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We fully classify automatic sequences a over a finite alphabet Ω with the property that each word over Ω appears is a along an arithmetic progression. Using the terminology introduced by Avgustinovich, Fon-Der-Flaass and Frid, these are the automatic sequences with the maximal possible arithmetical subword complexity. More generally, we obtain an asymptotic formula for arithmetical (and even polynomial) subword complexity of a given automatic sequence a.

Introduction

Automatic sequences -that is, sequences computable by finite automata, see [START_REF] Allouche | Automatic sequences[END_REF] for background -have long been studied from the point of view of combinatorics on words. A notable property of these sequences is that their subword complexity is linear. To be more precise, for a sequence a = (a(n)) ∞ n=0 taking values in some finite alphabet Ω we define the subword complexity p a (ℓ) to be the number of length-ℓ subwords that appear in a:

(1) p a (ℓ) = # x = (x(i)) ℓ-1 i=0 ∈ Ω ℓ (∃ n ≥ 0) (∀ 0 ≤ i < ℓ) a(n + i) = x(i) . If a is automatic then we have p a (ℓ) = O a (ℓ), or in other words there exists a constant C a such that p a (ℓ) ≤ C a ℓ for all ℓ ≥ 1. In fact, in many cases the subword complexity can be computed explicitly. As an example, we may consider the Thue-Morse sequence t, given by (2)

t(n) = s 2 (n) mod 2,
where s 2 (n) denotes the sum of binary digits of n. The subword complexity of t is

(3) p t (n) = 3 • 2 k + 4(r -1) if n = 2 k + r with 1 ≤ r ≤ 2 k-1 , 4 • 2 k + 2(r -1) if n = 2 k + r with 2 k-1 < r ≤ 2 k .
(This sequence appears as A005942 on OEIS [OEI23, A008277].) However, automatic sequences can often look much more complicated along subsequences. For instance, the restriction of the Thue-Morse sequence to the squares (t(n 2 )) ∞ n=0 is normal [START_REF] Drmota | Normality along squares[END_REF], meaning that for each ℓ ≥ 1, each subword x ∈ {0, 1} ℓ occurs with frequency 1/2 ℓ , lim

N →∞ 1 N # {n < N | (∀ 0 ≤ i < ℓ) t(n + i) = x(i)} = 1/2 ℓ .
This result was later generalized to block-additive functions modulo m by the second named author [START_REF] Müllner | The Rudin-Shapiro sequence and similar sequences are normal along squares[END_REF]. Moreover, a similar result applies to the restrictions of the Thue-Morse sequence to Piatetski-Shapiro sequences (t(⌊n c ⌋) ∞ n=0 for 1 < c < 3/2 [START_REF] Müllner | Normality of the Thue-Morse sequence along Piatetski-Shapiro sequences[END_REF]. These results are conjectured to hold for larger exponents as well. It follows from [START_REF] Konieczny | Gowers norms for the Thue-Morse and Rudin-Shapiro sequences[END_REF] that, for a fixed value of ℓ and sufficiently large N , the restriction of the Thue-Morse sequence to a randomly chosen length-ℓ arithmetic progression contained in [N ] = {0, 1, . . . , N -1} behaves like a random sequence in the sense that for each ℓ ≥ 1 there exists c(ℓ) > 0 such that for each x = (x(i)) ℓ-1 i=0 ∈ {0, 1} ℓ we have

#    (n, m) ∈ N 2 0 n + im < N and t(n + im) = x(i) for all 0 ≤ i < ℓ    = N 2 2 ℓ+1 (ℓ -1) + O(N 2-c(ℓ) )
In particular, the Thue-Morse sequence has the largest possible arithmetical subword complexity -a concept introduced by Avgustinovich, Fon-Der-Flaass and Frid [START_REF] Avgustinovich | Arithmetical complexity of infinite words[END_REF] as an analogue of the usual subword complexity, which we will presently introduce. For a sequence a = (a(n)) ∞ n=0 taking values in some finite set Ω the arithmetical subword complexity p AP a (ℓ) is defined as the number of length-ℓ subwords that appear in a along an arithmetic progression:

(4) p AP a (ℓ) = # x ∈ Ω ℓ (∃ n ≥ 0, m ≥ 1) (∀ 0 ≤ i < ℓ) a(n + im) = x(i) .
This notion was further studied in [START_REF] Frid | Arithmetical complexity of symmetric D0L words[END_REF][START_REF] Frid | Sequences of linear arithmetical complexity[END_REF][START_REF] Frid | On possible growths of arithmetical complexity[END_REF][START_REF] Avgustinovich | Sequences of low arithmetical complexity[END_REF][START_REF] Cassaigne | On the arithmetical complexity of Sturmian words[END_REF]. We also point out that other modifications of the notion of subword complexity that have been studied include d-complexity [START_REF] Iványi | On the d-complexity of words[END_REF], pattern complexity [START_REF] Restivo | Binary patterns in infinite binary words[END_REF] and maximal pattern complexity [START_REF] Kamae | Sequence entropy and the maximal pattern complexity of infinite words[END_REF]. In fact, we will consider an even more far-reaching generalisation, which we dub polynomial subword complexity, counting the number of subwords which appear along polynomials of some degree d:

(5) p ≤d a (ℓ) = # x ∈ Ω ℓ (∃ P (X) ∈ R[X]) P (N 0 ) ⊆ N 0 , deg P ≤ d, (∀ 0 ≤ i < ℓ) a(P (i)) = x(i) .
We point out that, because the definition of p AP a in (1) includes the requirement that m ̸ = 0, setting d = 1 in (5) we do not exactly recover p AP a . Nonetheless, we have

p AP a (ℓ) ≤ p ≤1 (ℓ) ≤ p AP a (ℓ) + #Ω. Moreover, we have the chain of inequalities p a (ℓ) ≤ p AP a (ℓ) ≤ p ≤1 a (ℓ) ≤ p ≤2 a (ℓ) ≤ p ≤3 a (ℓ) ≤ • • • ≤ #Ω ℓ .
We will say that a sequence a taking values in a finite set Ω has maximal arithmetical subword complexity if p AP a (ℓ) = #Ω ℓ for all ℓ ≥ 1. As mentioned above, this property is enjoyed by the Thue-Morse sequence. More examples can also be found in [START_REF] Avgustinovich | Arithmetical complexity of infinite words[END_REF] and [START_REF] Frid | Arithmetical complexity of symmetric D0L words[END_REF].

At the opposite extreme, it is possible for an automatic sequence to have very low arithmetical or polynomial subword complexity. As a basic example, if a is periodic with period q ≥ 1 then for each d ≥ 1 we have

p ≤d a (ℓ) ≤ q d+1 ,
which is a direct consequence of the fact that the sequence α 0 + α 1 i + . . . α d i d mod q (i ∈ N 0 ) is completely determined by its initial d + 1 terms. A less trivial example concerns (forwards) synchronising sequences, that is, automatic sequences a with the property that there exists a word w ∈ Σ * k such that for u, v ∈ Σ * k , the value a([uwv] k ) depends only on v (and hence is equal to a([wv] k ). Here, Σ k = {0, 1, . . . , k -1} denotes the set of base-k digits, Σ * k denotes the set of all words over Σ k , and [u] k for u ∈ Σ * k denotes the integer encoded by u. For such sequences it was proved by Deshouillers, Drmota, Shubin, Spiegelhofer and the second author in [DDM + ar],

p ≤d a (ℓ) ≤ exp o(ℓ), (6) 
which is in stark contrast to the behaviour of other automatic sequences such as the Thue-Morse sequence. This was an important intermediate goal to being able to study the subword complexity of synchronizing automatic sequences along ⌊n c ⌋ or more generally along Hardy sequences of polynomial growth which was the main motivation in [DDM + ar]. Finally, we mention backwards synchronising sequences, that is, automatic sequences a with the property that there exists a word w ∈ Σ * k such that for u, v ∈ Σ * k , the value a([uwv] k ) depends only on u (and hence is equal to a([uw] k ). While arithmetical subword complexity of such sequences has not been previously studied, in analogy with the results in [DDM + ar] it will not come as a surprise that (6) holds also in this case.

Our goal is to obtain a description of the asymptotic behaviour of the arithmetic (and polynomial) subword complexity for an arbitrary automatic sequence a. Motivated by the examples mentioned above, we introduce the family AP k consisting of all sets P of the form (7) P = n ∈ N 0 the base-k expansion of n begins with u and ends with v, and n ≡ c mod q where u, v ∈ Σ * k , u does not begin with 0, and 0 ≤ c < q are integers with q coprime to k. We think of these sets as a generalisation of the notion of a residue class, but additionally accounting for the behaviour of the base-k expansion. With this notion in place, we are ready to introduce the parameter which controls the arithmetical subword complexity of an automatic sequence.

Definition 1.1. Let a = (a(n)) ∞ n=0 be a k-automatic sequence taking values in a finite set Ω. The effective alphabet size of a is the largest integer r with the property that there exists P ∈ AP k such that a takes at least r different values on each Q ∈ AP k with Q ⊆ P .

In fact, since in the definition above we can freely replace P with a smaller element of AP k , if a is a k-automatic sequence with effective alphabet size r then there exists Θ ⊆ Ω with #Θ = r and P ∈ AP k such that for each Q ∈ AP k with Q ⊆ P the set of values taken by a on Q is precisely Θ. Additionally, r is the largest integer with this property.

The rationale behind the name "effective alphabet size" is that, with notation as in Definition 1.1, for each ε > 0 we can find a partition

N 0 = P 1 ∪ P 2 ∪ • • • ∪ P N ∪ Q 1 ∪ Q 2 ∪ • • • ∪ Q M into elements of AP k such that a takes at most r distinct values of each P i (1 ≤ i ≤ N ) and d(Q 1 ∪ Q 2 ∪ • • • ∪ Q M ) < ε.
(We do not prove this result since we do not rely on it, but it is not hard to obtain it using techniques used in this paper.) Thus, up to a negligible error, one can think of a as the result of "glueing together" sequences on alphabets of size r. (iii ) If r(a) = 1 then a is strongly structured in the sense of [START_REF] Byszewski | Gowers norms for automatic sequences[END_REF], see Section 2.2 for further discussion.

We are now ready to state our main result.

Theorem A. Let a = (a(n)) ∞ n=0 be a k-automatic sequence with effective alphabet size r (cf. Definition 1.1). Then for each d ∈ N we have

r ℓ ≤ p AP a (ℓ) ≤ p ≤d a (ℓ) ≤ r ℓ exp (o(ℓ)
) . Remark 1.3. Using similar methods, one could obtain a more precise upper bound of the form r ℓ exp (O(ℓ η )) for some η < 1; cf. Remark 4.7. For the sake of exposition, we prove a slightly weaker bound r ℓ exp (o(ℓ)), which allows us to avoid some technical computations.

As alluded to earlier, a particularly interesting case of Theorem A is when r(a) = #Ω, meaning that the sequence a has maximal arithmetical subword complexity.

Corollary 1.4. Let a = (a(n)) ∞
n=0 be a k-automatic sequence taking values in a finite set Ω. Then a has maximal arithmetical subword complexity if and only if there exists

P ∈ AP k such that for each Q ∈ AP k with Q ⊆ P and each x ∈ Ω there exists n ∈ Q with a(n) = x.
The criterion in Corollary 1.4 may come across as somewhat complicated. In the case where the alphabet Ω has two elements, we have a simple sufficient condition.

Corollary 1.5. Let a = (a(n)) ∞ n=0 be a k-automatic sequence taking values in {0, 1} and suppose that there exists α ∈ (0, 1) such that for all A > B ≥ 0 we have

1 N N -1 n=0 a(An + B) → α as N → ∞.
Then a has maximal arithmetical subword complexity.

By the same token, if a instead takes values in a finite set Ω then for a to have maximal arithmetical subword complexity it is enough that for each x ∈ Ω there exists α x ∈ (0, 1) such that for all A > B ≥ 0 we have 1

N # {n < N | a(An + B) = x} → α x as N → ∞.
If the condition above is true, one might say that the sequence a is totally asymptotically equidistributed with respect to the measure on Ω given by (α x ) x∈Ω .

Inspecting the proof of Theorem A we also notice that the conditions therein guarantee not only maximal arithmetical subword complexity but also positive frequency of all subwords.

Corollary 1.6. Let a = (a(n)) ∞ n=0 be a k-automatic sequence with maximal arithmetical subword complexity, taking values in a finite set Ω. Then for each ℓ ≥ 1 and x ∈ Ω ℓ we have

lim inf N →∞ 1 N 2 # (n, m) ∈ N 2 0 n + im < N and a(n + im) = x(i) for all 0 ≤ i < ℓ > 0.
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Notation. We let N = {1, 2, . . . } denote the set of positive integers and put N 0 = N ∪ {0}. For N ∈ N we let [N ] = {0, 1, 2, . . . , N -1} denote the length-N initial interval of N 0 . We usually let k denote the base in which we work; thus k is an integer with k ≥ 2. We let Σ k = {0, 1, . . . , k -1} denote the set of base-k digits, and Σ * k denote the set of words over Σ k . For u ∈ Σ k we let |u| denote the length of u. For u ∈ Σ k , [u] k ∈ N 0 denotes the corresponding integer, and for n ∈ N 0 , (n) k ∈ Σ * k denotes the base-k expansion of n without any leading zeros. In particular, (0) k = ϵ is the empty word, and [(n) k ] k = n for all n ∈ N 0 . We use standard asymptotic notation, such as O(•) and ≫. This includes the notation

f (n) = Θ(g(n)) for f (n) = O(g(n)) and g(n) = O(f (n)).

Preliminaries

2.1. Automata. A deterministic k-automaton with output (or simply an automaton if there is no risk of confusion) is a sextuple A = (S, s 0 , Σ k , δ, Ω, τ ) where S is a finite set of states, s 0 ∈ S is the initial state, δ : S × Σ k → S is the transition function, Ω is the output set, and τ : S → Ω is the output function. We extend δ to a map δ : S × Σ * k → S by declaring δ(s, uv) = δ(δ(s, u), v). The automaton A computes the sequence a A given by a

(n) = τ (δ(s 0 , (n) k )).
The automaton A is strongly connected if the underlying directed graph enjoys this property, meaning that for each s, s ′ ∈ S there exists u ∈ Σ * k such that δ(s, u) = s ′ . The automaton A is primitive if it is strongly connected and gcd ({|u|

| u ∈ Σ * k , δ(s 0 , u) = s 0 }) = 1.
A strongly connected component of A is a maximal subset of states such that the corresponding directed graph is strongly connected. A final component is a strongly connected component from which no other strongly connected component is reachable.

The automaton A is synchronising if there exists a state s 1 ∈ S and a word w ∈ Σ * k (sometimes called a synchronising word) such that δ(s, w) = s 1 for all s ∈ S. An automatic sequence is (forwards) synchronising if it is produced by a synchronising automaton. Likewise, a sequence is backwards synchronising if it is produced by a synchronising automaton reading input starting with the least significant digit. Alternative characterisations of these notions, already mentioned in the introduction, are given in

[BKM23, Lem. 3.2]. A set A ⊆ N 0 is k-automatic if the corresponding indicator function 1 A is auto- matic. We let d log (A) = lim N →∞ 1/(log N ) N -1 n=0 1 A (n)/(n + 1
) denote the logarithmic density of a set A; the logarithmic density exists for all automatic sets. 2.2. Higher order Fourier analysis. Our argument hinges on a decomposition constructed by J. Byszewski and the authors in [START_REF] Byszewski | Gowers norms for automatic sequences[END_REF]. For a map f : [N ] → C and an integer d ≥ 1 we define the corresponding Gowers norm

∥f ∥ U d [N ] =   E n ω∈{0,1} d C |ω| f (n 0 + ω 1 n 1 + • • • + ω d n d )   1/2 d
, where E n denote the average over all n = (n 0 , n 1 , . . . , n s ) ∈ Z d+1 such that

n 0 + ω 1 n 1 + • • • + ω d n d ∈ [N ] for all ω = (ω 1 , ω 2 , . . . , ω d ) ∈ {0, 1} d ,
|ω| denotes the number of indices i such that ω i = 1, and C denotes the complex conjugation. For a comprehensive discussion on Gowers norms we refer to [START_REF] Tao | Higher order Fourier analysis[END_REF]. A brief introduction, adapted to the current application, can also be found in [START_REF] Byszewski | Gowers norms for automatic sequences[END_REF]Sec. 2]. With this piece of notation in hand, we are ready to state the main result of [START_REF] Byszewski | Gowers norms for automatic sequences[END_REF] Theorem 2.1. Let a = (a(n)) ∞ n=0 be a complex-valued k-automatic sequence. Then there exists a decomposition a = a str + a uni where:

(i ) a uni is Gowers uniform in the sense that for each s ≥ 1 there exists c(s

) > 0 such that ∥a uni ∥ U s+1 [N ] = O(N -c(s) ) as N → ∞;
(ii ) a str is structured in the sense that there exists an integer K that is a power of k, a periodic sequence a per with period coprime to k, a K-automatic forwards synchronising sequence a fs , and a K-automatic backwards synchronising sequence a bs , taking values in some finite sets Ω per , Ω fs , Ω bs respectively, as well as a map F : Ω per ×Ω fs ×Ω bs → C, such that a str (n) = F (a str (n), a fs (n), a bs (n)) for all n ≥ 0.

In general, the structured part a str of an automatic sequence can be somewhat complicated. However, in [START_REF] Byszewski | Gowers norms for automatic sequences[END_REF] we showed that a str = 0 almost everywhere (i.e., # {n

< N | a(n) ̸ = 0} /N → 0 as N → ∞) if and only if for all integers A > B ≥ 0 we have 1 N N -1 n=0 a(An + B) → 0 as N → ∞.
The following lemma elucidates the connection between the concept of effective alphabet size from Definition 1.1 and the structured part of an automatic sequence in Theorem 2.1. Recall that the family AP k consists of sets of the form (7).

Lemma 2.2. Let A ⊆ N 0 be a k-automatic set. Then the following conditions are equivalent.

(i ) There exists P ∈ AP k such that for each Q ∈ AP k with Q ⊆ P we have

A ∩ Q ̸ = ∅.
(ii ) There exists P ∈ AP k such that for each Q ∈ AP k with Q ⊆ P we have

d log (A ∩ Q) > 0.
(iii ) There exists P ∈ AP k such that 1 A,str is constant and strictly positive on P .

Proof. We will prove implications (i) ⇒ (ii) ⇒ (iii) ⇒ (ii). Since the implication (ii) ⇒ (i) is immediate, this will finish the argument.

(i) ⇒ (ii): Let P be as in (i). For the sake of contradiction, suppose that for some Q ∈ AP k we have d log (A ∩ Q) = 0. Since the set A ∩ Q is automatic, it follows that there exists a word w ∈ Σ * k which does not appear in the base-k expansion of any n ∈ A ∩ Q (see e.g. [BKM23, Lem. 3.1]). However, there exists

Q ′ ∈ AP k with Q ′ ⊆ Q such that w appears in the base-k expansion of all n ∈ Q ′ . It follows that A ∩ Q ′ = ∅, contradicting (i).
(ii) ⇒ (iii): Let P • be as in (ii). It follows directly from the relevant definitions that there exists P ∈ AP k with P ⊆ P • such that 1 A,str is constant on P and takes some value α ∈ [0, 1]. It remains to show that α > 0. Because 1 P is strongly structured and hence asymptotically orthogonal to all Gowers uniform functions (cf. [BKM23, Prop. 2.5]), we have

0 < d log (A ∩ P ) = lim N →∞ 1 log N N -1 n=0 1 P (n)1 A (n) n + 1 = lim N →∞ 1 log N N -1 n=0 α1 P (n) n + 1 + 1 P (n)1 A,uni (n) n + 1 = αd log (P ).
In particular, α = d log (A ∩ P )/d log (P ) > 0.

(iii) ⇒ (ii): Let P be as in (iii), and let α > 0 be the value that 1 A,str takes on P . For Q ∈ AP k with Q ⊆ P we have, by the same computation as above,

d log (A ∩ Q) = αd log (Q) > 0.
□

We now have all the ingredients necessary to see that Corollary 1.5 follows from Theorem A.

Proof of Corollary 1.5. It follows from the criterion for vanishing of the structured part, mentioned earlier in this section, that a str is almost everywhere constant and takes a value strictly between 0 and 1. Hence, bearing in mind that 1 a -1 (1) = a and 1 a -1 (0) = 1 -a, we conclude from Lemma 2.2 that r(a) = 2, as needed. □

Lower bound

In this section, we prove the lower bound in Theorem A, that is, p AP a (ℓ) ≥ r ℓ . This is a standard application of the tools of higher order Fourier analysis. A key ingredient in the argument is the following variant of the generalised von Neumann theorem, see e.g. [Tao12, Ex. 1.3.23] or [BKM23, Prop. 2.1]. Below, we call a map f :

X → C 1-bounded if ∥f ∥ ∞ := sup x∈X |f (x)| ≤ 1. Proposition 3.1. Fix ℓ ≥ 1. Let N ≥ 1 and let f 0 , f 1 , . . . , f ℓ-1 : [N ] → C be 1-bounded maps. Then N -1 n,m=0 ℓ-1 i=0 f i (n + im) ≪ N 2 min 0≤i<ℓ ∥f i ∥ U ℓ-1 [N ] .
(Above, the constant implicit in the ≪ notation is allowed to depend on ℓ.) As an immediate corollary, we have the following counting lemma.

Lemma 3.2. Fix ℓ ≥ 1. Let N ≥ 1, ε > 0, let f 0 , f 1 , . . . , f ℓ-1 : [N ] → C be 1-bounded and assume that for each 0 ≤ i < ℓ we have a decomposition f i = f i,str + f i,uni where f i,str : [N ] → C are 1-bounded and ∥f i,uni ∥ U ℓ-1 [N ] ≤ ε. Then N -1 n,m=0 ℓ-1 i=0 f i (n + im) = N -1 n,m=0 ℓ-1 i=0 f i,str (n + im) + O(εN 2 ).
We are now ready to approach the proof of the lower bound. Let a be a kautomatic sequence with effective alphabet size r, and fix ℓ ∈ N. Pick P ∈ AP k such that a takes at least r values on each Q ∈ AP k , Q ⊆ P . Note that each P ′ ∈ AP k with P ′ ⊆ P also enjoys the property mentioned above. Replacing P with a some P ′ ∈ AP k with P ′ ⊆ P , we can assume that a takes on P exactly r different values ω 1 , ω 2 , . . . , ω r . By Lemma 2.2 we can construct a sequence P 1 , P 2 , . . . , P r ∈ AP k with P ⊃ P 1 ⊃ P 2 ⊃ • • • ⊃ P r such that for each 1 ≤ i ≤ r, the sequence 1 a(ωi) -1 ,str is constant on P i and takes some strictly positive value α i .

Put Q := P r , Θ := {ω 1 , ω 2 , . . . , ω r }, δ := min 1≤i≤r α ℓ i and let N be a large integer. For x = (x(i)) ℓ-1 i=0 ∈ Θ ℓ , consider the set S(x, N ) := (n, m) ∈ N 2 0 n + im < N, n + im ∈ Q, and a(n + im) = x(i) for all 0 ≤ i < ℓ .

We will show that #S(x, N ) ≫ N 2 , which for sufficiently large N implies that #S(x, N ) > N and consequently x appears in a along an arithmetic progression. It will follow that p AP a (ℓ) ≥ #Θ ℓ = r ℓ , as needed. This estimate also yields Corollary 1.6.

If follows from Theorem 2.1 combined with e.g. [BKM23, Prop. 2.5] that there is a positive constant c such that 1

Q 1 a -1 (ω),uni U ℓ-1 [N ] ≪ N -c for all ω ∈ Ω. It follows from Lemma 3.2 that #S(x, N ) = N -1 n,m=0 ℓ-1 i=0 1 Q∩[N ] 1 a -1 (x(i)) (n + im) = N -1 n,m=0 ℓ-1 i=0 1 Q∩[N ] (n + im)1 a -1 (x(i)),str (n + im) + O(N 2-c ) ≥ δ • # (n, m) ∈ N 2 0 n + im ∈ Q ∩ [N ] for all 0 ≤ i < ℓ + O(N 2-c ) ≫ N 2 .
Thus, the argument is complete.

Upper bound

In this section, we prove the upper bound in Theorem A. It will be convenient to first consider the special case where the sequence is primitive. A key idea behind our argument is to construct an alterative description of the effective alphabet size r(a), which is stated as Proposition 4.5. 4.1. Primitive case. Let a be a primitive automatic sequence produced by an automaton A = (S, s 0 , Σ k , δ, Ω, τ ) which ignores the leading zeros (i.e., δ(s 0 , 0) = s 0 ).

We will need the notion of the height of a substitution (taken from [START_REF] Queffélec | Substitution dynamical systems. Spectral analysis[END_REF]): Let us consider a primitive substitution η : Λ → Λ k with a fixed point u ∈ Λ ∞ (i.e. η(u) = u). The height measures in some sense how far u is from being a periodic sequence. For every n ≥ 0 we put

R n = {d ≥ 1 : u(n + d) = u(n)} and g n = gcd R n .
Definition 4.1. The height of η, denoted by h = h(η), is the number

h = max {m ≥ 1 | gcd(m, k) = 1, m | g 0 } .
We list some standard properties of the height, which can be found in [START_REF] Queffélec | Substitution dynamical systems. Spectral analysis[END_REF].

Proposition 4.2.

(i ) For each n ≥ 0 we have

h = max {m ≥ 1 | gcd(m, k) = 1, m | g n } .
(ii ) If h = #Λ then u is periodic.

(iii ) For each 0 ≤ j < h we consider the class

C j = {u(n) : n ≡ j mod h}.
These classes form a partition of Λ. If we identify in u the letters in the same class C j , we thus obtain a periodic sequence, and h is the largest positive integer coprime to k with this property.

Let t(n) = δ(s 0 , (n) k ) denote the state reached by A upon reading n as input. Note that the sequence t = (t(n)) ∞ n=0 is produced by the same automaton as a, with the output function replaced by the identity map. The sequence t is also the fixed point of the substitution S → S given by s → (δ(s, 0), δ(s, 1), . . . , δ(s, k -1)). With the sets C j defined as above, we let j(n) denote the unique index such that t(n) ∈ C j(n) . We point out that the sequence j = (j(n)) ∞ n=0 is periodic (in fact, j(n) = n mod q). Replacing k (and hence also η) with a suitable power, we may freely assume that k ≡ 1 mod h.

We will need the following technical lemma. We point out that the quantity φ(q) below could be replaced by any other positive integer, but we only need this particular instance in later applications. A similar argument can be found in [START_REF] Müllner | Automatic sequences fulfill the Sarnak conjecture[END_REF].

Lemma 4.3. Let q > 0 be an integer coprime to k. Then for each n ∈ hZ and ℓ ∈ N there exists u ∈ Σ * k such that δ(s 0 , u) = s 0 , |u| ≡ ℓ mod φ(q) and [u] k ≡ n mod q. Proof. We may assume that h | q. For s, s ′ ∈ S and ℓ ∈ Z/φ(q)Z ≃ (Z/qZ) * consider the set

W (s, s ′ ; ℓ) = {[u] k mod q | δ(s, u) = s ′ , |u| ≡ ℓ mod φ(ℓ)} ⊆ Z/qZ.
Since A is primitive, all sets W (s, s ′ ; ℓ) are non-empty. The composition rule for δ implies that

(8) W (s, s ′ ; ℓ)k ℓ ′ + W (s ′ , s ′′ ; ℓ ′ ) ⊆ W (s, s ′′ ; ℓ + ℓ ′ )
for all s, s ′ , s ′′ ∈ S and ℓ, ℓ ′ ∈ Z/φ(q)Z. Comparing the cardinalities of the sets in (8), we see that the inclusion is in fact an equality:

(9) W (s, s ′ ; ℓ)k ℓ ′ + W (s ′ , s ′′ ; ℓ ′ ) = W (s, s ′′ ; ℓ + ℓ ′ ).
Setting s = s ′ = s ′′ and ℓ = ℓ ′ = 0 in (9), we see that W (s, s; 0) is a subgroup H = mZ/qZ ⊆ Z/qZ, where m | q is independent of s. In general, W (s, s ′ ; ℓ) = H + w(s, s ′ ; ℓ) is a coset of H (here, w(s, s ′ ; ℓ) ∈ Z/qZ). Thus, (9) becomes

(10) w(s, s ′ ; ℓ)k ℓ ′ + w(s ′ , s ′′ ; ℓ ′ ) ≡ w(s, s ′′ ; ℓ + ℓ ′ ) mod m.
Recall that δ(s 0 , 0) = s 0 and consequently 0 ∈ W (s 0 , s 0 , 1) and w(s 0 , s 0 , 1) ≡ 0 mod m. By the same token, w(s 0 , s 0 , ℓ) ≡ 0 mod m for all ℓ. As a consequence,

{[u] k mod q | δ(s 0 , u) = s 0 } = ℓ∈Z/φ(q)Z W (s 0 , s 0 ; ℓ) = H.
It follows that H = hZ/qZ, and the argument is complete. □

The second ingredient which we will need comes from [START_REF] Müllner | Automatic sequences fulfill the Sarnak conjecture[END_REF]. Let c denote the least possible cardinality of the set δ(S, w) = {δ(s, w) | s ∈ S} for w ∈ Σ * k , and let M = {M 0 , M 1 , . . . , M p-1 } denote the family of all possible sets of the form δ(S, w) with cardinality c. For n ≥ 0, let i(n) denote the unique index such that δ(M 0 , (n) k ) = M i(n) . Without loss of generality, we may assume that s 0 ∈ M 0 , which implies that t(n) ∈ M i(n) for all n.

Finally, for 0 ≤ i < p and 0 ≤ j < h we let S i,j = M i ∩ C j . We point out that for all n we have t(n) ∈ S i(n),j(n) .

Example 4.4. Let us take k = 3 and consider the automaton A depicted by the following diagram:

α start β γ δ ϵ 0 0 0 0,2 0,2 1 2 1 2 1 2 1 1
We compute the corresponding automatic sequence α, ϵ, β, ϵ, δ, ϵ, β, γ, α, ϵ, δ, ϵ, δ, γ, α, . . . which shows R 0 = {8, 14, . . .} and g 0 | 2, which implies h | 2. Moreover, considering the sets C 0 = {α, β, δ} and C 1 = {γ, ϵ} one finds h = 2.

Moreover, we have c = 4 and M 0 = {α, β, γ, ϵ} and M 1 = {α, γ, δ, ϵ}. The sets S i,j = M i ∩ C j are given by: S 0,0 = {α, β}, S 0,1 = {γ, ϵ}, S 1,0 = {α, δ}, S 1,1 = {γ, ϵ}.

Proposition 4.5. With the same notation as above, we have

r(a) = max i,j #{τ (s) : s ∈ S i,j }.
Proof. The inequality (11) r(a) ≤ max i,j #{τ (s) : s ∈ S i,j } is relatively simple. Indeed, since (i(n)) n is synchronising and (j(n)) n is periodic, for each P ∈ AP k we can find Q ∈ AP k with Q ⊆ P and 0 ≤ i < p and 0 ≤ j < h such that i(n) = i and j(n) = j for all n ∈ Q. Hence, t(n) ∈ S i,j and a(n) ∈ {τ (s) : s ∈ S i,j } for all n ∈ Q, which implies that r(a) ≤ #{τ (s) : s ∈ S i,j }, and (11) follows.

It remains to prove the reverse inequality

(12) r(a) ≥ max i,j #{τ (s) : s ∈ S i,j }.
Pick a minimal set M i ∈ M and a residue j mod h (0 ≤ i < p, 0 ≤ j < h). There exists P ∈ AP k such that for all n ∈ P we have i(n) = i and j(n) = j. We will show that for each Q ∈ AP k with Q ⊆ P and each s ∈ S i,j there exists n ∈ Q such that t(n) = s. Since i and j were arbitrary, once this is accomplished, (12) will follow.

Recall that Q takes the form

Q = {n ∈ N 0 | n ≡ j ′ mod q, (n) k ∈ uΣ * k v} for some u, v ∈ Σ *
k and some 0 ≤ j ′ < q with q coprime to k. Without loss of generality we may assume that h | q and thus j ′ ≡ j mod h. Prolonging u if necessary, we may freely assume that δ(s 0 , u) = s 0 . It follows from the minimality of M i and the fact that all states in S are reachable from s 0 that there exists w ∈ Σ * k such that δ(s 0 , wv) = s; indeed, otherwise δ(S, v) would be a proper subset of M i . Now, the definition of

C j implies that [u] k + [w] k + [v] k ≡ j mod h. By Lemma 4.3, for each m ∈ Z we can find w ′ m ∈ Σ * k of some length ℓ(m) such that δ(s 0 , w ′ m ) = s 0 , [w ′
m ] k ≡ hm mod q and k ℓ(m) ≡ 1 mod q. It remains to note that for all m we have δ(s 0 , uw ′ m wv) = s and there exists m such that [uw ′ m wv] k ≡ j ′ mod q. □ Proposition 4.6. Let a be a primitive automatic sequence. Then p ≤d a (ℓ) ≤ r ℓ p ≤d (i,j) (ℓ) ≤ r ℓ exp (o(ℓ)) . Proof. We recall that from the construction of S i,j that for all n we have t(n) ∈ S i(n),j(n) . In particular a(n) ∈ {τ (s) : s ∈ S i(n),j(n) }. This already shows the first inequality. For the second inequality we let h denote the height of a and have 

p ≤d (i,j) (ℓ) ≤ p ≤d i (ℓ) • p ≤d j (ℓ) ≤ exp(o(ℓ)) • h d+1 ,
p ≤d a (H) ≪ |Ker k (a)| • |A| k λ(d+1) • k λ O(k λ(1-η) ) • |A| (H/k λ +1)k λ(1-η) ≪ |A| k λ(d+1) • (k λ ) O(k λ(1-η) ) • |A| (H/k λ +1)k λ(1-η)
Choosing for example k λ = H 1/(d+2) leads to

p ≤d a (H) ≤ exp O H 1-η/(d+2) .
4.2. General case. We now deal with sequences that are not necessarily primitive.

To begin with, we will need the following lemma.

Lemma 4.8. Let w ∈ Σ * k be a word, let P be a degree d polynomial such that P (N 0 ) ⊆ N 0 , and let ℓ ∈ N. Then there exists 0 < θ < 1, dependent only on |w| and d, such that [0, ℓ) can be covered by ℓ θ intervals, each of which either contains exactly one integer point, or is contained in a set of the form P -1 ([mk i , (m + 1)k i )) where m, i ∈ N 0 and w is a subword of (m) k .

Proof. Let P (n) = α 0 + α 1 n + . . . + α d n d and P 1 (n) = P (n) -α 0 . It follows from Lemma 5.6 in [START_REF] Konieczny | Bracket words along hardy field sequences[END_REF] that

M := max n∈[0,ℓ] |P 1 (n)| = Θ max 1≤j≤d ℓ j α j .
Similarly we have

M ′ := max n∈[0,ℓ] |P ′ (n)| = Θ max 1≤j≤d jℓ j-1 α j = Θ(M/ℓ).
Moreover, for each δ > 0 we have

λ x ∈ [0, ℓ] |P ′ (x)| < δ d-1 M ′ ≪ δℓ. (13) 
We note that (13) also holds for d = 1 as the left hand side equals 0.

Let ε > 0 be a small positive quantity, to be determined in the course of the argument, and let

I = x ∈ [0, ℓ] |P ′ (x)| > ε d-1 M ′ .
We note that I is a union of at most d intervals and it follows from (13) that Let R > 0 be a large real number, to be determined in the course of the argument, and let K = k i be a power of K such that K ≤ M/R < kK. Recall that P ([0, ℓ]) is an interval of length at most 2M , and hence can be covered with O(R) intervals of the form J m := [mK, (m + 1)K). For each m, the set I ∩ P -1 (J m ) is a union of O(d) intervals. If the base-k expansion (m) k contains w as a subword then these intervals satisfy the required conditions; we will call such intervals "good".

We cover the remaining part of [0, ℓ) with singletons. Thus, it remains to estimate the number of integers in [0, ℓ) not covered by "good" intervals. These integers fall into two categories. Firstly, we have the elements of [0, ℓ) \ I, whose number can be estimated by (13). Secondly, we have the "bad" intervals, corresponding to the intervals J m such that (m) k does not contain w. The number of such "bad" values of m is O(R 1-λ ) for some λ > 0 (dependent only on k and |w|). Recall that for each m the set I ∩ P -1 (J m ) is a union of O(d) intervals, each of length O(ℓ/ ε d-1 R + 1). Thus, in total, the number of points and "bad" intervals we obtain is, up to a constant, bounded by

εℓ + R 1-λ • ℓ ε d-1 R + R 1-λ = ℓ • ε + 1/ ε d-1 R λ + R 1-λ .
Optimising, we are lead to choose

R = ℓ d d+λ , ε = R -λ d = ℓ -λ d+λ .
This finishes the argument, with θ = d d+λ . □

We are now ready to prove Theorem A in full generality.

Proof of Theorem A, non-primitive case. Let A = (S, s 0 , Σ k , δ, Ω, τ ) be an automaton which computes a. Replacing k with a power, we may freely assume that δ(s, 00) = δ(s, 0) for all s ∈ S. It follows directly from Definition 1.1 that r = r(a) = max {r(a ′ ) | a ′ is computed by a final component of A} .

Recall that we have already proved that for each sequence a ′ computed by a final component of A, starting from a state s ′ 0 with δ(s ′ 0 , 0) = s ′ 0 , we have p a ′ (ℓ) ≤ r(a ′ ) ℓ exp(f (ℓ)) ≤ r ℓ exp(f (ℓ)), where f : N → R ≥0 is some function with f (ℓ)/ℓ → 0 as ℓ → ∞. We may freely assume that f is defined on [0, ∞), f (0) = 0 and that f is concave. 1 Let w be a word such that δ(s, w) belongs to a final component of A for each s ∈ S (cf. [BKM23, Lem. 3.1]). Replacing w with w0 if necessary, we may further assume that for each s ∈ S the state s ′ := δ(s, w) belongs to a final component and satisfies δ(s ′ , 0) = s ′ .

Let ℓ be a large integer and let P be a degree d polynomial with P (N 0 ) ⊆ N 0 . By Lemma 4.8, we can partition [0, ℓ) into R ≪ ℓ θ intervals I that either are singletons or are contained in P -1 ([mk i , (m + 1)k i )) for some m, i ∈ N 0 such that w is a subword of (m) k . In the latter case, for n ∈ I we have a(P (n)) = a ′ (P ′ (n)) for a sequence a ′ computed by a strongly connected component of A, starting from a state s ′ 0 with δ(s ′ 0 , 0) = s ′ 0 and a polynomial P ′ with P ′ (N 0 ) ⊆ N 0 . (To be more precise, we can find integers m ′ , i ′ ∈ N 0 such that (m ′ ) k ends with w and [mk i , (m + 1)k i ) ⊆ [m ′ k i ′ , (m ′ + 1)k i ′ ); thus replacing m, i with m ′ , i ′ we may freely assume that (m) k ends with w. Let s ′ 0 = δ(s 0 , (m) k ), let a ′ be the sequence computed by A starting from the state s ′ 0 , and let P ′ (n) = P (n) -mk i . Then a(P (n)) = a ′ (P ′ (n)) for n ∈ I. One remaining problem is that P ′ could take negative values outside of I. To overcome it, we replace P ′ (n) with P ′ (n) + hk j , where j is sufficiently large that k j > (m + 1)k i and h > 0 is an integer such that δ(s ′ 0 , (h) k ) = s ′ 0 , which exists by strong connectivity.) Above, θ ∈ (0, 1) is a constant which depends only on |w| and d. The number of partitions, as described above, is ℓ O(R) . Fix one such partition. For each singleton {n} we have at most #Ω possible values of a(P (n)). For each non-degenerate interval of length ℓ i the number of possible values taken by a(P (n)) is at most r ℓi exp(f (ℓ i )). Note that, by concavity, we have i f (ℓ i ) ≤ Rf (ℓ/R), where the sum runs over all lengths ℓ i of non-degenerate intervals involved in the partition. In total, we obtain the estimate (In the last transition, we used the fact that ℓ/R → ∞ and consequently also Rf (ℓ/R)/ℓ → 0 as ℓ → ∞.) □

  Example 1.2. (i ) If a is periodic, forwards synchronising or backwards synchronising, then r(a) = 1. (ii ) If a takes the form a(n) = F (b(n), c(n)) for k-automatic sequences b and c and a map F , then r(a) ≤ r(b)r(c).

  λ([0, ℓ] \ I) ≪ εℓ. (14) (In the case where d = 1 we have P ′ (n) = M ′ = α 1 , whence (14) is trivially true and I = [0, ℓ].)

  p a (ℓ) ≤ ℓ O(R) • #Ω R • r ℓ • exp (Rf (ℓ/R)) = r ℓ • exp (R(O(log(ℓ) + f (ℓ/R))) = r ℓ • exp (o(ℓ)) .

  where the second inequality follows from Proposition 5.8 in[DDM + ar]. □ Remark 4.7. The upper bound in Proposition 5.8 in [DDM + ar] can be improved by balancing the error terms more carefully. We switch for this remark to the notation used in [DDM + ar] (i.e. ℓ is replaced by H). If we let λ grow with H and ignore the estimates using ε, all the arguments can be kept essentially unchanged and we find the upper bound
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