
HAL Id: hal-04201801
https://hal.science/hal-04201801v2

Preprint submitted on 23 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Travel Resilience: Integrating Alternative
Path-Based Robustness Metric in Route Optimization
Jean-Claude Lebègue, Daniel Delahaye, Aurélie Peuaud, Jacco Hoekstra

To cite this version:
Jean-Claude Lebègue, Daniel Delahaye, Aurélie Peuaud, Jacco Hoekstra. Enhancing Travel Resilience:
Integrating Alternative Path-Based Robustness Metric in Route Optimization. 2023. �hal-04201801v2�

https://hal.science/hal-04201801v2
https://hal.archives-ouvertes.fr


Enhancing Travel Resilience: Integrating Alternative Path-Based Robustness

Metric in Route Optimization
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Abstract

Unforeseen disruptions, including accidents, adverse weather
conditions, and temporary construction, frequently hinder
traffic flow in road transportation, forcing passengers to al-
ter their routes. These incidents impart stress and delays on
travelers.
This article delves into the optimization of itineraries to

minimize the impact of disruptions on passengers’ journeys,
with a focus on the criteria to be considered.
We present a new metric for topological robustness that

focuses on alternative paths and can be integrated into pas-
sengers’ decision-making processes for choosing a route.
Our simulations, based on static traffic assignment and

varying levels of robustness, demonstrate that these robust
paths are an effective way to mitigate travel delays and exces-
sive travel time during disruptions.

1 Introduction

In contemporary societies, passenger transport is a crucial as-
pect, serving as a cornerstone of human activity. The effi-
cient movement of individuals is of utmost importance, not
only for personal convenience but also for wider implications
concerning the economy, public health and overall well-being.
Passenger mobility facilitates economic growth by promoting
trade and tourism, enables access to healthcare, education
and leisure, and underpins professional interactions. In this
context, effective allocation of passenger traffic is key to ad-
dressing the challenges of population growth and increasing
urbanization while meeting societal needs.
Despite its undeniable importance, passenger traffic man-

agement faces many challenges and obstacles. Road conges-
tion has become common in urban areas, resulting in wasted
time, increased air pollution, and a declining quality of life
for residents. Public transport delays can inconvenience pas-
sengers, and current infrastructure can become overwhelmed,
causing traffic congestion and disrupting travel schedules. Ad-
dressing these complex issues requires innovative solutions
to improve passenger traffic management in the modern era.
With that in mind, significant advances in traffic assignment
can provide a meaningful response to mitigate the impact of
such disruptions on passenger travel.

In addressing these complex challenges, it becomes evident
that one potential solution lies in a fundamental shift of the
passenger journey decision paradigm. Traditionally, cost and
travel time have been the primary determinants when selecting
modes of transport. However, to improve mobility and create
intelligent transport systems, it’s crucial to broaden the range
of factors influencing passengers’ choices. Considerations be-
yond mere economic and time efficiency, such as environmen-
tal impact, accessibility and rerouting capacity, should play
a crucial role in the decision-making process. This change in
perspective demands innovative policies as well as a fundamen-
tal alteration in how we view and prioritize the factors that
define our travel choices. By acknowledging and catering for
these varied requirements, we can facilitate the development
of a robust transportation system that satisfies the needs of
contemporary society.

In this paper, we investigate events that have the potential
to completely block a road link in a transportation network.
These events may include bad weather conditions, temporary
constructions, or accidents. Passengers affected by such dis-
ruptions are required to seek alternative routes. The aim of
this paper is to address the following question: How can pas-
sengers choose an itinerary that minimizes the effect of dis-
ruptions on their trip? Therefore, we have designed a model
that focuses on the passenger and measures the robustness of
a route by the number of alternative options available.

The paper is structured as follows: Section 2 provides an
objective overview of existing robustness models in the liter-
ature. Then, Section 3 presents a clear and concise mathe-
matical formulation of the robustness model. Next, Section 4
displays the results of various robust assignment applications
to the Sioux Falls road network. Finally, we conclude with a
summary of the work in Section 5.

2 Related work

The section explores the diverse models of robustness in trans-
portation networks. It is organized into two main categories
commonly adopted in the literature: transportation and topo-
logical models.
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2.1 Transportation robustness models

Robustness models rooted in transportation theory prioritize
simulation. Typically, these models evaluate a measure prior
to and after removing transportation elements in the network.
The network robustness index (NRI) is the most well-known
measure of this kind. It represents the difference in system as-
signment cost prior to and after eliminating a link [1, 2]. The
robustness of the air transportation network can be measured
by the increase in total cost resulting from link removal, as
demonstrated by [3] using this approach to quantify the vul-
nerability of the European network through delays caused by
the closure of key airports. [4] present a vulnerability model
for air transportation networks that estimates the impact on
network flow when node capacities are reduced over a wide
range. [5] present two models for analyzing road vulnerabil-
ity: a global demand-weighted model and a relative model
examining importance and exposure. The primary contrast
between the two models is that importance is deterministic
while exposure is stochastic. Importance measures the change
in weighted total travel cost between all origin-destination
pairs due to disruption, while exposure quantifies the impact
of disruptions on all users of the transportation network. [6]
proposed a model consisting of three components: additional
travel time, additional travel distance, and additional accident
cost as a way to measure vulnerability. [7] measured vulnera-
bility by evaluating the change in topological accessibility due
to a breakdown. [8] found critical elements using a bi-level
MILP problem where the traffic assignment optimization was
conducted in the master problem and the connectivity mini-
mization was performed in the slave problem.

2.2 Topological robustness models

Topological models are based on graph properties, rooted in
complex graph theory. Centrality measures are a well-known
example of such models [9–12]. They originate from social
network analysis and quantify the centralization of elements
within a graph. The most commonly used centrality mea-
sures in vulnerability analysis are degree, closeness, eigenvec-
tor, and betweenness centrality. The centrality degree mea-
sures a node’s accessibility. Closeness centrality calculates
how closely connected an element is to all other nodes. Eigen-
vector centrality represents an element’s influence within the
network. Betweenness quantifies the number of times a node
serves as a bridge on the shortest path between any two other
nodes.
Betweenness centrality appears to be the standard measure.

It either serves as a comparison and validation tool for newly
developed models [4] or plays a role in these models. [13] pro-
pose a link robustness model that utilizes betweenness central-
ity, node degree, and clique size. Due to its time-consuming
nature and impracticality in analyzing large-scale networks,
computing clique size is avoided. Three additional models
were employed for comparison: the Jaccard coefficient, brid-
geness index, and reachability index. The Jaccard coefficient
is a statistical metric used to compare the neighborhood of
the links’ nodes. The bridgeness index estimates the degree
to which a link acts as a bridge between cliques. Reachabil-
ity assesses the accessibility of the nodes in the network after
a link is disrupted. Kivimki (2016) defined two betweenness

centrality models based on randomized shortest paths. These
models have the potential to converge to the betweenness cen-
trality depending on the parameters.

However, robustness models extend beyond centrality in-
dices. According to Vodk et al. (2019), a loss function is
defined to illustrate vulnerability by identifying the minimal
link cut set that maximizes disintegration of a network into
multiple components. Nevertheless, this method appears to be
suitable solely for undirected networks. [14,15] utilized perco-
lation theory in order to detect bottleneck links from analyzing
the network before and after it reaches the critical threshold.
These links appear to be the cause of network disintegration
into connected components.

2.3 Mixed models

Robustness analysis is a multifaceted process that requires
capturing various aspects of system resilience. To address this
complexity, several papers recommend utilizing multiple mea-
sures to comprehensively evaluate robustness. This approach
provides a more comprehensive understanding of robustness,
ensuring that all critical aspects are carefully considered. To
address this complexity, several papers recommend utilizing
multiple measures to comprehensively evaluate robustness. In
their analysis of the metro network, [16] employed ten ro-
bustness metrics, including centrality indices, clustering coef-
ficients, and spectral indices. Another option is to consolidate
the various measures into one formula to obtain a comprehen-
sive understanding of robustness as suggested by [17]. Each
measure can be weighed to encompass all the aspects being
analyzed. However, this method can be challenging as it is
influenced by the weight assigned to each measure and the
measures’ independence. In [13], the authors establish a novel
measure of link centrality that merges betweenness centrality
and the quantity of cliques comprising the link. This com-
bination employs two established topological metrics to un-
cover previously unexplored vulnerabilities. Similarly, in [18],
the authors employ two topological analyses (betweenness cen-
trality and percolation theory) to identify critical links within
airspace networks.

3 Model

In this section, we present the definition of a transportation
network (Table 1) and a well-established traffic assignment
model from the literature. Route choice is deeply connected
to the traffic assignment problem. Then, we present the
passenger-centric robustness model as the central contribution
of this research.

3.1 Transportation network

A transportation network can be defined by a triplet T =
(G, t, d) with :

• G = (N ,A): a strongly connected digraph where N is the
set of nodes and A the set of links.

• t: vector of the transportation network link travel cost.

• d: vector of the user demand which is the number of
people traveling from an origin p to a destination q.
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Table 1: Notations

Variable Description
T = (G, t, d) Transportation network
G = (N ,A) Strongly connected digraph of nodes and links
N ,A Set of nodes and links
P,Q, C Set of origins, destinations, and OD pairs
Rpq Set of simple routes between nodes p and q
d = (dpq) User fixed demand
t = (ta) Link travel cost
τa, βa, γa Link travel time parameters
f = (fa) Link flow
k = (ka) Link capacity
c = (cpqr) Route travel cost
h = (hpqr) Route flow
π = (πpq) Shortest route cost
s = (snq) Number of alternative routes between n and q
w = (wpqr) Route robustness
v = (vpqr) Route vulnerability
ν = (νpq) Maximum route robustness
z = (zpqr) Multi-objective route cost
ζ = (ζpq) Shortest multi-objective route cost

We distinguish two types of transportation networks accord-
ing to whether the transportation cost of a link depends or not
on its flow. If it depends on the flow the transportation net-
work is congested otherwise it is not which means ta(fa) is
constant.
In our case, we consider the well-known Bureau of Public

Roads (BPR) cost function to force congestion by making the
cost too high when it is busy:

ta(fa) = τa

(
1 + βa

(
fa
ka

)γa
)

(1)

with τa, βa, and γa being data of the link a. The constant
τa is known as the free flow travel time.
Often, the transportation demand (dpq) between an OD pair

pq can be distributed among several paths r connecting p to
q. Let’s note hpqr the flow along the path r leading from p to
q then:

dpq =
∑

r∈Rpq

hpqr (2)

The cost associated with the route r is equal to the sum of
the costs of the links belonging to this route.

cpqr =
∑
a∈A

δpqrata (3)

δpqra equals 1 if the link a belongs to path r and 0 otherwise.
Moreover, the flow on the link a is the sum of the flows of

the paths passing through this link:

fa =
∑

r∈Rpq

δpqrahpqr (4)

3.2 Deterministic user equilibrium

Many models (static, dynamic, deterministic, stochastic...)
were defined to tackle traffic assignment problems. This pa-
per pays attention only to the static deterministic user equi-
librium.

The problem consists in determining the distribution of de-
mand flows on the equilibrium network. In order to do so, two
assumptions must be formulated:

1. each user has a global knowledge of the network (links,
paths, costs ...)

2. all users have the same behavior

Furthermore, users are expected to choose the path with the
least cost. Although this may not be the most realistic strat-
egy, it is still a reasonable approximation. An equilibrium is
achieved when users cannot reduce their transportation costs
by selecting an alternate path from the one they are currently
using. As a result, all paths within the same origin-destination
pair that are utilized have identical costs, while unused paths
incur higher costs. Wardrop’s first principle summarizes this
equilibrium [19]:

“Travel times on all used roads are equal to and smaller
than those of unused roads.”

The user equilibrium is obtained by solving the following
system:

(P)


cpqr = πpq if hpqr > 0 ∀p, q, r
cpqr > πpq if hpqr = 0 ∀p, q, r
dpq =

∑
r∈Rpq

hpqr ∀p, q
fa =

∑
r∈Rpq

δpqrahpqr ∀a
fa ≥ 0, hpqr ≥ 0, dpq ≥ 0 ∀a, p, q, r

(5)

3.3 Passenger-centric robustness model

The effect of a disruption of a roadway link on the flow of traf-
fic along a path connecting an origin-destination pair is linked
to the flow density and the availability of alternate routes.
Specifically, as density increases, costs increase as well. Addi-
tionally, when there are fewer shorter alternate routes, disrup-
tions in flow have greater consequences for rerouting, resulting
in increased congestion, and greater delays.

The model concentrates on exploring substitute routes link-
ing any transit node with the final destination node. No at-
tention is given to the resilience of the origin node since pas-
sengers can easily opt for other available routes at this point.
However, once the journey has begun at the first transit node,
there is no turning back. Furthermore, starting from the ori-
gin node, calculating the robustness of a path would consider
other paths used to assign demand for the OD in question.
This presents an issue when seeking path robustness measures
that are independent of one another.

More formally, if we note snq the number of alternative
routes connecting nodes n and q whose cost is less than a
threshold (Figure 1); let us consider the route r ∈ Rpq then
the robustness wpqr of the route r is:

wpqr =
∑

n∈r\(p,q)

snq (6)

The variable snq renders the model passenger-centric. Dis-
ruptions may occur at each node n on the route; therefore,
a robust path should suggest at least one alternative in the
event of such an occurrence. Not all routes are feasible alter-
natives, and the costs associated with alternative paths must
be reasonable in comparison to the cost of the shortest path
connecting node n to the destination node.
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Figure 1: An example of the computation of wpqr of the green
path r = (p, n1, n2, q). Two alternative paths (dashed yellow
and red paths) connect node n1 to node q and one (dashed
blue path) connects node n2 to q, so wpqr = 2 + 1 = 3.

So far, the model is purely topological. The transportation
part which involves the flow assigned to the path is to be
included.
For each path, a vulnerability measure is defined. This mea-

sure takes into account the flow of passengers on the path and
its robustness. Usually, traffic assignment problems are mini-
mization problems. So, we define a model that fits this kind
of optimization. The vulnerability of a path r during the path
selection process of a path connecting an OD pair pq is defined
as follows:

vpqr = (hpqr + 1)(νpq − wpqr) (7)

As a practical implementation of the robustness model pre-
sented in Equation (7) for the passenger route decision process,
we suggest a resilient static traffic assignment model grounded
on the same model. The passengers’ aim is to opt for the route
that minimizes the linear combination of cost and vulnerabil-
ity.
By integrating the route vulnerability in the cost function,

we define a new generalized bi-objective route cost:

zpqr = αvpqr + (1− α)cpqr (8)

where α is a parameter to be set according to the importance
one wishes to give to robustness.
Finally, the robust version (Pr) of the problem (P) can be

formulated the following way:

(Pr)


zpqr = ζpq if hpqr > 0 ∀p, q, r
zpqr > ζpq if hpqr = 0 ∀p, q, r
dpq =

∑
r∈Rpq

hpqr ∀p, q
fa =

∑
r∈Rpq

δpqrahpqr ∀a
fa ≥ 0, hpqr ≥ 0, dpq ≥ 0 ∀a, p, q, r

(9)

4 Results

The open database [20] gathered several road transportation
network data: network, demand, and the node coordinates.
The size of these networks varies from 4 to 33837 nodes.
We decided to test our model on the Sioux Falls road net-

work. This network is composed of 24 nodes and 76 links. All
the nodes are origins and destinations of at least one OD pair.
Figure 2 plots the demand to assign between the OD pairs.
We can remark there is no loop demand, the diagonal values
of the matrix are null. Moreover, nodes 10, 16, and 22 have
the highest number of departing and arriving passengers.

Figure 2: OD matrix of the Sioux Falls road network

(a) Least-cost assignment (b) Robust assignment

Figure 3: Flow comparison between least-cost and robust as-
signment on the Sioux Falls road network

The graph depicted in Figure 3 illustrates two types of as-
signments: the least-cost assignment and the robust assign-
ment. The latter is derived from the alternative paths model
presented in Section 3. The links of the robust assignment are
more heavily loaded, resulting in thicker widths and increased
costs based on the flow (refer to Equation (1)). This behavior
was anticipated. The cost and alternative options along the
path are taken into account in the robust assignment, resulting
in a longer selected path compared to the least-cost option.

As shown in Figure 4, the robust model assigns passen-
gers to more paths than the least-cost model. Moreover, since
the demand is the same for both assignments, we can infer
that fewer people are on these routes. This implies that there
will be fewer people to re-route in case of a disruption, and
alternative costs will be close to the disrupted path. Never-
theless, utilizing multiple routes to assign passengers from the
same OD pair heightens the probability that some of them en-
counter a disturbance. Nonetheless, it minimizes the resources
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Figure 4: Distribution of paths used for least-cost (orange)
and robust (black) assignments depending on the OD pairs

required to reassign them.

We were interested in analyzing the global cost of the traffic
for different disruption cases. The disruptions here are com-
plete road closure. In Figure 5, we ran several simulations
with different values of parameters. A simulation is a three-
step process. It starts with an assignment for a given cost and
vulnerability parameter. Then, some links of the network are
disrupted. And finally, the stranded passengers are reassigned
from the node where the disruption happens. The cost pa-
rameter is used to compute the alternative paths so that their
costs do not deviate too far away from the least-cost path.
This parameter is related to snq in Equation (6). The vulner-
ability parameter is exactly the parameter α in Equation (8).
We set the cost parameter to 1.2 so that the cost of the alter-
natives is at a maximum 20% higher than the least-cost path
and made the vulnerability parameter vary from 0 to 0.5. The
vulnerability parameter set to 0 means that the robustness is
not considered therefore it is equivalent to a least-cost assign-
ment.

The cost of the network after the robust assignment process
is shown in Figure 5b. Notably, the cost increases in propor-
tion to the level of robustness considered. For a given set of
parameters, irrespective of the number of disruptions to be
carried out, the cost remains constant. The global reassign-
ment cost after network disruptions is illustrated in Figure 5c,
where it is generally observed to slightly increase. There is a
noticeable decline seen on the blue and green curves from 1 to
4 and 2 to 4, respectively. The orange and yellow curves both
show a decreasing at 5. Lastly, the orange curve dips below
the black curve at 5 and 6 disruptions, indicating that reas-
signment becomes more cost-effective with greater robustness.
The extra cost is the difference between the cost of reassign-
ment following a disruption and the cost of assignment. The
extra cost of reassignment is depicted in Figure 5d. Similar to
reassignment, the extra cost generally rises with the number of
disruptions, but it may occasionally decrease. Notably, the ex-
tra cost exhibits the same variation patterns as reassignment.
The curves in this graph are sorted in the opposite direction as
the previous two graphs, with the least robust (black curve) at
the top and the most robust (blue curve) at the bottom. The
cost of reassignment decreases as assignments become more
robust. Occasionally, the extra cost is negative (blue and yel-
low curve), meaning the paths used for reassignment are less

parameters: (path, cost, vulnerability)
(4, 1.2, 0.0)
(4, 1.2, 0.1)

(4, 1.2, 0.2)
(4, 1.2, 0.3)

(4, 1.2, 0.4)
(4, 1.2, 0.5)

(a) Parameters used for the different curves: the path pa-
rameter is the number of paths computed at each iteration,
the cost parameter is used to compute snq in Equation (6),
and the vulnerability parameter is α in Equation (8)
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Figure 5: Overall transportation cost after the traffic assign-
ment and reassignment steps of the Sioux Falls road network
disruption simulation for different parameter values
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Table 2: Scenarios simulated in the Sioux Falls road network where five roadway links were fully closed. The subscript LC
and R refer to Least-Cost and Robust, respectively. R∗ represents the reassignment cost, EC∗ denotes the extra cost incurred
due to the disruption, and A∗ represents the assignment cost.

Scenario RLC RR ECLC ECR ∆ = AR −ALC ECLC − ECR −∆
1 4114519,96 3979736,108 507892,6309 270688,3211 102420,4579 134783,8519
2 3959245,719 4110710,804 352618,3905 401663,0172 102420,4579 -151465,0846
3 4014468,303 3838573,41 407840,9746 129525,6228 102420,4579 175894,8939
4 3831719,568 4096622,027 225092,2389 387574,2405 102420,4579 -264902,4595
5 3935039,539 3953570,813 328412,2101 244523,0266 102420,4579 -18531,27432
6 3809941,809 3907289,247 203314,4804 198241,4601 102420,4579 -97347,43759
7 3938988,687 3964626,708 332361,3583 255578,9211 102420,4579 -25638,02071
8 3906298,91 3954667,289 299671,5815 245619,5023 102420,4579 -48368,37873
9 4078718,237 3875316,617 472090,908 166268,8299 102420,4579 203401,6203
10 3893070,07 3651187,3 286442,7414 -57860,48722 102420,4579 241882,7707

expensive than the initially assigned paths. This results in
shorter travel times when network disruptions occur.

The most remarkable result from these tests is the orange
curve falling below the dark curve in Figure 5c. The orange
curve represents a 10% robust assignment whereas the black
curve is a non-robust least-cost assignment. We plot in Ta-
ble 2 the ten scenarios used to compute the average black and
orange curves in Figure 5. As we can remark, the robust extra-
cost ECR, which is cost generated by the reassignment of the
passengers, is often lower than the least-cost extra-cost ECLC .
Besides, we compute the initial cost difference between the ro-
bust and the least-cost scenario in column ∆. Finally, we cal-
culate the difference between the least-cost extra-cost and the
robust extra with the initial cost difference. It is remarkable
to note for the scenarios with the green cells, the least-cost
extra-cost is far greater than the robust assignment combined
with the initial cost difference. This final result shows that
a robust strategy can absorb both the initial extra-cost and
the generated delays. This result is not reflecting the ben-
efit of such a strategy on one route plan but on the whole
transportation network.

The most significant outcome of the examinations is the
orange curve’s descent below the dark curve in Figure 5c.
The orange curve exhibits a 10% robust assignment, while the
black curve illustrates a non-robust least-cost assignment. We
have included in Table 2 the ten scenarios utilized to calculate
the average black and orange curves in Figure 5. As we can ob-
serve, the additional cost incurred by reassigning passengers,
known as robust extra-cost (ECR), is frequently lower than
the least-cost extra-cost (ECLC). Additionally, we calculate
the initial cost difference between the robust and least-cost
scenarios in column ∆. Lastly, we determine the difference
between the least-cost extra-cost and the robust extra-cost
with the initial cost difference. For the scenarios with green
cells, it is noteworthy that the least-cost extra-cost exceeds
the combined cost difference of the robust assignment. This
final outcome indicates that a robust strategy can accommo-
date both the initial extra-cost and the incurred delays. The
benefits of such a strategy are observed not only on a single
route plan but across the entire transportation network.

In this section, we have demonstrated that achieving ro-
bustness carries a cost. To attain a robust outcome, passen-
gers may need to tolerate a longer travel time. This presents
a dilemma for passengers seeking a robust trip. Nevertheless,

the results indicated that robustness can be advantageous if
taken into consideration (by as little as 10%).

5 Conclusion

The objective of this study is to reduce the negative impact
of disruptions on passenger journeys. We introduce a novel
passenger-oriented model that measures a route’s robustness
to complete roadway closures, based on the number of alter-
nate routes available along the way. Enhancing robustness
increases a route’s travel time. When a disruption occurs,
even a route with low robustness can absorb both the initial
excessive travel time and the resulting delay.

When a roadway becomes suddenly closed, a route passing
through it must be replanned, causing delays for passengers.
The extent of this delay is contingent on the quality of the al-
ternative routes available. The metric developed in this study
seeks to quantify this delay by assessing the existence of al-
ternative routes and determining their quality.

This model can assist passengers in making informed deci-
sions when choosing a route. Robust routes ensure a depend-
able journey with fewer unexpected delays, resulting in less
stress for passengers. Additionally, passengers can save time
by avoiding frequent detours and closures.

This paper presents a new contribution to vulnerability
analysis theory through our purely topological model. While
previous works have taken a network-oriented approach, we
adopt a passenger-focused perspective. Their focus is on iden-
tifying critical elements within a transportation network. In
contrast, we are focused on identifying critical trips. Our work
captures a new aspect of vulnerability and represents a com-
pletion to what has been previously done on the network side.

The presented model is currently static. Our next step is
to expand it into a more realistic dynamic version. Addition-
ally, we aim to incorporate this model into a dynamic traffic
assignment tool to analyze various disruption scenarios.
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