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Abstract :

Concerning in situ passive sampler deployment, several technical priorities must be considered. In
particular, deployment time must be sufficiently long not only to allow a significant quantity to be
accumulated to facilitate analysis but also to ensure that the signal is above the quantification limit and
out of the blank influence. Moreover, regarding the diffusive gradient in thin films (DGT) technique,
deployment time must also be sufficiently long (at least 5 days) to avoid the interactions of the solutes
with the material diffusion layer of the DGT and for the steady state to be reached in the gel. However,
biofouling occurs in situ and modifies the surface of the samplers. In this article, we propose a kinetic
model which highlights the biofouling effect. This model was able to describe the mitigation of the flux
towards the DGT resin observed on Cd, Co, Mn, Ni and Zn during a 22-day deployment in the Seine
River. Over a period of 22 days, biofouling had a significant impact on the DGT concentrations
measured, which were decreased twofold to threefold when compared to concentrations measured in
unaffected DGTSs.
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1. Introduction

Passive samplers are an emerging way of assessitgr wuality. Their use is increasing in the sdfient
community. It is claimed that they provide timedgtated concentrations of the species they meakuieg their
deployment in water. Quantification limits are lowe and the matrix effects in the analytical precase reduced.
However,in situ conditions differ significantly from convenientblaratory conditions. Biofouling occurs at the
surface of the samplers being immersed in watefrelshwater, physicochemical conditions differ gisehetween
sampling sites, while deployment time is subjedt®anany constraints: metal accumulation must baifbgnt,
whereas, in relatively uncontaminated sites, thay mequire a long deployment time, and interactioihe solutes
with the material diffusion layer cannot be negbekif the deployment time is too short. Diffusidnneetals may be
retarded at the beginning of the deployment becatigeese interactions, and deployment time hadetsufficiently

long to ensure the steady state is reached, @scisssed by Davison and Zhaf@912) and Garmet al. (2008b,a).

Previous studies examined what consequences terme of major ions had on diffusive gradient im thim
(DGT) measurements in marine water (Tankere-Muwteal. 2012). They also simulated the limits of the linea
accumulation regime of DGT concerning pH, deployhteme, and dissolved ligands (Mongit al. 2013). Others
studies showed that biofouling might affect DGT sw@ament: Pichettet al.(2007) and Fengt al.(2016) studied
the effect of biofilm development on phosphate meament using DGT, respectively in a freshwateraaglture
pond and in freshwater. It has already been obdehe biofouling had a strong effect on DGT meament in
raw wastewater (Uheat al.2012). However, Buziest al. showed that 14-day-biofouling did not affect tliudion

coefficient of the DGT diffusion layer in freshwai@uzieret al. 2014).

Biofilm developing at the surface of DGT has loregh suspected to behave as an additional ineusdifi layer,
which may reduce the uptake of the species anal{Redij et al. 2006, Pichettet al. 2007, Schafeet al. 2008).
Moreover, it has long been known that biofilm imtets with metals in solution through various preess(Van
Hullebuschet al. 2003). One of these processes, biosorption oilb®and bacterial cells has been studied in depth
as a potential sorbing material for removing meti@m waste solutions (Ginisst al. 1998, Kuyucak and Volesky

1988, Veglio and Beolchini 1997, Wase and Wase P@Dther interactions of varying importance andersibility
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may occur between biofilm and metals, namely: caxgtion, precipitation of insoluble salts, adsapton iron
and manganese oxides, and reduction, as highlightéd in a comprehensive review by Van Hullebusttal
(2003) of knowledge of the mechanisms of metal itifimation by biofilm and also in several experintarstudies
conducted under varying conditions and with severelals (Bradaet al. 2009a, Bradaet al. 2010, Duonggt al.
2010, Faburet al. 2015, Fechneet al. 2014, Mopperet al. 2009, Toneet al. 2005, White and Gadd 2000). It is
also assumed that biofilm is a “gateway” betweessalved metals in solution and hydrous metal oxabeging the
streambed, and that biofilm plays a role in thd dieles of dissolved metals (Nimiakt al 2011). More recent
reviews have focused on the role of extracellutdymeric substances (EPSs, secreted by microomngahisvhich
exhibit abundant binding sites for metals (Li and 2014, Moreet al 2014). Fenget al showed that the
composition of a biofilm grown at the surface of D@hosphate-samplers mainly consisting of diatoseseral
metal oxides (Fe, Al, Mn) and EPSs (Festgal. 2016). Buzieret al(2014) also observed biofilm forming at the
surface of DGT samplers: biofilm was composed afaoic deposits and metallic oxides capable of dilsgr

species.

The results of our previous study suggest thatilhisfat the surface of DGTs and metal speciesantditJheret al.
2012). Different effects were observed dependinghenmetal being studied (Cd, Cr, Co, Cu, Mn, M, Bn). It
was concluded from these results that biofilm eitbilmetal-binding properties with varying degreéspecificity
and affinity, depending on the metal under scrunfyrthermore, the literature suggests that mertalibg
properties also depend on the bulk solution cheynamd on the physiological state of the biofilmir(ick et al.
2011). The biofilm’s composition is likely to vaaccording to the sampling site and deployment dardi. Thus,
biofouling can also be expected to vary with thengling site. A simple kinetic model which highlighthe
physicochemical interactions between metals andillbi® was proposed to explain biofiim’s effect onGD
measurement. However, we need to precisely vettifgther the description we proposed is valid in otoaditions
than in wastewater where the former experimentewenducted. DGTs are more often deployed in frestmw

Therefore more freshwater data are needed to estabmodel of the impact of biofouling on DGT me=&snent.

The first purpose of this particular research waprecisely describe how biofouling may affect trensfer of
metals to the DGT chelating resin by proposing antjtative model involving physicochemical inteians of

metals and biofilm. Its second purpose was to yesifiether this hypothesis is valid in freshwaterstddy was
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conducted in the Seine River. Accumulation of neetsd the DGT Chelex resin was monitored along with
biofouling and biomass growth estimation of thefibio attached to the protective membrane of the D@®&Torder
to compare the model with the experimental datgsiebchemical conditions and deployment time wenes@ered
while discussing the results.

2. Theoretical background

2.1 DGT principle
The principle of DGT is based on Fick's first &G Ts are composed of a chelating resin, a diffubixdrogel, and
a protective membrane. A metal diffusion gradieewedops between the bulk solution and the resiarlagcause
this latter strongly sequesters cationic metalsnggquently, metal species are transported throhghntaterial
diffusion layer (MDL), comprising of the gel andetimembrane, toward the resin. The flux (J) of mietas can be
expressed by Equation 1:

AC Equation 1

AMDL

] = DmpL,

where Qo is the diffusion coefficient in the material diffion layer AC is the concentration gradient, atwgh, is
the thickness of the MDL. The free metal ions ia thiffusion layer are in rapid equilibrium with thesin, so the
concentration near the resin is zed@~C, where C is the concentration in the bulk solutidherefore at steady
state Equation 1 becomes:

C Equation 2
= DmpL _AMDL

The flux of species through an area (A) after &gitime (t) is also defined by:

= m Equation 3

where m is the mass of metal accumulated in théathg resin. It should be noted that J is the mihax of the
metals during the deployment time.

Combining Equation 2 and Equation 3 shown abowve,effuation giving the concentration in water mezssury
DGT is as follows:

Cpop = MAuDL Equation 4
DGT DMDLtA




94

95 2.2 Metal biofilm DGT interaction model

96  As soon as a substrate is immersed in water, maitktells would attach and, through growth and BRSluction,

97  biofilms may develop. This biofilm layer both coitstes an additional diffusion layer for DGT andhibits

98 abundant interaction sites for metals. However, Di@finot be considered as just any surface in vsteause of

99 the affinity of metal for chelating resin therebngating the diffusion gradient in the gel of the D@evice. Thus
100 metals fate may be driven by two different sinkse tliffusion through the DGT gel because of thénrasd the
101 binding within the external biofilm. This is illustted in Figure 1: whenever metals interact withwithin the
102  biofilm matrix, they are temporarily fixed by théofilm. Metals reversibly retained by the biofilnventually
103 diffuse through the hydrogel toward the resinhi dissociation of the metal from the biofilm i® thmiting step,
104  metal diffusion in the hydrogel might be severedyarded. If the complexes dissociate readily, acdation of

105 metal in the resin might occur with no significafitect.

106 Two parameters are decisive: firstly the natur¢hefbiofilm which in turn may alter the nature bétinteractions

107  with the metals and secondly the metal concentratiavater which influences the diffusion gradiéarice.

108 From Equation 2 and Equation 3 above, we can esxtpatthe flux of metal in DGT is constant if thencentration
109 in water is constant. When a part of the metaleisined by the biofilm, the mean flux J should bduced to
110 account for that part that does not diffuse becafigsteractions:

Cg Equation 5

] =Jo — DmpL AwpL

111  where {is the flux in the absence of biofilm afg is the mean metal concentration immobilized in Wiafilm
112  during the deployment time in ng &m
113  Given the reactions shown in Figure 1, the kineticsietal in the biofilm can be described by Equiai:

dC Equation 6
d_tB =k;Cy — k;Cp .

114 where G is the concentration of metal immobilized in thefitm and G, is the concentration of metal M
115 interacting with biofilm in water in the vicinityfdhe sampler. ConsideringsG 0 at time t = 0, we deduce Equation

116 7 by integrating Equation 6:



k Equation 7
Ca(®) = Gy (1 - 729 q
2

117 where k is the uptake rate of metal in the biofim*jdand k is the elimination rate constant™jd Equation 7
118 corresponds to a two-compartment kinetic model dram et al. 1992) where kis considered as a constant under
119 the assumption that the free binding sites conagatr is in large excess compared §p. Eormer studies used this
120 type of model to describe the accumulation of migtadiofilm (Bradacet al 2009, Hill and Larsen 2005)s(@) is
121 rigorously the metal concentration in the biofilinaagiven time t. Here the mean metal concentratidhe biofilm
122  between 0 and € in Equation 5) is approximated tg() for every t.

123 Combining Equation 5 and Equation 7 gives theofelhg Equation 8:

D k i
J = o — Cy ML 51 (g _ eat) Equation 8
AMDL kZ
J=Jo—a(1—eP) Equation 9
Wherea = Cy ]ZMDLE and B=k, Equation 10
MDL K2
124 3. Experimental section
125 3.1 DGT deployment in the Seine River

126  Twenty-four DGTs equipped with restricted gels fimide with 0.8% bis-acrylamide cross-linker) gndtective
127 membranes: polyethersulfone-PES (0.4 pore diameter, 2.5 cm diameter, 14 thickness, Pall, Port
128 washington, New York, USA), and twenty-four DGTsuigmped with restricted gels, protective membrars Bnd
129 Polycarbonate nuclepore membranes PC jith4ore diameter, 2.5 cm diameter, i@ thickness, Whatman, Little
130 cChalfont, UK) were deployed in the Seine River k#® upstream of Paris, from ®March 2012 to 18 April 2012.
131  Accumulation of metals in Chelex resin was followed 22 days by retrieving 6 DGTs of each type (Ri&8 PC)
132 att=3, 8, 15, and 22 days (Figure 2). New trigiisaof DGT of each type were deployed betweenatw8t=8, t=8

133 andt=15, t=15 and t=22.

134 To measure total dissolved concentrations, two geabples were collected with a plastic needle dtetedin situ
135 (Minisart syringe filters with PES membranes, O%, Sartorius, Gottingen, Germany) at time 3, §, dridl 22
136 days. Samples were acidified 1% vol. using supraiN©; (65% suprapur, Merck, Darmstadt, Germany) in the

137 laboratory.
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Moreover, grab samples were collected and filténesitu to measure major ions CaMg®*, K*, Na', NOy, CI,
SOZ, PQY, CO%) and also the dissolved organic carbon (DOC). teRperature were measuriedsitu. The data

collected may be examined in the supporting infdioma(Table SI 1).
3.2 DGT treatment

DGTs retrieved at time 3, 8, 15, and 22 days wesmantled and metals were eluted from the Chelsinrby

soaking it in HNQ 1 mol L. PES and PC membranes were frozen (-80°C).
3.3 Total carbon measurements and scanning electron microscopy observations

To estimate the mass of deposits on membranettédlecarbon (TC) was analyzed using a LECO CSdriyser
(St. Joseph, MI, USA) with a combustion of 900°@u@ons (1 cm x 1 cm) were cut from protective membs of
DGT after exposure (at least three coupons for @achersion condition). Each coupon was immersegdGrmL

pure sterilized water and placed in an ultrasoait ior 40 mins to remove the deposit. The sorocatvas stopped
regularly and the water in the bath replaced witld avater to prevent the samples from overheatirigen the
solution was filtered on a weighted and precomltl$tehrs, 450°C) filter in fibreglass (GF/F, Whatmdiameter,
2 cm). The fibreglass filter was dried in a laborgtoven at 37°C overnight and then placed in aroér crucible

directly in the furnace for combustion; accelerat@on and tungsten) were required.

The biofilm attached to these membranes was obddryscanning electron microscopy (SEM). After esgoe, the
protective DGT membranes were rinsed in baths of prater and then dehydrated under a formalin gihrere in
a fume hood; the surfaces were covered with aldlyier of gold/palladium prior to SEM imaging. Aksples were

imaged in an FEI Quanta 200 scanning electron reotoe.
3.4 Metal analysis

Metals from DGTs and grab samples were analyzedgutie ICP-MS (X series 2 Thermo Fisher Scientific,
Villebon-sur-Yvette, France). Calibration of theR®AS was verified by analysis of the certified refece material

NIST 1640a (natural water): mean recovery = 98%.



162 3.5 Flux calculation

163 Equation 3§ = t% ) was used to calculate the mean flux at timeith w as the mass of metal accumulated on the

164 resin att and with A as the exposure area. Thrutzied flux J was plotted against t. The effecaepling area A
165 taking into account lateral diffusion was used lie talculations. Awas taken equal to 3.66 cm?, according to

166 Knutssoret al. (2014).
167 3.6 Labile concentration calculation

168 Previous studies showed that a diffusion boundagend is created in front of the samplers when they are
169 immersed in water (Garmet al. 2006, Uheet al. 2013, Warnkeret al. 2006).5 has to be taken into account in the
170 calculations where possibld.is considered as an additional diffusion layer nehide diffusion coefficient of the

171 free metal in water is | Equation 4 becomes:

m (A 1) A 8 Equation 11
<MDL+ )=]( MDL ) q

G —_ — — —
PET 7 tA, \Dyp,  Dw Dyp. Dw

172 When a linear relationship between the mass acatedibn the resin m and the time t exists, theestdghe linear

173 model can be used to calculate a global labile eomation as follows:

slope /Ayp, 6 Equation 12
DGT = —( + —)
Ae \Dwp. Dw

174 The diffusion coefficients [y, used in this study were calculated in a previouslys where we showed that
175 protective membranes had no influence on the owveiffision coefficient of the diffusion layer wittestricted gels
176 (Uheret al. 2012). O, were taken from Let al. (1974). Quo. and Qy were corrected for thia situ temperature

177  according to Zhang and Davison (1995).

178 The flow rate in the Seine River was high (#0020 n? s®). No significant precipitations occurred and tlenfrate
179 remained fairly stable during the deployment, s diffusive boundary layer thickne8svas taken to be constant
180 over the deployment. As we dealt with fast-flowingterd was set at 0.026 cm, as calculated in our preéouty

181  (Uheret al.2013).

182
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3.7 Model fitting

Fluxes J according to the time were calculatediGiTs deployed at d = 0. The models described irtiheretical
background were fitted to the experimental datagisionlinear regression of the XLStat © softwdsea andf are
the regression coefficients of the nonlinear mothits of the model were calculated with the lim#lues of the
95% confidence intervals of the parameters: uppeit = J calculated with ohaw Omin, Bmin, lOWer limit = J

calculated with ghin, Omax Bmax-

4, Resultsand discussion

4.1 Dissolved metal concentration

Total dissolved concentrations in Cr, Co, Cu, Mi,Pb, and Zn measured from day O (first day ofdaployment)
to day 22 are represented in Figure Sl 1. TotalalN®d concentrations were fairly stable over tieasept for Cu,
which increased at time t = 3 and t = 5 days, amdzfi. A discrepancy between the replicates was alfserved:

40% for Cr at d3 and d15, 30% for Mn at d22.

4.2 Biofilm growth at the surface of the membranes

The total carbon measured on the membranes’ sudaeetime is represented in Figure 3. The massadbon
clearly increased with time, indicating that theflin grew steadily during the deployment. Thisuless supported
by the SEM images (Figure 4) showing the biomassvigng with time. At time t = 22 days, the membramese
colonized by diatoms. These results are consistéhtthose shown by Fengt al. (2016), who observed that the

biofouling area was dominated by diatoms after dsdieployment.

Figure 3 also shows that the biofilm growth wassiderably higher on PES membranes from time t ddys. This
is explained by the presence of a larger numbeatiatbms, as seen in Figure 4. Standard deviaticere \Wwigh,

showing that biofilm colonization was heterogenedegending on the samples.

4.3 Metal accumulation in the DGT

The amount of metals accumulated on the resih@XGTs was monitored throughout the deploymeng ietal

accumulation patterns are shown in Figure Sl-hésupporting information. Despite the higher binfgrowth on
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PES membranes, no significant difference was obsebetween those DGTs equipped with both PES and PC
membranes and DGTs equipped with PES membraneg.t@nPb accumulation pattern suggests a trendrttswa
greater accumulation when DGTs were covered witB Riembrane only (not statistically significant).a@ims,
which were more present on PES membraaes phototrophic organisms that may lead to elevpté inside the
photosyntetically active biofilms (Liehet al. 1994, Roeselerst al. 2008). This may favor removal of metals by
precipitation. Here the metal accumulation by D@Es not influenced by the phototrophic nature ef biofilms,

except for Pb for which accumulation might be erdeaiwhen diatoms are present.

Cd, Co, Cu, Mn, and Ni accumulations show a glgbaicreasing trend between time t = 0 and time 22=
(Spearman’s correlation tests between m and t:lyesawere respectively 5.£03.108 7.10", 3.10° 7.10").
However, accumulation of Cr and Pb was less clda: signal seems to remain stable because of tsat gr
variability of the experimental points, even if ytere all above the limit of detection LD (LD = amge value of the
blanks + 3 x standard deviation on the blanks8). Zn accumulation increased between day 0 and3dahen
seemed to increase from day 8 but the differenteden day 8 and day 22 was not significant (Wilcoxest, p =

0.09).

Replicates exhibited great variability (around 3Q00%everal sources of uncertainty were highlighigdnutsson
et al (2014) such as preparation, handling of the samapland the diffusional pathway. Here, after aglon
deployment time (22 days), the variability of tleplicates remained unchanged. After such a longgef time,
the influence of blanks decreased significantlydose of greater mass accumulation of metals. Weahsume that
in situ conditions may play a role in the variability dfetreplicates, such as, for instance the positicihé water
column. We also noted that biomass greatly vanethfone sample to another (Figure 3). Heterogenbmfm

colonization may also explain the variability oétreplicates.

The accumulation kinetics of DGTs deployed at tinreO were compared to accumulation kinetics Hudtn the
renewed DGTs, computed as follows: to calculateatrerage mass of metal at time t = 8 days, theageemass of
metal accumulated by DGTs between time t = 3 ame ti = 8 days was added to the average mass of meta
accumulated at time t = 3, and so on until time22=days. Because no significant difference wagmesl between
DGTs equipped with both PES and PC membranes ants@@uipped with PES membranes only, accumulation

kinetics were represented by the mean of all D@licgates. Examples of Co, Cu, and Zn are presenté&ibure 5

10
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while other metals are presented in the suppoitifggmation (see Figure SI-3). The kinetics buithrh renewed
DGTs clearly increased more linearly than the kasefrom DGTs deployed at time t = 0 and are sigaiftly
higher. A plateau was reached for all metals extédor DGTs deployed at time t = 0. There was assantial
difference between the cumulated mass of renewed@sDahd the DGTs deployed for 22 days at the enthef

deployment (on average 67%).

Deployment conditions clearly affected the DGT mueasient. We will now try to discuss what factord te this

difference between renewed and initial DGTs.

Two studies in the recent literature provide uséfdications. Firstly, Mongiret al. (2013) studied the limits of the
linear accumulation regime of DGTs and concluded ghlow pH (<5), a high metal concentration, gltime, or a
high concentration of ligands can affect the linegime of the DGTSs. In the experiment reportethis article, pH
was around 8.46 and in favor of a linear regimee Trtetal concentrations in the Seine River were tahen 5.16
mol L for each metal while concentrations leading tdvemence of the linear regime in the study repbiig
Mongin et al. (2013) were in the order of £anol L. Not more than 8 days were tested in the studviaigin et
al. (2013), so we are unable to draw conclusionshertitne deployment. That being said if time affebis DGT

measurement the pH conditions in the Seine Riveddvargue more in favour of a linear regime.

Secondly, one significant characteristic of thenSeRiver is the calcium concentration (around 147 Lm = 2.9
mmol L%). Tankéré-Mulleret al. (2012) studied the effect of the competitive catidnding of metals by DGT in
marine waters. They concluded that measurement rof Which has a weak affinity for Chelex 100 resivgs
strongly affected by the competition with<at 10 mmol [* (approximately a 25% decrease). However, Co, which
was included as a control metal having a higheniafffor Chelex 100 than Mn, was much less affdcfeith a
deviation less than 10%). In our study deviatioxistefor all metals including those having the bafinity for the
resin (Cu, Pb, Co) and are above 25%. If the preser relatively high concentrations of Caffect the DGT
measurement, especially for Mn, this does not fekplain the difference we observed in the SeineRIiAs well

as these parameters we suggest that biofoulingptagya role in the decrease of the DGT measuremigntrespect

to time.

11
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4.5 Flux in the DGTs and biofilm effect

The plot of flux in the DGTs with time shows th&iX decreases for all metals (Figure 6 and Figurd)SIf we
suppose that metal concentrations in water aréivela constant (except for Cu), the flux shoulddmnstant. Here
we observe a sharp decrease during the first dayspboyment, followed by a plateau at the end @9, probably
related to the plateaus observed for the metalraatation in DGTs deployed at time t = 0 (Figure B). verify the
hypothesis that biofouling can affect the DGT measient, we tried to fit the experimental data vtttk models
described in the theoretical background. As noiicgmt difference was observed between DGTs eqdppith
PES and PC membranes and DGTs equipped with PESraees only, all the DGT replicates deployed atQ =

were used to fit the model in order to improve staistical power of the model.

The interaction model described by Equation 8tfitssdataof DGTs deployed at t = 0 for Co and Zn very weilihy
respectively, R2=0.78 and 0.79 (Figure 6). The spaitern was observed for Cd, Mn, and Ni (R2=001%1, 0.79;
see Sl). When fluxes of DGTs deployed later (aktinF 3, 8, and 15 days) are added to the grapimsding to the
deployment time, they fit the model for Co and Bowever, they fit the model in a lesser extentGdr, Mn and Ni
although replicates exhibit a great variability filrese metals. This is in agreement with the hygsiththat
concentrations were relatively constant for thes¢ats during deployment. For them the fluxes depaoce on the
number of days DGTs were deployed rather than tbmemt where they were deployed. Regarding Cu, Ithe f
seems to decrease linearly with time and doesallavf the nonlinear Equation 8. However, as we kntve Cu
concentrations were not constant during the depémgrand thus did not meet one of the assumptiotiseomodel

of Equation 8. We cannot therefore conclude abaut C

Moreover, Cr and Pb (see Figure Sl 4) do not folline model either. This could be related to thd that
accumulation of Cr was not significant enough foede elements (see Figure S| 2 and the section eial m
accumulation), or else to the great variabilityPdsf replicates. Furthermore, other processes nentio account in

the model may occur.

In conclusion, the decrease of the metal flux inTBGIuring deployment seems to be correctly defingahe
metal-biofilm interaction model for Cd, Co, Mn, Nind Zn. This model gives a suitable explanatiotoagshy the

biofouling effect on the measurement may depenthermetal and highlights the kinetic aspect of ilefouling

12
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effect. However, other processes may occur. Feame we choose to neglect MDL increase in our inddiedels
involving MDL increase tested with our data (datd shown) were unsuccessful. A model combining B
increase and metal-biofilm interactions would bessue, but requires more data than we had toatbyrté such a

model.
4.6 Kinetic constants and labile concentrations

For Cd, Co, Mn, Ni, and Zn, the parameters of #gression),, @ and 3 were estimated. From the latter, uptake
and elimination rate constants&nd k were calculated in“sand d* using Equation 10 and may be seen in Table 1,
except k for Cd for which G, was under the limit of quantification. The chaeaistic time {,, corresponding to the

time where the flux is equal to 50% of the inifialk was also calculated with

1 Jo .
tyz = —Eln (1 — ﬂ) Equation 13

The initial labile concentration, which was noteaffed by biofouling, was calculated frogfdllowing Equation 11:

Co=Jo (% + ?)—]j:) Equation 14
C, was compared with the mean dissolved concentratieasured in water{by calculating the gCy, ratio. G
was consistent for Cd and was lower than the Citelabncentrations found by Tusseau-Vuillereinal. (2007) in
the Seine River. For Co and Nig @as lower than {, as can be expected from a labile concentratiod,ia the
range of values found by Tusseau-Vulilleratral. The G/C,y, ratio was also the same as in the Tusseau-Vuitieini

al. study for Ni, but larger for Co. In the case of Mnd Zn, @ was overestimated but was on the same order of

magnitude as .

k> was in the same order of magnitude adltkillustrates that the biosorption mechanisnbased on a number of
metal-binding processes taking place with companeiitthe biofilm components’ cell wall. The cell Ngacan
reversibly biosorb metals and thus function in railsir way to an ion-exchange resin (Wase and Wa&82)2 k
represents the dissociation of the metal from ibélim, which is driven by the DGT gradient strehgtnd must be
higher to allow the accumulation of metal by Chelegin (Co and Ni). The values of &lculated here are in the
same order of magnitude as the water rate conefa@t®" (k,=5.10" s?), which is considered to be very slow in

comparison to the water rate constants of otheals¢k,(Cd?)=3.1F s?, k,(Co*)=2.1C s?) (Stumm and Morgan

13
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1996). The association of metals with the biofilrowgn at the surface of DGTs is therefore a slovetiea because
of the predominant DGT gradient strength. Howeseme of the metal might be trapped. This is higitiéd by the
calculation of the characteristic timg,t presented in Table 1, which shows that the fRixery quickly affected
during the deployment and decreases within thefis days: in the case of Co, the flux was de@ddsy 50% in

just 4 days.

To obtain the ggT1.m, that is, the mean labile concentration of theatsein the Seine River that were the least
affected byin situ and physicochemical conditionsp&s was derived from the slope of the accumulatioretas of
the renewed DGTs (See Figure 5) using Equation Tisdeau-Vuilleminet al 2007). The resulting labile
concentrations are given in Table 2. The labileceniration Ggr.122 calculated from the mass accumulated in

DGTs at time t = 22 days using Equation 11 are pisgented.

Labile concentrations from the renewed DGTs werthinsame order of magnitude as the concentratmasured
in the Seine River basin reported by Tusseau-Muileet al. (2007) in which the deployment took 8 days. Labile
percentages ranged from 21 to 202%. It would berésting to investigate Mn, Pb, and Zn in ordedetermine if
the high value of gs1.m stems from possible contamination peaks that eltkde grab samples or raises questions

regarding the technique and the calculations thmese

The Ger.122 Was underestimated two- to sevenfold when compaid Cosr.m This highlights the difference
between that of a long deployment time affected msby environmental and physicochemical condisi@and that

of a shorter deployment time.

5. Conclusion

The quantitative model that has been proposeddblight the biofouling effect was able to explairetdecrease
observed on the flux toward the DGT resin of Cd, ®m, Ni, and Zn on the presented data. Althoughent
processes not examined in this model may occurhypethesis that metals would be temporarily retdiby the
biofilm at the surface of the DGTs because of satgons within the biofilm is credible in the cotidins of our
study. In the conditions we studied we would rec@ncha deployment time of 5 to 8 days to minimize th
biofouling effect. However, biofouling is inevitabl The biofouling effect should certainly be coesetl as being a

part of thein situ DGT response. Therefoie situ speciation results should be considered with care.

14



336  However these kinetic processes may be dependeahtanetal and the sampling site. Some strong tsffazserved
337 in our study may not happen in different conditioMore data in different conditions are needed dcuinent

338  biofouling effect.
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Figure 1- Schematic representation of the role otie biofilm in the accumulation of metal by DGT
(adapted from Uher et al. 2011)
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Figure 3 — Total carbon per membrane over time
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Fiure 4 — SEM pictures of the biofilm attached tahe membranes over time
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Figure 5 — Accumulation kinetics in all the DGTs dployed at t=0 and in all the renewed DGTs. Bars
represent standard deviations.
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Figure 6 - Metal flux in the DGTs during the deployment and model fitting the data of DGTs deployed at
d = 0 and including PES and PC. DGTs deployed at 6=are represented by diamonds. Open symbols
represent DGTs equipped with PES membranes, and li#éd symbols represent DGTs equipped with PC

membranes. Upper and lower limits were calculated ith the minima and maxima values of the
parameters confidence intervals.



Cd Co Mn Ni Zn

Jo (ng cmi?s?) 1.10x10” 2.67x10° 1.70x10™ 2.27x10° 2.00x10™
Co (ug L) 0.0045 0.11 6.8 0.93 6.8
(% Co/Cw) n.c (60%) (319%) (46%) (308%)

ky (1 n.c 1.11x10° 4.06x10° 7.92x10° 8.29x10°®
(d?) n.c 0.096 0.35 0.068 0.72

k, (sY) 1.33x10° 2.45x10°° 1.84x10° 2.46x10° 3.43x10°
(d) 0.11 0.21 0.16 0.21 0.30

ty, (d) 9.0 4.1 6.4 45 2.7

Table 1. Initial flux, initial labile concentration, uptake, and elimination rate of the metal in thebiofilm

and half-time of the flux calculated from the paraneters of the nonlinear regression.

Cd Cr Co Cu Mn Ni Pb Zn
Coet-m (MG L‘l) 0.0049 0.21 0.048 0.34 4.3 0.44 0.25 24
(% Coet/Cw) n.c (33%) (27%) (29%) (202%) (21%) (183%)  (108%)
Cocr.m22 (Mg L'l) 0.0020 0.058 0.016 0.15 1.6 0.19 0.034 0.68
(% Goct/Cw) n.c (9%) (9%) (13%) (74%) (10%) (25%) (31%)

Table 2. Labile concentration calculated from accumnlation kinetics of the renewed DGTs and labile
concentrations calculated from mass accumulated at=22 days. Labile percentage in relation to the

dissolved concentration in parentheses



SUPPORTING INFORMATION

pH T ca” K' | mg” | Na' o | Nos | PO, | sO” | cos® | DOC
Units - °C mg L? mg L? mg L? mg L? mg L* mg Lt mg L mg Lt mg L mg L?
Mean 8.46 | 13.09 | 117.0 | 2.356 | 2.33 10.5 19.1 | 21.85 n.d 22.48 266 2.48
CI95% | 0.13 0.79 9.2 0.087 | 0.17 1.7 2.8 0.51 n.d 0.92 20 0.31
Table SI 1 — Physicochemical parameters of the Seine River during the deployment. Concentrations are the mean of 6

(ca®, K', Mg*, Na*, CI', NO5, $O,%), 8 (T°) and 9 (CO,>, DOC, pH) grab samples. n.d = not detected. Cl : confidence

interval 95%
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Figure Sl 2 — Metal accumulation patterns in the DGTs during the deployment. Open symbols: DGTs equipped with PES
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