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 7 

SUMMARY 8 

 The ability to reduce toxicity of ultra-high dose rate (UHDR) helium ion irradiation has 9 

not been reported in vivo. Here, we tested UHDR helium ion irradiation in an embryonic 10 

zebrafish model. Our results show that UHDR helium ions spare body development and reduce 11 

spine curvature, compared to conventional dose rate. 12 

 13 

INTRODUCTION 14 

One challenge of radiotherapy (RT) is to effectively treat tumors while preserving 15 

healthy tissue. Preclinical evidence showed that UHDR radiotherapy selectively reduces the 16 

toxicity to healthy tissues, but not to tumors, as compared to conventional dose rate 17 

radiotherapy [1]. This "FLASH" effect, defined in vivo per se, has been mainly demonstrated 18 

using electrons. Recent data suggest that it also occurs with protons and hadrons [2,3]. The 19 

precise ballistics of the later turn helpful when facing volumetric dose constraints [4]. 20 

Combining this advantage with irradiation at UHDR is expected to further optimize the 21 

benefit/risk ratio. One study tested the Flash effect with helium ions at UHDR assessing only 22 

in vitro clonogenic survival [5].  However, there is currently no validation of helium ion UHDR-23 

RT in complex organisms. In this study, we compared the developmental response of zebrafish 24 

embryos irradiated at UHDR or conv-DR using a helium ion beam.  25 
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 1 

MATERIAL AND METHODS 2 

Helium ion beam and experimental setup 3 

 A monoenergetic 4He2+ beam of 67.4 MeV was provided by the isochronous 4 

ARRONAX cyclotron (IBA Cyclone 70XP) [6] with a fixed micro-pulse frequency of 30.45 5 

MHz. A homemade pulsing chopper-based system allowed macro-pulses of controlled duration 6 

(>10 µs), frequency, and intensity [7]. This enabled conv-DR and UHDR in identical irradiation 7 

conditions. A 25 μm tungsten foil and two collimators (Ø 15 mm) were used to spread and 8 

homogenise the beam (Fig. 1A). Dose distribution and beam energy were evaluated by 9 

numerical simulation with Monte Carlo GATE [8]. The mean energy at the entrance of the 10 

sample was estimated to be 40.3 ± 2.3 MeV, leading to a Bragg peak depth of 1.24 mm (Fig. 11 

1B). A plastic foil of 0.16mm was used to seal the wells and the embryos were maintained 12 

behind, on a single 1 mm thick layer (Fig. 1B and 1C). The mean Linear Energy Transfer (LET) 13 

inside the embryos was 27.6 keV/µm. Mean delivered physical doses were 17.9 ± 0.27 Gy and 14 

24.1 ± 0.27 Gy for UHDR and 18.0 ± 0.36 Gy and 24.0 ± 0.29 Gy for conv-DR. Considering a 15 

Relative Biological Effectiveness (RBE) between 1.5 to 2 [9], the theoretical biological doses 16 

were between 26.9 – 36.0 GyE and 36 – 48 GyE. A mean conv-DR of 0.25 ± 0.02 Gy/s and 17 

UHDR of 9.7 ± 0.82 kGy/s were applied. Beam structures, doses, online beam monitoring and 18 

dosimetry are presented in Table 1. Details on calculations are given in the Supplementary 19 

Material and Methods. Gray values (Gy) in the manuscript always refer to physical doses. 20 

 21 

Zebrafish embryo culture and irradiation  22 

Wildtype AB zebrafish (Danio rerio) eggs were provided at 1-hour post-fertilization 23 

(hpf) by the ImPACcell facility (Biosit, Univ. Rennes, France). Embryos were transported and 24 

cultured at 28°C in E3 medium. One hour prior to irradiation delivered at 28 hpf, 32 eggs were 25 
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placed as a single layer in 100 µl (Fig. 1C). Viability rates were calculated on the 4th day 1 

relatively to the number of surviving embryos 1 hour after irradiation. At 5 days post-2 

fertilization (dpf), cold-anesthetized embryos were fixed with 4% formol and later 3 

photographed with a Ni-U stand and 2X objective with 0.06 numerical aperture (Nikon 4 

Instruments, Melville, USA). The length (a) of embryos was measured by drawing along the 5 

vertebral column using Fiji software (ImageJ 1.53q). The Euclidean distance (b) was measured 6 

by a straight line from the tip of the head to end of the tail. Curvature represents the a/b ratio. 7 

Pericardial edema was scored as reported [10]. The toxicity reduction was calculated 8 

normalized to the conv-DR effect with the formula: 100*[1- ((ctl value - UHDR value)/(ctl 9 

value - conv-DR value))]. 10 

Statistical analysis  11 

Three independent experiments (egg batch, beam, date) were performed to ensure 12 

reproducibility. GraphPad Prism (Version 6) was used for statistical analysis. Mean survival 13 

rates were tested with Kruskall-Wallis followed by Dunn’s correction. Mean values of the 14 

length, curvature and pericardial edema were compared using a One-way Anova test followed 15 

by Bonferroni correction. For all figures, compiled data are presented ± sd with * = p<0.05; ** 16 

= p<0.01; *** = p<0.001; **** = p<0.0001. 17 

 18 

RESULTS 19 

 20 

To investigate the effect of UHDR 4He2+ ions, a homogeneous beam with real-time 21 

dosimetric control was designed at the Arronax cyclotron (Fig. 1A) for irradiating a ≤ 1 mm 22 

thick target in the plateau (Fig. 1B). Zebrafish embryos of 1240 µm at 28 hpf were aligned 23 

vertically on the same plane using home-made well insert (Fig. 1C). Development and 24 

morphology of zebrafish embryos were measured after conv-DR and UHDR irradiations. As 25 

expected, viability of non-irradiated controls was close to 100% (Fig. 2A). No statistical 26 
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difference was found between conv-DR and UHDR either at 18 Gy (87% ± 5 vs 94% ± 5) or at 1 

24 Gy (80% ± 14 vs 90% ± 8) (Fig. 2A). At 4 days post-irradiation, zebrafish embryos irradiated 2 

with 18 Gy UHDR had longer body length (3025 ± 227 µm) compared to those irradiated with 3 

conv-DR (2937 ± 252 µm, p<0.001) (Fig. 2B). Similar results were found at 24 Gy (2925 ± 219 4 

µm vs 2830± 288 µm, p<0.0001) (Fig. 2B). This represented a toxicity reduction by 15% at 18 5 

Gy and 14% at 24 Gy. Notably, embryos exposed to 24 Gy UHDR were as long as those 6 

exposed to 18 Gy conv-DR.  7 

 Embryos irradiated with both modalities developed a spine curvature, in opposite to 8 

controls. A significant reduction of the curvature ratio was observed at 24 Gy UHDR compared 9 

to conv-DR (1.10 ± 0.19 vs 1.20 ± 0.43, p<0.01), although not at 18 Gy (p>0.05) (Fig. 3A). 10 

Similarly, pericardial edema was observed after RT but not in controls (Fig. 3B). The severity 11 

of edema was less important at 24 Gy (p<0.05) after UHDR (score = 2.65 ± 0.79) compared to 12 

conv-DR (score = 2.84 ± 0.87; (Fig. 3B). 13 

 14 

DISCUSSION 15 

 16 

 The UHDR-mediated reduced toxicity has been demonstrated in various model 17 

organisms. With the zebrafish embryo model, protection in body length, pericardial edema or 18 

spinal curvature has been validated with electrons and protons, although not consistently [11-19 

13]. Recent results from our laboratory confirmed a reduced toxicity of protons at UHDR [14]. 20 

However, to our knowledge, no data has been published for helium ions in vivo. 21 

 The biological response to UHDR helium ion beams has been reported in human cancer 22 

cell lines in vitro with higher clonogenic survival only under 1% O2 [5]. The present study 23 

shows for the first time the protective effect of UHDR helium ions in vivo. These results are 24 

consistent with our previous experiments using protons at similar beam energy and dose rates, 25 

leading to the same magnitude of protection by UHDR (toxicity reduction of protons: 9-20% 26 
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helium ions: 14-15%). It is nevertheless difficult to provide definitive conclusions regarding 1 

the biological doses, with effects of -25% to -28% in body size with conv-DR protons [14] and 2 

of -17% to -20% here. The present data fit better with a RBE in the lower estimated range, of 3 

≈ 1.5. Some level of variability likely rises from varying orientation of the embryos and local 4 

oxygen gradients. The differential between conv-DR and UHDR lies between 100-200 µm, 5 

which is mostly in agreement with data from Beyreuther's group but not comparable with other 6 

studies performed at 4 hpf. Interestingly, helium ions are heavier particles than protons, 7 

resulting in higher linear energy transfer. High LET values are supposed to induce more 8 

efficient cell destruction, accompanied by reduced hypoxia dependence. Yet, the impact of the 9 

pO2 on the FLASH effect in zebrafish has been demonstrated [13,15]. Our preliminary 10 

measurements suggest that eggs in our proton setup were more hypoxic (0-5 mm Hg) than those 11 

in the current helium setup (≈ 30 mm Hg). Therefore, it would be interesting in future studies 12 

to perform experiments with helium ion beams in controlled O2 environments in order to 13 

elucidate this apparent paradox.  14 

 15 

CONCLUSION 16 

 17 

This study shows for the first time the in vivo effect of a UHDR helium ion beam. These 18 

findings advocate for the validity of combining high LET ion beams with the UHDR modality 19 

to benefit from both good ballistics and reduced toxicity.  20 

  21 
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1 

Table1. Beam structures and doses for conv-DR and UHDR irradiations. 2 

 3 

Figure 1. Helium ion beam experimental setup.  4 

A Beam path with the exit kapton window (K), the tungsten foil (TF), the first collimator (C1), 5 

the photomultiplier tubes (PM1 and PM2), the second collimator (C2) and the Faraday cup 6 

(FC). Distances are in cm. B Bragg peak of the helium ion beam at the target level simulated in 7 
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water with GATE v9.0 [8]. The gray zone corresponds to the adhesive plastic foil for closing 1 

wells. C Zebrafish embryo positioning in the experimental target plate. 2 

 3 

 4 

 5 

Figure 2. Effect of UHDR 4He2+ irradiation on zebrafish embryo growth. 6 

Embryos were irradiated at 28 hpf. A Viability rate at 4 dpf. B Body length at 5 dpf. n= indicates 7 

the number of embryos per point.  8 

 9 

 10 

 11 

Figure 3. Effect of UHDR 4He2+ irradiation on zebrafish embryo morphology.   12 
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Embryos were irradiated at 28 hpf. A Spinal curvature (length/Euclidean distance ratio). B 1 

Pericardial edema score. n= indicates the number of embryos per point.  2 
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