expressions are turned into conjunctions of implications
depending on the boolean evaluation of the variable condition, with simple logical equations at their
leaves (we write If 0 Then 1 Else 2 for (0 =⇒ 1) ∧ (¬0 =⇒ 2)). The logical interpretation of an
equation is wrapped by the S2: function into a chain of implications that reflects the sub-clocking
relations of its clock annotation 2: . So a definition equation is evaluated into an equation possibly
nested in an implication; a pre equation into an equation between the value of the state variable in
the end state (′ and the evaluation of its left-hand side; and a node instantiation into the evaluation

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

10 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

of the corresponding transition relation instantiated on the sub-states ([8] and (′ [8]. If there is a
reset, the existential intermediate state (A is reinitialized through 5 _rst ((A), otherwise it is equal to
the start sub-state ([8].
We define a relation 5 _tr8 for each equation 4@8 , where = is the total number of equations in

the node and 8 ∈ [1, =], that builds the transition relation up to and including 4@8 . This choice
allows local reasoning relatively to each equation. We perform an analysis on the normalized and
scheduled Lustre code that computes the set of live variables L8 for each equation 4@8 . L8 is the
set of assigned local or output variables so far, after the evaluation of 4@8 , minus the set of local
variables not occurring in the remaining equations 4@8+1, . . . , 4@= . Last, we existentially quantify
variables that were live before but not anymore after evaluation of 4@8 .

Node semantics. A partial transition relation 5 _tr8 is associated to each equation, while the
transition relation 5 _tr describes the whole node semantics.

5 _tr8
(
(,
−→
I ,

−→
L8 ,

−→
O8 , (

′
)
, ∃−→+8 , 5 _tr8−1

(
(,
−→
I ,

−−−→
L8−1,

−−−→
O8−1, (′

)
∧

q
4@8

y
4@

5 _tr
(
(,
−→
I ,

−→
O , (′

)
, 5 _tr=

(
(A ,

−→
I ,

−→
O , (′

)
−→
I are the input variables,

−→
L8 and

−→
O8 respectively local and output variables that belong in L8 . We

define
−→
+8 =

−−→
L8−1 \

−→
L8 , 5 _tr0 = >, L0 = ∅, −→L= = ∅ and

−→
O= =

−→
O .

4.2 C code specification: local annotations and function contracts
Eventually the logical annotations attached to Machine statements are translated into predicates,
contracts and assertions in ACSL (ANSI/ISO C Specification Language), the specification language
used by the Frama-C platform. It supports primitives that cover the low-level aspects of C and that
can be composed in a first-order logic. Through the Frama-C WP plugin that implements a weakest
precondition calculus, contracts and assertions can be checked by external SMT solvers such as
Alt-Ergo [24], CVC4 [4] or Z3 [25].

4.2.1 State representation. To encode our transition relations, we first have to define a notion of
state. Since ACSL supports C structures, we choose to use a “flattened” version of the C structure
that holds state as described in section 3.4. Sub-state is no longer referred by pointer, but directly
included as a sub-structure. Such a structure is declared as ghost, that is an ACSL feature meaning
that it can only be used in specification, not in the actual code. Below is the ghost structure generated
for the count example.
/*@ ghost typedef struct count_mem_ghost {

int ptime;

struct _arrow_mem_ghost a;

} gS; */

4.2.2 State correspondence. We first assume that a standard initialization static analysis has been
successfully performed on the Lustre input code, as it is common practice. It entails that every state
variable< occurs in the right-hand side of an arrow instance ->, denoted by �AA>F (<), preventing
that, at initial or reset time, its then unspecified value would be accessed.
To ensure that the ghost state stays in correspondence with the actual C state, we define a

relation 5 _pack for each machine f, which in turn depends upon local versions 5 _pack: , holding
after each statement B: = T4@

(
4@:

)
. We denote by �=34G (<) (resp. by �=34G [8]) the index : such

that B: assigns state variable< (resp. calls the step function of node instance 8).
Let us suppose a machine f with = translated equations. We denote (: the ghost state after

equation 4@: . The C state is represented by the self pointer. In broad outline, 5 _pack recursively
asserts that state variables values at the leaves of both ghost and actual trees are the same, provided

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 11

self (8

self (8+1

CC(4@8) ;

5 _pack8 ((8 , self)
5 _tr8−1

(
(8−1,

−→
I ,

−−−→
L8−1,

−−−→
O8−1, (8

)

5 _pack8+1 ((8+1, self)
5 _tr8

(
(8 ,

−→
I ,

−→
L8 ,

−→
O8 , (8+1

)
G(4@8) ;

self (

self (′

CC(4@1) ;
· · ·

CC(4@=) ;

5 _pack ((, self)

5 _pack
(
(′, self

)
5 _tr

(
(,
−→
I ,

−→
O , (′

)
G(4@1) ;

· · ·
G(4@=) ;

Fig. 10. Fine and coarse-grained simulation schemes

protecting arrows are not in their initial state and 5 is not to be reset. Moreover, at locations after
an arrow instance was called but before its state variables are updated, correspondence accounts
for it by referring to this arrow at location 0, i.e. prior to its call. This is the role of the A index
computation in the following logical formulation whose ACSL translation is not detailed. We write
I5 , resp. S5 , for the sub-instances names, resp. state variables, of f.

5 _pack: ((, self) ,
∧

8∈I5
8_pack (([8] , self->i)

∧ ∧
<∈S5

¬0AA>F_rst (([�AA>F (<)]A) =⇒ (: (<) = self->m

Where A = 0 if �=34G [�AA>F (<)] ≤ : < �=34G (<), : otherwise
5 _pack ((, self) , If self->_resetThen 5 _rst ((=) Else 5 _pack= ((, self)

We also have to keep track of the C state assignments in our abstract state. To that purpose
we consider G(4@8) statements as the ghost counterparts of CC(4@8), the translation of the Lustre
4@8 to C statements whenever they involve state variables. Otherwise, G(4@8) is simply skip. We
establish local simulation relations at each 4@8 , used to compose a simulation at step function
level. The relations constrain actual and ghost states of the C program. Figure 10 describes the
corresponding simulation schemes. The scheme on the left represents a local simulation between
the actual state in self and the partial ghost states (8 and (8+1, after the execution of CC(4@8)
on one side and G(4@8) on the other side: memory correspondence is preserved, and the partial
transition relation progresses one step further. The scheme on the right represents the combination
of all such successive local simulations and is established at the step function level, between the
actual state in self and the ghost start and end state (and (′: memory correspondence is preserved,
and the transition relation is established.

4.2.3 Reset function contract and ghost state resetting. We add contract to the reset-related function
described in section 3.4, as shown below for the example.
/*@ requires count_pack (*mem , self);

ensures count_pack5 (*mem , self); */

void count_clear_reset(S *self) /*@ ghost (gS \ghost *mem) */ {

if (self ->_reset) {

self ->_reset = 0;

_arrow_reset(self ->a);

}

}

The contract for count_clear_reset, appearing as a special comment directly above function def-
inition, states that memory correspondence is preserved, using requires and ensures keywords.
While self is an actual parameter of the function, mem is declared with a special comment as an
additional ghost parameter.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

12 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

Contrary to the compilation scheme we use for the reset, where actual recursive reinitialization
is delayed until corresponding step calls on sub-states, we model abstract reinitialization in a direct
“monolithic” way. To this end we define a ghost function used to recursively reinitialize the ghost
state in one take, displayed below for our example.
/*@ ghost /@ ensures count_reset (*mem); @/

void count_reset_ghost(gS \ghost *mem) {

_arrow_reset_ghost(mem ->a);

return;
} */

The ghost function has a contract ensuring that the state is indeed reinitialized, using an ACSL
version of the 5 _rst predicate mentioned in section 4.1.

4.2.4 Step function contract and transition relations. Partial transition relations definitions are
readily translated into ACSL predicates as relations between two ghost states corresponding
respectively to (and (′.
We then generate a contract for the step function, and each annotation is straightforwardly

translated into an ACSL assertion. Stateful operations are reflected on the ghost state using ghost
statements. The instrumented code of the generated step function for the example is displayed
below. We omit the definition of the generated ACSL predicates for each 2>D=C_tr8 .
/*@ requires count_pack (*mem , self);

ensures count_pack (*mem , self);

ensures count_tr(\old(*mem), x, *out , *mem); */

void count_step(_Bool *out , S *self) /*@ ghost (gS \ghost *mem) */ {

int time;

_Bool init , b;

count_clear_reset(self)/*@ ghost (mem) */;

//@ assert count_tr0(\at(*mem , Pre), x, *mem);

b = (self ->ptime == 3);

//@ assert count_tr1(\at(*mem , Pre), x, b, *mem);

init = _arrow_step(self ->a)/*@ ghost (&mem ->a) */;

//@ assert count_tr2(\at(*mem , Pre), x, b, init , *mem);

if (init) { time = 0; } else { if (b) { time = 0; } else { time = self ->ptime + 1; } }

//@ assert count_tr3(\at(*mem , Pre), x, time , *mem);

*out = (time == 2);

//@ assert count_tr4(\at(*mem , Pre), x, time , *out , *mem);

self ->ptime = time;

//@ ghost mem ->ptime = time;

//@ assert count_tr5(\at(*mem , Pre), x, *out , *mem);

}

The contract requires that the state correspondence holds before the call, and ensures that it is
preserved after. Moreover, it states that the transition relation holds between the ghost state before
the call and the ghost state after, ensuring the correctness result: the C code respects the semantics
of the node. The terms \old(*mem) in the contract and \at(*mem, Pre) in the assertions both refer
to the value of *mem before the call of the function. In practice, we also generate assertions enabling
the establishment of the memory correspondence at each intermediate program point.

5 CODE OPTIMIZATIONS AND IMPACT ON THE PROOF FRAMEWORK
First, simply notifying reset at C code level instead of actually performing it is already a supported
optimization that does not go unnoticed when running Lustre state-machines. This is also the way
the SCADE suite handles node resetting.
We detail in the following several other optimizations that LustreC supports. Since these opti-

mizations may replace or erase variables, and even modify the Machine statements themselves, we
must take care of the partial transition relations that annotate them. Whereas 5 _tr8 and 5 _tr keep

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 13

type en1 = enum { On, Off };

type en2 = enum { Up, Down };

node clocks (x: int) returns (y: int)

var c: en1 clock; d: en2 clock;

b1,b2,b3,z: int; c1,c2: bool

let

c1 = (x >= 0);

d = if c1 then Up else Down;

c2 = (x = 0) when Up(d)

c = if c2 then Off else On;

b2 = 2 when Off(c);

b1 = 1 when On(c);

z = merge c (On -> b1) (Off -> b2);

b3 = 3 when Down(d);

y = merge d (Up -> z) (Down -> b3);

tel

(a) Lustre code

step(x: int) returns (y: int)

var c: en1; d: en2; b1,b2,b3,z: int; c1,c2: bool

{

c1 := x >= 0;

--@ clocks_tr1(x, c1)

if (c1) { d := Up } else { d := Down }

--@ clocks_tr2(x, d)

case (d) { Up: c2 := x = 0 }

--@ clocks_tr3(x, d, c2)

case (d) {

Up: if (c2) { c := Off } else { c := On } }

--@ clocks_tr4(x, d, c)

case (d) { Up: case (c) { Off: b2 := 2 } }

--@ clocks_tr5(x, d, c, b2)

case (d) { Up: case (c) { On: b1 := 1 } }

--@ clocks_tr6(x, d, c, b1, b2)

case (d) { Up: case (c) { On: z := b1

Off: z := b2 } }

--@ clocks_tr7(x, d, z)

case (d) { Down: b3 := 3 }

--@ clocks_tr8(x, d, b3, z)

case (d) { Up: y := z

Down: y := b3 }

--@ clocks_tr9(x, y)

}

(b) Machine code

Fig. 11. Lustre example and non-optimized translated Machine code

the same definitions, the actual parameters
−→
L8 of 5 _tr8 ((,

−→
I ,

−→
L8 ,

−→
O8 , (

′) may change according to
the optimization level. Also, moving annotations around may yield capture problems. There are
several ways of handling those issues, e.g. involving existential quantification, but we choose to rely
instead on so-called ghost variables. Ghost variables are simply variables that can only be used in
the specification, but not in the actual executable code. Hence, it means that the semantics encoding
generated when producing unoptimized Machine code is unchanged by further optimizations.
We describe the effects of the different optimizations applied to the source Lustre toy example
presented on fig. 11a, that underlines the use of user-defined enumerated types as clocks. Figure 11b
is the generated Machine code without any optimization. We represent annotations as special
--@ f_tr_i(...) comments, where the partial transition relations 5 _tr8 are defined as described in
the previous section (without the (and (′ parameters since they are irrelevant to optimizations),
and introduced assignments to ghost variables are written --@ x := e. Figure 12 presents the four
optimizations on Machine code and figs. 13 and 14 details them on the example.

Conditionals fusion (cf. fig. 12a). Without further transformations, two adjacent equations with the
same sub-clock are transformed into two adjacent conditional statements guarded on the same
condition. A typical optimization that Lustre compilers following the modular approach implement
is a rewriting pass that fuses such groups of conditionals. Extending readily [8], implementation
consists in merging adjacent conditional branches and regrouping their annotations. We can see
on fig. 13a the high number of generated conditionals fused to produce better code.

Variable inlining (cf. fig. 12b). Variable inlining occurs only when its defining expression is atomic.
Thus, substituting this expression for the variable does not duplicate complex expression evaluation.
Such substitutions are performed in code only. The annotations are untouched, since the defining
statement is turned into a ghost one so that the inlined variable is kept alive in the specification.
The transformed example code after fusion of conditionals and inlining of variables is presented

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

14 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

: : case (4) {
−−−−−→
�8: B:,8 }

--@ 5 _tr:
(−→
I ,

−→
L: ,

−→
O:

)
: + 1 : case (4) {

−−−−−−→
�8: B:+1,8 }

--@ 5 _tr:+1
(−→
I ,

−−→
L:+1,

−−−→
O:+1

)
: : case (4) {

−−−−−−−−−−→
�8: B:,8 ; B:+1,8 }

--@ 5 _tr:
(−→
I ,

−→
L: ,

−→
O:

)
: + 1 : ;

--@ 5 _tr:+1
(−→
I ,

−−→
L:+1,

−−−→
O:+1

)
(a) Conditional fusion: code is in SSA form.

: : G := �;

--@ 5 _tr:
(−→
I ,

−→
L: ,

−→
O:

)
· · ·

; : B;

--@ 5 _tr;
(−→
I ,

−→
L; ,

−→
O;

)
: : --@ G := �

--@ 5 _tr:
(−→
I ,

−→
L: ,

−→
O:

)
· · ·

; : [�/G]B;
--@ 5 _tr;

(−→
I ,

−→
L; ,

−→
O;

)
(b) Variable inlining: � is either a constant or a variable, code is in SSA form. Applied to all lines ; ≥ : .

: : ~ := 4 ;

--@ 5 _tr:
(−→
I ,

−→
L: ,

−→
O:

)
· · ·

; : G := 4′ ;

--@ 5 _tr;
(−→
I ,

−→
L; ,

−→
O;

)
· · ·

< : B<

--@ 5 _tr<
(−→
I ,

−→
L<,

−−→
O<

)

: : ~ := 4 ;
--@ ~′ := ~

--@ 5 _tr:
(−→
I ,

−→
L: ,

−→
O:

)
· · ·

; : ~ := 4′ ;
--@ G := ~

--@ 5 _tr;
(−→
I , [~′/~]−→L; ,

−→
O;

)
· · ·

< : [~/G]B<
--@ 5 _tr<

(−→
I , [~′/~]−→L<,

−−→
O<

)
(c) Variable recycling: either y ∉ L; or y is clock-disjoint from x. Applied to all lines< ≥ ; .

: : case (4) { · · · �8:G := � 9 · · · }
--@ 5 _tr:

(−→
I ,

−→
L: ,

−→
O:

)
: + 1 : case (G) { · · · � 9 : B:+1, 9 · · · }

--@ 5 _tr:+1
(−→
I ,

−−→
L:+1,

−−−→
O:+1

)
: : case (4) {

· · ·
�8:--@ G := � 9

B:+1, 9· · ·
}

--@ 5 _tr:
(−→
I ,

−→
L: ,

−→
O:

)
: + 1 : ;

--@ 5 _tr:+1
(−→
I ,

−−→
L:+1,

−−−→
O:+1

)
(d) Enumerated type elimination: G ∉ L:+1, code is in SSA form.

Fig. 12. The four optimizations: original code (left) vs. optimized code (right).

in fig. 13b. The variables b1, b2, b3, c1 and c2 are inlined in the statements but turned into ghost
variables in the specification.

Variable recycling (cf. fig. 12c). We exploit variable reuse, applied only between variables of the
same type, for the sake of safety and traceability. We leverage the results of liveness analysis and
clock calculus in order to reuse dead variables or clock-disjoint ones, i.e. variables that cannot
simultaneously bear meaningful values in the same time frame. As for variable inlining, the
variable replaced by a reused one is turned into a ghost variable to keep its original definition in the
specification. However, because code after this optimization is not in SSA (Static Single-Assignment)
form anymore, capture problems may arise when annotations refer to a variable that has been
reused. To deal with such issues, we introduce for each variable ~ which will later be reused a ghost
alias ~′ assigned only once with the original defining value of ~. In subsequent annotations, ~′ is

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 15

step(x: int) returns (y: int)

var c: en1; d: en2;

b1,b2,b3,z: int; c1,c2: bool

{

c1 := x >= 0;

--@ clocks_tr1(x, c1)

if (c1) { d := Up }

else { d := Down }

--@ clocks_tr2(x, d)

case (d) {

Up:

c2 := x = 0;

if (c2) { c := Off }

else { c := On }

case (c) {

On:

b1 := 1;

z := b1

Off:

b2 := 2;

z := b2

}

y := z;

Down:

b3 := 3;

y := b3

}

--@ clocks_tr3(x, d, c2)

--@ clocks_tr4(x, d, c)

--@ clocks_tr5(x, d, c, b2)

--@ clocks_tr6(x, d, c, b1, b2)

--@ clocks_tr7(x, d, z)

--@ clocks_tr8(x, d, b3, z)

--@ clocks_tr9(x, y)

}

(a) Conditionals fusion

step(x: int) returns (y: int)

var c: en1; d: en2; z: int

{

--@ c1 := x >= 0

--@ clocks_tr1(x, c1)

if (x >= 0) { d := Up }

else { d := Down }

--@ clocks_tr2(x, d)

case (d) {

Up:

--@ c2 := x = 0

if (x = 0) { c := Off }

else { c := On }

case (c) {

On:

--@ b1 := 1

z := 1

Off:

--@ b2 := 2

z := 2

}

y := z

Down:

--@ b3 := 3

y := 3

}

--@ clocks_tr3(x, d, c2)

--@ clocks_tr4(x, d, c)

--@ clocks_tr5(x, d, c, b2)

--@ clocks_tr6(x, d, c, b1, b2)

--@ clocks_tr7(x, d, z)

--@ clocks_tr8(x, d, b3, z)

--@ clocks_tr9(x, y)

}

(b) + Variable inlining

Fig. 13. Optimizations effects on Machine code and annotations on example (I).

substituted for~. On the example in fig. 14a, only the variable z is replaced by y. The aforementioned
capture problem does not arise here and there is no need to introduce a ghost alias y'.

Enumerated type elimination (cf. fig. 12d). For a variable G belonging in an enumerated type (e.g. a
clock), the compiler merges conditional assignment of G to enumeration constants with a conditional
statement depending upon G . This proves useful for clock-heavy programs obtained from Lustre
state machines. We again address potential capture problems by turning variable G into a ghost
variable. We can see on the code in fig. 14b that the variables c and d have been eliminated. As a
result, switch cases are merged accordingly and each variable is kept as a ghost in the specification.

6 EXPERIMENTAL RESULTS
In the remaining of the section, recall that LustreC optimization levels correspond to the following:
O-1 is no optimization at all, O1 is conditionals fusion, O2 adds variable inlining and O3 adds
variable recycling and enum elimination (see section 5).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

16 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

step(x: int) returns (y: int)

var c: en1; d: en2

{

--@ c1 := x >= 0

--@ clocks_tr1(x, c1)

if (x >= 0) { d := Up }

else { d := Down }

--@ clocks_tr2(x, d)

case (d) {

Up:

--@ c2 := x = 0

if (x = 0) { c := Off }

else { c := On }

case (c) {

On:

--@ b1 := 1

y := 1

--@ z := y

Off:

--@ b2 := 2

y := 2

--@ z := y

}

Down:

--@ b3 := 3

y := 3

}

--@ clocks_tr3(x, d, c2)

--@ clocks_tr4(x, d, c)

--@ clocks_tr5(x, d, c, b2)

--@ clocks_tr6(x, d, c, b1, b2)

--@ clocks_tr7(x, d, z)

--@ clocks_tr8(x, d, b3, z)

--@ clocks_tr9(x, y)

}

(a) + Variable recycling

step(x: int) returns (y: int)

{

--@ c1 := x >= 0

--@ clocks_tr1(x, c1)

if (x >= 0) {

--@ d := Up

--@ c2 := x = 0

if (x = 0) {

--@ c := Off

--@ b2 := 2

y := 2

--@ z := y

} else {

--@ c := On

--@ b1 := 1

y := 1

--@ z := y

}

} else {

--@ d := Down

--@ b3 := 3

y := 3

}

--@ clocks_tr2(x, d)

--@ clocks_tr3(x, d, c2)

--@ clocks_tr4(x, d, c)

--@ clocks_tr5(x, d, c, b2)

--@ clocks_tr6(x, d, c, b1, b2)

--@ clocks_tr7(x, d, z)

--@ clocks_tr8(x, d, b3, z)

--@ clocks_tr9(x, y)

}

(b) + Enum elimination

Fig. 14. Optimizations effects on Machine code and annotations on example (II).

6.1 Translation validation
To evaluate our compiler extension, we ran it against a set of Lustre programs taken from the
benchmarking suite of the Kind tool [29], which contains various applications, from microwave
controllers to cache protocols, and from the test suite of the CoCoSim tool [10]. We used the default
level of optimization of the compiler (O2), that is conditionals fusion and variable inlining (see
fig. 13b). The tests were run on a machine equipped with two Intel® Xeon® processors E5-2670 v3
@ 2.30 GHz with 12 cores (24 threads) each and 64 GB RAM. Frama-C / WP 26.1 is run with a
global timeout of 15360 s, using the Alt-Ergo 2.4.2, CVC4 1.8 and Z3 4.11.2 solvers in parallel, with
a timeout per individual proof obligation (PO) of 60 s.
Figure 15 presents a summary table and a scattered log-log plot displaying the distribution of

the verification time of these test files against the size of the generated C code (ignoring ACSL
specification): it roughly outlines a linear distribution. The number of generated POs per file,
displayed following the color scale, is also linear with regard to code size. Unsuccessful tests can be
classified in two categories:
Failed tests where the solvers cannot manage to prove some obligations without manual guidance.

This includes writing supplementary assertions in the code, finding manually a witness for

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 17

Generated Verified Verified (%)

Files 399 370 92.73
POs 231 471 231 210 99.89

101 102 103
100

101

102

103

104

Size (loc)

Ti
m
e
(s
)

32

64

128

256

512

1 024

2 048

4 096

PO
s

Fig. 15. Experiments report with O2 optimization level

101 102 103
100

101

102

103

Size (loc)

Ti
m
e
(s
)

O-1

101 102 103

Size (loc)

O2

101 102 103

Size (loc)

O3

32
64
128
256
512
1,024
2,048
4,096
8,192
16,382

PO
s

Fig. 16. Experiments report for the selected 220 test files

an existentially quantified variable, unfolding a predicate definition, etc. We developed a
Frama-C plugin in OCaml to automatically perform some of these proof steps, but there are
23 cases (6%) for which it is not sufficient. For these tests, verification succeeds nonetheless
on all but a few such problematic POs (99.32%).

Timed-out tests whose verification cannot end before the global timeout, because they yield too
many or too complex POs. For these 6 cases (2%), it is difficult to predict whether increasing
the timeout will lead to successful verification or not.

The O3 optimization level adds variable recycling and enumerated type elimination to optimiza-
tions already provided by the O2 level. In order to check its correctness and scalability with respect
to the number of generated POs and time needed to prove them, we selected 220 test files from our
initial set that were proved correct with the O2 level in less than 450 s and tested them with O3.
First, notice that all O3 generated files are also proved. Figure 16 presents the same scattered log-log
plots than fig. 15 for the selected 220 test files respectively for O-1, O2 and O3 levels. We added O-1

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

18 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

O-1 Time

O-1 PO

O3 Time

O3 PO

17.73%

108.25%

4.21%

3.17%

Fig. 17. Relative changes of number of POs and verification time relatively to O2

−0.16 −0.12 −0.08 −0.04 0 0.04 0.08

O1×C

O2×C

O3×C

−1.83%

−3.98%

−3.36%

Fig. 18. Relative change of WCET relatively to O-1×C

for reference, even though the generated code is not realistic. Notice that the optimization level
has no large impact on the characteristics of the generated code: both number of generated POs
and timeouts are roughly linear with respect to the size of the generated C code. Figure 17 details
more specifically the comparison between O-1, O2 and O3 optimization levels. We use box plots to
display the relative changes of both number of POs and verification time ((G$8 −G$2)/G$2). Outliers
are not shown. The average value in percentage is also displayed. As the average number of POs
increases for O3 level, an increase of the verification time is expected. The remaining overhead
is probably due to the fact that at O3 level, the respective structures of the generated code and
the generated specification annotations do not match anymore. We observe an explosion of the
number of POs and associated verification time in some cases with O-1, which is due to the higher
number of conditionals.

6.2 Performance evaluation
To evaluate the performance gain of the generated code allowed by the optimizations, we provide
experimental estimation of both worst-case execution time (WCET) and stack usage. In the remain-
ing, we use the following notation to describe the different combinations that we evaluate: O8×B,
where O stands for LustreC optimization level, 8 ∈ {−1, 1, 2, 3}, and B, for Backend, is either C for
CompCert or G 9 for GCC with 9 ∈ {0, 1, 2, 3} optimization level.

6.2.1 WCET estimation. To estimate the WCET, we follow the workflow of [11] and use the
OTAWA v2 tool [3] with default settings. Figure 18 shows the effect of LustreC optimizations
when compiling the generated code with CompCert. The O3 level targets particularly stack usage,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 19

−1 −0.5 0 0.5 1 1.5 2 2.5 3

O3×C

O3×G0

O3×G1

O3×G2

O3×G3

68.44%

104.39%

−13.86%

−39.51%

−43.05%

Fig. 19. Relative change of WCET relatively to Vélus

so the fact that it does not improve the WCET compared to O2 level is not surprising. These
results show that when compiling with CompCert, which does perform some optimizations by
default, implementing optimizations upstream in LustreC can be useful to improve the WCET of
the executable code.

Figure 19 shows the comparison with Vélus. It appears that unless GCC is used with optimizations
enabled, the code generated by Vélus is more efficient. It could be a surprising result, since the only
optimization that Vélus implements is conditionals fusion. As outlined in [11] §5, the obtained results
with OTAWA favor Vélus because contrary to other compilers like Heptagon [26], Lustre V6 [31] or
LustreC, it does not compile the -> operator as a special node. Hence the code generated by Vélus
saves a lot of extra function calls. However, in LustreC the arrow_step function is declared inline

in order to mitigate this effect (except when using G0 which disables inlining). Therefore, the most
important difference mainly originates in the design choices on the compilation of the modular reset.
Vélus implements a “monolithic” recursive reset which inefficiently causes redundant resettings in
some cases but saves the conditional statement at the beginning of each step function. Since almost
none of the tests use the modular reset, the results strongly favor Vélus and we cannot evaluate
this trade-off precisely. It would be possible to optimize away those conditional statements when it
is statically certain that no reset will occur, but this is left as a future work. Note that not all our
tests are successfully compiled by Vélus: in its current state, Vélus supports normalization [13] but
not enumeration types and automata (yet) for example. Nonetheless, there are less than 10 such
tests in our current benchmark.

Finally, fig. 20 shows that performing optimizations upstream in LustreC is not useful if compiling
with an aggressively optimizing compiler such as GCC. Indeed, starting from G1 level, the generated
code without any LustreC optimization will be (way) more efficient than the code generated with
O2 level (O3 does not improve on the WCET, as seen above) but not optimized by GCC. Of course,
the advantage of our proposal is that upstream optimizations are supported by the translation
validation process, therefore they are validated if the verification succeeds. On the other hand, GCC
optimizations are not validated, cannot be trusted and are therefore forbidden in the context of
critical applications.

6.2.2 Stack usage estimation. Stack usage is another relevant measure in the embedded context.
We estimate it on our benchmark only with compiling with GCC as a backend, as it provides

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

20 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

O-1×G0

O-1×G1

O-1×G2

O-1×G3

17.67%

−57.99%

−69.63%

−71.86%

Fig. 20. Relative change of WCET relatively to O2×G0

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

O2×G0

O3×G0

−20.17%

−37.9%

Fig. 21. Relative change of stack usage relatively to O-1×G0

−1 −0.5 0 0.5 1 1.5 2 2.5 3

O-1×G0

O-1×G1

O-1×G2

O-1×G3

103.83%

−25.43%

−48.03%

−50.3%

Fig. 22. Relative change of stack usage relatively to O3×G0

a dedicated reporting feature (through the flag -fstack-usage). There is existing work [15] to
extend CompCert with a similar feature but we could not use it as it targets out-dated versions of
CompCert and could not be easily interfaced with Vélus anyway.
Figure 21 shows the effect of LustreC optimizations on the stack usage, without any further

optimizations by GCC. Contrary to the effect on the WCET, the gain of O3 level on stack usage is
obvious, as those optimizations aim at reducing the number of variables in the generated code.

Finally, fig. 22 shows that once again, the upstream optimizations of LustreC are useless if GCC
is used as a backend with aggressive optimizations enabled. But the gain is important if no GCC
optimizations are performed. Indeed, when targetting modern processor architecture, GCC can

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 21

transfer most stack usage into registers, usually available in great numbers. Again, in the context
of restricted processor architectures used in critical applications, GCC may not be able to do so.

7 CONCLUSION AND PERSPECTIVES
We succeeded in automatically providing to each Lustre source code an abstract operational
semantics and proving with high success rates such a specification at the C target level of a Lustre
compiler. We achieved our goal with a translation validation technique, on a non trivial subset
of the Lustre language including hierarchical state machines, while enabling code optimizations.
To the best of our knowledge, the most aggressive of our optimizations, such as clock disjoint
time-frame variable recycling, are not supported by the state-of-the-art SCADE Suite compiler. The
automated support for such strong specification of C code also allowed us to unveil a bug in the
original LustreC compiler optimization strategies.
Building on this promising first proposal, our work can be extended in several directions. First,

we need to investigate how to increase efficiency and robustness of the solvers, by providing
aggressive context pruning techniques and guidance to these tools. We may for instance reconsider
our position detailed in section 4.2 about state correspondence once the Frama-C tool supports
local reasoning again. Also, even though using ghost variables instead of existential quantification
as explained in section 5 probably helps solvers by keeping the exact same code and annotations
structure whatever the optimization level, we may try a different balance between these two
approaches. We also want to find a more suitable metric than program size to sort out the several
ways of improving our verification approach, such as depth or size of the state tree.

Second, we could provide support for a more expressive input language, including for instance
structured datatypes such as records and arrays. Until now, we also assume that Lustre programs
are well-formed, i.e. free of run-time errors and uninitialized variables, otherwise such programs
simply cannot be proved to follow their specification. We may investigate what remains of their
specification when well-formedness does not hold.
Finally, with regard to our relational semantics, we plan to address its relationship with the

canonical dataflow one and envision initiating another approach based upon a formalization in a
proof assistant such as Coq [41], complemented with automated proof strategies, instead of putting
heavy stress on first-order solvers. We also plan to use it to prove high-level functional contracts of
Lustre programs.

ACKNOWLEDGMENTS
This work is supported by the Defense Innovation Agency (AID) of the French Ministry of Defense
(research project CLEDESCHAMPS N 2021 65 0070).

REFERENCES
[1] Hafiz Muhammad Amjad, Kai Hu, Jianwei Niu, Noor Khan, Loïc Besnard, and Jean-Pierre Talpin. 2019. Translation

Validation of Code Generation from the SIGNAL Data-Flow Language to Verilog. In 2019 15th International Conference
on Semantics, Knowledge and Grids (SKG) (SKG’19). (Sept. 18, 2019), 153–160. doi: 10.1109/SKG49510.2019.00034.

[2] ANSYS. 2021. Scade suite. https://www.ansys.com/products/embedded-software/ansys-scade-suite.
[3] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. 2010. OTAWA: An Open Toolbox for

Adaptive WCET Analysis. In Software Technologies for Embedded and Ubiquitous Systems (Lecture Notes in Computer
Science). Sang Lyul Min, Robert Pettit, Peter Puschner, and Theo Ungerer, (Eds.) Springer, Berlin, Heidelberg, (Oct. 15,
2010), 35–46. isbn: 978-3-642-16256-5. doi: 10.1007/978-3-642-16256-5_6.

[4] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew
Reynolds, and Cesare Tinelli. 2011. CVC4. In Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science). Ganesh Gopalakrishnan and
Shaz Qadeer, (Eds.) Vol. 6806. Springer, (July 20, 2011), 171–177. doi: 10.1007/978-3-642-22110-1_14.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.1109/SKG49510.2019.00034
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/978-3-642-22110-1_14

22 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

[5] Patrick Baudin et al. 2021. The dogged pursuit of bug-free C programs: the Frama-C software analysis platform.
Communications of the ACM, 64, 8, (July 26, 2021), 56–68. doi: 10.1145/3470569.

[6] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert de Simone.
2003. The synchronous languages 12 years later. Proceedings of the IEEE, 91, 1, (Jan. 29, 2003), 64–83. doi: 10.1109
/JPROC.2002.805826.

[7] Albert Benveniste and Paul Le Guernic. 1990. Hybrid dynamical systems theory and the Signal language. IEEE
Transactions on Automatic Control, 35, 5, (May 1990), 535–546. doi: 10.1109/9.53519.

[8] Dariusz Biernacki, Jean-Louis Colaço, Gregoire Hamon, and Marc Pouzet. 2008. Clock-directed Modular Code
Generation for Synchronous Data-flow Languages. In Proceedings of the 2008 ACM SIGPLAN-SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES ’08). ACM, New York, NY, USA, (June 12, 2008),
121–130. isbn: 978-1-60558-104-0. doi: 10.1145/1375657.1375674.

[9] Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André Platzer. 2018. VeriPhy: verified
controller executables from verified cyber-physical systemmodels. In Proceedings of the 39th ACM SIGPLANConference
on Programming Language Design and Implementation (PLDI 2018). Association for Computing Machinery, New
York, NY, USA, (June 11, 2018), 617–630. isbn: 978-1-4503-5698-5. doi: 10.1145/3192366.3192406.

[10] Hamza Bourbouh, Pierre-Loïc Garoche, Thomas Loquen, Eric Noulard, and Claire Pagetti. 2020. CoCoSim, a Code
Generation Framework for Control/Command Applications: an Overview of CoCoSim for Multi-Periodic Discrete
Simulink Models. In Embedded Real Time Systems (ERTS) 2020 (ERTS’20). (Jan. 29, 2020).

[11] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel Rieg. 2017. A Formally
Verified Compiler for Lustre. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’17). ACM, Barcelona, Spain, (June 14, 2017), 586–601. isbn: 978-1-4503-4988-8. doi:
10.1145/3062341.3062358.

[12] Timothy Bourke, Lélio Brun, and Marc Pouzet. 2019. Mechanized semantics and verified compilation for a dataflow
synchronous language with reset. In Proceedings of the 47th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL’20). Vol. 4. ACM, New Orleans, LA, USA, (Dec. 20, 2019), 29. doi: 10.1145/3371112.

[13] Timothy Bourke, Paul Jeanmaire, Basile Pesin, and Marc Pouzet. 2021. Verified Lustre Normalization with Node
Subsampling. ACM Transactions on Embedded Computing Systems, 20, (Sept. 22, 2021), 98:1–98:25, 5s, (Sept. 22, 2021).
doi: 10.1145/3477041.

[14] Lélio Brun. 2020. Mechanized Semantics and Verified Compilation for a Dataflow Synchronous Language with Reset.
Ph.D. Dissertation. École normale supérieure - PSL Research University, (July 6, 2020). 258 pp. Retrieved Mar. 18,
2021 from https://www.leliobrun.net/files/thesis.pdf.

[15] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao. 2014. End-to-end verification of
stack-space bounds for C programs. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’14). Association for Computing Machinery, New York, NY, USA, (June 9, 2014),
270–281. isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594301.

[16] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros Tripakis, and Peter Niebert. 2003. From Simulink
to SCADE/Lustre to TTA: a Layered Approach for Distributed Embedded Applications. In Proceedings of the 2003
ACM SIGPLAN Conference on Language, Compiler, and Tool for Embedded Systems (LCTES ’03). ACM, New York, NY,
USA, (June 11, 2003), 153–162. isbn: 978-1-58113-647-0. doi: 10.1145/780732.780754.

[17] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Alexander Plaice. 1987. LUSTRE: a declarative language for
programming synchronous systems. In In 14th Symposium on Principles of Programming Languages (POPL’87). ACM
(POPL’87). (Oct. 1, 1987). doi: 10.1145/41625.41641.

[18] Ana Cavalcanti, Phil Clayton, and Colin O’Halloran. 2011. From control law diagrams to Ada via Circus. Formal
Aspects of Computing, 23, 4, (July 1, 2011), 465–512. doi: 10.1007/s00165-010-0170-3.

[19] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. 2016. The Kind 2 Model Checker. In
Proceedings of the 28th International Conference on Computer Aided Verification (CAV’16). Swarat Chaudhuri and
Azadeh Farzan, (Eds.) Vol. 9780. Springer, Toronto, ON, Canada, (July 13, 2016), 510–517. doi: 10.1007/978-3-319-4154
0-6_29.

[20] Van Chan Ngo, Jean-Pierre Talpin, and Thierry Gautier. 2015. Translation Validation for Synchronous Data-Flow
Specification in the SIGNAL Compiler. In Formal Techniques for Distributed Objects, Components, and Systems (Lecture
Notes in Computer Science). Susanne Graf and Mahesh Viswanathan, (Eds.) Springer International Publishing, Cham,
(June 4, 2015), 66–80. isbn: 978-3-319-19195-9. doi: 10.1007/978-3-319-19195-9_5.

[21] Mingshuai Chen, Xiao Han, Tao Tang, Shuling Wang, Mengfei Yang, Naijun Zhan, Hengjun Zhao, and Liang
Zou. 2017. MARS: a Toolchain for Modelling, Analysis and Verification of Hybrid Systems. In Provably Correct
Systems. NASA Monographs in Systems and Software Engineering. Mike Hinchey, Jonathan P. Bowen, and Ernst-
Rüdiger Olderog, (Eds.) Springer International Publishing, Cham, (Mar. 2, 2017), 39–58. isbn: 978-3-319-48628-4. doi:
10.1007/978-3-319-48628-4_3.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.1145/3470569
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1109/9.53519
https://doi.org/10.1145/1375657.1375674
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3062341.3062358
https://doi.org/10.1145/3371112
https://doi.org/10.1145/3477041
https://www.leliobrun.net/files/thesis.pdf
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1145/780732.780754
https://doi.org/10.1145/41625.41641
https://doi.org/10.1007/s00165-010-0170-3
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-319-19195-9_5
https://doi.org/10.1007/978-3-319-48628-4_3

Equation-Directed Axiom. of Lustre Semantics to Enable Opt. Code Validation 23

[22] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: a formal language for embedded critical software
development. In 2017 International Symposium on Theoretical Aspects of Software Engineering (TASE) (TASE’17).
(Sept. 15, 2017), 1–11. doi: 10.1109/TASE.2017.8285623.

[23] Jean-Louis Colaço and Marc Pouzet. 2003. Clocks as First Class Abstract Types. In Embedded Software (Lecture
Notes in Computer Science). Springer, Berlin, Heidelberg, (Oct. 15, 2003), 134–155. isbn: 978-3-540-45212-6. doi:
10.1007/978-3-540-45212-6_10.

[24] Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and Alain Mebsout. 2018. Alt-Ergo 2.2. In SMT Workshop:
International Workshop on Satisfiability modulo Theories. Oxford, United Kingdom, (July 13, 2018).

[25] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In Proceedings of the Theory and Practice
of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, (Mar. 29, 2008), 337–340. isbn: 978-3-540-78799-0. doi:
10.1007/978-3-540-78800-3_24.

[26] Gwenaël Delaval, Adrien Guatto, Hervé Marchand, Marc Pouzet, and Rutten Éric. 2017. Heptagon/BZR manual.
PARKAS (ENS) and Ctrl-A (LIG/Inria). (Apr. 3, 2017). https://gitlab.inria.fr/synchrone/heptagon/-/blob/master/manu
al/heptagon-manual.pdf.

[27] Bernd Finkbeiner, Stefan Oswald, Noemi Passing, and Maximilian Schwenger. 2020. Verified Rust Monitors for Lola
Specifications. In Runtime Verification: 20th International Conference, RV 2020, Los Angeles, CA, USA, October 6–9,
2020, Proceedings (RV’20). Springer-Verlag, Berlin, Heidelberg, (Oct. 2, 2020), 431–450. isbn: 978-3-030-60507-0. doi:
10.1007/978-3-030-60508-7_24.

[28] Pierre-Loıc̈ Garoche, Arie Gurfinkel, and Temesghen Kahsai. 2014. Synthesizing modular invariants for synchronous
code. In Proceedings First Workshop on Horn Clauses for Verification and Synthesis, HCVS 2014, Vienna, Austria, 17 July
2014 (EPTCS). Nikolaj S. Bjørner, Fabio Fioravanti, Andrey Rybalchenko, and Valerio Senni, (Eds.) Vol. 169. (Dec. 3,
2014), 19–30. doi: 10.4204/EPTCS.169.4.

[29] George Hagen and Cesare Tinelli. 2008. Scaling up the formal verification of Lustre programs with SMT-based
techniques. In Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design (FMCAD
’08). IEEE Press, Portland, Oregon, (Nov. 17, 2008), 1–9. isbn: 978-1-4244-2735-2. doi: 10.1109/FMCAD.2008.ECP.19.

[30] Grégoire Hamon and Marc Pouzet. 2000. Modular Resetting of Synchronous Data-flow Programs. In Proceedings of
the 2Nd ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP ’00).
ACM, New York, NY, USA, (Sept. 1, 2000), 289–300. isbn: 978-1-58113-265-6. doi: 10.1145/351268.351300.

[31] Erwan Jahier, Pascal Raymond, and Nicolas Halbwachs. 2020. The Lustre V6 Reference Manual. Version 17-08-20.
Verimag. http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf.

[32] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Communications of the ACM, 52, 7, (July 1, 2009),
107–115. doi: 10.1145/1538788.1538814.

[33] Mathworks. 2021. Simulink. https://www.mathworks.com/products/simulink.
[34] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation validation. In Tools and Algorithms for the

Construction and Analysis of Systems (Lecture Notes in Computer Science). Bernhard Steffen, (Ed.) Springer Berlin
Heidelberg, (Mar. 28, 1998), 151–166. isbn: 978-3-540-69753-4. doi: 10.1007/BFb0054170.

[35] Amir Pnueli, Ofer Strichman, and Michael Siegel. 1998. Translation Validation for Synchronous Languages. In
Proceedings of the 25th International Colloquium on Automata, Languages and Programming (ICALP ’98). Springer-
Verlag, Berlin, Heidelberg, (July 17, 1998), 235–246. isbn: 978-3-540-64781-2. doi: 10.1007/BFb0055057.

[36] Amir Pnueli, Ofer Strichman, and Michael Siegel. 2000. Translation Validation: from SIGNAL to C. In Correct System
Design: Recent Insights and Advances. Lecture Notes in Computer Science. Ernst-Rüdiger Olderog and Bernhard
Steffen, (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg, (Mar. 24, 2000), 231–255. isbn: 978-3-540-48092-1. doi:
10.1007/3-540-48092-7_11.

[37] Michael Ryabtsev andOfer Strichman. 2009. Translation Validation: from Simulink to C. InComputer Aided Verification
(Lecture Notes in Computer Science). Ahmed Bouajjani and Oded Maler, (Eds.) Springer, Berlin, Heidelberg, (July 2,
2009), 696–701. isbn: 978-3-642-02658-4. doi: 10.1007/978-3-642-02658-4_57.

[38] Norman R. Scaife, Christos Sofronis, Paul Caspi, Stavros Tripakis, and Florence Maraninchi. 2004. Defining and
Translating a ”Safe” Subset of Simulink/Stateflow into Lustre. In Proceedings of the 4th ACM International Conference
on Embedded Software (EMSOFT ’04). ACM, New York, NY, USA, (Sept. 27, 2004), 259–268. isbn: 978-1-58113-860-3.
doi: 10.1145/1017753.1017795.

[39] Gang Shi, Yuanke Gan, Shu Shang, Shengyuan Wang, Yuan Dong, and Pen-Chung Yew. 2017. A Formally Verified
Sequentializer for Lustre-like Concurrent Synchronous Data-flow Programs. In Proceedings of the 39th International
Conference on Software Engineering Companion (ICSE-C ’17). IEEE Press, Piscataway, NJ, USA, (May 28, 2017), 109–111.
isbn: 978-1-5386-1589-8. doi: 10.1109/ICSE-C.2017.83.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.1109/TASE.2017.8285623
https://doi.org/10.1007/978-3-540-45212-6_10
https://doi.org/10.1007/978-3-540-78800-3_24
https://gitlab.inria.fr/synchrone/heptagon/-/blob/master/manual/heptagon-manual.pdf
https://gitlab.inria.fr/synchrone/heptagon/-/blob/master/manual/heptagon-manual.pdf
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.4204/EPTCS.169.4
https://doi.org/10.1109/FMCAD.2008.ECP.19
https://doi.org/10.1145/351268.351300
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf
https://doi.org/10.1145/1538788.1538814
https://www.mathworks.com/products/simulink
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0055057
https://doi.org/10.1007/3-540-48092-7_11
https://doi.org/10.1007/978-3-642-02658-4_57
https://doi.org/10.1145/1017753.1017795
https://doi.org/10.1109/ICSE-C.2017.83

24 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux

[40] Gang Shi, Yucheng Zhang, Shu Shang, Shengyuan Wang, Yuan Dong, and Pen-Chung Yew. 2019. A formally verified
transformation to unify multiple nested clocks for a Lustre-like language. Science China Information Sciences, 62, 1,
(Jan. 2019), 12801. doi: 10.1007/s11432-016-9270-0.

[41] The Coq Team. 2021. Coq. https://coq.inria.fr.
[42] Xavier Thirioux and Pierre-Loïc Garoche. 2021. Lustrec. https://github.com/Embedded-SW-VnV/lustrec.
[43] Andres Toom, Nassima Izerrouken, Tõnu Näks, Marc Pantel, and Olivier Ssi Yan Kai. 2010. Towards Reliable Code

Generation with an Open Tool: evolutions of the Gene-Auto toolset. In ERTS2 2010, Embedded Real Time Software &
Systems. Toulouse, France, (May 19, 2010).

[44] Andres Toom, Tõnu Näks, Marc Pantel, Marcel Gandriau, and I. Wati. 2008. Gene-Auto: an Automatic Code Generator
for a safe subset of Simulink/Stateflow and Scicos. In Embedded Real Time Software and Systems (ERTS2008). Toulouse,
France, (Feb. 1, 2008).

[45] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic. 2005. Translating discrete-time simulink to lustre.
ACM Transactions on Embedded Computing Systems, 4, 4, (Nov. 1, 2005), 779–818. doi: 10.1145/1113830.1113834.

[46] Zhibin Yang, Jean-Paul Bodeveix, Mamoun Filali, Kai Hu, Yongwang Zhao, and Dianfu Ma. 2016. Towards a verified
compiler prototype for the synchronous language SIGNAL. Frontiers of Computer Science, 10, 1, (Feb. 2016), 37–53.
doi: 10.1007/s11704-015-4364-y.

[47] Liang Zou, Naijun Zhan, ShulingWang, andMartin Fränzle. 2015. Formal Verification of Simulink/StateflowDiagrams.
In Automated Technology for Verification and Analysis (Lecture Notes in Computer Science). Bernd Finkbeiner,
Geguang Pu, and Lijun Zhang, (Eds.) Springer International Publishing, Cham, (Nov. 22, 2015), 464–481. isbn:
978-3-319-24953-7. doi: 10.1007/978-3-319-24953-7_33.

[48] Liang Zou, Naijun Zhan, Shuling Wang, Martin Fränzle, and Shengchao Qin. 2013. Verifying Simulink Diagrams via
a Hybrid Hoare Logic Prover. In Proceedings of the Eleventh ACM International Conference on Embedded Software
(EMSOFT ’13). IEEE Press, Piscataway, NJ, USA, (Sept. 29, 2013), 9:1–9:10. isbn: 978-1-4799-1443-2. doi: 10.1109
/EMSOFT.2013.6658587.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.1007/s11432-016-9270-0
https://coq.inria.fr
https://github.com/Embedded-SW-VnV/lustrec
https://doi.org/10.1145/1113830.1113834
https://doi.org/10.1007/s11704-015-4364-y
https://doi.org/10.1007/978-3-319-24953-7_33
https://doi.org/10.1109/EMSOFT.2013.6658587
https://doi.org/10.1109/EMSOFT.2013.6658587

	Abstract
	1 Introduction
	2 Related work
	3 The Lustre language and its compilation
	3.1 Compiler architecture
	3.2 Normalized Lustre
	3.3 Translation to Machine code
	3.4 Generation of C code

	4 Semantics Axiomatization
	4.1 Formalization of flow equations semantics
	4.2 C code specification: local annotations and function contracts

	5 Code optimizations and impact on the proof framework
	6 Experimental results
	6.1 Translation validation
	6.2 Performance evaluation

	7 Conclusion and perspectives
	Acknowledgments

