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1. Introduction
Even though it only accounts for roughly 0.05% of the total mass of the Earth's landmass, water has covered 
approximately 70% of the planet's surface. Nevertheless, water has always been an essential component in the 
expansion of life on Earth, particularly in the form of creatures. If there were no water on Earth, it would be nothing 
more than a lifeless rock in the universe. More research or exploration needs to be done on the planet beneath the 
waves to benefit humanity. Underwater communication systems have swiftly acquired widespread adoption due 
to the many potential uses that can be implemented in the aquatic environment (Almutairi & Mahfoudh, 2017).

Due to the high level of attenuation that increases with the conditions of sea, that is, temperature, and salt (Siddiqi 
et al., 2017), electromagnetic (EM) waves propagating underwater travel over relatively small distances. Also, 
underwater radio frequency (RF) communications exhibit high levels of inter-symbol interference. Because of 
these issues, terrestrial wireless networking standards cannot be used in underwater environments; over the past 
year, various routing algorithms have been proposed to address the unique characteristics of this type of envi-
ronment, and the unique challenges it presents in terms of application scenarios (Thulasiraman & White, 2016).

Acoustic communications are the most popular choice for underwater wireless sensor networks (UWSN) since 
they facilitate efficient network planning and operation. The low data rate and significant propagation latency 
of acoustic communications necessitate an accurate understanding of underwater sensor position information 

Abstract Underwater communication applications extensively use localization services for object 
identification. Because of their significant impact on ocean exploration and monitoring, underwater wireless 
sensor networks (UWSN) are becoming increasingly popular, and acoustic communications have largely 
overtaken radio frequency broadcasts as the dominant means of communication. The two localization methods 
that are most frequently employed are those that estimate the angle of arrival and the time difference of arrival. 
The military and civilian sectors rely heavily on UWSN for object identification in the underwater environment. 
As a result, there is a need in UWSN for an accurate localization technique that accounts for dynamic nature 
of the underwater environment. Time and position data are the two key parameters to accurately define the 
position of an object. Moreover, due to climate change there is now a need to constrain energy consumption by 
UWSN to limit carbon emission to meet net-zero target by 2050. To meet these challenges, we have developed 
an efficient localization algorithm for determining an object position based on the angle and distance of arrival 
of beacon signals. We have considered the factors like sensor nodes not being in time sync with each other 
and the fact that the speed of sound varies in water. Our simulation results show that the proposed approach 
can achieve great localization accuracy while accounting for temporal synchronization inaccuracies. When 
compared to existing localization approaches, the mean estimation error (MEE) (MEE) and energy consumption 
figures, the proposed approach outperforms them. The MEEs is shown to vary between 84.2154 and 93.8275 m 
for four trials, 61.2256 and 92.7956 m for eight trials, and 42.6584 and 119.5228 m for 12 trials. Comparatively, 
the distance-based measurements show higher accuracy than the angle-based measurements.
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Key Points:
•  The approaches of localization that are 

distance-based and angle-based are 
both covered in this article

•  To perform distance-based 
measurements, a total network field 
of 100 m × 100 m in which mobile 
sensor nodes are permitted to roam is 
established

•  The network size for angle-based 
measurement is also 100 m × 100 m, 
which provides the mobile sensor 
nodes significant space to move

Correspondence to:
R. Chinthaginjala and  
M. Alibakhshikenari,
cvrkvit@gmail.com;
mohammad.alibakhshikenari@uc3m.es

Citation:
Kaveripakam, S., Chinthaginjala, R., 
Anbazhagan, R., Alibakhshikenari, 
M., Virdee, B., Khan, S., et al. (2023). 
Enhancement of precise underwater 
object localization. Radio Science, 
58, e2023RS007782. https://doi.
org/10.1029/2023RS007782

Received 22 JUN 2023
Accepted 21 JUL 2023

Author Contributions:
Data curation: Sathish Kaveripakam, 
Ravikumar Chinthaginjala, Rajesh 
Anbazhagan
Formal analysis: Iyad Dayoub
Funding acquisition: Mohammad 
Alibakhshikenari
Investigation: Ravikumar Chinthaginjala, 
Bal Virdee, Giovanni Pau, Raed 
Abd-Alhameed
Methodology: Sathish Kaveripakam, 
Rajesh Anbazhagan, Chan Hwang See
Project Administration: Mohammad 
Alibakhshikenari
Resources: Sathish Kaveripakam, 
Ravikumar Chinthaginjala, Rajesh 
Anbazhagan
Software: Sathish Kaveripakam, 
Ravikumar Chinthaginjala

10.1029/2023RS007782
RESEARCH ARTICLE

1 of 29

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8263-1572
https://orcid.org/0000-0001-7203-0039
https://orcid.org/0000-0002-5798-398X
https://orcid.org/0000-0003-0910-4722
https://orcid.org/0000-0003-2972-9965
https://doi.org/10.1029/2023RS007782
https://doi.org/10.1029/2023RS007782
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023RS007782&domain=pdf&date_stamp=2023-08-30


Radio Science

KAVERIPAKAM ET AL.

10.1029/2023RS007782

2 of 29

for developing network design and routing algorithms. Because nodes move around while submerged, these 
protocols must regularly save location updates. This circumstance results in a very high data load and signifi-
cant energy consumption. Similarly, to Terrestrial Wireless Sensor Networks (TWSN), the sensor nodes require 
batteries for operation; however, replacing or recharging such batteries in a marine setting presents several chal-
lenges. Therefore, the upkeep of sensor node availability and the extension of the network's lifetime presents a 
formidable challenge to any UWSN approach. Underwater localization is a problematic issue because of the harsh 
conditions of the ocean, such as its restricted bandwidth, long propagation delay, spreading, and so on. Figure 1 
depicts the UWSN according to their system architecture.

Underwater WSNs are the foundation for various applications that manage observed data. This sensor node can 
be in various forms, including static, mobile, and hybrid nodes, all of which send data via a wireless network. 
While Global Positioning System (GPS) and RF IDentification (RFID) are today the most often used technolo-
gies for terrestrial localization, WSNs and several other technologies are paving the way for the future. However, 
RF transmissions are severely attenuated underwater, and underwater sensor networks can only use RF signals 
ranging from 30 to 300 Hz. As a result, either a powerful signal or a large antenna is necessary.

Some characteristics of underwater sensor networks set them apart from their terrestrial counterparts. The phys-
ical parameters under which underwater acoustic channels operate are often considered to impose severe band-
width constraints. Similarly, optical signals are attenuated and dispersed significantly in aquatic environments 
(J. Luo et al., 2018; Sathish, Hamdi, Chinthaginjala, Pau, et al., 2023; Sathish, Hamdi, Chinthaginjala Venkata, 
Alibakhshikenari, et al., 2023; Sathish, Ravikumar, et al., 2023; J. Yang et al., 2015). As a result, neither of these 
techniques is appropriate for application in submerged environments. Sound waves are, in any event, the utmost 
auspicious means of communication for UWSN. Lower acoustic frequencies (10 Hz–1 MHz) have a large wave-
length but a narrow bandwidth.

Management and network protocols are intrinsically linked to the network's overall architecture. Underwater 
localization is essential since it serves as the foundation for all other possible capabilities, such as monitoring 
data and mobility of nodes (Erol-Kantarci et al., 2011). When developing localization algorithms, it is essen-
tial to consider the desired quality features. These are rapid coverage, extensive coverage, high accuracy, mini-
mal communication costs, and scalability. These elements add complications to the algorithm, which must be 
circumvented if we are to achieve success. In addition to localization and temporal synchronization, the problems 
mentioned above need unique network and transit design methodologies for UWSN. Earlier studies, such as (Ullah 
et al., 2017; Zarar et al., 2016), and so on, have covered some of these topics in greater detail. In the context of 
WSNs, pin-pointing the specific locality of each sensor node in a UWSN is referred to as “localization.” Several 
localization techniques for TWSNs have been proposed. In contrast, UWSNs have access to a limited number 
of localization approaches. The distinctive qualities of UWSN distinguish it from TWSN in fundamental ways.

Additionally, UWSNs have come a long way during the previous decade. Early warning systems for earthquakes 
and tsunamis, underwater martial surveillance, ocean research, celestial navigation, biological applications, and 
pollution control are just a few fields that can benefit UWSNs (Ullah et al., 2017). However, localization in an 
underwater environment poses a unique set of challenges due to factors such as the depth-dependent speediness of 
sound and the motion of sensor nodes due to activities like shipping and water current. Additional challenges are 
given by an underwater setting, such as the deployment of nodes, fluctuations in signal intensity, time synchro-
nization, variations in sound speed, and acoustic wave characteristics, to name a few. Problems with energy effi-
ciency, localization, and routing protocols are just a few examples of the many that still need to be addressed in 
the UWSN. Once a sensor node is localized, the observed data can be understood. Many localization mechanisms 
have been designed for WSNs, but they cannot be used in UWSNs without significant modification.

In the field of UWSNs, there has recently been a surge in the amount of interest in using distributed antenna 
systems to connect to wireless communication networks. In a WSN, individual antennas are dispersed and 
connected by UWANs, an external connection that connects sensor nodes via radio (Carroll et al., 2014; Sathish, 
Hamdi, Chinthaginjala, Pau, et al., 2023; Sathish, Hamdi, Chinthaginjala Venkata, Alibakhshikenari, et al., 2023; 
Sathish, Ravikumar, et al., 2023). Two or more of the internal sensor components of a sub-merged or acoustically 
isolated by cluster and cluster head sensors followed by sink and base station, as shown in Figure 2.

A variety of commercially available underwater navigation systems perform their own self-localization based on 
readings of direction and speed. When put through their paces in a laboratory context, some of these algorithms, 
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on the other hand, demonstrate a navigational function that is dependable across relatively short distances. In 
contrast, the cumulative errors in these systems often cause a decline in their performance over time, resulting in 
a loss of precision. As a result, network localization algorithms must use both range approaches and submerged 
acoustic emissions as essential components. It is within the realm of possibility for sensor nodes to independently 
estimate their depth, possibly through the utilization of pressure probes. In order for these methods of localization 
to be effective, it is necessary to acquire distance readings from a minimum of three anchor nodes or other refer-
ence nodes that are already known (Diamant & Lampe, 2013). Because of the high attenuation of acoustic signals 
when traveling through water, the topology of the positioning network will probably be impeded.

Information gathered by sensor nodes in a two-dimensional underwater sensor network is gathered at anchor 
nodes placed at various depths around the ocean. The anchored nodes and the submerged sinks can communicate 
via acoustic linkages. The sinks collect data from the sensor nodes and send it to the offshore base station through 
the surface station. As a result, we can now purchase sinks outfitted with horizontal and vertical transceivers. 
While the vertical transceiver communicates with the base station, the horizontal transceiver communicates with 

Figure 1. Underwater wireless sensor network system architecture.

Figure 2. Internal structure of underwater wireless sensor networks system architecture.
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the sensor nodes to collect data and send commands. Because of the greater depth at which a vertical transceiver 
may operate can cover a large area (Awan et  al.,  2019). The acoustic transceiver-equipped surface links can 
control parallel communication between many sinks at different depths. After that, long-range RF transmitters 
will establish a link between the surface and offshore sinks.

Localization algorithms are often classified into two types: Range-based algorithms and Range-free algorithms 
(Zandi et al., 2013). Sensor nodes in a range-based algorithm use angle or distance information to localize them-
selves and anchor sensor nodes. This information can be determined using time of arrival (ToA), time difference 
of arrival (TDoA), angle of arrival (AOA), and received signal strength indicator (RSSI). Furthermore, range-free 
localization makes use of connectivity information to find sensor nodes.

The primary goal of data mining in WSNs is to precisely and swiftly extract application-oriented patterns from a 
continuous stream of quickly changing data that originates from a sensor network. This goal can be accomplished 
through the use of specialized software. Because it is impossible to save all of the data under these circum-
stances, the data must be processed as quickly as possible (Mahmood et al., 2013; Sathish, Hamdi, Chinthaginjala 
Venkata, Alibakhshikenari, et  al.,  2023; Sathish, Ravikumar, et  al., 2023). Processing high-velocity data at a 
higher rate is therefore required for data mining. The management of static data makes use of data mining tech-
niques that were developed in the past. Both the multi-step and the multi-scan methods should be utilized in order 
to analyze static data sets. The data that WSNs produce cannot be mined efficiently using traditional data mining 
techniques because of its high dimensionality, massive volume, and distributed nature.

Underwater communication and positioning are indeed areas of ongoing research and development due to the 
challenges posed by the dynamic underwater environment and increasing interference. While it's important to 
recognize the significance of accurate and precise underwater positioning, it is also crucial to ensure that research 
in this field incorporates innovative approaches.

We can enhance its innovativeness and contribute to the advancement of underwater communication and posi-
tioning research by considering the following aspects:

1.  Novel Techniques: Investigate and propose new techniques or methodologies that can overcome the existing 
limitations in underwater positioning. This could involve incorporating advancements in signal processing, 
machine learning, or sensor technologies specifically tailored for underwater environments.

2.  Multi-Sensor Integration: Explore the fusion of multiple sensors or data sources, such as acoustic, optical, 
or inertial sensors, to improve the accuracy and reliability of underwater positioning systems. Developing 
innovative algorithms that combine information from different sensors can lead to more robust positioning 
solutions.

3.  Cooperative Localization: Investigate cooperative localization techniques that leverage collaboration among 
underwater nodes or vehicles to enhance positioning accuracy. This could involve designing distributed algo-
rithms or communication protocols that enable cooperative positioning using information exchanged among 
networked underwater devices.

4.  Autonomous Underwater Vehicles (AUVs): Focus on the integration of positioning capabilities into AUVs, 
allowing them to navigate autonomously and accurately in complex underwater environments. Consider 
exploring advanced algorithms for AUV localization and path planning, taking into account factors such as 
underwater terrain mapping and obstacle avoidance.

5.  Energy-Efficient Solutions: Address the energy constraints typically encountered in underwater communica-
tion and positioning systems. Innovative techniques for optimizing power consumption, such as low-power 
communication protocols, energy harvesting, or energy-efficient signal processing algorithms, can contribute 
to longer operational lifetimes and improved system performance.

6.  Underwater Network Architectures: Investigate novel network architectures or communication protocols that 
can enhance the reliability and efficiency of underwater positioning systems. For instance, exploring the use 
of underwater sensor networks, underwater acoustic networks, or hybrid communication approaches can offer 
new perspectives on underwater positioning.

The severe physical characteristics of the undersea environment characterize UWSN and contribute to the 
network's limited bandwidth. Underwater environments bring a distinct set of challenges for the localization 
process. These difficulties result from the significant delay in transmission induced by the variable speed of 
sound. In this article we have proposed two effective localization methods for UWSNs: measurements based on 
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distance and angles. The sensor nodes are first determined underwater using the proposed approaches. When it 
comes to the localization and detection of targets in the underwater environment, the measurement of mean esti-
mation errors (MEEs) is second to the localization of nodes as the most crucial step. The two fundamental aspects 
that make up localization are the localization of sensor nodes and the measurement of MEEs while localization 
is in progress. The simulation findings make it abundantly evident that proposed localization algorithms can 
significantly cut down on the MEEs, resulting in decreased communication costs and a high level of accuracy.

The contributions of this manuscript are:

1.  The design and implement the optimization of precise and efficient object localization for underwater wireless 
sensors network.

2.  Analyzes of the object localization as a function of the number of underwater wireless sensor nodes.
3.  Trade-off analyzes between distance-based localization and angle-based localization algorithms in the UWSN 

environment.
4.  Recommendation of an appropriate localization algorithm based on the targeted performance metric for 

UWSN.

The remainder of the manuscript is organized as follows. The related studies that are discussed in Section 2 
include the associated work, the context, the data, the information, the UWSN communication technologies, and 
the underwater localization methods. In Section 3, an explanation is given for each of the localization strategies 
that have been suggested. In addition, the proposed design and simulation parameters are discussed in Section IV. 
Simulation results are assessed in Section 5. In Section 6, a conclusion is drawn on the proposed results.

2. Related Studies
This section explains the idea of underwater localization. Then, we will look at some more popular methods for 
locating underwater things.

Park et al. (2019) modified the well-known ALOHA (Medium Access Convention) model in 2019 to enhance 
channel utilization. The new model features enhanced ALOHA-Q (UW-ALOHA-Q). Unusual activity, a reduc-
tion in the number of openings per outline, and a unified arbitrary conspiracy are suggested as ways to improve 
UW-ALOHA-Q (Ravikumar & Bagadi, 2019). The suggested methodology comprehensively improves utiliza-
tion regarding the number of openings per outline while providing yet another arbitrary back-off mechanism to 
achieve impact-free planning. For subsea systems with a range of 1,000 m, UW-ALOHA-Q boosted channel 
usability by up to 24.6 times (Sathish, Ravikumar, Rajesh, & Pau, 2022; Sathish, Ravikumar, Srinivasulu, & 
Gupta, 2022).

Erol et al. (2008) described that most oceanographic applications rely on localizing sensor nodes along long or 
short baselines (LBL or SBL). In both instances, sensor positions are deduced from auditory interactions between 
sensors and a network of receivers placed in predetermined places (Rx). The region of operations includes  subsur-
face moorings and the seafloor, which are home to acoustic antennas for the LBL system. In contrast, SBL 
involves a spacecraft passing behind sensor nodes and using a short-range emitter source. Additionally, a vessel 
is used as part of a commercially available SBL localization system to locate underwater machinery. Prior to 
deployment, both algorithms needed substantial preparation and financial expenditures.

Cheng et  al.  (2007) gave two types of underwater acoustic localization: range-based and range-free. The 
range-based approach first uses TDOA, TOA, AOA, and RSSI to calculate distances or angles to selected anchor 
sensor nodes, as shown in Figure 3. They then translated the ranges into several coordinate systems using multi-
lateration and triangulation techniques. As an alternative, the range-free method forecasts the positions of sensor 
nodes in the network based on the locations of neighboring anchor sensor nodes. Radar, sonar, and wireless 
communication devices depend on accurate distance assessment of targets. The minimum variance method, 
conventional beam forming, the weighted subspace fitting algorithm, and the Estimation of Signal Parameters via 
Rotational Invariance Techniques (ESPRIT) algorithm are just a few of the distance of arrival (DOA) estimation 
algorithms that have been developed in the past.

Biao et al. (2015) provided a DOA estimate method for underwater acoustic targets and the micro underwater 
localization platform. In order to do this, the authors looked into several formulations for the acoustic target 
localization with sensor array problem within the context of sparse signal representation. Both narrow-band and 

 1944799x, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

S007782 by C
ochrane France, W

iley O
nline L

ibrary on [11/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Radio Science

KAVERIPAKAM ET AL.

10.1029/2023RS007782

6 of 29

wide-band environments are compatible with the strategy. The position of a signal at a dumb node is determined 
by its DOA. One can determine the signal's direction by calculating the receiver's propagation delay with the 
reference angle, which can be worked out with the help of a direct reference (Ravikumar & Bagadi, 2017). Using 
this method, the AOA for a dumb node's location is found using at least three beacon nodes. To find the dumb 
node, it is necessary to know where at least three beacon nodes and the three AOA are. When directional antennas 
are used, it is possible to figure out the AOA. Directional antennas can be put on beacon sensor nodes if they are 
used. A directional antenna at the top of a rotating sensor node sends beacon signals in all directions (Sathish, 
Ravikumar, Rajesh, & Pau, 2022, Sathish, Ravikumar, Srinivasulu, & Gupta, 2022).

Rahman et al. (2018) proposed that the fundamental goal of a localization strategy is to find the location of sensor 
nodes in a network of sensors (nodes that already know where they are) relative to or precisely concerning a small 
number of anchor nodes. There are two ways to accomplish this. Furthermore, the article presents a system that 
uses less energy and can identify and collect data on moving objects. The localization algorithm can be classified 
into two groups based on the approaches used to establish the location of anything: range-based and range-free.

Han et al. (2015) given range-based localization methods, the position of a sensor node can be computed by meas-
uring the angle or distance between the node and its neighbors. Range-free algorithms, on the other hand, assume 
that the distance or angle information gathered by neighboring sensor nodes cannot be used for positioning due 
to hardware limits and costs, which spreads anchor sensor nodes over all networks and uses long-range acoustic 
channels to communicate with buoys on the water's surface, is widely regarded as one of the best attempts at a 
localization method in UWSN.

Isik and Akan (2009) shared that Ordinary localization and anchor node localization constitute the majority of 
the Localization method, which can be further subdivided into its component pieces. The messages transmitted 
to the ordinary sensor node originate at the anchor sensor node. The anchor communicates with the surface buoys 
using the anchor sensor node. Following that, an ordinary node will identify its location by calculating its distance 
from surface buoys in the same manner as an anchor node. As a result, it is not required because a normal sensor 
node can establish its location. Furthermore, the researchers assume that many stationary sensor nodes underwa-
ter have the same bearing (Bagadi et al., 2022). Some sensor nodes can run the range algorithm by transmitting 
messages only in one way and synchronizing their clocks, both challenging operations in UWSNs.

H. Zhang et al. (2016) reported that due to the underwater environment's features for signal propagation, UWSNs 
face a particular set of obstacles in developing wireless communication and network protocols. In a mobile sink 
design, a mobile sink moves across the network to disseminate non-information without first waiting for it to 
be sent by the sensors, hence avoiding multi-hop transmissions. Some networks use a method known as area 
partitioning to decrease the travel time between the sink sensor node and the sink and to create clusters that boost 
output. We suggest a transmission strategy based on superposition coding to increase the throughput of down-link 
command messages to sensor nodes.

Figure 3. Underwater localization algorithms.
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Emokpae et al. (2014) discovered that because signals transmitted by the GPS cannot penetrate water, it will be 
necessary to find an alternative way to locate sensor nodes. Most of these techniques needed either the alignment 
of two approaches or range measurements between the talking sensor nodes, such as TDoA, ToA, AoA, and 
RSSI. Recent years have seen a rise in the focus placed on locating sensor nodes deep within the water. The vast 
majority of the localization systems that have been discussed aim to establish a reference sensor node before 
proceeding (Emokpae et al., 2014). However, this method has a significant limitation because it requires many 
reference sensor nodes in a distributed network. Without these reference sensor nodes, localization is difficult, 
if not impossible. The high cost of electricity, transport, and other infrastructure requirements makes it unfea-
sible to install many reference sensor nodes in the vast majority of underwater fields. This situation is because 
these demands must be met. The UWSN, taken into consideration by Hu et al. (2019) comprises several sensor 
nodes dispersed throughout the network's physical space. In order to keep the cost of the network to a minimum, 
sensor nodes are developed with constrained processing capabilities and simplified computational complexities. 
Because marine environments are in a permanent state of flux, the sensor nodes are in a constant state of motion, 
following the flow of water and reacting to activity in the marine environment.

G. Yang et al. (2018) proposed that as a consequence of these difficulties, localization needs to be done as quickly 
if possible; otherwise, the estimated positions will remain the same even as the sensor nodes move from one 
location to another. Therefore, it is essential to organize a localization process that is both quick and economical 
with energy in a sensor network that has limited resources. The continual motion causes specific sensor nodes 
to have a greater chance of moving outside of the functioning field of the network, which exacerbates recycling 
and sustainability issues. The brininess, temperature, and depth of the water all have an effect, in addition to the 
elements estimated on the rate at which the waves below move.

He et  al.  (2018) presented two techniques for underwater target localization in the study mentioned above: 
nonlinear weighted least squares-based underwater target localization and space-altering generalized expectation 
maximization-based underwater target localization (SAGE-UTL). Submarine target localization using nonlinear 
weighted least squares (UTL) is also known as UTL using a state-action-event model. Based on the information 
collected by a swarm of dispersed star receivers, these algorithms can pinpoint the location of a target with great 
accuracy. The network is hypothesized to perform the functions of both a primary receiver and several additional 
conventional receivers. A sound speed profile (SSP) with an iso-gradient and a network anchored to the water's 
depth is assumed. As temperature and salinity tend to fluctuate throughout the ocean, the iso gradient SSP theory 
makes sense for the environment under investigation.

Additionally, Yin et al. (2016), Hao et al. (2017), and B. Zhang et al. (2018) have researched the TDoA locali-
zation algorithms and the ToA localization algorithms. The unknown source location and hybrid estimations are 
initially connected to evaluate a solution with a closed form. The best sensor node association is then determined. 
The solution is then assessed. According to all of the Cramer-Rao Lower Bound (CRLB) is the lowest bound of 
any unbiased estimator and can be used to transmit details about the accuracy of localization. Even when there is 
just a small amount of inaccuracy, the MEE matrix can be derived. However, its actual value can only be realized 
in the context of practical application. First, a localization technique for closed structures must be studied before 
using the error covariance matrix that this strategy generates to estimate the CRLB. By recasting the issue as an 
optimization problem to identify the ideal node association, they could convert an unsolvable issue into a convex 
one. They were able to solve the issue as a result successfully.

Mridula and Ameer (2018) provided a localization approach for UWSNs that considers the problems in sensor 
node localization caused by ambiguity in the anchor location. When the anchor is submerged, it moves a lot. 
This circumstance is because water currents harm the network's environment. It is easier to carry out rigorous 
localization when clarity is inside an anchor node. The undersea environment's ray-bending quality must be 
considered for accurate location readings. This situation is because the speed of sound is considerably lowered 
under the surface. Using ray theory, one may determine the path that sound rays take when immersed in water. 
Because the positions of the anchors are inherently imprecise, it is necessary to use Maximum likelihood to deter-
mine the precise location of the required sensor node. It is compared to several methods, each of which provides 
precise  data on the exact location of the anchor node. If the anchor nodes are unclear, CRLB is calculated to 
help estimate the target's location. The UWSN is a collection of sensors that work together to monitor activity 
in marine habitats. To achieve these objectives, sensor nodes organize themselves into self-contained networks 
capable of characterizing a marine ecosystem. Because they do not require cable to be put beneath the water's 
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surface and do not interfere with marine operations, USNs are designed to be easy and affordable to outfit. This 
circumstance is one of their primary goals. Because of their one-of-a-kind qualities, UWSNs necessitate a fresh 
approach to a wide range of localization-related difficulties.

3. Localization
Because of the lack of essential infrastructure, underwater networks have more difficulty performing localization 
tasks than their terrestrial equivalents. Propagation delays, in particular, can be highly significant when bandwidth 
is limited. The limited capability of building modems capable of simultaneous signal transmission and recep-
tion is another constraint that must be considered while designing and implementing UWSNs. A well-prepared 
transmission can prevent data loss due to the near-far effect. To keep network management overhead minimal, the 
amount of information sent between nodes must be limited by the node discovery mechanism. Another area of 
speculation in UWSNs is the connectivity of the sensor nodes. Several factors exacerbate the connection process, 
including noise, relative node orientation, fading, and propagation losses. This connectivity is influenced by 
several elements, including sensor node relative motion, sensor node and link failure, sensor node installation, 
and a range of other issues. Even if there is no direct link between standard sensor nodes and anchor sensor nodes, 
networks can be built to facilitate range measurement. Depending on the network architecture, a few additional 
localization methods can be utilized, such as the Euclidean, DV-hop, and DV-distance.

The Euclidean distance yields some promising results when dealing with anisotropic topologies. When doing a 
more complex calculation, higher overhead and communication costs are incurred. A sensor node can only local-
ize itself if its position can be determined uniquely. The sensor node cannot pinpoint its precise location if it lacks 
it. Even if a node cannot localize itself, many alternative locations may still be measured (H. Luo et al., 2008). 
This circumstance is because potential locations are more precise than actual locations. Only a small number of 
sensor nodes have the potential to be precisely located. The great majority of approaches to localization include 
the sensor node being localized by doing a partial localization with the assistance of a collection of reference 
sensors. Specific sensor nodes, known as reference or sink nodes, must get their location information before the 
sensor node must be localized. This activity will commence at the beacon sensor node as its point of departure. 
It is preferable to use as little energy as possible whenever possible. It is also critical to consider the localization 
algorithm's level of precision. A method called UDB (underwater directional beacon) is provided in reference 
(Bian et al., 2009) for underwater localization.

3.1. Measurement Based on Distance

When operating in an underwater environment, sensor data is frequently interpreted based on the location of a 
sensor node. Following a target, keeping an eye on the environment, or reporting an event are all examples of this. 
As previously stated, finding something on land is more accessible than finding something underwater. This is 
because RF waves do not decrease as underwater as on land. GPS cannot be used underwater as a result of this. 
There were numerous approaches to localization in the various localization schemes (Ullah, Chen, et al., 2019, 
Ullah, Liu, et  al., 2019). These methods consider various factors, including the device's capabilities, the rate 
at which the signal spreads, and the quantity of energy available, to name a few. Most systems for determining 
where something is considered a sensor node's location in the network field. The nodes whose placements are 
known are the anchor sensor nodes. Most localization techniques employ these nodes. In Poursheikhali and 
Zamiri-Jafarian (2015), there is a plan for locating a target based on predicting the TDoA in a non-uniform under-
water field. TDoA, which stands for “target depth of approach,” is the strategy's concept. Because the underwater 
environment is not uniform, waves follow a curved path. As a result, locating the TDoA is far more complex than 
locating the terrestrial position. This method, which employs the methodology, considers TDoA-based locali-
zation in an algorithmic manner that varies over time. The approach is getting closer to the CRLB and has the 
potential to move beyond the line-of-sight (LoS) TDoA. This situation is accomplished by considering where an 
asynchronous target is located and how precise that location is.

Kouzoundjian et  al.  (2017) offer a method for calculating the TDoA between different underwater beacon 
signals. The algorithms for this system rely on distance measurements. The suggested approach does not require 
beacons and receivers to be set simultaneously for propagation to end in underwater conditions. As a result, 
the TDoA estimate depends on the location of the beacon sensor node. The solution is demonstrated to be a 
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series of hyperbolic equations, with the theoretical location of the node being where these hyperbolas inter-
sect. On the other hand, one popular method for determining the TDoA is to examine how strongly the signals 
cross-correlate. The underwater field generates a lot of phase and amplitude distortion in the waves that are 
picked up because the waves bounce back and forth in the water and cause reverberation. Another method 
for determining the TDoA is to examine the central section of the received signals for a succession of equal 
zero-crossing intervals that may be used to determine when they began and how much time has passed since 
they began. This method entails examining the primary portion of the received signals. Valente and Alves (2016) 
approach is implemented as a programmable system-on-chip coupled to an embedded ARM CPU and equipped 
with a custom-designed digital signal processor. The strategy was tested in both a closed environment (a tank) 
and an open environment (a field).

Using the relative antenna, the beacon may compute the distance between itself and a stationary or mobile node. 
For this reason, a Doppler speed measurement is used; however, the precision of the result depends on the posi-
tion of both the mobile device and the beacon. The following are assumed to exist if N is the number of partici-
pating antenna nodes like ri, si, ti, where n = 1, 2, ,….N (Ullah, Chen, et al., 2019; Ullah, Liu, et al., 2019):

𝜃𝜃(𝑖𝑖) =
[

𝑟𝑟(𝑖𝑖), 𝑟𝑟′(𝑖𝑖), 𝑠𝑠(𝑖𝑖), 𝑠𝑠′(𝑖𝑖), 𝑡𝑡(𝑖𝑖), 𝑡𝑡′(𝑖𝑖)
]

 (1)

The Zero Mean Additive White Gaussian noise for the active nodes is

�(�) = ����(�) min 1
2(���)2

�
∑

�=2

[

���̂�,1(�) − (���(�) − ��1(�))
]2

+ 1
�2
�

�
∑

�=1

(

�̂�(�) −
√

�′(�)2 + �′(�)2 + �′(�)2��(�)
)2

 (2)

where Vn(i) is

𝑉𝑉𝑛𝑛(𝑖𝑖) =

(

𝑟𝑟(𝑖𝑖) − 𝑟𝑟𝑛𝑛

𝑙𝑙𝑛𝑛(𝑖𝑖)
+

𝑠𝑠(𝑖𝑖) − 𝑠𝑠𝑛𝑛

𝑙𝑙𝑛𝑛(𝑖𝑖)
+

𝑡𝑡(𝑖𝑖) − 𝑡𝑡𝑛𝑛

𝑙𝑙𝑛𝑛(𝑖𝑖)

)

 (3)

and ln(i) is

𝑙𝑙𝑛𝑛(𝑖𝑖) =

√

(𝑟𝑟(𝑖𝑖) − 𝑟𝑟𝑛𝑛)
2
+ (𝑠𝑠(𝑖𝑖) − 𝑠𝑠𝑛𝑛)

2
+ (𝑡𝑡(𝑖𝑖) − 𝑡𝑡𝑛𝑛)

2 (4)

In case of two sensor nodes Equation 4 will be

𝑙𝑙𝑛𝑛(𝑖𝑖) =

√

(𝑟𝑟(𝑖𝑖) − 𝑟𝑟𝑛𝑛)
2
+ (𝑠𝑠(𝑖𝑖) − 𝑠𝑠𝑛𝑛)

2 (5)

3.2. Measurement Based on Angle

Recent research has shown that angle-based metrics are an effective method for underwater localization, and that 
this method is feasible.

The method described in Choi et al. (2018) provides an accurate approximation of the AoA of an audio source. 
Two hydrophones are mounted on a marine vehicle traveling across the water, and the directional angles of the 
source are measured. Utilizing the properties of acoustic waves that occur in the ocean, specific equipment 
can send out signals sporadically or continually. The foundation of this strategy is based on the presumption 
that a particular acoustic source consistently produces the same signal. An initial probability is calculated by 
utilizing the state transition model in the first step (Jia-Tong et al., 2018). In the second step, an algorithm 
known as a generalized cross-correlation is used for the already collected acoustic data to derive directional 
information. A comparison of the likelihood with the entropy of the current correlation is performed in the 
very last stage. However, the system that is being proposed needs to go into research the physical properties 
of a wide variety of acoustic sources depending on their frequency ranges. This situation is because such 
research is yet to be feasible. These measurable qualities centered on precisely measuring the directional 
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angle of the acoustic sources to make use of the information already available regarding the frequency band 
(Wilding et al., 2018).

In addition, a wide variety of AoA localization schemes are utilized in Choi and Choi  (2015) and Huang and 
Zheng (2016). We provide a technique for real-time AUV localization based on bearing estimation alone and use 
the depth of a beacon already known in advance. The system is based on the Extended Kalman Filter (EKF) and 
uses a State-Space model. This goal is done to account for the mobility of the AUV in two degrees of freedom. In a 
similar vein, a technique for identifying and removing acoustic target signals from a variety of underwater sources 
by making use of frequency bands is required. A Bayesian technique is used to derive the data on the directions, 
while an EKF model calculates the angles associated with those directions. In addition, a localization technique 
that can be used in underwater Ad-hoc networks is given. This strategy uses AoA to calculate the distance between 
anchors and sensor nodes in two-dimensional and three-dimensional space. Once a sensor node has received 
distance estimates from at least three or four anchor nodes, it will be possible to calculate the sensor node's location.

To approximate the distances and angles between nodes P and Q, which are initially located at coordinates l1, m1 
and l2, m2, respectively (Ullah, Chen, et al., 2019; Ullah, Liu, et al., 2019).

Checking out the two nodes, P and Q:

𝑃𝑃0 =

√

𝑙𝑙1 + 𝑚𝑚1 (6)

and

𝑄𝑄0 =

√

𝑙𝑙2 + 𝑚𝑚2 (7)

The distance between the sensor nodes P and Q is

𝑃𝑃𝑃𝑃 =

√

(𝑙𝑙1 − 𝑙𝑙2)
2
+ (𝑚𝑚1 − 𝑚𝑚2)

2 (8)

The angle between nodes P and Q is

cos 𝜃𝜃 =
𝑃𝑃0 +𝑄𝑄0 − (𝑃𝑃𝑄𝑄)

2

2𝑃𝑃0𝑄𝑄0

 (9)

also

cos 𝜃𝜃 =
𝑙𝑙1𝑙𝑙2 + 𝑚𝑚1𝑚𝑚2

√

𝑙𝑙2
1
+ 𝑚𝑚2

1
+

√

𝑙𝑙2
2
+ 𝑚𝑚2

2

 (10)

and the angle θ is

𝜃𝜃 = cos−1

⎡

⎢

⎢

⎢

⎣

𝑙𝑙1𝑙𝑙2 + 𝑚𝑚1𝑚𝑚2
√

𝑙𝑙2
1
+ 𝑚𝑚2

1
+

√

𝑙𝑙2
2
+ 𝑚𝑚2

2

⎤

⎥

⎥

⎥

⎦

 (11)

3.3. Proposed Localization Algorithm

To enhance the precise underwater object localization using TDoA and AoA, we need to consider introducing 
the following innovations:

1.  Hybrid Localization Algorithm: Develop a hybrid localization algorithm that combines the AoA and TDoA 
measurements to improve the accuracy and precision of underwater object localization. The algorithm should 
leverage the strengths of both measurements to mitigate the limitations of each technique. This can involve using 
a weighted fusion approach or a Bayesian framework to integrate the angle and distance information effectively.
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2.  Advanced Signal Processing Techniques: Incorporate advanced signal processing techniques to enhance 
localization accuracy. This can include adaptive beamforming, array processing, or super-resolution algo-
rithms to improve the quality of the received signals and reduce the effects of multipath propagation and 
interference. By processing the received signals more effectively, the localization accuracy can be signifi-
cantly enhanced.

Figure 4. (a) Localization algorithm illustration with trilateration method and (b) Localization process flowchart.
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3.  Intelligent Sensor Selection: Develop an intelligent sensor selection 
mechanism that dynamically selects the most suitable sensors for angle 
and distance measurements based on the environmental conditions. 
This can involve considering factors such as sensor characteristics, 
signal quality, and noise levels to ensure optimal localization perfor-
mance. By adaptively selecting the sensors, the algorithm can optimize 
the use of available resources and improve the overall localization 
accuracy.

4.  Machine Learning-Based Localization: Integrate machine learning tech-
niques into the localization algorithm to learn and adapt to the under-
water environment. This can include training a model to predict the 
localization errors based on various environmental factors and using this 
information to refine the localization estimates. By leveraging machine 

Parameters Values

Field dimension in meters 100,100

Sensor nodes 100

No. of Mobile nodes 10

BS location (0,0,0)

No. of Anchor nodes 4

No. of Beacon nodes 6

No. of Trails 4–12

Initial UWSN energy 5 J

Table 1 
Simulation Attributes

Figure 5. Measurement based on distance mean estimation errors for four trials.
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learning, the algorithm can continuously improve its accuracy and adapt-
ability over time.

5.  Experimental Validation: Conduct comprehensive experimental vali-
dations to assess the performance of the enhanced localization algo-
rithm. Utilize realistic underwater testbeds or simulation environments 
to evaluate the algorithm's effectiveness in different underwater condi-
tions, such as varying distances, angles, noise levels, and multipath 
scenarios. Compare the results with existing methods to demonstrate 
the superiority and precision enhancement achieved by the proposed 
approach.

It is important to ensure that the proposed enhancements are aligned with the objective of improving precision, 
and thoroughly validate the algorithm's performance to establish its superiority over existing methods. A basic 
localization algorithm for an underwater WSN can be based on trilateration, which involves estimating the posi-
tion of a sensor node by measuring the distances to multiple anchor nodes with known positions. Here's a simpli-
fied version of the algorithm with its mathematical equations:

1.  Initialization:
 1-1.  Assign initial positions to anchor nodes.
 1-2.  Initialize the sensor node positions as unknown.

2.  Distance Measurement:
 2-1.  Sensor nodes measure the distances (d) to multiple anchor nodes using techniques such as ToA, TDoA, 

or RSSI.
3.  Trilateration:

 3-1.  Select a set of anchor nodes (at least three) with known positions and corresponding distance 
measurements.

 3-2.  Use trilateration to estimate the position of the sensor node based on the distances and anchor node 
positions.

 3-3.  The position (x, y, z) of the sensor node can be calculated using the following equations:

𝐴𝐴 For 2DLocalization ∶ (𝑥𝑥 − xa)
2
+ (y − ya)

2
= da2 (𝑥𝑥 − xb)

2
+ (y − yb)

2
= db2 (𝑥𝑥 − xc)

2
+ (y − yc)

2
= dc2

For 3DLocalization ∶ (� − xa)2 + (y − ya)2 + (z − za)2 = da(� − xb)2 + (y − yb)2 + (z − zb)2

= db2 (� − xc)2 + (y − yc)2 + (z − zc)2 = dc2
 3-4.  Solve the system of equations to find the coordinates (x, y, z) of the sensor node.

4.  Iterative Refinement:
 4-1.  Repeat steps 2 and 3 with different sets of anchor nodes to improve the localization accuracy.
 4-2.  Use more sophisticated algorithms like least squares estimation or maximum likelihood estimation to 

refine the position estimates.
5.  Localization Update:

 5-1.  Periodically update the positions of the anchor nodes based on their actual movements or changes in the 
underwater environment.

 5-2.  Re-estimate the sensor node positions using the updated anchor node positions and distance measurements.

It's important to note that the actual implementation of the algorithm may involve additional steps and consider-
ations, such as error handling, filtering techniques, and robustness to deal with issues like measurement noise, 
multipath propagation, and localization outliers. The equations provided above represent a basic framework for 
trilateration-based localization in an underwater WSN and an illustration diagram as shown in Figures 4a and 4b 
shows the localization process flow chart.

The localization process in an UWSN involves determining the positions of sensor nodes in an underwater envi-
ronment. Here's an explanation of the steps in a typical localization process flowchart for UWSN:

1.  Start: The localization process begins.
2.  Node Deployment: Deploy the sensor nodes in the underwater area of interest. These nodes may have limited 

or no knowledge of their own positions.

Trail number Distance measurement (mts)

Trail no. 1 2.1218

Trail no. 2 2.2994

Trail no. 3 2.6501

Trail no. 4 2.5632

Table 2 
Measurement Based on Distance Mean Estimation Errors for Four Trials
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Figure 6. Measurement based on distance mean estimation errors for eight trials.
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3.  Distance Measurement: The sensor nodes measure the distances to their 
neighboring nodes using techniques such as acoustic signals, time of 
flight, or signal strength-based methods. This information helps estab-
lish connectivity and gather data for localization.

4.  Distance Calculation: Based on the measured distances, each node calcu-
lates its relative position with respect to its neighboring nodes. Tech-
niques like trilateration or multilateration can be used to estimate posi-
tions based on the distances.

5.  Anchor Selection: Select a subset of nodes as anchor nodes. Anchor 
nodes are stationary and have known positions. They act as reference 
points for localization.

6.  Localization Algorithm: Apply a localization algorithm that utilizes the 
distance measurements and anchor node positions to estimate the posi-
tions of the remaining nodes. There are various localization algorithms 
available, such as iterative closest point, weighted multidimensional 
scaling (WMDS), or particle filtering.

7.  Iteration: Repeat steps 3 to 6 until convergence or a desired level of accu-
racy is achieved. Iterative refinement helps improve the accuracy of the 
estimated positions.

8.  Position Refinement: Refine the estimated positions by considering additional factors such as node mobil-
ity, environmental constraints, and sensor calibration errors. This step helps account for uncertainties and 
improves localization accuracy.

9.  Localization Error Assessment: Evaluate the accuracy of the localization by comparing the estimated posi-
tions with ground truth positions if available or using statistical measures such as root mean squared error or 
MEE. This step provides a quantitative assessment of the localization performance.

10.  Localization Output: Provide the final localized positions for each sensor node in the UWSN. These posi-
tions can be represented in a coordinate system, such as Cartesian or geographic coordinates, for further 
analysis or application-specific purposes.

11.  End: The localization process concludes.

It's worth noting that the specific techniques, algorithms, and parameters used in each step may vary depending 
on the localization method chosen, the characteristics of the UWSN, and the environmental conditions. The 
flowchart above provides a general framework for the localization process in UWSNs, highlighting the key steps 
involved in estimating node positions in an underwater environment as shown in Figure 4b.

3.4. Proposed Hybrid Localization Algorithms of TDOA and AOA

Hybrid algorithms that combine TDoA and AoA measurements can provide more accurate and robust localization 
in UWSN. Here are the mathematical equations for a common hybrid algorithm known as TDoA/AoA fusion:

1.  TDoA Equations: The TDoA equations relate the time differences of arrival between anchor nodes and the 
distances between them. Let's consider three anchor nodes A, B, and C, and a sensor node S. The TDoA 
equations can be written as:

TDoA_AB = (Distance_AB∕Speed_of_Sound) + Measurement_Error_ABTDoA_AC
= (Distance_AC∕Speed_of_Sound) + Measurement_Error_ACTDoA_BC
= (Distance_BC∕Speed_of_Sound) + Measurement_Error_BC

 

 Here, TDoA_AB, TDoA_AC, and TDoA_BC are the measured time differences of arrival between the anchor 
nodes, Distance_AB, Distance_AC, and Distance_BC represent the distances between the anchor nodes, 
Speed_of_Sound is the speed of sound in water, and Measurement_Error_AB, Measurement_Error_AC, and 
Measurement_Error_BC account for any measurement inaccuracies or noise.

2.  AoA Equations: The AoA equations relate the angles of arrival from anchor nodes to the sensor node's posi-
tion. Let's consider the angles of arrival from anchor nodes A, B, and C to the sensor node S. The AoA equa-
tions can be formulated as:

Trail number Distance measurement (mts)

Trail no. 1 2.2699

Trail no. 2 2.2895

Trail no. 3 2.26693

Trail no. 4 3.1748

Trail no. 5 2.0604

Trail no. 6 2.965

Trail no. 7 2.8694

Trail no. 8 2.4301

Table 3 
Measurement Based on Distance Mean Estimation Errors for Eight Trials
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Figure 7. Measurement based on distance mean estimation errors for 12 trials.
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Figure 7. (Continued)
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tan(AoA_A) = (y_A − y_S) ∕ (x_A − x_S) tan(AoA_B) = (y_B − y_S) ∕ (x_B − x_S) tan(AoA_C)
= (y_C − y_S) ∕ (x_C − x_S) 

 Here, AoA_A, AoA_B, and AoA_C are the measured angles of arrival, (x_A, y_A), (x_B, y_B), and (x_C, 
y_C) are the known positions of the anchor nodes, and (x_S, y_S) represents the estimated position of the 
sensor node.

3.  TDoA/AoA Fusion Equation: To combine TDoA and AoA measurements, a fusion equation is used to esti-
mate the position of the sensor node. One common fusion approach is to minimize the error between the 
TDoA and AoA measurements and the predicted values. This can be done through an optimization process, 
such as nonlinear least squares. The fusion equation can be written as:

Minimize ∶ MEE = w1 ∗ (TDoA_AB − (Distance_AB∕Speed_of_Sound))2

+ w2 ∗ (TDoA_AC − (Distance_AC∕Speed_of_Sound))2

+ w3 ∗ (TDoA_BC − (Distance_BC∕Speed_of_Sound))2

+ w4 ∗ (tan(AoA_A) − (y_A − y_S) ∕ (x_A − x_S))2

+ w5 ∗ (tan(AoA_B) − (y_B − y_S) ∕ (x_B − x_S))2

+ w6 ∗ (tan(Ao_AC) − (y_C − y_S) ∕ (x_C − x_S))2 

Here, E represents the overall error, and w1 to w6 are the weight factors assigned to balance the influence of 
TDoA and AoA measurements. The weights can be adjusted based on the expected accuracy and reliability of 
the measurements.

The goal is to minimize the error MEE by finding the optimal values for (x_S, y_S), representing the estimated 
position of the sensor node. It's worth noting that the specific implementation of the fusion equation may vary 
depending on the localization algorithm and optimization technique used. Additionally, considerations such as 
environmental factors, measurement errors, noise mitigation, and calibration techniques should be taken into 
account to achieve accurate localization in UWSN.

3.5. Pseudo Code for Proposed Hybrid Localization Algorithms of TDOA and AOA

1.  Initialize the underwater sensor array with the required parameters:
 -  Number of sensor nodes: N
 -  Sensor nodes positions: array of N coordinates (x, y, z) relative to a reference point
 -  Sampling frequency: fs
 -  Speed of sound in water: c

2.  Initialize the necessary variables:
 -  Detected object position: (x_obj, y_obj, z_obj)
 -  Detected object angle: θ_obj

3.  Acquire the underwater acoustic signal from the sensor array:

 𝐴𝐴 underwater_signal = AcquireUnderwaterSignal(N, fs) 

4.  Perform signal preprocessing:

 𝐴𝐴 preprocessed_signal = PreprocessSignal(underwater_signal) 

5.  Apply signal processing techniques to estimate the AOA (θ_obj):

 𝐴𝐴 estimated_angle = EstimateAngle(preprocessed_signal) 

6.  Apply signal processing techniques to estimate the DOA:

 𝐴𝐴 estimated_distance = EstimateDOA(preprocessed_signal) 

 1944799x, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

S007782 by C
ochrane France, W

iley O
nline L

ibrary on [11/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Radio Science

KAVERIPAKAM ET AL.

10.1029/2023RS007782

19 of 29

7.  Calculate the object position using the estimated angle and distance:

 𝐴𝐴 x_obj = estimated_distance ∗ cos(𝜃𝜃_obj) 

 𝐴𝐴 y_obj = estimated_distance ∗ sin(𝜃𝜃_obj) 

 𝐴𝐴 z_obj = 0 ∕∕Assuming the object is at the same depth as the sensor nodes 

8.  Output the precise underwater object localization:

 𝐴𝐴 Print(
′′Object Position ∶ (

′′
, x_obj,′′,′′, y_obj,′′,′′, z_obj,′′)

′′
) 

9.  End

4. Proposed Design and Simulation Parameters
We shall now look at the techniques offered for underwater localization, which are first and foremost expected 
to achieve underwater target localization. After finding the target location, the MEE must be estimated. It takes 
advantage of previously defined distance and angle data. It is critical to first estimate the location of a sensor node 
before attempting to estimate the MEE in target localization. The simulation attributes of the proposed design are 
considered in Table 1.

4.1. Measurement Based on Distance

Assessing the network field over a region of 100 m by 100 m is the first step in putting into practice the distance-based 
localization strategy presented here. An area measuring 100 m by 100 m is open for exploration by underwater 
sensor nodes. In the first scenario, we test the method in a relatively tiny region that is only 100 m squared. This 
situation allows us to establish how big of an impact the distance has on the accuracy of the localization. We 
contact the four anchor nodes at the four cardinal points of the localization network to establish where anything is 
situated concerning other things. In this particular instance, there are just 10 mobile nodes that roam the network 
field that is 100 m × 100 m. For MEE monitoring, a sensor node in an irregular position is chosen. After the 
position of a sensor node has been produced randomly, numerous trails are used. However, just a subset of those 
trails is first studied in this situation. In this particular instance, the results of four trials are analyzed, MEEs are 
computed, and the same is extended for eight and 12 trials. Because the beacon sensor nodes are connected to a 
reference antenna, it is possible to calculate the distance between a mobile sensor node and a beacon node.

4.2. Measurement Based on Angle

In this part, we discuss the methods utilized to implement the proposed 
angle-based measuring methodology. With distance-based measurement in mind, 
we start by deciding on a 100 m × 100 m rectangle as the network field within 
which the mobile nodes can operate. Each of the four corners of the network field 
contains an anchor node, while the field as a whole contains 10 mobile nodes. 
There may likely be some variation in the positioning of the mobile nodes. Once 
the nodes' random positions have been estimated, the Euclidean distance may 
be calculated. Once the derivatives have been calculated, then the MEEs can 
be calculated. In this section, we can only use 10 sensors over 100 m × 100 m. 
We will also cover the effects of coverage and sensor density on the precision of 
localization in the following sections. Since the MEEs tend to fluctuate between 
the selected iterations, we use an angle-based measurement method in the first 
scenario. Skip occasionally across, but more often between, these four, eight, 
and 12 versions. This situation allows us to determine the angle between sensor 
nodes and calculate MEEs. The variability of MEEs is mainly attributable to the 
ever-changing nature of marine habitats, including ocean currents and shipping 
activity. Even though the proposed method increases the difficulty of underwater 
localization, it outperforms previous localization strategies in terms of accuracy.

Trail number Distance measurement (mts)

Trail no. 1 0.1721

Trail no. 2 0.2001

Trail no. 3 0.1761

Trail no. 4 0.1514

Trail no. 5 0.2074

Trail no. 6 0.1573

Trail no. 7 0.1460

Trail no. 8 0.0669

Trail no. 9 0.1768

Trail no. 10 0.1766

Trail no. 11 0.1356

Trail no. 12 0.1322

Table 4 
Measurement Based on Distance Mean Estimation Errors for 12 Trials
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4.3. Measurement Based on Hybrid TDoA and AoA Algorithm

The new innovation in this scenario is the measurement-based angle locali-
zation strategy for underwater sensor nodes. Here's an explanation of the key 
elements and steps involved:

1.  Network Field and Anchor Nodes: The experiment is conducted within 
a 100 m × 100 m rectangular network field. Each of the four corners of 
the field is equipped with an anchor node. These anchor nodes serve as 
reference points for localization.

2.  Mobile Nodes: The network field contains 10 mobile nodes that move 
within the area. These nodes contribute to the localization process by 
measuring angles between themselves and other nodes.

Figure 8. Measurement based on angle mean estimation errors for four trials.

Trail number Angle measurement (mts)

Trail no. 1 93.6701

Trail no. 2 84.2154

Trail no. 3 93.8275

Trail no. 4 88.7431

Table 5 
Measurement Based on Angle Mean Estimation Errors for Four Trials
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Figure 9. Measurement based on angle mean estimation errors for eight trials.
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3.  Random Node Positions: The positions of the mobile nodes are randomly 
determined within the network field. This introduces variation in the 
node positions, reflecting real-world scenarios.

4.  Euclidean Distance Calculation: Once the node positions are established, 
the Euclidean distance between nodes can be calculated. This distance 
measurement is likely used as a reference for subsequent angle-based 
calculations.

5.  Derivatives and MEEs: Derivatives are computed based on the calcu-
lated distances between nodes. Using these derivatives, MEEs are deter-
mined. MEEs are a measure of localization accuracy and represent the 
minimum error between estimated and actual positions.

6.  Angle-based Measurement: In this scenario, an angle-based measure-
ment method is used. The angle between sensor nodes is determined, and 
this information is utilized in the localization process. The angle meas-
urements help refine the localization accuracy and overcome variations 
caused by marine habitats, such as ocean currents and shipping activity.

7.  Multiple Iterations: To assess the performance and stability of the localization strategy, multiple iterations 
are conducted. This helps account for the variability in MEEs and allows for a more robust evaluation of the 
angle-based measurement method.

8.  Localization Accuracy: Despite the challenges posed by the underwater environment, the proposed angle-based 
measurement method outperforms previous localization strategies in terms of accuracy. The fluctuation of 
MEEs is mitigated, leading to improved localization precision.

The innovation lies in the utilization of angle-based measurements in underwater localization. By incorporating 
angle information alongside distance measurements, the proposed strategy enhances the accuracy of object local-
ization, even in the presence of environmental factors that may affect the measurements.

Hybrid TDoA and AOA algorithm for Enhancement of Precise Underwater Object Localization Using Angle 
and DOA.

1.  Initialize the underwater sensor array with the required parameters:
 -  Number of Sensor nodes: N
 -  Sensor nodes positions: array of N coordinates (x, y, z) relative to a reference point
 -  Sampling frequency: fs
 -  Speed of sound in water: c

2.  Initialize the necessary variables:
 -  Detected object position: (x_obj, y_obj, z_obj)
 -  Detected object angle: θ_obj

3.  Acquire the underwater acoustic signal from the sensor array:

 𝐴𝐴 underwater_signal = AcquireUnderwaterSignal(N, fs)

4.  Perform signal preprocessing:

 𝐴𝐴 preprocessed_signal = PreprocessSignal(underwater_signal)

5.  Apply TDoA-based signal processing techniques to estimate the DOA:

 𝐴𝐴 estimated_distance = EstimateTDoA(preprocessed_signal)

6.  Apply AoA-based signal processing techniques to estimate the AOA (θ_obj):

 𝐴𝐴 estimated_angle = EstimateAoA(preprocessed_signal)

7.  Calculate the object position using estimated angle and distance:

 𝐴𝐴 x_obj = estimated_distance ∗ cos(𝜃𝜃_obj)

 𝐴𝐴 y_obj = estimated_distance ∗ sin(𝜃𝜃_obj)

Trail number Angle measurement (mts)

Trail no. 1 72.2491

Trail no. 2 75.2378

Trail no. 3 72.3617

Trail no. 4 78.3824

Trail no. 5 92.7956

Trail no. 6 85.1724

Trail no. 7 61.2256

Trail no. 8 68.838

Table 6 
Measurement Based on Angle Mean Estimation Errors for Eight Trials
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Figure 10. Measurement based on angle mean estimation errors for 12 trials.
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Figure 10. (Continued)
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𝐴𝐴 z_obj = 0 ∕∕Assuming the object is at the same depth as the Sensor nodes

8.  Refine the object position using triangulation:
 Repeat until convergence:
a)  Calculate the distances from the object to each Sensor nodes:

 distances = []
 for i = 1 to N:

distances[i] = sqrt((x_obj − Sensor nodes _positions[i].x)∧2
+ (y_obj − Sensor nodes _positions[i].y)∧2+ (z_obj − Sensor nodes _positions[i].z)∧2) 

b)  Calculate the weights for each Sensor nodes based on the inverse of the distances:
 weights = []
 for i = 1 to N:

 𝐴𝐴 weights[i] = 1 ∕ distances[i]

c)  Normalize the weights:
 total_weight = sum (weights)
 for i = 1 to N:

 𝐴𝐴 weights[i] = weights[i]∕ total_weight

d)  Calculate the updated object position:

 𝐴𝐴 x_obj_new = sum(weights[i] ∗ Sensor nodes _positions[i].x) for i = 1 toN

 𝐴𝐴 y_obj_new = sum(weights[i] ∗ Sensor nodes _positions[i].y) for i = 1 toN

 𝐴𝐴 z_obj_new = sum(weights[i] ∗ Sensor nodes _positions[i].z) for i = 1 toN

e)  Update the object position:

 𝐴𝐴 x_obj = x_obj_new

 𝐴𝐴 y_obj = y_obj_new

 𝐴𝐴 z_obj = z_obj_new

9.  Output the precise underwater object localization:

 𝐴𝐴 Print(
′′Object Position ∶ (

′′
, x_obj,′′,′′, y_obj,′′,′′, z_obj,′′)

′′
)

10.  End

This hybrid algorithm combines the TDoA and AoA techniques to estimate 
the distance and AOA of the underwater object. It then utilizes triangula-
tion to refine the object position based on the estimated distance and angle 
information. The refinement step iteratively updates the object position until 
convergence, similar to the previous algorithm.

5. Simulation Results and Discussions
The efficiency of the proposed distance and angle-based measurements was 
validated by research conducted underwater, providing strong evidence for 
their use. Two fundamental methods were utilized to accomplish the primary 
goals of underwater localization and MEE estimation, respectively. Both 
tactics are an improvement over the methods that have come before them 

Trail number Angle measurement (mts)

Trail no. 1 53.2565

Trail no. 2 82.2763

Trail no. 3 119.5228

Trail no. 4 68.1106

Trail no. 5 95.9061

Trail no. 6 86.1969

Trail no. 7 82.2772

Trail no. 8 92.6085

Trail no. 9 64.2048

Trail no. 10 98.1528

Trail no. 11 42.6584

Trail no. 12 74.1837

Table 7 
Measurement Based on Angle Mean Estimation Errors for 12 Trials
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because, first, they precisely localize the sensor nodes, and then, second, they 
calculate the MEEs.

5.1. Measurement Based on Distance

Measuring distance is utilized in localizing a network by determining the 
distance between the sensor and anchor nodes. According to this strategy, 
the length of the boundary between each node in the network is set at 
80 m, which results in the network being in the shape of a square. Sens-
ing nodes are not permanently installed in any one location; as a result, 
mobile sensor nodes are free to move around wherever they like inside 

this zone. There are a total of 10 wandering nodes, along with four stationary nodes in the network. Each of 
the sensor nodes in the network can communicate with one of the four anchor nodes, which are positioned 
at each of the network's four corners. The schemes have an error ratio in the calculation of distance that 
is 0.1 m, which equates to an accuracy in the calculation of distance that is 90%. The precision of one m, 
approximately 0.1, is a good illustration of this concept. Before measuring the actual distances that separate 
the sensor nodes, it is first necessary to use a calculation to identify a non-uniform distribution of the sensor 
nodes. After the location of the sensor nodes has been determined, the procedure is analyzed through several 
iterations, and MEEs are acquired. Many trials of this process are carried out here; four, eight, and 12 trials 
are considered. The MEEs tend to move back and forth between the ranges of 2.1218 and 2.6501 m for four 
trials, 2.0604 and 3.1748 m for Eight trials, and 0.0669 and 0.2074 m for 12 trials, as can be seen in Figure 5 
and the results of the trials that are presented in Table 2 for four trials, Figure 6 and the results of the trials 
that are presented in Table 3 for Eight trials and Figure 7 and the results of the trials that are presented in 
Table 4 for 12 trials.

5.2. Measurement Based on Angle

Measurement based on angles yields results comparable to those derived from measuring distances in terms of 
the range and the number of sensor nodes.

The network is dispersed 100 m by 100 m, and each of its 10 mobile nodes and four anchor nodes has been 
selected with care. The cardinal points are home to each of the four anchor nodes that make up the network. 
After selecting a random pair of nodes, P and Q, as the starting point, the next step is to compute their 
respective locations and angles. The MEEs can be computed once the nodes have been found in the network. 
This angular measurement has used four, eight, and 12 trials. The MEEs tend to move back and forth 
between the ranges of 84.2154 and 93.8275 m for four trials, 61.2256 and 92.7956 m for Eight trials, and 

42.6584 and 119.5228 m for 12 trials, as can be seen in Figure 8 and the 
results of the trials that are presented in Table 5 for four trials, Figure 9 
and the results of the trials that are presented in Table 6 for Eight trials 
and Figure 10 and the results of the trials that are presented in Table 7 
for 12 trials.

Comparatively, the distance-based measurement is more accurate and 
time-efficient than the proposed angle-based measurement. When put next 
to the angular measurement, this is quite striking. The MEEs values obtained 
from distance measurements are smaller than those obtained from angle 
measurements. Compared to distance measurements, angular measurements 
are more challenging to take underwater due to the existence of impediments 
created by water currents. Depending on the measurement angle, MEEs can 
range from 42.6584 to 119.5228 m, whereas MEEs, based on distance, can 
swing from 0.0669 to 3.1748 m. The outcomes comparison of the data sets 
is provided in Table for Four trials, Table 9 for eight trials, and Table 10 for 
12 trials.

Trail number Distance measurement (mts) Angle measurement (mts)

Trail no. 1 2.1218 93.6701

Trail no. 2 2.2994 84.2154

Trail no. 3 2.6501 93.8275

Trail no. 4 2.5632 88.7431

Table 8 
Measurement Based on Distance and Angle Mean Estimation Errors for 
Four Trials

Trail number Distance measurement (mts) Angle measurement (mts)

Trail no. 1 2.2699 72.2491

Trail no. 2 2.2895 75.2378

Trail no. 3 2.26693 72.3617

Trail no. 4 3.1748 78.3824

Trail no. 5 2.0604 92.7956

Trail no. 6 2.965 85.1724

Trail no. 7 2.8694 61.2256

Trail no. 8 2.4301 68.838

Table 9 
Measurement Based on Distance and Angle Mean Estimation Errors for 
Eight Trials
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6. Conclusion
The approaches of localization that are distance-based and angle-based are 
both covered in this article. After the locations of the subsea nodes have 
been determined, the MEEs are calculated. To perform distance-based meas-
urements, a total network field of 100 m × 100 m in which mobile sensor 
nodes are permitted to roam has been established. There are 10 wandering 
nodes in the network, with the anchor nodes situated in the four corners of 
the network. When taking a reading of the MEE, the position of a sensor 
node is picked at random. After the random placements of the sensor nodes 
have been picked, different trials are applied; however, in the initial scenario, 
only a tiny subset of those trials are considered. The MEEs are computed 
after assessing six distinct combinations of the number of trials. The MEEs 
tend to move back and forth between the ranges of 2.1218 and 2.6501 m for 
four trials, 2.0604 and 3.1748 m for Eight trials, and 0.0669 and 0.2074 m 
for 12 trials, as can be seen in Figure 5 and the results of the trials that are 
presented in Table  2 for four trials, Figure  6 and the results of the trials 
that are presented in Table 3 for Eight trials and Figure 7 and the results 
of the trials that are presented in Table 4 for 12 trials. The network size for 
angle-based measurement is also 100 m × 100 m, which provides the mobile 
sensor nodes significant space to move. In each of the four corners of the 

square field, there is a total of 10 sensor nodes and four anchor nodes that have been placed. After angle esti-
mations between sensor nodes have been determined, the MEEs can be computed. The MEEs can be computed 
once the nodes have been found in the network. This angular measurement has used four, eight, and 12 trials. 
The MEEs tend to move back and forth between the ranges of 84.2154 and 93.8275 m for four trials, 61.2256 and 
92.7956 m for Eight trials, and 42.6584 and 119.5228 m for 12 trials, as can be seen in Figure 8 and the results 
of the trials that are presented in Table 5 for four trials, Figure 9 and the results of the trials that are presented 
in Table 6 for Eight trials and Figure 10 and the results of the trials that are presented in Table 7 for 12 trials. 
As seen in Tables 8–10, the measurements based on distance tend to produce more accurate findings than those 
based on the angle.

Abbreviations
UWSN Underwater Wireless Sensor Networks
RF Radio Frequency
AoA Angle of Arrival
TDoA Time Difference of Arrival
MEE Mean Estimation Error
EM Electromagnetic Waves
ISI Inter-Symbol Interference
TWSN Terrestrial Wireless Sensor Networks
GPS Global Positioning System
RFID Radio Frequency IDentification
WSNs Wireless Sensor Networks
DAS Distributed Antenna Systems
ToA Time of Arrival
RSSI Received Signal Strength Indicator
AUVs Autonomous Underwater Vehicles
MVM Minimum Variance Method
WSF Weighted Subspace Fitting
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
CRLB Cramer-Rao Lower Bound
GCC Generalized Cross-Correlation
EKF Extended Kalman Filter

Trail number Distance measurement (mts) Angle measurement (mts)

Trail no. 1 0.1721 53.2565

Trail no. 2 0.2001 82.2763

Trail no. 3 0.1761 119.5228

Trail no. 4 0.1514 68.1106

Trail no. 5 0.2074 95.9061

Trail no. 6 0.1573 86.1969

Trail no. 7 0.1460 82.2772

Trail no. 8 0.0669 92.6085

Trail no. 9 0.1768 64.2048

Trail no. 10 0.1766 98.1528

Trail no. 11 0.1356 42.6584

Trail no. 12 0.1322 74.1837

Table 10 
Measurement Based on Distance and Angle Mean Estimation Errors for 12 
Trials
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TOF Time of Flight
ICP Iterative Closest Point
WMDS Weighted Multidimensional Scaling
RMSE Root Mean Squared Error
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