
HAL Id: hal-04201480
https://hal.science/hal-04201480

Preprint submitted on 10 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey on real-time 3D scene reconstruction with
SLAM methods in embedded systems

Quentin Picard, Stephane Chevobbe, Mehdi Darouich, Jean-Yves Didier

To cite this version:
Quentin Picard, Stephane Chevobbe, Mehdi Darouich, Jean-Yves Didier. A survey on real-time 3D
scene reconstruction with SLAM methods in embedded systems. 2021. �hal-04201480�

https://hal.science/hal-04201480
https://hal.archives-ouvertes.fr

1

A survey on real-time 3D scene reconstruction with
SLAM methods in embedded systems

Quentin Picard, Stephane Chevobbe, Mehdi Darouich, and Jean-Yves Didier

Abstract—The 3D reconstruction of simultaneous localization
and mapping (SLAM) is an important topic in the field for
transport systems such as drones, service robots and mobile
AR/VR devices. Compared to a point cloud representation, the
3D reconstruction based on meshes and voxels is particularly
useful for high-level functions, like obstacle avoidance or in-
teraction with the physical environment. This article reviews
the implementation of a visual-based 3D scene reconstruction
pipeline on resource-constrained hardware platforms. Real-time
performances, memory management and low power consumption
are critical for embedded systems. A conventional SLAM pipeline
from sensors to 3D reconstruction is described, including the
potential use of deep learning. The implementation of advanced
functions with limited resources is detailed. Recent systems pro-
pose the embedded implementation of 3D reconstruction methods
with different granularities. The trade-off between required
accuracy and resource consumption for real-time localization and
reconstruction is one of the open research questions identified and
discussed in this paper.

Index Terms—SLAM, real-time systems, robot sensing systems,
embedded systems, survey.

I. INTRODUCTION

Autonomous transport systems, such as cars, service
robots, UAVs/MAVs (unmanned/micro air vehicle) and mo-
bile AR/VR (augmented reality/virtual reality) devices, re-
quire accurate and robust perception for high-level functions
based on obstacle avoidance or interaction with its physical
environment. Each transport system has several constraints
with a different level of criticality for real-time processing.
Autonomous cars offer much more space to include powerful
and expensive computing hardware [1] than drones or AR/VR
devices where the power consumption budget [2] and the
robust localization [3] are critical.

Simultaneous Localization And Mapping (SLAM) is an
active area of research and is widely used by the community
to provide accurate and robust real-time localization and
reconstruction of the surrounding environment without prior
knowledge. It is reflected in three main questions [4]: localiza-
tion (where am I?), reconstruction (how is my environment?)
and image segmentation (what are the objects around me?).
The main challenge of SLAM is the global consistency. As it is
mostly based on relative measurements from visual and inertial
sensors, uncertainty accumulates gradually and the effect of
drift begins to be noticeable over time. SLAM methods include
an optimization module responsible for local and global con-
sistency. The loop closure detection corrects the drift when a

Q. Picard, S. Chevobbe and M. Darouich are with CEA, LIST, 91191 Gif-
sur-Yvette, France. (e-mail: quentin.picard@cea.fr)

Q. Picard and J-Y. Didier are with IBISC, Univ Evry, Université Paris-
Saclay, 91025, Evry, France.

reconstructed scene has already been visited. Depending on the
used techniques, SLAM offers several types of reconstruction,
such as point clouds, surfels (oriented points), meshes (triangle
meshes), volumetric (surface meshes based on voxels). This
paper defines the term mapping as cartography for point clouds
[5], [6] and 3D reconstruction for mesh [7] and volumetric
models [8].

While visual(-inertial) SLAM takes advantage of imaging
sensors and inertial measurements, several lines of research
make use of other sensors. In [9], [10], a multi-sensor system
based on LiDAR [11] and a monocular infrared camera [12]
is used for real-time localization. In [13], a hybrid state
estimation pipeline combines event-based sensors, visible cam-
eras and inertial measurements. Event-based sensors overcome
the limitations of visual cameras against rapid movement or
changes in lighting. Instead of capturing directly the light
intensity, they acquire the change of intensity in the scene
[14]. Today, they are mainly used as a complementary sensor
to take advantage of the large amount of information provided
by visible cameras.

Existing surveys on SLAM have reviewed the fundamental
challenges for accurate and robust large-scale applications
[15], [16], [17], from early probabilistic approaches and data
association [18], [19] to the potential use of deep learning
[20]. SLAM components, including sensors to the embedded
localization [21] have been intensively studied to provide a
robust solution to many applications, like autonomous driving
[22], search and rescue tasks, infrastructure inspection and
3D reconstruction in static and dynamic environments [23]
with challenging conditions [24]. The robustness of real-time
methods under difficult conditions has been reviewed and
quantified including low visiblity [24], dynamic movement,
illumination changes, changed viewpoints and lifelong sce-
narios [25]. Experiments [25] highlight that state-of-the-art
approaches struggle with these challenging conditions. It also
shows that the SLAM method based on feature extraction [5]
provide the best trade-off in terms of robustness. However,
feature extraction for visual SLAM accentuates the lack of
flexibility due to the dependence of a certain type of feature
and the difficult localization in the presence of noise [26].
From the real-time localization to global mapping, the SLAM
problem has been intensively studied using learning-based ap-
proaches [20]. The evolution of deep neural networks (DNNs)
and its impact on SLAM [15] opens several directions for
lifelong scenarios including the type of model, scalability, and
hardware deployment.
This survey provides a broader view of SLAM, from localiza-
tion to 3D reconstruction in the embedded context, with an in-

2

depth analysis of the implementation of advanced functions on
resource-constrained hardware platforms. It focuses on meth-
ods using lightweight and low power consumption imaging
sensors and inertial measurements. This article presents the
following main contributions:
• The description of each function for real-time localiza-

tion and 3D reconstruction based on imaging sensors
and inertial measurements in Section II. A discussion
about strengths and limitations of existing visual(-inertial)
SLAM methods as well as the potential use of deep
learning is provided.

• A comprehensive review of the implementation of lo-
calization and reconstruction functions in low power
consumption embedded systems with limited resources
in Section III.

II. SLAM PIPELINE FROM SENSORS TO 3D
RECONSTRUCTION

The SLAM community has made remarkable improvement
on the accuracy and robustness of large-scale applications in
the recent years [16], [17], [15].

Figure 1 illustrates a conventional 3D scene reconstruction
pipeline using imaging sensors and inertial measurements as
inputs. It is decomposed in two main modules, localization and
3D reconstruction. The first one is based on the front-end (FE)
and the back-end (BE). The FE processes images and estimates
motions. The BE uses preintegrated inertial measurements [28]
and manages the topological consistency through local and/or
global optimizations of 3D poses and points [29]. The 3D
reconstruction module provides a model of shapes and gives
geometric properties. The mesh reconstruction allows a 3D
mesh of the environment based on a 2D triangulation from
FE and 3D poses provided by BE. This representation is
useful for obstacle avoidance functions. The interaction with
the physical environment requires a volumetric reconstruction
provided by the voxel-based computation and the rendering of
surface meshes. It takes as input the depth map from the image
depth estimation and 3D poses from the BE. The semantic
segmentation gives information about surrounding objets [30],
[31], [32]. For instance, in the case of a 2D RGB images,
its semantic corresponds to a labelled classification of each
pixel, used for volumetric reconstruction, mesh and point cloud
cartography.

This section describes each part of the pipeline from real-
time localization to 3D scene reconstruction and the potential
use of deep learning.

A. Localization module

Real-time 3D reconstruction for mobile robots in an un-
known environment requires an accurate localization that
visual SLAM [5], [6], [33], [34] and the subpart visual(-
inertial) odometry methods (VO/VIO) [7], [35], [36] provide
from relative measurements.

1) Front-end: The front-end processes the input image.
Indirect and direct techniques are the two main approaches,
which are respectively described below.

Indirect methods consist of feature detection, feature match-
ing (or tracking) and motion estimation from observations with
geometric verification based on n-point random sample con-
sensus (RANSAC) [37], [38], [39]. Feature detection extracts
corners on an n gaussian pyramidal levels generated from the
grayscale image. The process of the gaussian pyramid levels
is downsizing an image through n levels with the same factor
(640 × 480 to 80 × 60 in four levels with a factor of two)
[40]. In [5], a scale factor of 1.2 accross 8 levels in the scale
pyramid has been configured by default. This technique allows
the feature extraction to be scale invariant. Several feature
detection methods have been developed since Moravec [41]
which give a trade-off between robustness and computing com-
plexity [42], [43], [44]. Feature matching involves detecting
and describing features to match consecutive images [45],
[46], [47] whereas tracking with the KLT tracker estimates
the displacement based on the detected features without any
feature description [48]. The next step estimates the motion
between two images and performs geometric verification with
RANSAC for outlier rejection. Depending on the approach,
features are specified in two or three dimensions for 2D-
2D, 3D-3D and 3D-2D techniques. The first 2D to 2D case
estimates the motion from the features extracted in 2D. This
method is usually performed during the initialization using
epipolar constraints to obtain geometric relations between two
consecutive images [37], [39], [49]. In the case of 3D to 3D
motion estimation, features are specified in three dimensions
based on the triangulation of 3D points by using, for instance,
stereo visible cameras. The 3D-3D estimation is based on
minimizing the Euclidean distance between corresponding 3D
features. Finally, the 3D to 2D motion estimation approach is
based on the perspective from n points (PnP) which minimizes
the reprojection error between the 2D feature and its 3D
counterpart:

Tk = argmin
T

∑
i

‖u′i − π(pi)‖2 (1)

where Tk is the transformation matrix between the current
view point and an arbitrary origin, u′i the detected features,
π the projection function and pi the corresponding 3D point.
As pointed in [50], the 3D to 2D motion estimation is more
accurate than 3D-3D estimation because of the uncertainty
generated by the triangulated 3D points.

While indirect methods extract and use features for the pose
estimation, direct methods use all pixels available in the input
image [6], [51], [52], [53]. The pipeline differs as they do not
contain the feature detection and matching stages. It estimates
an optical flow with the photometric error minimization:

Tk,k−1 = argmin
T

∑
i

‖Ik(u′i)− Ik−1(ui)‖2 (2)

where Tk,k−1 is the transformation matrix between two
frames, Ik(u′i) the intensity I of the pixel u′i in frame k.

Table I summarizes the benefits and drawbacks of indirect
and direct approaches. Indirect methods allow robust and
efficient computation due to a sparse detection of features.
However, they rely on detected features and require robust
estimation to prune outliers that impair the localization pro-
cess. Direct methods have the benefits to estimate motion

3

Rendering

Voxel grid

Surface
meshes

map

Volumetric reconstruction [7]

3D mesher 3D mesh
map

Front-end

Back-end

3D poses

3D points
and poses

3D poses and point cloud
cartography

inertial

meas.

. . .

framesImager
Imager

preint.

meas.Preintegration

depth map

Depth
estimation

semantic

labels

Semantic
segmentation

2D triangulation

Localization module

3D reconstruction module

a)

c)
Volumetric reconstruction

Mesh reconstruction

Voxel-based
computation

Mesh reconstruction [27]

b)

Fig. 1. Conventional real-time 3D scene reconstruction pipeline from imaging sensors and inertial measurements. a) represents an accurate trajectory estimation
and a sparse point cloud scene representation. b) corresponds to the visualization of a 3D mesh introduced in [27]. c) is the volumetric voxel-based reconstruction
provided by [7].

by minimizing a photometric error. However, they require
an accurate photometric calibration. In [52], it takes into
account exposure time, a non-linear response function and
lens vignetting which allows a comprehensive model of the
brightness transformation. In the presence of a large amount
of intensity gradients from the image, low computational speed
is one of the drawbacks for direct methods. Dense represen-
tations with direct image alignement used the commodity of
GPU hardware to achieve real-time performances [51], [54].
In order to reduce the computation time, a semi-dense depth
filtering [55] has been developed on CPUs [6], [56]. In [52],
a direct and sparse model uses only a selection of well-
distributed points in the image with a high image gradient
magnitude.

In order to combine the strengths of direct and indirect
methods, semi-direct approaches exploit pixels with strong
gradients while relying on sparse features [57], [58].

Real-time processing for these approaches is achieved
through the use of keyframe (KF)-based techniques to provide
a balance between accuracy and efficiency [59]. The front-end
module estimates if an input frame is considered as a keyframe
for back-end optimization. Poses and 3D points are produced
over time by these keyframes to obtain a local and/or global
consistency. Keyframes are generated at a lower framerate (8-

16 FPS) than input frames (30-60 FPS).
2) Back-end: In early work, SLAM methods were com-

posed of, an extended Kalman filter (EKF) [60], [61], [62]
and with a separate back-end for bundle adjustment [59] and
in the form of a node graph [63], [64], [65]. The optimization
back-end function is a crucial step to obtain an accurate
pose estimation related to constraints of new measurements.
It consists of optimizing the map composed of 3D poses and
points in a global or local manner. This subsection addresses
the challenge of optimization as follows: First, the input of
inertial measurements in the BE. Second, the approaches
used to optimize states and 3D points of the map. Then,
the functions to provide global map consistency, which is
identified as a fundamental key topic in SLAM [15], [66].

In a visual-inertial system, inertial measurements are prein-
tegrated to improve localization by solving the scale factor
problem through linear acceleration and angular velocity be-
tween frames. IMUs provide data at high rate (100 Hz to
1 kHz) compared to the framerate (20-60 FPS). To cope
with the acquisition difference, a preintegration method is
included in a real-time localization pipeline that analyses and
consolidates all inertial data between two keyframes into a
single measurement [28]. This technique uses a structureless
approach which avoids optimizing over the 3D points to

4

TABLE I
DESCRIPTION, BENEFITS AND DRAWBACKS OF BOTH INDIRECT AND DIRECT APPROACHES USED IN STATE OF THE ART METHODS.

Indirect approach Direct approach

Description
- Feature extraction
- Feature matching or tracking
- Reprojection error minimization

- Uses all pixels
- Photometric error minimization

Benefits
- Robust and fast due to feature extraction
- Allows sparse reconstruction with efficient computation

- More robust and accurate than indirect
- Allows dense scene representation

Drawbacks
- Dependant to features for matching
- Requires robust estimation to overcome outliers

- Longer computation time due to optical flow estimation
- Requires a good initialization
- Requires an accurate photometric calibration

improve the computation time during optimization.
In order to fuse visual and inertial data and optimize states

generated by the localization module, two main approaches
are used, filtering-based or factor graph [67]. In a filtering
system, only the latest state is estimated. The EKF fuses data
provided by different sensors, predicts the future state with
respect to the initial estimation and updates the prediction.
The uncertainty is represented using a covariance matrix. The
complexity of this approach increases over time as the gener-
ated map and estimated 3D points become larger. Therefore,
the memory consumption increases significantly in addition
to the computational cost. In [34], real-time processing has
been reached by taking into account only a small number
of features. In [68], direct photometric errors have been used
within the EKF update and employed a numerical minimal dis-
tance representation of features to address the computational
issue. Alternative methods based on the Multi-State Constraint
Kalman Filter (MSCKF) framework [36] use a structureless
strategy that marginalizes the 3D points [69], [70].

Another optimization technique is the factor graph [71],
which represents all states, points, data related to each other
in the form of a nonlinear graph [72], [73], [74], [75]. This
graph is solved to optimize local (fixed-lag smoothing) and/or
global (full smoothing) states and 3D points while exploiting
the sparsity of SLAM algorithms. In a fixed-lag smoother
configuration, only the poses within a sliding time window
are optimized while a full smoother takes into account the
full history of poses. The optimization based on the factor
graph is described as follows:

1) Linearization of the factors in the graph (IMU, visual
data, etc.) in a linear equation system

H∆x = ε (3)

where H is the Hessian matrix, ε is a vector that
describes how front-end measurements affect the state of
each keyframes and ∆x, a vector describing the updated
states.

2) Use of the Cholesky factorization and back-substitution
to solve the linear equation system.

3) Marginalization of states outside the sliding temporal
window for local optimization to maintain real-time
performances.

4) Solutions of the linear system are used to update the
remaining states of keyframes.

In [76], a set of non-linear visual-inertial information about
the motion estimation between keyframes are recovered from
the first layer odometry and combined using a global bundle
adjustment. Based on a nonlinear optimization method [77],
VINS-Fusion [35] supports the use of multiple sensors (cam-
era, IMU, GPS, etc.) integrated in a pose graph structure as
a Maximum Likelihood Estimation (MLE) problem. In [78],
the nonlinear optimization integrates both the reprojection
errors and a temporal error term from inertial measurements
while old keyframes are marginalized from the optimization
window to ensure real-time processing. The odometry mod-
ule of Kimera-VIO [7] is based on the IMU preintegration
approach [28] and provides SLAM capabilities with a pose
graph optimization module responsible for loop closures.

Global consistency in SLAM is provided with loop closures
to detect that a scene has already been visited and to correct
the accumulated drift. Without it, visual SLAM becomes visual
odometry for local consistency [15]. Loop closure is performed
in three main steps:

1) Detect candidates between newly created features from
poses and the current active map

2) Correct the detected poses affected by the loop closing
3) Optimize the map in order to verify if the accumulated

drift has been corrected

The mainstream method for loop closure is the use of a bag-
of-words (BoW) vector. It implements a recognition database
of visual words vocabulary describing image features [79].
Therefore, the recognition database is queried to find loop
candidates. In terms of timing, loop closures of the visual-
inertial ORB-SLAM3 system [5] takes around 10ms for the
detection, 124.77ms for the correction, which includes the loop
closure and the correction of the whole map and 1529.69ms
for the full map optimization. In order to maintain real-time
performances, the latter is only performed if the number of
keyframes to be optimized is below a fixed threshold. A
common conclusion is that the extraction and comparison of
feature descriptors require too much computational resources.
Therefore, alternatives methods have been developed, such as
the extraction of the shape of each object as binary content [80]
and edge-based verification for loop closures [81]. The latter
provides an average accuracy of 2.36 cm, which is slightly
worse compared to 1.14 cm with ORB-SLAM2 [82] on RGB-
D dataset [83].

5

B. 3D reconstruction module

While the localization module provides a point cloud car-
tography, the 3D reconstruction module considers two types of
map representation, the mesh and the volumetric reconstruc-
tion based on voxels to produce surface meshes in real-time.

1) Mesh reconstruction: Mesh representation is widely
used to model surfaces, shapes and provides a topology of
the scene based on points [7] or surfels [84]. The Delaunay
triangulation has been used for many applications, notably
in computer vision [85] to provide accurate mesh recon-
struction and cover potentially usable planar surfaces [86].
Several algorithms derive the Delaunay triangulation in two
[7], [27], [87], [88] and three [89] dimensions. In 2D, this
technique follows the empty circle property, which generate
a triangle when the circle is the only one to pass through
all three vertices. Therefore, there are no vertices in it. The
triangulation maximizes the minimum angle of each generated
triangles. Thus, the reconstruction ensures the consistency of
triangulations and high quality meshes.

In [27], a lightweight Delaunay mesh [90] is generated
with a keyframe-less approach and monocular depth estimation
for MAVs. The reconstruction provides a per-frame mesh
reconstruction without taking into account the previous meshes
for fast computation. The approach was able to process each
frame onboard an MAV with an Intel Skull Canyon NUC
flight computer at over 90 Hz. In [7], the multi-frame mesh
gives a single mesh built over time on the basis of fusing
per-frame meshes. On an Intel Xeon CPU E3-1505M v6 3
GHz, the multi-frame mesh is generated at around 67 Hz. This
configuration shows that a reliable map composed of a large
mesh built over time is maintained and updated with each new
mesh generated in real-time.

2) Volumetric reconstruction: A volumetric reconstruction
is defined as a voxel-based computation in which a surface
mesh is rendered from the volume to allow a detailed 3D
model [91].

Voxel-based computation: A common method to quickly
and accurately represent surfaces is the truncated signed
distance field (TSDF) [92]. This technique represents the 3D
environment as a grid of voxels. In a TSDF volume, which
integrates depth data, the value of each voxel corresponds
to the signed distance to the nearest surface. Positive and
negative values correspond respectively to voxels outside
or inside the volume. Thus, the surface is defined by the
isosurface boundary between negative and positive values
(zero-crossing). Beyond a certain distance, the information
becomes irrelevant. Therefore, the distance is truncated to take
advantage of the values close to the surface.

Each voxel stores a truncated signed distance D and weight
values W updated for each 3D point p in the volume from
frames 1...k.

D(p) =

∑
wk(p)dk(p)∑
wk(p)

(4)

W (p) =
∑

wk(p) (5)

where d is the signed distance and w the weight function of
the sensor measurements. The cumulative Dk(p) and Wk(p)
are expressed as follows [92]:

Dk+1(p) =
Wk(p)Dk(p) + wk+1(p)dk+1(p)

Wk(p) + wk+1(p)
(6)

Wk+1(p) = Wk(p) + wk+1(p) (7)

The choice of the weighting have a strong impact on the
accuracy of the representation as it models the uncertainty
of surface measurements [8]. Therefore, the greater the un-
certainty, such as noisy data, the higher the weighting. For
instance, to allow real-time 3D reconstruction, KinectFusion
[93] adopted a common constant weight approach wk(p) = 1
resulting in a simple average.

Wk+1(p) = min(Wk(p) + wk+1(p),Wmax) (8)

In [8], a comparison of two weighting strategies is proposed. It
consists in comparing the 3D reconstruction qualitatively and
quantitatively with a constant and a quadratic weight. Equation
9 defines the truncated distance so that δ = 4v and ε = v,
where v is the voxel size.

w(p) =


1
z2 , −ε < d
1
z2

1
δ−ε (d+ δ), −δ < d < −ε

0, d < −δ
(9)

Qualitatively, the quadratic weighting strategy provides a bet-
ter representation of the structure with less error than constant
weights. Higher level of robustness with less distorsion can be
observed with a voxel size v ranging from 0.02m to 0.2m.

Rendering: In order to render the voxel 3D perspective, two
main approaches are used for mesh extraction, raycasting and
projection mapping [94]. Raycasting casts a ray from sensor to
the truncated signed distance behind the 3D point within the
voxel and extracts the zero-crossing from the TSDF values to
obtain an approximate depth rendering [92], [95]. Projection
mapping calculates the distance between the center of the
voxel and the depth value in the image. The amount of data
processed by the projection mapping technique is bounded by
the number of voxels while the raycasting one is potentially
unbounded as it includes the number and the length of rays
being integrated. Timing results shows that raycasting is faster
than projection mapping with a required time of about 62ms
and 106ms respectively on a Tango Yellowstone tablet device
with quadcore CPU, 4GB RAM and a Tegra K1 GPU [94].

In pioneer work [93], the Kinect sensor has been used to
provide RGB frames and depth measurements at a 640× 480
resolution. It uses the TSDF integration and 3D rendering with
raycasting. The 6DoF pose is computed with the iterative clos-
est point (ICP) approach [96]. The volumetric reconstruction
is limited in area of a 5123 volume. The implementation on
NVIDIA GeForce GTX 560 updates TSDF values at 2ms [97]
and the main system operates in real-time at 40 FPS with a
resolution of 5123. Fully implemented with CUDA in order
to use NVIDIA GPUs, this method is not memory efficient
with 512 MB allocated for 32-bit voxels in the restricted

6

space. A voxel hashing method [98] has been used in [99]
to obtain a memory efficient and large scene representation.
The algorithmic approach introduced intermediate online vi-
sualization to speed up the calculation. While raycasting is
performed for each frame in a full configuration, a forward
projection parameter uses the most recent raycasting result.
After a fixed threshold of n frames a full raycast is performed.
Implemented on NVIDIA Tegra K1 and Apple iPad Air 2, the
method achieves a computation time per frame of 21.04ms
and 48.43ms respectively.

In [8], the same hierarchical data structure with voxel
hashing [98] as well as a grouped raycasting approach has
been used. The latter merges the cast point with all other 3D
points to the same voxel to perform raycasting only once, on
the average position. It needs around 55ms and 5ms to process
a voxel size of 0.05m and 0.20m respectively compared to
250ms and 100ms with a standard approach.

C. Learning-based modules in a conventional pipeline
Advanced research in deep neural networks (DNN) allows

the use of a large set of data while providing accurate and
robust results for many applications [100]. This subsection
provides an overview of DNN methods for real-time localiza-
tion, a comprehensive description of intermediate representa-
tions and the complexity of deep learning in the context of
embedded systems.

1) Deep learning for real-time pose estimation: Several
research papers discussed the use of neural networks for real-
time pose estimation with an end-to-end or hybrid implemen-
tation. The first one only relies on deep learning to estimate
the pose from consecutive images. In [101], a convolutional
neural network (CNN) [102] was used to extract features
from RGB images, and a recurrent neural network (RNN)
to model sequential information. Therefore, long short-term
memory (LSTM) is used for the sequential representation with
a retained memory of previous hidden states. In the case of
a visual-inertial configuration, a multi-rate LSTM has been
implemented to process inertial measurements [103]. End-
to-end methods based on supervised [101] or unsupervised
[104] learning are evolving, but the performances of current
approaches are limited by training data to provide an accurate
and robust estimation in all situations.

A hybrid pipeline uses deep learning for specific back-
end (BE) and front-end (FE) functions, including local [105],
[106] or global [107], [108] BE optimization and FE feature
extraction [109], [110], [111], [112]. In [113], results based on
a CNN detector and descriptor demonstrated better distributed
features with a lower number of detection compared with ORB
[47]. The extraction runs at 40 FPS while the SLAM pipeline
based on ORB-SLAM2 [82] runs at 20 FPS on Jetson TX2
with a tiny version of the network. The accuracy of the hybrid
method deteriorates for sequences that require fine details, like
the fr1 floor and fr1 360 of the TUM RGB-D dataset [83] due
to the scale of feature maps.

2) Intermediate representations based on neural networks:
Intermediate representations have been proven useful for high-
level functions based on pixels-to-action models. In a visual-
based urban driving task where an agent has to reach a target

location, success accuracy improved by around 15% with
the addition of depth estimation and by 20% with semantic
segmentation compared to an RGB image only [32].

Semantic segmentation: In order to recognize surrounding
objects, the image segmentation, like semantics, allows a set
of objects to be labelled at pixel-level [30], [114].

In [115], the concept of semantics for object recognition
and semantic segmentation in SLAM is detailed and argues
that it provides effective solutions for data association [116]
and long-term consistency [117] to obtain a reliable local-
ization. Deep learning techniques enhance the capabilities of
SLAM by using semantic segmentation for local loop closure
detection and medium-term consistency [116], [118] or for
handling dynamic environments. As conventional static SLAM
considers dynamic features as outliers, semantics is used to
label dynamic and static elements to improve the accuracy and
robustness of localization [119], [120]. Semantic extraction has
also known active research for the segmentation of the map,
which leads to real-time object recognition based on point
clouds [121], surfels [122], [123], meshes [7], [124] and voxels
[7], [125], [126] representations. Semantic reconstruction is
achieved by two main approaches, view-based or map-based
labelling [127]. Semantic extraction per view processes raw 2D
input image data but performs unnecessary computations from
one view to another whereas the segmentation of the whole
map involves a 3D CNN. It avoids redundant computation
but depends on the quality of the reconstruction. Using the
mean intersection over union (IoU) metric, the segmentation
achieves an accuracy of 89% and 92% after 1000 frames for
view-based and map-based respectively [127].

Several questions remain open, including the accuracy of the
segmentation required for a 3D reconstruction pipeline and its
impact on the precision of the reconstruction. The complexity
of semantic generation in terms of computational cost and use
of hardware resources for 2D or 3D segmentation tasks is also
part of future open directions in the embedded context.

Depth estimation: Deep neural networks have been used
for depth estimation of monocular images [106], [128], [129].
Depth estimation based on a CNN overcomes the limitations
of monocular cameras by handling pure rotational motions
[128] and resolving the scale factor problem by updating the
transformation matrix with the scale parameter α [130]:

Tk,k−1 =

[
Rk,k−1 αtk,k−1

0 1

]
(10)

where Tk,k−1 is the transformation matrix between two frames
(rotation Rk,k−1, translation tk,k−1) and α the scale param-
eter defined as a maximum likelihood estimation taking into
account the estimated depth value of each pixel.

Although this representation has several benefits in the
case of monocular SLAM, its accuracy remains limited for
long sequences, compared to traditional stereo methods with
a strongly drifting trajectory [131]. In [132], the depth map
has been estimated from the fusion of a dense stereo pipeline
with a monocular depth estimation based on a self-supervised
CNN with data generated from the sensors. Qualitatively, the
fused map refines the noisy result of the stereo vision and
gives the global composition of the image provided by the

7

monocular estimation. The median absolute error between
depth estimation and the ground truth (GT) depth distance
for the stereo and mono is less than 5 m and around 20 m
respectively for a GT of 80 m and around 1 m and less than
4 m respectively for a GT of 10 m.

In the embedded context with restrictive constraints, the
right trade-off between required depth accuracy for 3D recon-
struction and computational cost in terms of memory usage
and processing time remains the main open line of research.

3) Complexity of deep learning in the context of embedded
systems: The complexity of deep learning models for real-time
localization and reconstruction can be characterized by three
main points: the type of model, the use of large amounts of
data for scalability, the resource consumption and hardware
implementation for real-time processing. End-to-end models
are currently computationally expensive, as they involve the
sequential representation of previous states. Hybrid models
have the advantage of combining the strengths of deep learning
with the maturity of conventional methods for specific func-
tions to overcome several sensors limitations and to compute
intermediate representations for high-level understanding of
the surrounding environment.

The accuracy of deep learning methods is highly dependent
on the training data. However, in order to obtain a reliable
system, the training stage must learn from many situations,
especially for real-time localization. Visual odometry methods
based on DNNs can fail, resulting in low accuracy if the
model is not well-fitted [101]. The majority of the localization
methods are trained and evaluated on the KITTI benchmark
[133], which provides car driving trajectories without signif-
icant rotation changes. This can lead to significant errors in
different situations.

In addition to the time and resources required for the train-
ing stage of deep neural networks, specific hardware platforms
allow real-time processing for DNN inference, especially with
the parallelization of computations for better use of GPUs.
Hybrid pipelines take advantage of both the CPU and the GPU
for geometric constraints and neural network calculations,
respectively [106]. For real-world deployment, size, power
consumption and resource constraints must be considered. In
[134], feature extraction with a CNN has been accelerated on
FPGA in fixed-point number [135] and the visual odometry
network [136] is run on CPU. This implementation achieves
an execution time of 5ms on FPGA and 340ms on CPU with
a monocular camera at 20 FPS.

D. Overview of existing methods
This subsection provides a description of the benchmarking

tools for qualitative and quantitative evaluation of state-of-the-
art methods. It also highlights the techniques used, from real-
time localization to DNNs, in existing approaches.

1) Benchmarking tools: Many benchmarking tools present
various sequences recorded at different locations for evaluation
of visual-based methods under challenging conditions such as
illumination changes, long trajectories, different motion speeds
and dynamic environments.

Depending on the transport use cases, public datasets pro-
vide outdoor environments for autonomous cars with densely

populated area [137], [138], diverse urban environments [139]
and large scale sequences with different speeds up to 80 km/h
[133]. Dynamic and long-term environments with illumination
changes [140], [141] are available for service robots, where
human activity is also included [142]. Challenging motions in-
doors and outdoors are provided with MAV’s datasets through
aggressive trajectories [143], fast motion and motion blur
[144] and in urban streets at low altitude (5-15 m above the
ground) [145].

Data recorded with a handheld sensor is particularly useful
for AR/VR applications in dynamic sequences [146] and
global/local illumination changes [147]. The TUM datasets
provide several handheld trajectories with many imaging
sensors for short and long sequences [148], [149], [150].
Capturing data in real-world scenes has several limitations
[151] that can be overcome with synthetic sequences. The
accuracy of surface reconstruction with RGB-D information
under realistic [152] and challenging conditions [147], [153]
is also evaluated on the basis of synthetic datasets.

The evaluation of the estimated trajectory and the accuracy
of the scene reconstruction requires ground truth usually
provided by an RTK-GPS or motion capture systems.

2) Performance comparison of existing methods: Table II
provides an overview of existing visual(-inertial) odometry,
SLAM and 3D reconstruction methods. It highlights the strate-
gies employed for the localization front-end (FE) and back-end
(BE), the type of generated representation from cartography
(point clouds and surfels) to volumetric reconstructions, the
potential use of DNNs and the hardware (HW) implementa-
tion. The FPS measurements correspond to the performance
of the entire pipeline.

The localization strategy shows that most methods employ
a tracking front-end that refers to the KLT algorithm [48]. It
allows a faster computation for local optimization compared to
feature detection and description (Det.+Des). In [7], tracking
takes an average of 4.5ms with 300 features per frame while
Det.+Des takes around 15ms to extract 1200 ORB features
per frame [5]. However, the latter allows loop closures by the
description of features.

Most of the methods are based on the graph back-end to
exploit the sparsity of SLAM and to provide more accurate
estimated trajectories [159] compared to filtering techniques.
The hardware implementations highlight the complexity of
each approach for embedded platforms. For instance, the
MSCKF-based [161] provides a higher performance in FPS
than VINS-Fusion [35], which is based on a graph BE on
UP Board with 20 FPS and 7 FPS respectively. However, the
SVO graph-based method [58] runs at 40 FPS on the same
platform. The front-end parameters, multithreading strategies,
the sparsity of the map reconstruction used are important
factors to take into account for real-time performance. As it
can be seen, several 3D reconstruction methods [27], [84],
[87], [89], [8], [126] do not provide a localization strategy
(referred as: -), which means that they take advantage of 3D
poses generated by SLAM methods.

Some approaches are based on deep learning in an end-
to-end or hybrid configuration. At the moment, end-to-end
pipelines do not achieve the performances of conventional

8

TA
B

L
E

II
E

X
IS

T
IN

G
V

IS
U

A
L(-IN

E
R

T
IA

L)
O

D
O

M
E

T
R

Y,S
L

A
M

A
N

D
3D

R
E

C
O

N
S

T
R

U
C

T
IO

N
M

E
T

H
O

D
S

W
IT

H
T

H
E

P
O

T
E

N
T

IA
L

U
S

E
O

F
D

E
E

P
N

E
U

R
A

L
N

E
T

W
O

R
K

(D
N

N
)

A
N

D
T

H
E

H
A

R
D

W
A

R
E

(H
W

)
IM

P
L

E
M

E
N

TA
T

IO
N

.

M
ethods

Year
Sensors

L
ocalization

strategy
Type

of
representation

U
sage

of
D

N
N

H
W

im
plem

entation
V

isible
cam

.
IM

U
O

thers
m

ono
stereo

Front-end
B

ack-end
C

arto.
M

esh
Volum

.
D

eepSL
A

M
[104]

2021
3

3
-

-
E

nd-to-end
D

L
m

odel
D

ense
-

-
D

epth
(48m

s),poses
(25m

s),loop
(120m

s)
i7-6820H

K
2.7G

H
z,G

eForce
G

T
X

980
M

(20
FPS)

O
R

B
-SL

A
M

3
[5]

2020
3

3
3

-
D

et.+D
es.

G
raph

Sparse
-

-
-

[82]
on

Jetson
T

X
2

(28
FPS)

[154]
[82]

on
Pi

3B
+

(6
FPS),Jetson

N
ano

(10
FPS)

[155]
B

asalt
[76]

2020
-

3
3

-
Tracking

G
raph

Sparse
-

-
-

E
5-1620

C
PU

(19
FPS

global
opti.,128

FPS
local

opti.)
O

penV
IN

S
[70]

2020
3

3
3

-
Tracking

Filtering
Sparse

-
-

D
epth

estim
ation

[156]
Jetson

T
X

2
(36

FPS),Jetson
N

ano
(28

FPS)
[156]

D
X

SL
A

M
[109]

2020
3

-
-

-
D

et.+D
es.

G
raph

Sparse
-

-
Feature

extraction
(46.2m

s
w

/
opti.)

C
ore

i7-10710U
(15W

)
[9]

2020
3

-
3

IR
+L

iD
A

R
D

et.+D
es.

G
raph

Sparse/D
ense

-
O

ffline
[157]

-
N

I
IC

-3173
(10

FPS
visual-SL

A
M

,20
FPS

lidar-SL
A

M
)

SurfelM
eshing

[84]
2020

-
-

-
R

G
B

-D
-

-
Surfels

3
-

-
C

ore
i7

6700K
,G

eforce
G

T
X

1080
(178

FPS
for

m
esh)

K
im

era
[7]

2020
3

3
3

-
Tracking

G
raph

Sparse
3

3
Sem

antic
segm

entation
Jetson

T
X

2
[153]

D
eepFactor

[106]
2020

3
-

-
-

Sem
i-direct

G
raph

-
-

3
D

epth
estim

ation
G

T
X

1080
G

PU
(netw

ork,cam
era

tracking)
C

PU
(geom

etric
error

factors)
[111]

2020
3

3
-

-
D

et.+D
es.

-
-

-
-

Feature
extraction

(59m
s)

X
ilinx

Z
C

U
102

FPG
A

ST-V
IO

[118]
2020

3
-

3
-

D
irect

G
raph

-
-

-
Sem

antic
segm

entation
[158]

Jetson
T

X
2

[134]
2020

3
-

-
-

E
nd-to-end

D
L

m
odel

-
-

-
Feature

extraction
on

FPG
A

(5m
s)

V
O

on
A

R
M

C
PU

(340m
s)

X
ilinx

Z
C

U
102

M
PSoC

G
C

N
-SL

A
M

[113]
2019

-
-

-
R

G
B

-D
D

et.+D
es.

G
raph

Sparse
-

-
Feature

extraction
(25m

s)
Jetson

T
X

2
(20

FPS)
V

ITA
M

I-E
[88]

2019
3

-
-

-
Tracking

G
raph

D
ense

3
3

-
C

ore
i7-7820

H
Q

C
PU

R
E

SL
A

M
[81]

2019
-

-
-

R
G

B
-D

E
dge

G
raph

Sparse
-

-
-

i7-4790
desktop

com
puter

w
ith

32
G

B
R

A
M

[110]
2019

3
3

-
-

D
et.+D

es.
G

raph
Sparse

-
-

Feature
extraction

(around
16m

s)
G

eForce
G

T
X

Titan
X

V
IN

S-Fusion
[35]

2019
3

3
3

L
iD

A
R

Tracking
G

raph
Sparse

-
-

-
[77]:

U
P

B
oard

(7
FPS),O

D
R

O
ID

X
U

4
(7

FPS)
[159]

PanopticFusion
[126]

2019
-

-
-

R
G

B
-D

-
-

-
-

3
Sem

antic
segm

entation
(315m

s)
[160]

Im
age

segm
entation

on
G

PU
M

SC
K

F-based
[69]

2018
-

3
3

-
Tracking

Filtering
Sparse

-
-

-
[161]:

U
P

B
oard

(20
FPS),O

D
R

O
ID

X
U

4
(20

FPS)
[159]

[89]
2018

-
-

-
-

-
-

-
3

-
-

C
ore

i7-4770S,3.10
G

H
z

w
ith

[162]
D

S-SL
A

M
[120]

2018
-

-
-

R
G

B
-D

D
et.+D

es.
G

raph
-

-
3

Sem
antic

segm
entation

(37.6m
s)

[163]
Intel

i7
C

PU
,P4000

G
PU

C
N

N
-SL

A
M

[128]
2017

3
-

-
-

D
irect

G
raph

D
ense

-
-

Sem
antic

segm
entation

[164]
D

epth
estim

ation
[165]

Intel
X

eon
C

PU
,2.4G

H
z

Q
uadro

K
5200

G
PU

for
C

N
N

netw
orks

FL
aM

E
[27]

2017
3

-
-

-
-

-
-

3
-

-
Intel

Skull
C

anyon
N

U
C

(90
FPS)

w
ith

[166]

D
eepV

O
[101]

2017
3

-
-

-
E

nd-to-end
D

L
m

odel
-

-
-

Feature
extraction

L
ST

M
pose

estim
ation

Training
on

Tesla
K

40
G

PU

V
IN

et
[103]

2017
3

-
3

-
E

nd-to-end
D

L
m

odel
-

-
-

Features
extraction

(160m
s)

IM
U

L
ST

M
(5m

s)
and

C
ore

L
ST

M
Training

on
Tesla

K
80

G
PU

Voxblox
[8]

2017
-

-
-

R
G

B
-D

-
-

-
-

3
Sem

antic
segm

entation
[125]

i7
2.1

G
H

z
C

PU
[167]

SV
O

[58]
2016

3
3

3
-

Sem
i-direct

G
raph

Sparse
-

-
-

U
P

B
oard

(40
FPS),O

D
R

O
ID

X
U

4
(50

FPS)
[159]

D
SO

[52]
2016

3
-

-
D

irect
G

raph
Sparse

-
-

-
i7-4910M

Q
C

PU
(7

FPS)
[87]

2016
3

-
-

-
-

-
-

3
-

-
i7

4700M
Q

(around
143

FPS
per

K
F

w
ith

[78])
B

undleFusion
[168]

2016
-

-
-

R
G

B
-D

D
et.+D

es.
G

PU
-solver

-
-

3
-

Titan
X

G
PU

(around
36

FPS)

C
hisel

[94]
2015

3
-

3
R

G
B

-D
Tracking

Filtering
-

-
3

-
Tango

tablet
4G

B
R

A
M

,quadcore
C

PU
,Tegra

K
1

G
PU

Tango
m

obile
phone,2G

B
R

A
M

,quadcore
C

PU
E

lasticFusion
[169]

2015
-

-
-

R
G

B
-D

D
irect

G
raph

[170]
Surfels

-
-

Sem
antic

segm
entation

[122]
C

ore
i7-4930K

,G
eForce

G
T

X
780

Ti
(32

FPS)

InfiniTA
M

[99]
2015

-
-

3
R

G
B

-D
D

irect
IC

P
/

[171]
-

-
3

-
Tegra

K
1

(47
FPS),iPad

A
ir

2
(21

FPS)
D

E
5

PC
Ie

board
(44

FPS),D
E

1
FPG

A
SoC

(2
FPS)

[172]
R

O
V

IO
[68]

2015
3

3
3

-
D

irect
Filtering

Sparse
-

-
-

U
P

B
oard,O

D
R

O
ID

X
U

4
(22

FPS)
[159]

O
K

V
IS

[78]
2015

3
3

3
-

D
et.+D

es.
G

raph
Sparse

-
-

-
U

P
B

oard
(11

FPS),O
D

R
O

ID
X

U
4

(3
FPS)

[159]
L

SD
-SL

A
M

[6]
2014

3
-

-
-

D
irect

G
raph

D
ense

-
-

-
FPG

A
Z

ynq-7020
SoC

(4.55
FPS)

[173]
SL

A
M

++
[174]

2013
-

-
-

R
G

B
-D

D
irect

G
raph

-
-

3
-

G
PG

PU
im

plem
entation

K
inectFusion

[93]
2011

-
-

-
R

G
B

-D
D

irect
IC

P
-

-
3

-
Z

ynq
U

ltraScale+
M

PSoC
Z

C
U

102
(27.5

FPS)
[175]

PTA
M

[59]
2007

3
-

-
-

D
etection

L
B

A
/

G
B

A
Sparse

-
-

-
O

D
R

O
ID

X
U

4
(up

to
12

FPS)
[176]

M
onoSL

A
M

[34]
2007

3
-

-
-

D
etection

Filtering
Sparse

-
-

-
Intel

Pentium
M

1.60
G

H
z

(53
FPS)

9

TABLE III
PERFORMANCES OF HARDWARE IMPLEMENTATION ON EMBEDDED PLATFORMS. (∗) REPRESENTS THE BACK-END RATE TO UPDATE THE STATES AND THE

SPARSE 3D MAP [177], (∗∗) CORRESPONDS TO THE MEASURED TIME BETWEEN THE INPUT IMAGE TO THE UPDATED STATE, (†) INDICATES THAT THE
METHOD FAILED ON ONE OR MORE SEQUENCES, WHICH HAVE NOT BEEN INCLUDED IN THE AVERAGE RESULT [159].

Methods Year HW implementation Rate Power ATE RMSE (m) Dataset

CNN-SLAM proc. [178] 2019
ASIC

80 FPS
243.6mW
61.8mW

97.90% in tr.;
99.34% in rot.

KITTI

Navion [177] 2018
71 FPS
19 FPS∗

24mW 0.23 EuRoC

VINS-Mono [77] 2018

ODROID

7 FPS∗∗

10W

0.16

EuRoC

MSCKF-based [161] 2017 20 FPS∗∗ 0.56
SVO+MSF [58], [179] 2016 50 FPS∗∗ 0.69†

SVO+GTSAM [58], [73] 2016 66 FPS∗∗ 0.11†

ROVIO [68] 2015 22 FPS∗∗ 0.35
OKVIS [78] 2013 3 FPS∗∗ 0.26†

VINS-Mono [77] 2018

UP Board

7 FPS∗∗

15W

0.15

EuRoC

MSCKF-based [161] 2017 20 FPS∗∗ 0.53
SVO+MSF [58], [179] 2016 40 FPS∗∗ 0.69†

SVO+GTSAM [58], [73] 2016 50 FPS∗∗ 0.12†

ROVIO [68] 2015 - -
OKVIS [78] 2013 11 FPS∗∗ 0.27†

methods in terms of accuracy of the estimated trajectory. For
instance, the conventional monocular configuration [180] is
outperformed by the supervised method [101] but not the
stereo configuration, which provide a trel of 17.48%, 5.96%
and 1.89%. In [104], the end-to-end unsupervised approach
gives a trel of 5.58% compared to 3.21% and 1.89% for
conventional approaches [162], [180] respectively on test-
ing sequences of the KITTI dataset [133]. However, hybrid
pipelines give suitable solutions to include specific DNN-based
functions. In [156], the depth estimation from DNN [181]
provides a processing time of 17.07ms and 7.09ms on the
GPUs of Jetson Nano and TX2 respectively and 66.41ms and
105.07ms on the CPUs respectively with the Apache TVM
optimization. On the same platforms, the block matching (BM)
of the OpenCV library performs at 19.24ms, 12.38ms on GPUs
and 27.76ms, 19.49ms on CPUs respectively. It demonstrates
that the network prediction is faster on GPU with the TVM
optimization, but the BM provides real-time performances on
both implementations with lower processing times on CPUs.
The accuracy of the dense conventional depth algorithms has
not been quantified. However, the robustness of the deep
learning-based estimation is demonstrated by a cleaner depth
map than the noisy results of conventional methods [132].

III. LOCALIZATION AND 3D RECONSTRUCTION METHODS
ON EMBEDDED SYSTEMS

Localization and 3D reconstruction functions require a lot
of hardware resources. The main HW implementations high-
lighted in table II include high power and flexible CPUs/GPUs
(i7 desktop/GTX), embedded CPUs/GPUs (Pi 3B+, ODROID,

UP Board/TX2, Nano), and specific HW/SW co-design (FP-
GAs SoC). Transport systems, including autonomous cars to
restricted MAVs, miniaturized robots, AR/VR systems, have a
limited form factor and power budget. Those constraints affect
the choice of implementation to meet the required accuracy
and real-time performances. For instance, the power budget
is around 10W-300W for autonomous cars [1], 10W-15W for
MAVs [159], [182] and 10mW-10W for miniaturized robots
and AR/VR devices [2], [177], [183], [184].

Solutions and trade-offs for computing localization and
3D reconstruction functions in resource-constrained systems
motivates the purpose of this section.

A. Embedded platforms for localization and 3D reconstruc-
tion

A heterogeneous system is composed of various calculation
resources. Components off-the-shelf (COTS), energy-efficient
hardware accelerators or compact systems with low power
consumption like vision chips are part of the available embed-
ded platforms allowing the partitioning of advanced functions
from sensors to 3D reconstruction.

1) Components Off-The-Shelf (COTS): In order to achieve
real-time processing with limited resources, a trade-off be-
tween accuracy, robustness, execution time, memory man-
agement and power consumption must be reached [159].
Several VIO methods [58], [68], [77], [78], [161] have been
implemented on two hardware platforms for MAVs. It includes
the UP Board with a quad-core Intel Atom x5-Z8350 1.44GHz
CPU, 4Go RAM, a power consumption around 12W, and
the ODROID XU4 with a hybrid ARM, a quad-core ARM

10

TABLE IV
NUMBER OF PIXELS PROCESSED PER SECOND FOR FEATURE EXTRACTION

FUNCTIONS BASED ON SW AND HW IMPLEMENTATIONS.

HW implementation Features Res. FPS MP/s
Intel Core2Duo [185] Harris WVGA 40 14.44
Intel i7-4790 [77] Shi-Tomasi WVGA 66 23.82
ARM Cortex-A15 [177] KLT Shi-Tomasi WVGA 19 6.86
Jetson TX2 [153] KLT Shi-Tomasi WVGA 100 36.10
FPGA Xilinx Zynq [185] Harris WVGA 333 120.20
FPGA Xilinx Zynq [186] Harris+SURF VGA 320 98.30
ASIC VIO [177] KLT Shi-Tomasi WVGA 71 25.63
ASIC CNN-VO [178] CNN features VGA 80 24.58

A7 1.5GHz and an ARM big.LITTLE configuration quad-
core A15 at 2.0GHz. ODROID has 2 GB RAM and a power
consumption of 10W.

Table III shows the real-time performances (in FPS) for
each VIO method on COTS platforms. For instance, the graph-
based VINS-Mono [77] provides 7 FPS while the MSCKF-
based [161] is at 20 FPS on ODROID compared to 20 FPS
and 40 FPS respectively on the reference laptop. Real-time
performance is achieved by reducing the number of features
per frame, the size of the optimization sliding window and by
including advanced single instruction multiple data (SIMD)
instructions, like Intel SSE and ARM NEON optimizations
for UP Board and ODROID respectively. The accuracy is not
impacted by the optimizations performed for VINS-Mono with
an average of the absolute translation error (ATE RMSE) of
0.16m, 0.16m, 0.15m for the laptop, UP Board and ODROID
respectively. Although, the MSCKF-based is affected with an
average ATE RMSE of 0.41m, 0.53m, 0.56m respectively.
ROVIO [68] is the only one that does not run on UP Board due
to the CPU clock speed, which highlights the complexity of
implementing VIO methods on different embedded platforms.

Partitioning a complete localization method with loop clo-
sures requires high computing resources. In [155], ORB-
SLAM2 [82], which integrates a loop closure module has
been optimized using NEON instructions to take advantage
of the advanced SIMD used in the ARM processors of the
Raspberry Pi 3B+ and Jetson Nano. It achieves an average
tracking time of 6.11 FPS on Raspberry Pi 3B+ and 9.64 FPS
on Jetson Nano with input images at a 752×480 resolution.
This work focused on processing time and not on accuracy
for the embedded implementations. The fact that the literature
provides few information on the optimizations to be performed
when using embedded platforms points to a line of research
towards embedded SLAM, which incorporates loop closures.

A dense 3D representation is a challenge task to implement
on embedded platforms due to the computation requirements.
While the SVO method [58] implemented on ODROID U3
provides 3D poses, a W530 Lenovo laptop is used to compute
a dense point cloud representation [54] on an NVIDIA Quadro
K2000M GPU [187]. The 3D poses and input images are
broadcasted at a frequency of 5Hz on a WiFi communication
between the embedded platform and the laptop. Memory and
speed efficient data structures tackle the limitations of a fixed-
size volume and the large amount of memory required for vol-

umetric reconstructions [93]. A moving TSDF volume [188],
an octree-based approach [189], [190] and a hashing scheme
[98] enable the reconstruction of large scale environments with
compact data structures. The hashing scheme has been used in
several researches to save memory and CPU budget [8], [94],
[191] as it allows a complexity of O(1) compared to O(log n)
for octree structures [189].

In order to provide more available resource in the main
embedded system, partitioning the localization pipeline with
custom hardware implementations is useful to cope with the
high computational complexity of advanced algorithms, like
feature extraction.

In [173], specific units of the localization part of a semi-
dense SLAM [6] has been accelerated on FPGA with a high-
level synthesis (HLS) compiler. HLS compiler is used for per-
forming low-level design optimizations based on conventional
algorithms to increase the overall performance of the system. It
achieves a framerate of 4.55 FPS compared to 2.27 FPS with a
software-only implementation and a total power consumption
of about 2.5W. In [185], the visual-inertial (VI) system consists
of two imaging sensors with a resolution of 752×480 (Aptina
MT9V034) synchronized with an IMU (ADIS16488) through
an ARM-FPGA Xilinx Zynq 7020 processing. The latter has
been used to speed up the detection of Harris [42] and FAST
[44] features in order to allocate more CPU resources for
other tasks [185]. Table IV shows the performances of feature
extraction methods on SW laptops CPU [77], [185], Jetson
TX2 [153] and HW FPGAs [185], [186], ASICs [177], [178].
Software solutions are easier to program with more flexibility,
but less efficient than dedicated HW FPGAs and ASICs. The
number of megapixels processed per second (MP/s), which is
related to the image resolution (Res.) of 752×480 (WVGA)
and 640×480 (VGA) and the processing time (FPS), increases
significantly with the implementation on FPGAs as the HW
design is entirely dedicated to the feature extraction function.
The application-specific integrated circuit (ASIC) VIO and
ASIC CNN-VO are not only focused on this function. They are
designed to integrate a full VO/VIO pipeline, which explains
the difference in performance compared to FPGAs.

2) Energy-efficient accelerators: Specialized hardware,
such as ASICs, give more freedom to design specific localiza-
tion and 3D reconstruction functions. They offer high real-time
performance and low power consumption. They are also more
expensive in terms of development and fabrication [192].

HoloLens2 [193] is one of the most advanced perception
system based on the development of advanced functions to
perceive an accurate topology of the environment with the
generation of a mesh by leveraging multiple sensors with
restrictive resources. It integrates a custom ASIC to perform
the 6DoF localization and 3D mesh reconstruction functions,
called the Holographic Processor Unit (HPU). The HPU
processes input sensors data, including an IMU, a time-of-
flight (ToF) depth sensor and four grayscale cameras at 30
FPS. Over all 160×480 four channel resolutions, an image
of 640×480 is represented. The ASIC consumes less than
10W, can process more than 1 TOPS (Tera Operations Per
Second) and contains 125 MB SRAM. It consists of 2 billion
transistors in a 79mm2 die size, 7 SIMD Fixed Point (SFP)

11

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,01 0,1 1 10 100

A
T

E
 R

M
S

E
 (

m
)

Range of power consumption (W)

Navion [177]

CNN-SLAM

processor [178]

SVO+GTSAM

[58], [73]

VINS-Mono [77]

OKVIS [78]

ROVIO [68]

SVO+MSF

[58], [179]

MSCKF-based [161]

Basalt* [76]

DSO* [52]

ORB-SLAM3 [5]

CNN-SLAM [128]

CNN-SLAM [128]

SVO [58]

VINS-Fusion* [35]
Kimera [7]

Basalt [76]

ORB-SLAM3 [5]

EuRoC [144] TUM-VI [148] TUM-RGBD [150] ICL-NUIM [152]

ODROID XU4 UP Board

Fig. 2. Comparison of state-of-the-art methods in terms of accuracy and range of power consumption (W) between several hardware platforms, from ASIC
to CPU-based. The vertical axis corresponds to the average RMSE in meters in all successful dataset sequences provided by the authors. Methods denoted
by (*) means that the error has been obtained from [5].

for 2D processing, 6 Vector Floating Processor (VFP) for
3D processing and one dedicated core to DNNs processing
programmable by Microsoft [184].

Navion is an energy-efficient VIO accelerator [177], which
consists of three main parts: the Vision Front-End (VFE),
the IMU Front-End (IFE) and the Back-End (BE) with local
optimizations. Feature tracking (FT) is the only function in
VFE to be performed per-frame. The remaining pipeline is
based on the processing of keyframes. Based on input images
at a 752×480 resolution, the feature detection and tracking
achieves an average of 71 FPS, which is comparable to other
hardware platforms illustrated in table IV. The performance
is similar to software implementation on Intel i7. The ASIC
provides efficient optimizations to reduce the memory usage.
These include image compression in VFE, memory size reduc-
tion in BE and the way tracked features are stored in BE. The
architecture optimizations reduce the initial memory size from
3.5MB to 854KB. To the best of our knowledge, the energy-
efficient accelerator has not been publicly evaluated on a real
MAV device, but on the Euroc dataset [144]. With an average
71 FPS tracking process at framerate, the chip produces 19
FPS at keyframe rate and consumes around 24mW. In terms
of energy-efficiency, Navion performs 0.43-2.5 TOPS/W.

Navion is entirely based on geometric methods. In [178],
the VO architecture is organized in three main parts. A CNN
architecture to extract features from the input VGA image, a
Perspective-n-Points (PnP) unit to compute the 2D-3D ([R|t])
6DoF camera motion and a bundle adjustment (BA) unit to
optimize on the last 20 keyframes. The CNN-based ASIC
achieves an energy-efficiency of 3.6-5.34 TOPS/W, a latency

of 12.5ms and consumes 243.6mW at 80 FPS VGA and
reduces to 61.8 mW at 30 FPS VGA.

Partitioning the use loop closures for SLAM in a local-
ization pipeline has been addressed by NeuroSLAM that
integrates a SLAM architecture with a spiking neural network-
based (SNN-based) [194]. While the VIO accelerators from
the literature are designed with digital signals, NeuroSLAM
additionally provides analogue signals to mimic SNNs. It
achieves an energy-efficiency of 7.25-8.79 TOPS/W with a
power consumption of 17.27-23.82mW respectively. Moti-
vated by ultra-low power applications, the use of SNNs for
SLAM opens new lines of research on this type of network.

Figure 2 illustrates ASIC implementations in the range of
power consumption in mW. Several datasets are used to assess
the accuracy of these implementations under real conditions.
The accuracy of the method differs widely from one dataset
to another. For instance, Navion [177] has an average error of
0.23m in the Euroc sequences, while Basalt [76] provides an
average error of 0.051m with the same sequences and 0.6m
on handheld sequences with the TUM-VI dataset. The figure
also exhibits the gap between the number of real-time methods
developed with high resources, embedded COTS hardware and
specific energy-efficient accelerators.

3) Vision chips: Vision chips offer a specific implemen-
tation for integrating complex algorithms for a wide range
of applications requiring low latency image processing [195],
[196]. In addition to the imaging sensor, processing units
are integrated for in-sensor computing, which increases the
overall performance of the system. Vision chips have the
capacity to compute feature extraction functions at very high

12

TABLE V
IMPLEMENTATION OF 3D SCENE RECONSTRUCTION METHODS ON EMBEDDED PLATFORMS.

Methods 3D reconstruction HW implementation Rate Use case
FLaME [27] Mesh Intel Skull Canyon NUC i7 CPU flight computer 90 FPS

MAV
Voxblox [8] Volumetric Asctec Firefly Intel i7 2.1 GHz CPU >4 FPS

InfiniTAM [172]
Volumetric

Cyclone V Terasic DE1 FPGA SoC 2 FPS
Synthetic dataset [152]KinectFusion [175] SoC FPGA Zynq UltraScale+ MPSoC ZCU102 27.5 FPS

InfiniTAM [172] Stratix V Terasic DE5 PCIe board 44 FPS

speed in a compact and ultra low power system. In [197],
the vision system is designed to extract FAST features [198]
and describe them with a 44-bit binary-edge descriptor. This
system operates at 300 FPS. The remaining part of the VO
pipeline runs on an Intel i7-6700HQ CPU with binary edges
and corners images that are tolerant of motion blur compared
to conventional visible cameras.

B. Algorithmic methods in embedded platforms

This subsection provides an overview of algorithmic ap-
proaches used for several embedded systems from COTS
platforms to specific HW/SW co-design implementations. The
localization part is dissociated from the 3D reconstruction to
obtain a broader view of the current implementations.

1) Real-time localization: HoloLens [193] enables spatial
mapping with mesh generation, spatial processing for finding
planes and spatial understanding with semantic labels. The
HPU integrates a localization pipeline [199] to provide an
accurate pose estimation. Based on the use of inertial measure-
ments and imaging sensors, a block filter consisting of an EKF
and a sensor fusion algorithm is developed. On a closed loop
path of 287m, the HoloLens localization system drifts 2.39m
from start to finish [200] [201]. The overall quality of the 3D
model provided by the device has some holes in the mesh. Its
accuracy has been measured from a ground truth point cloud.
The reconstruction of several offices provided by the AR/VR
device gives an average Euclidean distance of 0.023m with
a fixed scale between the 3D reconstruction and the ground
truth.

The localization strategy implemented on the HPU gives a
large view of the type of algorithms to be implemented that
provide real-time pose estimations. The autonomous quadrotor
system [187] highlights the localization parameters to limit
the resource usage. The SVO visual odometry method [58]
implemented in ODROID U3 uses two threads to estimate the
camera motion and to insert keyframes into the extended map.
The fast parameter of the approach has been used, which limits
to 120 the number of detected features per frame and keeps in
memory a maximum of 10 generated keyframes in the map. In
order to obtain a robust system, the IMU data and the poses are
merged via the MSF method [179], which uses an EKF. The
experiments were carried out on a 20m long, 1.7m high indoor
path and on a 100m and 20m outdoor path respectively. The
system comprising SVO+MSF achieves a maximum drift of
0.5% of the travelled distance and an average trajectory error
(ATE RMSE) of about 0.05m for a closed loop trajectory.

2) Real-time 3D reconstruction: Table V illustrates that
only few methods from mesh to voxel-based have been used
onboard MAVs or by taking advantage of HW/SW co-design
on FPGA/SoC.

The FLaME mesh reconstruction method [27] has been
implemented on an Intel Skull Canyon NUC flight computer.
The MAV was equipped with a Point Grey Flea 3 camera
operating at 60 FPS with an image resolution of 320×256 in
addition to an IMU. The experiments were conducted in indoor
and outdoor environments with a vehicle speed of 2.5m/s and
3.5m/s respectively. It reconstructed a very detailed mesh
representation at a framerate over 90 FPS. The same use
case has been used for the Voxblox volumetric reconstruction
[8], [167]. The ROVIO odometry method [68] provides pose
estimations to the reconstruction approach. Voxblox has been
evaluated on a MAV platform equipped with an Intel i7 2.1
GHz CPU and a stereo camera synchronized to an IMU. With
a voxel size representation of 0.2m, the computation time of
the complete system is less than 250ms. In order to obtain
an accurate scene representation with a lower granularity, the
use of HW optimizations is particularly useful for maintaining
real-time performance.

Table V shows several voxel-based reconstructions per-
formed on HW FPGA/SoC. In [175], KinectFusion [93] has
been optimally implemented on a SoC FPGA Xilinx Ultra-
Scale+ MPSoC ZCU102. Raycasting is the only part of the
pipeline to be computed on the ARM CPU due to complex
memory access. The reconstruction method achieves a per-
formance of 27.5 FPS with 320×240 input images from the
ICL-NUIM dataset. The optimizations focused on parameters
that improve the execution time, so that the accuracy error
of the method increases from around 0.018m to 0.08m from
one sequence to the next. In [172], InfiniTAM [99] has been
implemented on a low-cost Terasic DE1 FPGA SoC and on a
high-cost Terasic DE5 PCIe board. The real-time performance
widely differs depending on the available resources, with a
performance of 2 FPS and 44 FPS respectively with input
depth images at a 320×240 resolution.

Although FPGA SoC allows the acceleration of advanced
functions on the hardware with the use of a CPU for other
computations. The volumetric method [167] offers a CPU-
based implementation, which provides research directions for
implementing complex tasks for more accurate scene percep-
tion in a heterogeneous system.

13

IV. CONCLUSION

In this paper, we have reviewed visual(-inertial) SLAM
methods, from real-time localization with scene cartogra-
phy to volumetric reconstruction in the context of resource-
constrained embedded platforms. It highlights the different
strategies employed for localization and reconstruction func-
tions, including the potential use of deep neural networks.
The latter is particularly useful in a hybrid configuration to
combine the strengths of deep learning and the maturity of
model-based methods for specific functions, including feature
detection, description, matching and intermediate representa-
tions. This study also provides an overview of the hardware
implementation of localization and reconstruction functions
from COTS systems to specific ASIC/SoC integration. It
shows the gap between algorithmic methods developed with
the high resources available in conventional laptops and those
developed for transport systems with limited resources, includ-
ing MAVs, miniaturized robots and mobile AR/VR devices.

Several odometry methods are developed with limited algo-
rithmic complexity and provide parameters to be configured
for real-time processing on restrictive platforms. This survey
shows that few SLAM and volumetric methods are developed
in this specific context. The implementation of loop closures
capability for SLAM remains a challenge to integrate due to
the required computational resources. As real-time process-
ing, memory management and low power consumption are
essential, several questions remain open to find the best trade-
off between accuracy, robustness, scalability and resource
consumption. The required precision of intermediate represen-
tations, including depth estimation and semantic segmentation
for an accurate 3D model, is one of the research areas to
be explored, as well as the computational cost and use of
hardware resources, especially with deep learning methods.
The granularity of the 3D reconstruction also raises several
questions. For instance, what is the required granularity or
space limitation in the reconstruction? What is the right trade-
off for accurate real-time localization and reconstruction with
limited available resources?

REFERENCES

[1] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi,
“Computing systems for autonomous driving: State of the art and
challenges,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6469–
6486, 2020.

[2] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile aug-
mented reality survey: From where we are to where we go,” IEEE
Access, vol. 5, pp. 6917–6950, 2017.

[3] A. Couturier and M. A. Akhloufi, “A review on absolute visual
localization for uav,” Robotics and Autonomous Systems, vol. 135,
p. 103666, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0921889020305066

[4] A. J. Davison, “Futuremapping: The computational structure of spatial
ai systems,” ArXiv, vol. abs/1803.11288, 2018.

[5] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
pp. 1–17, 2021.

[6] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in European Conference on Computer Vision
(ECCV), September 2014.

[7] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 1689–1696.

[8] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017.

[9] P. Alliez, F. Bonardi, S. Bouchafa, J.-Y. Didier, H. Hadj-Abdelkader,
F. I. I. Muñoz, V. Kachurka, B. Rault, M. Robin, and D. Roussel,
“Real-time multi-slam system for agent localization and 3d mapping
in dynamic scenarios,” 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4894–4900, 2020.

[10] P. Alliez, F. Bonardi, S. Bouchafa, J.-Y. Didier, H. Hadj-Abdelkader,
F. I. Ireta Muñoz, V. Kachurka, B. Rault, M. Robin, and
D. Roussel, “Indoor Localization and Mapping: Towards Tracking
Resilience Through a Multi-SLAM Approach,” in MED 2020 -
28th Mediterranean Conference on Control and Automation, Saint
Raphael, France, Sep. 2020, pp. 465–470. [Online]. Available:
https://hal.inria.fr/hal-02611679

[11] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Robotics: Science and Systems, 2014.

[12] V. Kachurka, D. Roussel, H. Hadj-Abdelkader, F. Bonardi, J.-
Y. Didier, and S. Bouchafa, “SWIR Camera-Based Localization
and Mapping in Challenging Environments,” in 20th International
Conference on IMAGE ANALYSIS AND PROCESSING (ICIAP
2019), ser. Lecture Notes in Computer Science, vol. 11752,
Trento, Italy, Sep. 2019, pp. 446–456. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02271971

[13] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ulti-
mate slam? combining events, images, and imu for robust visual slam in
hdr and high-speed scenarios,” IEEE Robotics and Automation Letters,
vol. 3, pp. 994–1001, 2018.

[14] G. Gallego, T. Delbruck, G. M. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and
D. Scaramuzza, “Event-based vision: A survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2020.

[15] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[16] D. M. Rosen, K. J. Doherty, A. Terán Espinoza, and J. J.
Leonard, “Advances in inference and representation for simultaneous
localization and mapping,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, no. 1, pp. 215–242, 2021. [Online].
Available: https://doi.org/10.1146/annurev-control-072720-082553

[17] C. Stachniss, J. J. Leonard, and S. Thrun, Simultaneous
Localization and Mapping. Cham: Springer International
Publishing, 2016, pp. 1153–1176. [Online]. Available: https:
//doi.org/10.1007/978-3-319-32552-1 46

[18] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part i,” IEEE Robotics Automation Magazine, vol. 13, no. 2, pp.
99–110, 2006.

[19] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (slam): part ii,” IEEE Robotics Automation Magazine, vol. 13,
no. 3, pp. 108–117, 2006.

[20] C. Chen, B. Wang, C. X. Lu, A. Trigoni, and A. Markham, “A survey
on deep learning for localization and mapping: Towards the age of
spatial machine intelligence,” ArXiv, vol. abs/2006.12567, 2020.

[21] I. Salhi, M. Poreba, E. Piriou, V. Gouet-Brunet, and M. Ojail,
“Chapter 8 - multimodal localization for embedded systems:
A survey,” in Multimodal Scene Understanding, M. Y. Yang,
B. Rosenhahn, and V. Murino, Eds. Academic Press, 2019, pp.
199–278. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128173589000147

[22] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localiza-
tion and mapping: A survey of current trends in autonomous driving,”
IEEE Transactions on Intelligent Vehicles, vol. 2, pp. 194–220, 2017.

[23] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein,
and A. Kolb, “State of the art on 3d reconstruction with rgb-d cameras,”
Computer Graphics Forum, vol. 37, 2018.

[24] Y. Alkendi, L. Seneviratne, and Y. Zweiri, “State of the art in vision-
based localization techniques for autonomous navigation systems,”
IEEE Access, vol. 9, pp. 76 847–76 874, 2021.

[25] M. Bujanca, X. Shi, M. Spear, P. Zhao, B. Lennox, and M. Lujan,
“Robust slam systems: Are we there yet?” in IEEE/RSJ International

https://www.sciencedirect.com/science/article/pii/S0921889020305066
https://www.sciencedirect.com/science/article/pii/S0921889020305066
https://hal.inria.fr/hal-02611679
https://hal.archives-ouvertes.fr/hal-02271971
https://hal.archives-ouvertes.fr/hal-02271971
https://doi.org/10.1146/annurev-control-072720-082553
https://doi.org/10.1007/978-3-319-32552-1_46
https://doi.org/10.1007/978-3-319-32552-1_46
https://www.sciencedirect.com/science/article/pii/B9780128173589000147
https://www.sciencedirect.com/science/article/pii/B9780128173589000147

14

Workshop on Intelligent Robots and Systems (IROS 2021). (Ac-
cepted/In press), 2021.

[26] R. Azzam, T. Taha, S. Huang, and Y. Zweiri, “Feature-based visual
simultaneous localization and mapping: a survey,” SN Applied Sciences,
vol. 2, 02 2020.

[27] W. N. Greene and N. Roy, “Flame: Fast lightweight mesh estimation
using variational smoothing on delaunay graphs,” in 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), 2017, pp. 4696–4704.

[28] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Transac-
tions on Robotics, vol. 33, no. 1, pp. 1–21, 2017.

[29] C. Engels, H. Stewénius, and D. Nistér, “Bundle adjustment rules,” in
In Photogrammetric Computer Vision, 2006.

[30] S. Garg, N. Sünderhauf, F. Dayoub, D. Morrison, A. Cosgun,
G. Carneiro, Q. Wu, T. J. Chin, I. Reid, S. Gould, P. Corke, and M. Mil-
ford, Semantics for Robotic Mapping, Perception and Interaction: A
Survey. Now Foundations and Trends, 2020.

[31] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile
robotics tasks: A survey,” Robotics and Autonomous Systems, vol. 66,
pp. 86–103, 2015. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0921889014003030

[32] B. Zhou, P. Krähenbühl, and V. Koltun, “Does computer vision
matter for action?” Science Robotics, vol. 4, no. 30, p. eaaw6661,
2019. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.aaw6661

[33] Davison, “Real-time simultaneous localisation and mapping with a
single camera,” in Proceedings Ninth IEEE International Conference
on Computer Vision, 2003, pp. 1403–1410 vol.2.

[34] A. Davison, I. Reid, N. D. Molton, and O. Stasse, “Monoslam: Real-
time single camera slam,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, pp. 1052–1067, 2007.

[35] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based
framework for global pose estimation with multiple sensors,” ArXiv,
vol. abs/1901.03642, 2019.

[36] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, 2007, pp. 3565–
3572.

[37] D. Nister, “An efficient solution to the five-point relative pose problem,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 6, pp. 756–770, 2004.

[38] B. K. P. Horn, “Closed-form solution of absolute orientation using
unit quaternions,” J. Opt. Soc. Am. A, vol. 4, no. 4, pp. 629–642, Apr
1987. [Online]. Available: http://www.osapublishing.org/josaa/abstract.
cfm?URI=josaa-4-4-629

[39] M. C. Laurent Kneip and R. Siegwart, “Robust real-time visual
odometry with a single camera and an imu,” in Proceedings of the
British Machine Vision Conference. BMVA Press, 2011, pp. 16.1–
16.11, http://dx.doi.org/10.5244/C.25.16.

[40] E. H. Adelson, P. J. Burt, C. H. Anderson, J. M. Ogden, and J. R.
Bergen, “Pyramid methods in image processing,” 1984.

[41] H. P. Moravec, “Towards automatic visual obstacle avoidance,” in
IJCAI, 1977.

[42] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Alvey Vision Conference, 1988.

[43] Jianbo Shi and Tomasi, “Good features to track,” in 1994 Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition,
1994, pp. 593–600.

[44] E. Rosten and T. Drummond, “Machine learning for high-speed
corner detection,” in Computer Vision – ECCV 2006, A. Leonardis,
H. Bischof, and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 430–443.

[45] G. LoweDavid, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, 2004.

[46] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof,
and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 404–417.

[47] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An effi-
cient alternative to sift or surf,” in 2011 International Conference on
Computer Vision, 2011, pp. 2564–2571.

[48] J. yves Bouguet, “Pyramidal implementation of the lucas kanade
feature tracker,” Intel Corporation, Microprocessor Research Labs,
2000.

[49] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel, “1-
point ransac for ekf-based structure from motion,” in 2009 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009, pp.
3498–3504.

[50] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., vol. 1, 2004, pp.
I–I.

[51] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in 2011 International Conference
on Computer Vision, 2011, pp. 2320–2327.

[52] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611–625, 2018.

[53] D. Cremers, “Direct methods for 3d reconstruction and visual slam,”
in 2017 Fifteenth IAPR International Conference on Machine Vision
Applications (MVA), 2017, pp. 34–38.

[54] M. Pizzoli, C. Forster, and D. Scaramuzza, “Remode: Probabilistic,
monocular dense reconstruction in real time,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2014, pp.
2609–2616.

[55] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry
for a monocular camera,” in 2013 IEEE International Conference on
Computer Vision, 2013, pp. 1449–1456.

[56] J. Engel, J. Stückler, and D. Cremers, “Large-scale direct slam with
stereo cameras,” in 2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2015, pp. 1935–1942.

[57] X. Dong, L. Cheng, H. Peng, and T. Li, “Fsd-slam: a fast semi-direct
slam algorithm,” Complex & Intelligent Systems, 2021.

[58] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“Svo: Semidirect visual odometry for monocular and multicamera
systems,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 249–265,
2017.

[59] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November
2007.

[60] J. Leonard, H. Durrant-Whyte, and I. Cox, “Dynamic map building for
autonomous mobile robot,” in EEE International Workshop on Intel-
ligent Robots and Systems, Towards a New Frontier of Applications,
1990, pp. 89–96 vol.1.

[61] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous robot vehicles. Springer,
1990, pp. 167–193.

[62] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and
localization for an autonomous mobile robot,” in Proceedings IROS
’91:IEEE/RSJ International Workshop on Intelligent Robots and Sys-
tems ’91, 1991, pp. 1442–1447 vol.3.

[63] J. Folkesson and H. Christensen, “Graphical slam - a self-correcting
map,” in IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004, vol. 1, 2004, pp. 383–390 Vol.1.

[64] U. Frese and L. Schroder, “Closing a million-landmarks loop,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2006, pp. 5032–5039.

[65] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing,” The International
Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203, 2006.
[Online]. Available: https://doi.org/10.1177/0278364906072768

[66] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The slam problem: A sur-
vey,” in Proceedings of the 2008 Conference on Artificial Intelligence
Research and Development: Proceedings of the 11th International
Conference of the Catalan Association for Artificial Intelligence. NLD:
IOS Press, 2008, p. 363–371.

[67] J. Gui, D. Gu, S. Wang, and H. Hu, “A review of visual inertial odom-
etry from filtering and optimisation perspectives,” Advanced Robotics,
vol. 29, pp. 1289 – 1301, 2015.

[68] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct ekf-based approach,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 298–304.

[69] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry for
fast autonomous flight,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 965–972, 2018.

[70] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020,
pp. 4666–4672.

https://www.sciencedirect.com/science/article/pii/S0921889014003030
https://www.sciencedirect.com/science/article/pii/S0921889014003030
https://www.science.org/doi/abs/10.1126/scirobotics.aaw6661
https://www.science.org/doi/abs/10.1126/scirobotics.aaw6661
http://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-4-4-629
http://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-4-4-629
https://doi.org/10.1177/0278364906072768

15

[71] F. Dellaert and M. Kaess, “Factor graphs for robot perception,” Found.
Trends Robotics, vol. 6, pp. 1–139, 2017.

[72] F. Dellaert and Others, “Georgia tech smoothing and mapping
(gtsam),” 2019. [Online]. Available: https://gtsam.org/

[73] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard,
and F. Dellaert, “isam2: Incremental smoothing and mapping
using the bayes tree,” The International Journal of Robotics
Research, vol. 31, no. 2, pp. 216–235, 2012. [Online]. Available:
https://doi.org/10.1177/0278364911430419

[74] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation, 2011, pp. 3607–
3613.

[75] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[76] V. Usenko, N. Demmel, D. Schubert, J. Stückler, and D. Cre-
mers, “Visual-inertial mapping with non-linear factor recovery,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 422–429, 2020.

[77] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[78] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and
P. Furgale, “Keyframe-based visual–inertial odometry using nonlinear
optimization,” The International Journal of Robotics Research,
vol. 34, no. 3, pp. 314–334, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914554813

[79] D. Galvez-López and J. D. Tardos, “Bags of binary words for fast
place recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, 2012.

[80] H. Wang, J. Li, M. Ran, and L. Xie, “Fast loop closure detection
via binary content,” in 2019 IEEE 15th International Conference on
Control and Automation (ICCA), 2019, pp. 1563–1568.

[81] F. Schenk and F. Fraundorfer, “Reslam: A real-time robust edge-
based slam system,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 154–160.

[82] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[83] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012, pp.
573–580.

[84] T. Schöps, T. Sattler, and M. Pollefeys, “Surfelmeshing: Online surfel-
based mesh reconstruction,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 42, pp. 2494–2507, 2020.

[85] S. Dinas and J. Bañón, “A review on delaunay triangulation with
application on computer vision,” IJCSE - International Journal of
Computer Science and Engineering, vol. 3, pp. 9–18, 03 2014.

[86] A. Rosinol, T. Sattler, M. Pollefeys, and L. Carlone, “Incremental
visual-inertial 3d mesh generation with structural regularities,” 2019
International Conference on Robotics and Automation (ICRA), pp.
8220–8226, 2019.

[87] L. Teixeira and M. Chli, “Real-time mesh-based scene estimation
for aerial inspection,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016, pp. 4863–4869.

[88] M. Yokozuka, S. Oishi, S. Thompson, and A. Banno, “Vitamin-e: Vi-
sual tracking and mapping with extremely dense feature points,” 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9633–9642, 2019.

[89] E. Piazza, A. Romanoni, and M. Matteucci, “Real-time cpu-based
large-scale three-dimensional mesh reconstruction,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1584–1591, 2018.

[90] J. R. Shewchuk, “Delaunay refinement algorithms for triangular
mesh generation,” Computational Geometry, vol. 22, no. 1, pp. 21
– 74, 2002, 16th ACM Symposium on Computational Geometry.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0925772101000475

[91] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” in Proceedings of the 14th annual
conference on Computer graphics and interactive techniques - SIG-
GRAPH 1987. ACM Press, 1987.

[92] B. Curless and M. Levoy, “A volumetric method for building
complex models from range images,” in Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’96. New York, NY, USA: Association
for Computing Machinery, 1996, p. 303–312. [Online]. Available:
https://doi.org/10.1145/237170.237269

[93] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in 2011
10th IEEE International Symposium on Mixed and Augmented Reality,
2011, pp. 127–136.

[94] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao, “Chisel:
Real time large scale 3d reconstruction onboard a mobile device using
spatially hashed signed distance fields,” in Robotics: Science and
Systems, 2015.

[95] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive
ray tracing for isosurface rendering,” in Proceedings Visualization ’98
(Cat. No.98CB36276), 1998, pp. 233–238.

[96] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[97] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“Kinectfusion: Real-time 3d reconstruction and interaction using a
moving depth camera,” in UIST ’11 Proceedings of the 24th annual
ACM symposium on User interface software and technology. ACM,
October 2011, pp. 559–568.

[98] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-
time 3d reconstruction at scale using voxel hashing,” ACM
Trans. Graph., vol. 32, no. 6, Nov. 2013. [Online]. Available:
https://doi.org/10.1145/2508363.2508374

[99] O. Kähler, V. Prisacariu, C. Ren, X. Sun, P. Torr, and D. Murray,
“Very high frame rate volumetric integration of depth images on mobile
devices,” IEEE Transactions on Visualization and Computer Graphics,
vol. 21, pp. 1241–1250, 2015.

[100] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proceedings of the
IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[101] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards
end-to-end visual odometry with deep recurrent convolutional neural
networks,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 2043–2050.

[102] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov,
P. v. d. Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in 2015 IEEE International Con-
ference on Computer Vision (ICCV), 2015, pp. 2758–2766.

[103] R. Clark, S. Wang, H. Wen, A. Markham, and A. Trigoni, “Vinet:
Visual-inertial odometry as a sequence-to-sequence learning problem,”
in AAAI, 2017.

[104] R. Li, S. Wang, and D. Gu, “Deepslam: A robust monocular slam sys-
tem with unsupervised deep learning,” IEEE Transactions on Industrial
Electronics, vol. 68, no. 4, pp. 3577–3587, 2021.

[105] C. Tang and P. Tan, “BA-net: Dense bundle adjustment networks,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=B1gabhRcYX

[106] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, “Deepfactors:
Real-time probabilistic dense monocular slam,” IEEE Robotics and
Automation Letters, vol. 5, pp. 721–728, 2020.

[107] S. Arshad and G.-W. Kim, “Role of deep learning in loop
closure detection for visual and lidar slam: A survey,” Sensors,
vol. 21, no. 4, p. 1243, Feb 2021. [Online]. Available: http:
//dx.doi.org/10.3390/s21041243

[108] X. Zhang, Y. Su, and X. Zhu, “Loop closure detection for visual
slam systems using convolutional neural network,” in 2017 23rd
International Conference on Automation and Computing (ICAC), 2017,
pp. 1–6.

[109] D. Li, X. Shi, Q. Long, S. Liu, W. Yang, F. Wang, Q. Wei, and F. Qiao,
“Dxslam: A robust and efficient visual slam system with deep features,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 4958–4965.

[110] M. Sons, C. Kinzig, D. Zanker, and C. Stiller, “An approach for
cnn-based feature matching towards real-time slam,” in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), 2019, pp. 1305–
1310.

[111] Z. Xu, J. Yu, C. Yu, H. Shen, Y. Wang, and H. Yang, “Cnn-
based feature-point extraction for real-time visual slam on embedded
fpga,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2020, pp. 33–
37.

[112] Q. Zhou, T. Sattler, and L. Leal-Taixe, “Patch2pix: Epipolar-guided
pixel-level correspondences,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021, pp. 4669–
4678.

https://gtsam.org/
https://doi.org/10.1177/0278364911430419
http://ceres-solver.org
http://ceres-solver.org
https://doi.org/10.1177/0278364914554813
http://www.sciencedirect.com/science/article/pii/S0925772101000475
http://www.sciencedirect.com/science/article/pii/S0925772101000475
https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/2508363.2508374
https://openreview.net/forum?id=B1gabhRcYX
http://dx.doi.org/10.3390/s21041243
http://dx.doi.org/10.3390/s21041243

16

[113] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt, “Gcnv2: Efficient
correspondence prediction for real-time slam,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3505–3512, 2019.

[114] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
1–1, 2021.

[115] L. Xia, J. Cui, R. Shen, X. Xu, Y. Gao, and X. Li, “A
survey of image semantics-based visual simultaneous localization and
mapping: Application-oriented solutions to autonomous navigation of
mobile robots,” International Journal of Advanced Robotic Systems,
vol. 17, no. 3, p. 1729881420919185, 2020. [Online]. Available:
https://doi.org/10.1177/1729881420919185

[116] K.-N. Lianos, J. L. Schönberger, M. Pollefeys, and T. Sattler, “Vso:
Visual semantic odometry,” in Computer Vision – ECCV 2018, V. Fer-
rari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer
International Publishing, 2018, pp. 246–263.

[117] A. Gawel, C. D. Don, R. Siegwart, J. Nieto, and C. Cadena, “X-
view: Graph-based semantic multi-view localization,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1687–1694, 2018.

[118] C. Zhang, L. Chen, and S. Yuan, “St-vio: Visual-inertial odometry
combined with image segmentation and tracking,” IEEE Transactions
on Instrumentation and Measurement, vol. 69, no. 10, pp. 8562–8570,
2020.

[119] S. Wen, P. Li, Y. Zhao, H. Zhang, F. Sun, and Z. Wang, “Semantic
visual slam in dynamic environment,” in Autonomous Robots, 2021.

[120] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei, “Ds-
slam: A semantic visual slam towards dynamic environments,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 1168–1174.

[121] K. Tateno, F. Tombari, and N. Navab, “Real-time and scalable incre-
mental segmentation on dense slam,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 4465–
4472.

[122] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfu-
sion: Dense 3d semantic mapping with convolutional neural networks,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 4628–4635.

[123] J. Wald, K. Tateno, J. Sturm, N. Navab, and F. Tombari, “Real-time
fully incremental scene understanding on mobile platforms,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, pp. 3402–3409, 2018.

[124] R. A. Rosu, J. Quenzel, and S. Behnke, “Semi-supervised semantic
mapping through label propagation with semantic texture meshes,”
International Journal of Computer Vision, vol. 128, no. 5, pp. 1220–
1238, jun 2019.

[125] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Sieg-
wart, and J. Nieto, “Volumetric Instance-Aware Semantic Mapping and
3D Object Discovery,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 3037–3044, July 2019.

[126] G. Narita, T. Seno, T. Ishikawa, and Y. Kaji, “Panopticfusion: Online
volumetric semantic mapping at the level of stuff and things,” 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4205–4212, 2019.

[127] Z. Landgraf, F. Falck, M. Bloesch, S. Leutenegger, and A. J. Davison,
“Comparing view-based and map-based semantic labelling in real-
time slam,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 6884–6890.

[128] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time
dense monocular slam with learned depth prediction,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 6565–6574.

[129] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J.
Davison, “Codeslam - learning a compact, optimisable representation
for dense visual slam,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2560–2568.

[130] X. Yin, X. Wang, X. Du, and Q. Chen, “Scale recovery for monocular
visual odometry using depth estimated with deep convolutional neural
fields,” in 2017 IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 5871–5879.

[131] Y. Li, C. Xie, H. Lu, X. Chen, J. Xiao, and H. Zhang, “Scale-aware
monocular slam based on convolutional neural network,” in 2018 IEEE
International Conference on Information and Automation (ICIA), 2018,
pp. 51–56.

[132] D. Martins, K. Van Hecke, and G. De Croon, “Fusion of stereo and
still monocular depth estimates in a self-supervised learning context,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 849–856.

[133] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.

[134] J. Yu, F. Gao, J. Cao, C. Yu, Z. Zhang, Z. Huang, Y. Wang, and H. Yang,
“Cnn-based monocular decentralized slam on embedded fpga,” in 2020
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2020, pp. 66–73.

[135] J. Yu, G. Ge, Y. Hu, X. Ning, J. Qiu, K. Guo, Y. Wang, and H. Yang,
“Instruction driven cross-layer cnn accelerator for fast detection on
fpga,” ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 3, Dec.
2018. [Online]. Available: https://doi.org/10.1145/3283452

[136] H. Zhan, R. Garg, C. Saroj Weerasekera, K. Li, H. Agarwal, and I. Reid,
“Unsupervised learning of monocular depth estimation and visual
odometry with deep feature reconstruction,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[137] W. Wen, Y. Zhou, G. Zhang, S. Fahandezh-Saadi, X. Bai, W. Zhan,
M. Tomizuka, and L. Hsu, “Urbanloco: A full sensor suite dataset for
mapping and localization in urban scenes,” 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2310–2316, 2020.

[138] L.-T. Hsu, N. Kubo, W. Chen, Z. Liu, T. Suzuki, and J. Meguro,
“Urbannav: An open-sourced multisensory dataset for benchmarking
positioning algorithms designed for urban areas,” in In Proceedings of
the ION GNSS+ 2021, 2021.

[139] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban
dataset with multi-level sensors from highly diverse urban environ-
ments,” International Journal of Robotics Research, vol. 38, no. 6, pp.
642–657, 2019.

[140] X. Shi, D. Li, P. Zhao, Q. Tian, Y. Tian, Q. Long, C. Zhu, J. Song,
F. Qiao, L. Song, Y. Guo, Z. Wang, Y. Zhang, B. Qin, W. Yang,
F. Wang, R. H. M. Chan, and Q. She, “Are we ready for service
robots? the OpenLORIS-Scene datasets for lifelong SLAM,” in 2020
International Conference on Robotics and Automation (ICRA), 2020,
pp. 3139–3145.

[141] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of michigan north campus long-term vision and lidar dataset,”
The International Journal of Robotics Research, vol. 35, no. 9,
pp. 1023–1035, 2016. [Online]. Available: https://doi.org/10.1177/
0278364915614638

[142] A. Pronobis and B. Caputo, “COLD: COsy Localization Database,”
The International Journal of Robotics Research (IJRR), vol. 28, no. 5,
pp. 588–594, May 2009. [Online]. Available: http://www.pronobis.
pro/publications/pronobis2009ijrr

[143] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scara-
muzza, “Are we ready for autonomous drone racing? the UZH-FPV
drone racing dataset,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2019.

[144] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, 2016.
[Online]. Available: http://ijr.sagepub.com/content/early/2016/01/21/
0278364915620033.abstract

[145] A. L. Majdik, C. Till, and D. Scaramuzza, “The zurich urban
micro aerial vehicle dataset,” The International Journal of Robotics
Research, vol. 36, no. 3, pp. 269–273, 2017. [Online]. Available:
https://doi.org/10.1177/0278364917702237

[146] E. Palazzolo, J. Behley, P. Lottes, P. Giguère, and C. Stachniss,
“ReFusion: 3D Reconstruction in Dynamic Environments for
RGB-D Cameras Exploiting Residuals,” 2019. [Online]. Available:
https://www.ipb.uni-bonn.de/pdfs/palazzolo2019iros.pdf

[147] S. Park, T. Schöps, and M. Pollefeys, “Illumination change robustness
in direct visual slam,” in ICRA, 2017.

[148] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and D. Cre-
mers, “The tum vi benchmark for evaluating visual-inertial odometry,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 1680–1687.

[149] J. Engel, V. C. Usenko, and D. Cremers, “A photometrically cal-
ibrated benchmark for monocular visual odometry,” ArXiv, vol.
abs/1607.02555, 2016.

[150] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012, pp.
573–580.

[151] S. Wang, J. Yue, Y. Dong, S. He, H. Wang, and S. Ning,
“A synthetic dataset for visual slam evaluation,” Robotics and
Autonomous Systems, vol. 124, p. 103336, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889019301009

[152] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A benchmark
for rgb-d visual odometry, 3d reconstruction and slam,” in 2014 IEEE

https://doi.org/10.1177/1729881420919185
https://doi.org/10.1145/3283452
https://doi.org/10.1177/0278364915614638
https://doi.org/10.1177/0278364915614638
http://www.pronobis.pro/publications/pronobis2009ijrr
http://www.pronobis.pro/publications/pronobis2009ijrr
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://doi.org/10.1177/0278364917702237
https://www.ipb.uni-bonn.de/pdfs/palazzolo2019iros.pdf
https://www.sciencedirect.com/science/article/pii/S0921889019301009

17

International Conference on Robotics and Automation (ICRA), 2014,
pp. 1524–1531.

[153] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi,
A. Gupta, and L. Carlone, “Kimera: from SLAM to spatial perception
with 3D dynamic scene graphs,” in arxiv, 2021.

[154] S. Aldegheri, N. Bombieri, D. D. Bloisi, and A. Farinelli, “Data flow
orb-slam for real-time performance on embedded gpu boards,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 5370–5375.

[155] O. C. B. Silveira, J. G. O. C. de Melo, L. A. S. Moreira, J. B.
N. G. Pinto, L. R. L. Rodrigues, and P. F. F. Rosa, “Evaluating a
visual simultaneous localization and mapping solution on embedded
platforms,” in 2020 IEEE 29th International Symposium on Industrial
Electronics (ISIE), 2020, pp. 530–535.

[156] N. Merrill, P. Geneva, and G. Huang, “Robust monocular visual-
inertial depth completion for embedded systems,” in Proc. of the IEEE
International Conference on Robotics and Automation, Xi’an, China,
2021.

[157] Y. Verdie, F. Lafarge, and P. Alliez, “Lod generation for urban scenes,”
ACM Transactions on Graphics (TOG), vol. 34, pp. 1 – 14, 2015.

[158] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. Torr, “Fast
online object tracking and segmentation: A unifying approach,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 1328–1338.

[159] J. Delmerico and D. Scaramuzza, “A benchmark comparison of monoc-
ular visual-inertial odometry algorithms for flying robots,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 2502–2509.

[160] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017
IEEE International Conference on Computer Vision (ICCV), 2017, pp.
2980–2988.

[161] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual
inertial odometry,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, jul 2017. [Online]. Available:
https://github.com/daniilidis-group/msckf mono

[162] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A
versatile and accurate monocular slam system,” IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[163] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[164] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille, “To-
wards unified depth and semantic prediction from a single image,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 2800–2809.

[165] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
2016 Fourth International Conference on 3D Vision (3DV), pp. 239–
248, 2016.

[166] T. J. Steiner, R. D. Truax, and K. Frey, “A vision-aided inertial nav-
igation system for agile high-speed flight in unmapped environments:
Distribution statement a: Approved for public release, distribution
unlimited,” in 2017 IEEE Aerospace Conference, 2017, pp. 1–10.

[167] H. Oleynikova, C. Lanegger, Z. Taylor, M. Pantic, A. Millane, R. Sieg-
wart, and J. Nieto, “An open-source system for vision-based micro-
aerial vehicle mapping, planning, and flight in cluttered environments,”
Journal of Field Robotics, vol. 37, no. 4, pp. 642–666, 2020.

[168] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt,
“Bundlefusion: Real-time globally consistent 3d reconstruction using
on-the-fly surface reintegration,” ACM Trans. Graph., vol. 36, no. 3,
May 2017. [Online]. Available: https://doi.org/10.1145/3054739

[169] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and
A. Davison, “Elasticfusion: Dense slam without a pose graph,” in
Robotics: Science and Systems, 2015.

[170] R. W. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for
shape manipulation,” ACM Trans. Graph., vol. 26, no. 3, p. 80–es,
2007. [Online]. Available: https://doi.org/10.1145/1276377.1276478

[171] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estima-
tion of imu and marg orientation using a gradient descent algorithm,” in
2011 IEEE International Conference on Rehabilitation Robotics, 2011,
pp. 1–7.

[172] Q. Gautier, A. Althoff, and R. Kastner, “Fpga architectures for real-
time dense slam,” in 2019 IEEE 30th International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
vol. 2160-052X, 2019, pp. 83–90.

[173] K. Boikos and C.-S. Bouganis, “Semi-dense slam on an fpga soc,” in
2016 26th International Conference on Field Programmable Logic and
Applications (FPL), 2016, pp. 1–4.

[174] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at the
level of objects,” in 2013 IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 1352–1359.

[175] M. R. Gkeka, A. Patras, C. D. Antonopoulos, S. Lalis, and N. Bellas,
“Fpga architectures for approximate dense slam computing,” in Design,
Automation and Test in Europe Conference and Exhibition (DATE),
Grenoble, France, Feb. 2021.

[176] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and
J. Jacobo Berlles, “S-ptam: Stereo parallel tracking and mapping,”
Robotics and Autonomous Systems, vol. 93, pp. 27–42, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0921889015302955

[177] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion:
A 2-mw fully integrated real-time visual-inertial odometry accelerator
for autonomous navigation of nano drones,” IEEE Journal of Solid-
State Circuits, vol. 54, no. 4, pp. 1106–1119, 2019.

[178] Z. Li, Y. Chen, L. Gong, L. Liu, D. Sylvester, D. Blaauw, and H. Kim,
“An 879gops 243mw 80fps vga fully visual cnn-slam processor for
wide-range autonomous exploration,” 2019 IEEE International Solid-
State Circuits Conference - (ISSCC), pp. 134–136, 2019.

[179] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart,
“A robust and modular multi-sensor fusion approach applied to mav
navigation,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 3923–3929.

[180] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruc-
tion in real-time,” in 2011 IEEE Intelligent Vehicles Symposium (IV),
2011, pp. 963–968.

[181] D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, “Fastdepth:
Fast monocular depth estimation on embedded systems,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 6101–6108.

[182] “Skydio 2.” [Online]. Available: https://www.skydio.com/skydio-2
[183] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza,

and L. Benini, “A 64-mw dnn-based visual navigation engine for
autonomous nano-drones,” IEEE Internet of Things Journal, vol. 6,
no. 5, pp. 8357–8371, 2019.

[184] E. Terry, “Silicon at the heart of hololens 2,” in 2019 IEEE Hot Chips
31 Symposium (HCS), 2019, pp. 1–26.

[185] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale,
and R. Siegwart, “A synchronized visual-inertial sensor system with
fpga pre-processing for accurate real-time slam,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2014, pp.
431–437.

[186] M. Lepecq and M. Darouich, “A stream hardware architecture for
keypoint matching based on a speculative approach,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), 2020, pp.
1–5.

[187] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and
D. Scaramuzza, “Autonomous, vision-based flight and live dense
3d mapping with a quadrotor micro aerial vehicle,” J. Field
Robot., vol. 33, no. 4, p. 431–450, Jun. 2016. [Online]. Available:
https://doi.org/10.1002/rob.21581

[188] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and J. J.
Leonard, “Kintinuous: Spatially extended kinectfusion,” July 2012.

[189] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, 2013, software
available at https://octomap.github.io. [Online]. Available: https:
//octomap.github.io

[190] F. Steinbrücker, J. Sturm, and D. Cremers, “Volumetric 3d mapping
in real-time on a cpu,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2014, pp. 2021–2028.

[191] M. Muglikar, Z. Zhang, and D. Scaramuzza, “Voxel map for visual
slam,” 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 4181–4187, 2020.

[192] Z. Zhang, A. Suleiman, L. Carlone, V. Sze, and S. Karaman, “Visual-
inertial odometry on chip: An algorithm-and-hardware co-design ap-
proach,” in Robotics: Science and Systems, 2017.

[193] Microsoft, “Microsoft hololens v1 and hololens v2,” 2016, 2019.
[Online]. Available: https://www.microsoft.com/en-us/hololens

[194] J. H. Yoon and A. Raychowdhury, “Neuroslam: A 65-nm 7.25-to-
8.79-tops/w mixed-signal oscillator-based slam accelerator for edge

https://github.com/daniilidis-group/msckf_mono
https://doi.org/10.1145/3054739
https://doi.org/10.1145/1276377.1276478
https://www.sciencedirect.com/science/article/pii/S0921889015302955
https://www.sciencedirect.com/science/article/pii/S0921889015302955
https://www.skydio.com/skydio-2
https://doi.org/10.1002/rob.21581
https://octomap.github.io
https://octomap.github.io
https://octomap.github.io
https://www.microsoft.com/en-us/hololens

18

robotics,” IEEE Journal of Solid-State Circuits, vol. 56, no. 1, pp. 66–
78, 2021.

[195] L. Millet, S. Chevobbe, C. Andriamisaina, L. Benaissa, E. De-
schaseaux, E. Beigne, K. Ben Chehida, M. Lepecq, M. Darouich,
F. Guellec, T. Dombek, and M. Duranton, “A 5500-frames/s 85-gops/w
3-d stacked bsi vision chip based on parallel in-focal-plane acquisition
and processing,” IEEE Journal of Solid-State Circuits, vol. 54, no. 4,
pp. 1096–1105, 2019.

[196] P. Dudek and P. J. Hicks, “A general-purpose processor-per-pixel analog
simd vision chip,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 52, no. 1, pp. 13–20, 2005.

[197] R. Murai, S. Saeedi, and P. Kelly, “Bit-vo: Visual odometry at 300
fps using binary features from the focal plane,” 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 8579–8586, 2020.

[198] J. Chen, S. Carey, and P. Dudek, “Feature extraction using a portable
vision system,” in Vision-based Agile Autonomous Navigation of UAVs-
Workshop, IEEE/RSJ International Conference on IntelligentRobots
and Systems (IROS), 2017.

[199] M. J. Ebstyne, F. Schafalitzky, D. Steedly, C. Chan, E. Eade, A. Kip-
man, and G. Klein, “Pose tracking an augmented reality device,” U.S.
Patent 9 495 801, 2016.

[200] P. Hübner, K. Clintworth, Q. Liu, M. Weinmann, and S. Wursthorn,
“Evaluation of hololens tracking and depth sensing for indoor mapping
applications,” Sensors, vol. 20, no. 4, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/4/1021

[201] K. Khoshelham, H. Tran, and D. Acharya, “Indoor
mapping eyewear: Geometric evaluation of spatial mapping
capability of hololens,” ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. XLII-2/W13, pp. 805–810, 2019. [Online]. Avail-
able: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.
net/XLII-2-W13/805/2019/

Quentin Picard received the M.S. degree in mobile
autonomous systems from the University of Paris-
Saclay, France in 2019. He is currently pursuing
the Ph.D. degree at the CEA LIST Institute, Saclay,
France in collaboration with the IBISC (Computer
Science, Bio-Informatics and Complex Systems)
laboratory of the University of Paris-Saclay, France.
His research interests involve the generation of a
semantic and dynamic 3D scene reconstruction in
real-time for embedded systems.

Stephane Chevobbe received the Ph.D. degree in
microelectronic and signal processing from the Uni-
versity of Rennes 1, Rennes, France, in 2005. From
2006 to 2009, he participated in several national
and European Research Projects that lead to the
realizations of the application specified integrated
circuit and reconfigurable architectures for embed-
ded systems. Since 2009, he has participated in
the design of computing architectures for embedded
vision applications. He is currently an Expert and
a Research Engineer with the CEA LIST Institute,

Saclay, France, where he is involved in the domain of embedded computing
architecture. His research interests include reconfigurable, programmable and
dedicated embedded architectures, and embedded architectures for image
processing.

Mehdi Darouich received the Ph.D. degree in
embedded systems from the University of Rennes
1, Rennes, France, in 2010. He joined the IC
Design and Embedded Software Division, CEA
LIST (French Atomic Energy Commision), Saclay,
France, where he works in the field of embedded
processing architectures and real-time machine vi-
sion applications for embedded purposes. His current
research interests include smart sensors architecture
design, stereo vision perception, localization, and
navigation.

Jean-Yves Didier is an Associate Professor at
Université d’Evry-val d’Essonne (Université Paris-
Saclay) since September 2006. He received, in 2002,
two M.S. degrees, both in computer science, from
ENSIIE of Evry (public school of engineers) and
Université d’Evry. He defended his Phd degree in
robotics in 2005 at the same university. His research
interests are focused on software architectures for
mixed reality applications and their requirements
such as localization and 3D environment reconstruc-
tion. He is also currently co-head of the Interaction,

Virtual and Augmented Reality, Ambiant Robotics research team of the IBISC
(Computer Science, Bio-Informatics and Complex Systems) laboratory of the
University of Paris-Saclay, France.

https://www.mdpi.com/1424-8220/20/4/1021
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/805/2019/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/805/2019/

	Introduction
	SLAM pipeline from sensors to 3D reconstruction
	Localization module
	Front-end
	Back-end

	3D reconstruction module
	Mesh reconstruction
	Volumetric reconstruction

	Learning-based modules in a conventional pipeline
	Deep learning for real-time pose estimation
	Intermediate representations based on neural networks
	Complexity of deep learning in the context of embedded systems

	Overview of existing methods
	Benchmarking tools
	Performance comparison of existing methods

	Localization and 3D reconstruction methods on embedded systems
	Embedded platforms for localization and 3D reconstruction
	Components Off-The-Shelf (COTS)
	Energy-efficient accelerators
	Vision chips

	Algorithmic methods in embedded platforms
	Real-time localization
	Real-time 3D reconstruction

	Conclusion
	References
	Biographies
	Quentin Picard
	Stephane Chevobbe
	Mehdi Darouich
	Jean-Yves Didier

