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CANONICAL COORDINATES FOR MODULI SPACES OF RANK TWO

IRREGULAR CONNECTIONS ON CURVES.

ARATA KOMYO, FRANK LORAY, MASA-HIKO SAITO, AND SZILÁRD SZABÓ

Abstract. In this paper, we study a geometric counterpart of the cyclic vector which allow
us to put a rank 2 meromorphic connection on a curve into a “companion” normal form. This
allow us to naturally identify an open set of the moduli space of GL2-connections (with fixed
generic spectral data, i.e. unramified, non resonant) with some Hilbert scheme of points on the
twisted cotangent bundle of the curve. We prove that this map is symplectic, therefore providing
Darboux (or canonical) coordinates on the moduli space, i.e. separation of variables. On the
other hand, for SL2-connections, we give an explicit formula for the symplectic structure for a
birational model given by Matsumoto. We finally detail the case of an elliptic curve with a divisor
of degree 2.

1. Introduction

In this paper, we introduce coordinates on the moduli spaces of rank 2 meromorphic connec-
tions on a Riemann surface, and we describe the symplectic structures on the moduli spaces by
the introduced coordinates. Finally, we will have canonical coordinates on the moduli spaces. Our
motivation is to give explicit descriptions of the isomonodromic deformations of meromorphic con-
nections over a general Riemann surface. It is well-know that the isomonodromic deformations
have non-autonomous Hamiltonian descriptions (in detail, see [34], [20], [14], for example). If we
find explicit formulae for the isomonodromic Hamiltonians, then we have explicit descriptions of
isomonodromic deformations. To find explicit formulae of Hamiltonians, it is necessary to introduce
canonical coordinates (which are also called Darboux coordinates) on the moduli space of meromor-
phic connections. The present paper is a first step to give explicit descriptions of isomonodromic
deformations.

For the isomonodromic deformations of rank 2 projective connections with regular singular
points, there are some results of explicit descriptions. For example, Okamoto considered non-
autonomous Hamiltonian descriptions of isomonodromic deformations on elliptic curves in [43] and
[44]. Iwasaki generalized for general Riemann surfaces in [25] and [26]. Here the independent vari-
ables of the isomonodromic deformations are the position of regular singular points on the Riemann
surfaces. That is, they are isomonodromic deformations of fixed Riemann surfaces. On the other
hand, Kawai [28] gave explicit descriptions of the isomonodromic Hamiltonians varying the elliptic
curve. Okamoto, Iwasaki, and Kawai in these papers introduced canonical coordinates on (a generic
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part of) the moduli space of rank 2 meromorphic projective connections by using apparent singular-
ities. For our purpose, we take this strategy. That is, we will also introduce canonical coordinates
on the moduli space of meromorphic connections by using apparent singularities. On the other
hand, in this paper, we are interested in the isomonodromic deformations of GL2-connections and
of SL2-connections. The coordinates using apparent singularities are an analog of the separation of
variables in the Hitchin system, which is a birational map from the moduli space of stable Higgs
bundles to the Hilbert scheme of points on the cotangent bundle over the underlying curve of the
Higgs bundles (see [19] and [16]). Here this map is a symplectomorphism of the open dense subsets
of the moduli space. The definition of the apparent singularities for general rank meromorphic
connections is in [45].

1.1. Our setting. Let ν be a positive integer. We set I := {1, 2, . . . , ν}. Let C be a compact
Riemann surface of genus g (g ≥ 0), and D =

∑
i∈I mi[ti] be an effective divisor on C. Let E

be a vector bundle over C and ∇ : E → E ⊗ Ω1
C(D) be a meromorphic connection acting on E.

We assume that the leading term of the expansion of a connection matrix of ∇ at ti has distinct
eigenvalues. If mi = 1, then we assume that the difference of eigenvalues of the residue matrix at ti
is not integer. That is, ti is an generic unramified irregular singular point of ∇ or a non-resonant
regular singular point of ∇.

When C is the projective line and E is the trivial bundle, the moduli space of meromorphic
connections has been studied by Boalch [7] and Hiroe–Yamakawa [18]. This moduli space has the
natural symplectic structure coming from the symplectic structure on the (extended) coadjoint
orbits. For general C and E, the moduli space of meromorphic connections (with quasi-parabolic
structures) has been studied by Inaba–Iwasaki–Saito [22, 23], Inaba [21], and Inaba–Saito [24]. For
general C and E, the moduli space has also the natural symplectic structure. In these papers, the
symplectic form described by a pairing of the hypercohomologies of some complex. This description
of the symplectic structure is an analog of the symplectic structure of the moduli spaces of stable
Higgs bundles due to Bottacin [8]. For the case where ∇ has only regular singular points, Inaba
showed that this symplectic structure coincides with the pull-back of the Goldman symplectic
structure on the character variety via the Riemann–Hilbert map in [21, the proof of Proposition
7.3].

Our purpose in this paper is to introduce canonical coordinates on the moduli spaces of meromor-
phic connections. For this purpose, there are some strategies. First one is to consider canonical coor-
dinates on the products of coadjoint orbits. This direction was studied by Jimbo–Miwa–Mori–Sato
[27], Harnad [17], and Woodhouse [47]. Sakai–Kawakami–Nakamura [29] and Gaiur–Mazzocco–
Rubtsov [15] gave some explicit formulae for the isomonodromic Hamiltonians by the coordinates
of this direction. Second one is to consider the apparent singularities. As mentioned above, we take
this strategies.

In this paper, we consider only the case where the rank of E is two. Let X be an irregular
curve, which is described in Section 2.3. That is, X is a tuple of (i) a compact Riemann surface
C, (ii) an effective divisor D on C, (iii) local coordinates around the support with D, and (iv)
spectral data of meromorphic connections at the support with D (with data of residue parts).
Here, the spectral data is described in Section 2.3. We fix an irregular curve X . That is, we fix
spectral data of rank 2 meromorphic connections at each point of the support with D. By applying
elementary transformations (which is also called Hecke modifications), we may change the degree
of the underlying vector bundle of a meromorphic connection freely. So we assume that deg(E) =
2g−1. By this condition, the Euler characteristic of the vector bundle E is 1 by the Riemann–Roch
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theorem. In this situation, for generic meromorphic connections (E,∇), we have dimC H0(C,E) =
1. So the global section of E is uniquely determined up to constant. This is convenient for the
definition of the apparent singularities. In this paper, we consider only meromorphic connections
with dimC H0(C,E) = 1. Moreover we assume that meromorphic connections (E,∇) are irreducible.
By this condition, the definition of apparent singularities becomes simple.

1.2. GL2-connections. In the first part of this paper, we discuss on GL2-connections. That is, we
consider rank 2 meromorphic connections. We do not fix the determinant bundles of the underlying
vector bundles and the traces of connections. Our purpose is to introduce canonical coordinates on
the moduli space of rank 2 meromorphic connections by using apparent singularities. When C is
the projective line, many people introduced canonical coordinates on the moduli space by using the
apparent singularities ([43], [41], [10], [46], [33], [9], and [31]). In this paper, we consider apparent
singularities for general Riemann surfaces.

Let X be the fixed irregular curve. If (E,∇) is a rank 2 meromorphic connection such that
deg(E) = 2g − 1, dimC H0(C,E) = 1, and (E,∇) is irreducible, then we can define apparent
singularities for (E,∇). (In detail, see Definition 1 below). The apparent singularities are the set
of points {q1, . . . , qN} on the underlying curve C. Here we set N := 4g − 3 + deg(D). Let MX be
the following moduli space

MX :=




(E,∇)

∣∣∣∣∣∣∣∣

(i) E is a rank 2 vector bundle on C with deg(E) = 2g − 1
(ii) ∇ : E → E ⊗ Ω1

C(D) is a connection
(iii) (E,∇) is irreducible, and
(iv) ∇ has the fixed spectral data in X





/
∼= .

This moduli space MX has a natural symplectic structure due to Inaba–Iwasaki–Saito [22], Inaba
[21], and Inaba–Saito [24]. We consider a Zariski open subset M0

X of MX as follows:

M0
X :=



(E,∇) ∈ MX

∣∣∣∣∣∣

(i) dimC H0(C,E) = 1,
(ii) q1 + · · ·+ qN is reduced, and
(iii) q1 + · · ·+ qN has disjoint support with D





/
∼=

(in detail, see Section 3.1). The dimension of the moduli space M0
X is 2N (Proposition 10). By

taking apparent singularities, we have a map

App: M0
X −→ SymN (C)

(E,∇) 7−→ {q1, q2, . . . , qN}.

Remark that the dimension of SymN (C) is half of the dimension of M0
X . To introduce coordinates

on M0
X , it is necessary to find further invariants of connections, that are customarily called accessory

parameters. To find these parameters, we introduce a twist of Ω1
C(D) by cd, which is the first Chern

class c1(det(E)) ∈ H1(C,Ω1
C) of E. (In detail, Section 3.5 below). We denote by Ω1

C(D, cd) the
twist of Ω1

C(D). Let
πcd : Ω(D, cd) −→ C

the total space of Ω1
C(D, cd). Let ωD,cd be the rational 2-form on Ω(D, cd) induced by the Liouville

symplectic form. This rational 2-form ωD,cd induces a symplectic structure on Ω(D, cd) \ π−1
cd

(D).
We consider the symmetric product SymN (Ω(D, cd)). Let

∑N
j=1 pr

∗
j (ωD,cd) be the rational 2-form

on the product Ω(D, cd)
N . Here prj : Ω(D, cd)

N → Ω(D, cd) is the j-th projection. This rational
2-form

∑N
j=1 pr

∗
j (ωD,cd) induces a symplectic structure on a generic part of SymN (Ω(D, cd)). We

will define a map from M0
X to SymN (Ω(D, cd)) by the following idea.
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By the theory of apparent singularities discussed in Section 2.1, we have a canonical inclusion
morphism

OC ⊕ (Ω1
C(D))−1 −→ E.

By this morphism, we have the connection ∇0 on OC ⊕ (Ω1
C(D))−1 induced by a connection ∇ on

E. Notice that ∇0 has simple poles at the apparent singularities. By applying automorphisms on
OC ⊕ (Ω1

C(D))−1, we may normalize ∇0 as

∇0 =

(
d β
1 δ

)
,

which is called a companion normal form (in detail, see Section 2.2 below). Here d is the exterior
derivative on C, β ∈ H0(C, (Ω1

C)
⊗2(2D + q1 + · · · + qN )), and δ is a connection on (Ω1

C(D))−1,
which has poles at the support of D and the apparent singularities q1, . . . , qN . Then we may define
a map

(1.1)
fApp : M

0
X −→ SymN (Ω(D, cd))

(E,∇) 7−→ {(qj , resqj (β) + tr(∇)|qj )}1≤j≤N .

Here, notice that resqj (β) ∈ Ω1
C(D)|qj and tr(∇)|qj is justified by considering the twisted cotangent

bundle (in detail, see Definition 16 below). Remark that the dimension of SymN (Ω(D, cd)) is equal
to the dimension of M0

X . A generic part of SymN (Ω(D, cd)) has the natural symplectic structure
induced by the symplectic structure on the product (Ω(D, cd)\π−1

cd
(D))×· · ·×(Ω(D, cd)\π−1

cd
(D)).

The first main theorem is the following:

Theorem A (Theorem 20 below). The pull-back of the symplectic form on a generic part of

SymN (Ω(D, cd)) under the map (1.1) coincides with the symplectic form on M0
X .

If we take canonical coordinates on Ω(D, cd), then we have canonical coordinate on SymN (Ω(D, cd)),
since the symplectic structure on SymN (Ω(D, cd)) is induced by the 2-form

∑N
j=1 pr

∗
j (ωD,cd). Then

we have canonical coordinates on M0
X by Theorem A. Detail of construction of concrete canonical

coordinates on M0
X is discussed in the paragraph after the proof of Theorem 20 below.

In Section 5, we consider an example of this argument. We will calculate the canonical coordinates
for an elliptic curve and a divisor D of length 2. The moduli space of rank 2 meromorphic connection
with fixed trace connection on an elliptic curve with two simple poles was studied in [36] and [12].
In this paper, we will discuss the GL2-connection case.

1.3. SL2-connections. In the second part of this paper, we discuss on SL2-connections. That is,
we consider rank 2 meromorphic connections with fixed trace connection (L0,∇0). Here L0 is a
fixed line bundle on C of degree 2g − 1 and ∇0 : L0 → L0 ⊗ Ω1

C(D) is a fixed connection. More
precisely, we consider rank 2 quasi-parabolic connections (E,∇, {l(i)}), defined in [24, Definition
2.1], with fixed trace connection (L0,∇0). Here the spectral data of ∇0 is determined by the fixed
irregular curve X . The quasi-parabolic structure l(i) at ti induces a one dimensional subspace l

(i)
red

of E|ti , that is the restriction of l(i) to ti (without multiplicity). Our moduli space is as follows:

MX(L0,∇0)0 :=




(E,∇, {l(i)})

∣∣∣∣∣∣∣∣

(i) ∇ has the fixed spectral data in X ,
(ii) E is an extension of L0 by OC ,
(iii) dimC H0(C,E) = 1, and
(iv) l

(i)
red 6∈ OC |ti ⊂ P(E) for any i





/
∼=,
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which is described in Section 4.2. Here (E,∇, {l(i)}) are rank 2 quasi-parabolic connections on
(C,D) with fixed trace connection (L0,∇0). When g = 0, we impose one more condition (in
detail, see the paragraph after the proof of Lemma 26 below). This moduli space also has a
natural symplectic structure. The dimension of the moduli space MX(L0,∇0)0 is 2N0, where
N0 := 3g− 3+ deg(D). For (E,∇, {l(i)}) ∈ MX(L0,∇0)0, we can also define apparent singularities
(Section 4.2 below). The apparent singularities give an element of PH0(C,L0 ⊗ Ω1

C(D)). So we
have a map

πApp : MX(L0,∇0)0 −→ PH0(C,L0 ⊗ Ω1
C(D)).

For (E,∇, {l(i)}) ∈ M(L0,∇0)0, we forget the connection ∇. So we have a quasi-parabolic bundle
(E, {l(i)}). By taking the extension class for the quasi-parabolic bundle (E, {l(i)}), we have a map

πBun : MX(L0,∇0)0 −→ PH1(C,L−1
0 (−D)).

Here the extension class is described in Section 4.1 below. We consider the product

πApp × πBun : MX(L0,∇0)0 −→ PH0(C,L0 ⊗ Ω1
C(D))× PH1(C,L−1

0 (−D)).

This map has been studied by Loray–Saito–Simpson [38], Loray–Saito [37], Fassarella–Loray [12],
Fassarella–Loray–Muniz [13], and Matsumoto [39].

Notice that H1(C,L−1
0 (−D)) is isomorphic to the dual of H0(C,L0 ⊗ Ω1

C(D)). Remark that

dimC PH0(C,L0 ⊗ Ω1
C(D)) = dimC PH1(C,L−1

0 (−D)) = N0.

Let us introduce the homogeneous coordinates a = (a0 : · · · : aN0) on PH0(C,L0 ⊗ Ω1
C(D)) ∼= PN0

a

and the dual coordinates b = (b0 : · · · : bN0) on

PH1(C,L−1
0 (−D)) ∼= PH0(C,L0 ⊗ Ω1

C(D))∨ ∼= P
N0

b
.

We may define a 1-form η on PN0
a

× P
N0

b
by

η = (constant) ·
a0 db0 + a1 db1 + · · ·+ aN0 dbN0

a0b0 + a1b1 + · · ·+ aN0bN0

.

(In detail, see Section 4.4). The 2-form dη gives an symplectic structure on PN0
a

× P
N0

b
\ Σ. Here

we set
Σ: (a0b0 + a1b1 + · · ·+ aN0bN0 = 0) ⊂ P

N0
a

× P
N0

b
.

The image of M(L0,∇0)0 is contained in PN0
a

× P
N0

b
\ Σ. (In detail, see Section 4.3). The second

main theorem is the following:

Theorem B (Theorem 31 below). We assume that the fixed spectral data satisfies the generic

condition (4.8) below. The pull-back of the symplectic form dη on PN0
a

× P
N0

b
\ Σ under the map

πApp × πBun coincides with the symplectic form on the moduli space MX(L0,∇0)0.

1.4. The organization of this paper. In Section 2, the apparent singularities for a generic rank
2 meromorphic connection are defined. After the definition of the apparent singularities, we will
discuss on the companion normal form of a generic rank 2 meromorphic connection. We will use this
companion normal form when we will introduce canonical coordinates. In Section 3, first, we will
describe our moduli space of rank 2 meromorphic connections. Second, we will discuss on tangent
spaces of the moduli space of rank 2 meromorphic connections. We will recall that the tangent
spaces at a meromorphic connection are isomorphic to a hypercohomology of the complex defined
by the meromorphic connection. After that, we will describe a natural symplectic structure on the
moduli space of rank 2 meromorphic connections. Section 3.3 and Section 3.4 are preliminaries of
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the proof of the first main theorem. In Section 3.5, we will give the map from a generic part of the
moduli space to SymN (Ω(D, cd)) and will show the first main theorem.

In Section 4, we will consider rank 2 meromorphic connections with fixed trace connection. First,
to describe the bundle map πBun, we recall the moduli space of stable quasi-parabolic bundles with
fixed determinant. Second, we will describe our moduli space of rank 2 meromorphic connections
with fixed trace connection. Third, we will describe the map πApp defined by considering the
apparent singularities. In Section 4.4, we will recall a natural symplectic structure on the moduli
space of rank 2 meromorphic connections with fixed trace connection, and will show the second
main theorem.

In Section 5, we will apply the argument in Section 2 and Section 3 to the case of an elliptic curve
with a divisor D of length 2. When D is reduced, this amounts to two logarithmic singularities,
otherwise to an irregular singularity. It is remarkable that using our approach these two cases can
be studied completely similarly.

In Section 6, we will provide a method for obtaining canonical coordinates p̃j ∈ Ω(D, cd)|qi for
generic (E,∇) ∈ M0

X by introducing a section s ∈ H0(C, det(E)) and γ ∈ H0(C,Ω1
C(D)). We will

utilize an open set U0 = C \ {s = 0, γ = 0} and the trivialization of E|U0
to define p̃j ∈ Ω1

C(D)|qj .
This method can be also used for constructing a meromorphic connection ∇1 : E −→ E⊗Ω1

C(D(s))
for a given s ∈ H0(C, det(E)), where D(s) denotes the zero divisor of s. In Theorem 41, we
will provide an alternative proof of the birationality of fApp (cf. Proposition 17) by utilizing the
Higgs fields ∇ − ∇1 and the BNR correspondence [3]. This approach may shed new light on the
relationship between the canonical coordinates of the moduli spaces of connections and the moduli
spaces of Higgs bundles. (cf. [45]).

Acknowledgments. The authors would like to warmly thank Michi-aki Inaba and Takafumi Mat-
sumoto for useful discussions. The first, third, and fourth authors would like to thank Frank Loray
for his hospitality at IRMAR, Univ. Rennes.

2. Companion normal form

Let C be a compact Riemann surface of genus g (g ≥ 0), and D be an effective divisor on C.
We assume 4g − 3 + n > 0 where n = deg(D). We consider a rank 2 meromorphic connection

(2.1) ∇ : E −→ E ⊗ Ω1
C(D)

on C where deg(E) = 2g − 1.
When g = 0, Diarra–Loray have given companion normal forms of the rank 2 meromorphic

connections in [9]. By the companion normal forms, we may construct a universal family of the
rank 2 meromorphic connections on some generic part of the moduli space of rank 2 meromorphic
connections. This universal family is useful to describe the isomonodromic deformations [31]. The
purpose of this section is to give companion normal forms of rank 2 meromorphic connections when
g ≥ 0. For this purpose, first, we will introduce the apparent singularities for (generic) rank 2
meromorphic connections.

2.1. Apparent singularities. First we assume that dimC H0(C,E) = 1 for the rank 2 meromor-
phic connection (2.1). This assumption holds for a generic vector bundle of the rank 2 meromorphic
connection with deg(E) = 2g − 1. For an element of H0(C,E), we define the sequence of C-linear
maps

(2.2) ϕ∇ : OC −→ E
∇

−−→ E ⊗ Ω1
C(D) −→ E/OC ⊗ Ω1

C(D).
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This composition ϕ∇ is an OC -linear map. From now on we assume that ϕ∇ 6= 0. This assumption
holds for every (E,∇), provided that the eigenvalues of the residues are chosen generically (see
Remark 4 below). We call the global section in H0(C,E) in (2.2) the cyclic vector.

Let us now define E0 ⊂ E as the rank 2 locally free subsheaf spanned by OC and

Im
{
∇|OC

⊗ Id(Ω1
C
(D))−1 : (Ω1

C(D))−1 → E
}
.

This construction gives rise to a short exact sequence of coherent sheaves

0 −→ OC −→ E0 −→ (Ω1
C(D))−1 −→ 0.

We claim that this sequence splits, i.e.

(2.3) E0
∼= OC ⊕ (Ω1

C(D))−1.

Indeed, equivalence classes of extensions of (Ω1
C(D))−1 by OC are classified by the group

Ext1((Ω1
C(D))−1,OC) = Ext1(OC(−D),Ω1

C)
∼= H0(C,OC(−D))∨ = 0,

where we have used Grothendieck–Serre duality. We denote by

(2.4) φ∇ : E0 −→ E.

the canonical inclusion morphism, and define the meromorphic connection

(2.5) ∇0 = φ∗
∇(∇)

on E0. We note that the polar divisor of ∇0 is D +B where

(2.6) B = div(ϕ∇).

We note that

(2.7) deg(B) = 4g − 3 + n.

From now on, moreover, we assume that B is reduced, with support disjoint from D. In different
terms, in view of (2.7), we have

B = q1 + · · ·+ q4g−3+n

where qi 6= qj once i 6= j and qi /∈ D for all i.

Definition 1. Assume that ϕ∇ 6= 0 and div(ϕ∇) is reduced, with support disjoint from D. We call
the points of the support {q1, . . . , q4g−3+n} of div(ϕ∇) the apparent singularities of (E,∇).

2.2. Companion normal form. The desired companion normal form is a normal form of ∇0 in
(2.5). So the companion normal form is given by normalization of ∇0 by applying automorphisms
on OC ⊕ (Ω1

C(D))−1. To give the companion normal form, first, we describe a decomposition of ∇0

relative to (2.3):

∇0 =

(
α β
γ δ

)

where 



α : OC −→ Ω1
C(D +B) (connection)

β : (Ω1
C(D))−1 −→ Ω1

C(D +B) (OC -linear)
γ : OC −→ OC(B) (OC -linear)
δ : (Ω1

C(D))−1 −→ (Ω1
C(D))−1 ⊗ Ω1

C(D +B) (connection)
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This form is unique only up to pre-composition by an element of the automorphism group Aut(E0)
of E0. Elements of Aut(E0) are described as follows:

(
λ1 F
0 λ2

)
,

where λ1, λ2 ∈ C∗ and F ∈ H0(C,Ω1
C(D)). It follows by construction that ∇0 admits no pole in

restriction to OC over the divisor B, so that actually we have
{
α : OC −→ Ω1

C(D) (connection)
γ : OC −→ OC (= identity)

The action of an automorphism of the form

(2.8)
(
1 F
0 1

)
, F ∈ H0(C,Ω1

C(D))

transforms α into α−Fγ (without affecting γ). Therefore, there exists a unique choice F such that
α = d is the trivial connection on OC . We thus get the unique companion normal form

(2.9) ∇0 =

(
d β
1 δ

)
.

Notice that the same companion normal form is obtained simply by taking the generator ϕ∇(1)
for the second factor of (2.3), and the action of the automorphism (2.8) in the above argument
simply amounts to switching to this particular generator.

2.3. Spectral data. Now we consider the polar part of the meromorphic connection (2.1) at each
point of the support of D. We impose some conditions on the polar parts. To describe the conditions,
we introduce the notion of irregular curves with residues. Let ν be a positive integer. We set
I := {1, 2, . . . , ν}. Let h be the Cartan subalgebra

h =

{(
h1 0
0 h2

) ∣∣∣∣ h1, h2 ∈ C

}

of the Lie algebra gl2(C). Let h0 be the regular locus of h.

Definition 2. We say X = (C,D, {zi}i∈I , {θi}i∈I , θres) is an irregular curve with residues if

(i) C is a compact Riemann surface of genus g,
(ii) D =

∑
i∈I mi[ti] is an effective divisor on C.

(iii) zi is a generator of the maximal ideal of OC,ti ,
(iv) θi = (θi,−mi

, (θi,−mi+1, . . . , θi,−2)) ∈ h0 × hmi−2, and
(v) θres = (θ1,−1, θ2,−1, . . . , θν,−1), where θi,−1 ∈ h, such that

∑ν
i=1 tr(θi,−1) = −(2g − 1).

We set

θi,−1 =

(
θ−i,−1 0

0 θ+i,−1

)
for each i ∈ I.

We assume that
∑ν

i=1 θ
±
i,−1 6∈ Z whatever are the signs ±, and, if mi = 1, then θ+i,−1 − θ−i,−1 6∈ Z.

For an irregular curve with residues X , we set

(2.10) ωi(X) := θi,−mi

dzi
zmi

i

+ θi,−mi+1
dzi

zmi−1
i

+ · · ·+ θi,−2
dzi
z2i

+ θi,−1
dzi
zi
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and Omi[ti] := OC,ti/(z
mi

i ). For an irregular curve with residues X and a meromorphic connection
(E,∇) in (2.1), we set E|mi[ti] := E ⊗Omi[ti]. Let

∇|mi[ti] : E|mi[ti] −→ E|mi[ti] ⊗ Ω1
C(D)

be the morphism induced by ∇.

Definition 3. We call (E,∇) a rank 2 meromorphic connection over an irregular curve with
residues X if

(i) E is a rank 2 vector bundle of degree 2g − 1 on C,
(ii) ∇ : E → E ⊗ Ω1

C(D) is a connection, and

(iii) there exists an isomorphism ϕmi[ti] : E|mi[ti] → O⊕2
mi[ti]

for each i ∈ I such that

(ϕmi[ti] ⊗ 1) ◦ ∇|mi[ti] ◦ ϕ
−1
mi[ti]

= d+ωi(X).

Here ωi(X) is defined in (2.10).
We call ωi(X) the spectral data of (E,∇) and call the submodule ϕ−1

mi[ti]
(Omi[ti]⊕ 0) of E|mi[ti] the

quasi-parabolic structure of (E,∇) at ti.

From now on, by a connection we will mean a rank 2 meromorphic connection over a fixed
irregular curve with residues X . So we impose the condition (iii) of Definition 3 on the polar parts
of the meromorphic connection ∇ in (2.1) at the points of the support of D. This condition means
that the polar parts of ∇ at ti are diagonalizable with eigenvalues equal to the diagonal entries of
ωi(X) for i = 1, 2, . . . , n.

Remark 4. In Definition 3, we impose the condition that
∑ν

i=1 θ
±
i,−1 6∈ Z whatever are the signs ±.

By this assumption and the argument as in [32, Proposition 6], we have that (E,∇) is irreducible.
Then some arguments become simple. For example, ϕ∇ = 0 if and only if the free subsheaf OC of
E is a proper ∇-invariant subbundle. So we have that ϕ∇ 6= 0. Moreover, (E,∇) is automatically
stable (described in Section 3.1 below).

2.4. The polar parts of δ. We fix an irregular curve with residues X . Let (E,∇) be a rank 2
meromorphic connection over X and ∇0 be the companion normal form for (E,∇). We consider
the (2, 2)-entry δ of this companion normal form ∇0.

It immediately follows from (2.9) that the connection δ coincides with the trace connection tr(∇0)
on det(E0) = (Ω1

C(D))−1. It is further related to the trace connection tr(∇) by

δ = tr(∇0) = tr(∇) +
dϕ∇

ϕ∇
.

Lemma 5. (1) The polar part of δ over D is determined by the spectral data;
(2) The polar part of δ over B is logarithmic with residue +1;
(3) δ is determined by the irregular curve with residues X up to adding a holomorphic 1-form

of C.

Proof. The polar part of δ at ti is equal to tr(ωi), showing the first assertion. In view of our
assumption qj1 6= qj2 for j1 6= j2, the second assertion is classical. Let now δ, δ′ be the (2, 2)-entries
of companion normal forms ∇0,∇

′
0 of connections ∇,∇′ satisfying the conditions of Definition 3.

By the first part, δ − δ′ is then a global holomorphic 1-form of C. �

As a consequence of the lemma and by dimC H0(C,Ω1
C) = g, the possible values for δ represent

g free parameters for a meromorphic connection over X .
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2.5. The polar parts of β. Next we consider the (1, 2)-entry β of the companion normal form
∇0 of a meromorphic connection ∇ over the irregular curve with residues X . By the condition
γ = 1 in (2.9), β accounts for the determinant of the characteristic polynomial of the residues. By
Definition 3, the eigenvalues of the connection matrix of ∇ are differentials (of the first kind) with
a pole of order at most mi at ti. The same condition then holds for ∇0 too, because it only differs
from ∇ by elementary modifications at points qj 6= ti. As the determinant of a 2 × 2 matrix is a
quadratic expression of the eigenvalues, we see that β must be a quadratic differential with poles
of order at most 2mi at ti. Over B, a similar argument shows that β has poles of order at most 2.

Let us fix local coordinate charts zi centered at the pole ti. One may then expand β into Laurent
series:

β =
(
βi,−2mi

z−2mi

i + · · ·+ βi,−2z
−2
i +O(z−1

i )
)
(dzi)

⊗2.

Notice that for given β the coefficient βi,−2 is independent of the chosen coordinate chart zi, however
the other coefficients depend on zi. We also fix local coordinate charts zj centered at the apparent
singularity qj , and have a similar expansion

β =
(
βj,−2z

−2
j + βj,−1z

−1
j +O(z0j )

)
(dzj)

⊗2.

Analogously to Lemma 5, we therefore find

Lemma 6. (1) The coefficients βi,−2mi
, . . . , βi,−2 are uniquely determined by the irregular

curve with residues X (and the holomorphic coordinate zi);
(2) We have βj,−2 = 0.
(3) β is determined by the irregular curve with residues X up to adding a section of (Ω1

C)
⊗2(D).

Proof. The coefficients βi,−2mi
, . . . , βi,−2 all admit homogeneous quadratic expressions in terms

of the eigenvalues of θi, θres, therefore they are determined by them. Conversely, the coefficients
βi,−2mi

, . . . , βi,−2 determine the polar part of the eigenvalues. It is classical that for an apparent
singularity of ∇0, one of the two eigenvalues of the residue must vanish. This implies that for every
q ∈ B the product of the eigenvalues of resq(∇0) vanishes. As this latter product gives the leading
(second) order term βj,−2, we get the second assertion. The last part follows from the first two as
in Lemma 5. �

As a consequence of the lemma and by dimC H0(C, (Ω1
C)

⊗2(D)) = 3g− 3+n, the possible values
for β represent 3g − 3 + n free parameters for a connection ∇ on X having apparent singularities
at a fixed reduced divisor B of length N .

From now on, we set βj,−1 = ζj , so that we have the expansion

(2.11) β = ζj
(dzj)

⊗2

zj
+ β(j)

for some local holomorphic quadratic differential β(j). Notice that ζj depends on the coordinate zj ,
however the element ζj dzj ∈ Ω1

C |qj of the fiber of the holomorphic cotangent (or canonical) bundle
over qj does not depend on it. As a matter of fact, since β belongs to an affine space modelled over
H0(C, (Ω1

C)
⊗2(D)) (and in order to be consistent with the decomposition (2.3)), it is even more

rigourous to consider ζj dzj as elements of the fiber Ω1
C(D)|qj , using the inclusion Ω1

C ⊂ Ω1
C(D). In

the sequel we will consider them to be such elements. It will turn out that these quantities ζj dzj
are closely related to accessory parameters.
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2.6. Determination of β and δ in terms of ζ. Fix a reduced divisor B of length N on C with
support disjoint from D. In Subsections 2.4, 2.5 we have found that (normal forms of) meromorphic
connections with residue on X that have apparent singularities at B can be described by an affine
space of complex dimension g+3g− 3+n = N (g coming from the choice of δ and 3g− 3+n from
the choice of β). In this section, we provide a description of such connections in terms of analogs
of separated variables. Namely, it will turn out that generically the data of δ, β is equivalent to the
N -tuple (ζ1 dz1, . . . , ζN dzN ).

The fact that singular points are apparent over B imposes further constraints on β and δ. This
constraint gives 1 linear condition for each point qj and we can expect that these constraints fix β
and δ uniquely in terms of the data (qj , ζj dzj)

N
j=1. In fact, this is true for the genus g = 0 case (see

[9]) and we will show in Lemma 7 that this is also true for generic choices of (qj , ζj dzj)Nj=1 if g > 0.
In fact, the data of ζj dzj can be interpreted as a certain quasi-parabolic structure over B.

Indeed, at a point qj and with respect to the decomposition (2.3), the residue of ∇0 reads as

resqj∇0 =

(
0 ζj dzj
0 1

)
.

So, the vector
(
ζj dzj
1

)
is an eigenvector with respect to eigenvalue 1 and the map φ∇ (see (2.4)) is

just the positive elementary transformation with respect to these parabolic directions at all points
qj . In summary, the data of all values ζj dzj is equivalent to the data of a quasi-parabolic structure
of E0 over B (i.e., a line in the fiber of E0 over each qj) distinct from the destabilizing subbundle
OC ⊂ E0 for every j.

Let us denote by Ω(D) the total space of the line bundle Ω1
C(D).

Lemma 7. For generic data (qj , ζj dzj)j ∈ Sym4g−3+n(Ω(D)) there exist unique β and δ as above
such that the corresponding ∇0 has apparent singular points at all the points qj (1 ≤ j ≤ N :=
4g − 3 + n), and such that the Laurent expansion (2.11) is fulfilled.

Proof. Let us consider (qj , ζj dzj)j such that qj ’s are pair-wise distinct, and do not intersect the
support of D. Given one point (qj , ζj dzj), we can diagonalize the residue resqi∇0 by conjugating
by a triangular matrix

(2.12)
(
1 ζj dzj
0 1

)−1(
0 β
1 δ

)(
1 ζj dzj
0 1

)
+

(
1 ζj dzj
0 1

)−1

d

(
1 ζj dzj
0 1

)

=

(
−ζj dzj β − ζjδ ⊗ dzj − ζ2j dz

⊗2
j

1 δ + ζj dzj

)
=

(
0 0

0
dzj
zj

)
+ holomorphic

where zj stands for a local coordinate at qj . Then the elementary transformation φ∇ is locally

equivalent to the conjugacy by
(
1 0
0 z−1

j

)
yielding

(2.13)


−ζj dzj

β−ζjδ⊗dzj−ζ2
j dz⊗2

j

zj

zj δ + ζj dzj −
dzj
zj


 .
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The apparent point condition is therefore equivalent to saying that β − ζjδ ⊗ dzj − ζ2j dz
⊗2
j is

(holomorphic and) vanishing at qj . This condition is linear on β and δ and rewrites

(2.14) β − ζjδ ⊗ dzj︸ ︷︷ ︸
holomorphic

|qj = ζ2j dz
⊗2
j |qj ,

where the right hand side does not involve β and δ. If we assume that (q1, . . . , qN ) lies in the image
of the map App (see (1.2)), then the normal form of any (E,∇) in the preimage produces a solution
(δ0, β0). Fixing such solutions, by Lemmas 5, 6 we may rewrite

{
β = β0 + b1ν1 + · · ·+ bN−gνN−g

δ = δ0 + d1ω1 + · · ·+ dgωg

where (ωl)
g
l=1, (νk)

N−g
k=1 are respective bases of H0(C,Ω1

C) and H0(C, (Ω1
C)

⊗2(D)). Using these
expressions, the constraint that qj is an apparent singularity can be rewritten as a linear system
consisting of N equations in the N variables bk, dl. The condition to uniquely determine β and δ
in terms of the data (qj , ζj dzj) is that the following determinant does not vanish

(2.15) det




ν1(q1) · · · νN−g(q1) ζ1 dz1ω1(q1) · · · ζ1 dz1ωg(q1)
...

. . .
...

...
. . .

...
ν1(qN ) · · · νN−g(qN ) ζN dzNω1(qN ) · · · ζN dzNωg(qN )




Of course, it is sufficient for our purpose to check that we can find some (qj , ζj dzj)’s such that
this determinant does not vanish, so that it will be generically non vanishing. If we set ζ1 = · · · =
ζN−g = 0, then the matrix has a zero block of dimension (N − g)× g in the top right corner, and
the determinant factors as

ζN−g+1 dzN−g+1 · · · ζN dzN · det




ν1(q1) · · · νN−g(q1)
...

. . .
...

ν1(qN−g) · · · νN−g(qN−g)


 · det



ω1(q̃1) · · · ωg(q̃1)

...
. . .

...
ω1(q̃g) · · · ωg(q̃g)




where q̃j = qj+N−g. After setting ζN−g+1 = · · · = ζN = 1, it is enough to find qj ’s such that the
two smaller determinants are non zero. To conclude the proof, let us denote by L any of the two
lines bundles Ω1

C or (Ω1
C)

⊗2(D), and by µ1, . . . , µN ′ a corresponding basis of H0(C,L). Then we
want to prove that the image of the curve by the evaluation map

C
ev
−→ P

N ′−1 ; q 7→ (µ1(q) : . . . : µN ′(q))

is not contained in some hyperplane, i.e. that we can find q1, . . . , qN ′ ∈ C such that the image
is not contained in some hyperplane. But this is true, otherwise, we would have a linear relation
between µ1, . . . , µN ′ contradicting that they form a basis. �

Remark 8. In the previous proof, the locus of qj’s for which det(ωi(q̃j))i,j vanishes correspond to
the Brill-Noether locus for divisor q̃1 + · · ·+ q̃g.

Lemma 9. When g = 0, any data (qj , ζj dzj)j ∈ Symn−3(Ω(D)) gives rise to unique β and δ such
that the corresponding ∇0 has apparent singular points at all qj’s. However, for g > 0, there always
exist data (qj , ζj dzj)j such that the determinant (2.15) vanishes.

Proof. When g = 0, this directly follows from [9] (a consequence of Lagrange interpolation). When
g > 0, fix generic qj ’s and let ω ∈ H0(C,Ω1

C(D)). If we set ζj := ω(qj), then the last colum of
(2.15) is just the evaluation of the section ω ⊗ ωg ⊂ H0(C, (Ω1

C)
⊗2(D)) at q1, · · · , q4g−3+n and is

therefore a linear combination of the 3g − 3 + n first colums. �
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3. Symplectic structure and canonical coordinates

We fix an irregular curve with residues X = (C,D, {zi}i∈I , {θi}i∈I , θres). As usual, we use the
notation N := 4g + n− 3, where g is the genus of C and n = deg(D). We will consider the moduli
space MX of rank 2 meromorphic connections over X . This moduli space is constructed in [24,
Theorem 2.1] and carries a natural symplectic structure described in [24, Proposition 4.1]. The
purpose of this section is to give canonical coordinates on an open subset of MX with respect to
this symplectic structure. First we describe the moduli space MX .

3.1. Moduli spaces. Let (E,∇) be a rank 2 meromorphic connection over X . Then, the subsheaf

l(i) := ϕ−1
mi[ti]

(Omi[ti] ⊕ 0) ⊂ Emi[ti].

equips (E,∇) with a canonical quasi-parabolic structure at each ti. So we may consider (E,∇)
as a quasi-parabolic connection (E,∇, {l(i)}) defined in [21, Definition 1.1] and [24, Definition 2.1].
A stability condition for quasi-parabolic connections is introduced in [21, Definition 2.1] and [24,
Definition 2.2]. The moduli space of stable quasi-parabolic connections is constructed in [21, The-
orem 2.1] and [24, Theorem 2.1]. In our situation, any rank 2 meromorphic connections over X are
irreducible (see Remark 4). So our objects are automatically stable objects. We omit the stability
condition of the quasi-parabolic connections.

Let MX be the moduli space of rank 2 meromorphic connections over the irregular curve with
residues X . If (E,∇) ∈ MX satisfies dimC H0(C,E) = 1, then we have a unique OC -morphism ϕ∇

in (2.2). The OC -morphism ϕ∇ is nonzero, since (E,∇) is irreducible. So we may define the divisor
div(ϕ∇) in (2.6) for (E,∇). We set

M0
X :=



(E,∇) ∈ MX

∣∣∣∣∣∣

dimC H0(C,E) = 1,
div(ϕ∇) is reduced, and
div(ϕ∇) has disjoint support with D



 .

Next we recall the natural symplectic structure on MX .

3.2. Symplectic structure. We will describe the natural symplectic structure on MX via Čech
cohomology. This is defined in [21, Proposition 7.2] and [24, Proposition 4.1]. This is analog of
the symplectic form on the moduli space of stable Higgs bundles in [8]. This description of the
symplectic structure is useful to comparing this symplectic structure with the Goldman symplectic
structure on the character variety via the Riemann–Hilbert map (for example, see [21, the proof
of Proposition 7.3] and [4, Theorem 3.2]). Moreover, this description of the symplectic structure
is useful to describe the isomonodromic deformations (for example, see [5, Proposition 4.3], [6,
Proposition 4.4], and [30, Proposition 3.8]).

First we recall the description of the tangent space of MX at (E,∇) ∈ MX in terms of the hyper-
cohomology of a certain complex ([21, the proof of Theorem 2.1] and [24, the proof of Proposition
4.1]). We consider (E,∇) as a quasi-parabolic connection (E,∇, {l(i)}). We define a complex F•

for (E,∇, {l(i)}) by

(3.1)

F0 :=
{
s ∈ End(E)

∣∣∣ s|miti(l
(i)) ⊂ l(i) for any i

}

F1 :=
{
s ∈ End(E)⊗ Ω1

C(D)
∣∣∣ s|miti(l

(i)) ⊂ l(i) ⊗ Ω1
C for any i

}

∇F• : F0 −→ F1; ∇F•(s) = ∇ ◦ s− s ◦ ∇.

Then we have an isomorphism between the tangent space T(E,∇,{l(i)})MX and H
1(F•).



14 A. KOMYO, F. LORAY, M.-H. SAITO AND SZ. SZABÓ

Now we recall this isomorphism. We take an analytic (or affine) open covering C =
⋃

α Uα such
that E|Uα

∼= O⊕2
Uα

for any α, ♯{i | ti ∩ Uα 6= ∅} ≤ 1 for any α and ♯{α | ti ∩ Uα 6= ∅} ≤ 1 for any i.
Take a tangent vector v ∈ T(E,∇,{l(i)})MX . The field v corresponds to an infinitesimal deformation

(Eǫ,∇ǫ, {l
(i)
ǫ }) of (E,∇, {l(i)}) over C×SpecC[ǫ] such that (Eǫ,∇ǫ, {l

(i)
ǫ })⊗C[ǫ]/(ǫ) ∼= (E,∇, {l(i)}),

where C[ǫ] = C[t]/(t2). There is an isomorphism

ϕα : Eǫ|Uα×SpecC[ǫ]
∼
−→ O⊕2

Uα×SpecC[ǫ]

∼
−→ E|Uα

⊗ C[ǫ]

such that ϕα ⊗C[ǫ]/(ǫ) : Eǫ ⊗C[ǫ]/(ǫ)|Uα

∼
−→ E|Uα

⊗C[ǫ]/(ǫ) = E|Uα
is the given isomorphism and

that ϕα|ti×SpecC[ǫ](l
(i)
ǫ ) = l(i)|Uα×SpecC[ǫ] if ti ∩ Uα 6= ∅. We put

uαβ := ϕα ◦ ϕ−1
β − idE|Uαβ×Spec C[ǫ]

,

vα := (ϕα ⊗ id) ◦ ∇ǫ|Uα×SpecC[ǫ] ◦ ϕ
−1
α −∇|Uα×SpecC[ǫ].

Then {uαβ} ∈ C1((ǫ)⊗F0), {vα} ∈ C0((ǫ)⊗F1) and we have the cocycle conditions

uβγ − uαγ + uαβ = 0 and ∇ ◦ uαβ − uαβ ◦ ∇ = vβ − vα.

So [({uαβ}, {vα})] determines an element of H1(F•). This correspondence gives an isomorphism
between the tangent space T(E,∇,{l(i)})MX and H

1(F•).
We define a pairing

(3.2)
H

1(F•)⊗H
1(F•) −→ H

2(OC
d
−→ Ω1

C)
∼= C

[({uαβ}, {vα})]⊗ [({u′
αβ}, {v

′
α})] 7−→ [({tr(uαβ ◦ u′

βγ)},−{tr(uαβ ◦ v′β)− tr(vα ◦ u′
αβ)})],

considered in Čech cohomology with respect to an open covering {Uα} of C, {uαβ} ∈ C1(F0),
{vα} ∈ C0(F1) and so on. This pairing gives a nondegenerate 2-form on the moduli space MX .
This fact follows from the Serre duality and the five lemma:

(3.3) H0(F0) //

∼

��

H0(F1) //

∼

��

H
1(F•) //

∼

��

H1(F0) //

∼

��

H1(F1)

∼

��

H1(F1)∨ // H1(F0)∨ // H
1(F•)∨ // H0(F1)∨ // H0(F0)∨.

We denote by ω the nondegenerate 2-form on MX . This 2-form ω is a symplectic structure. That
is, we have dω = 0 (see [21, Proposition 7.3] and [24, Proposition 4.2]).

We get as a consequence:

Proposition 10. The dimension of M0
X is equal to 2N , where N = 4g − 3 + n.

Proof. By irreducibility of (E,∇) and Schur’s lemma we have

H
0(F•) ∼= C.

On a Zariski open subset of MX , the underlying quasi-parabolic vector bundle (E, {l(i)}i) is irre-
ducible, so we also have

H0(F0) ∼= C.

Clearly, we have deg(F0) = − length(D). From Riemann–Roch we find

dimC H1(F0) = dimC H0(F0) + 4(g − 1)− deg(F0)

= 4g − 3 + n = N.
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By Serre duality and Euler characteristic count applied to the hypercohomology long exact se-
quence (3.3), we get the statement. �

3.3. Trivializations of E. Our purpose is to give canonical coordinates of M0
X with respect to

the symplectic form (3.2). To do it, we will calculate the Čech cohomology by taking trivializations
of E. To simplify the calculation, we take trivializations of E by using

φ∇ : E0
⊂

−−→ E,

whose cokernel defines the apparent singularities. In this section, we will discuss construction of
the trivializations of E by using φ∇.

We take (E,∇, {l(i)}) ∈ M0
X . Let {(qj , ζj dzj)}j=1,2,...,N be the point on SymN (Ω(D)) corre-

sponding to (E,∇, {l(i)}). We assume that the point {(qj, ζj dzj)}j=1,2,...,N is generic in the sense
of Lemma 7. Let Uan

qj
be an analytic open subset of C such that qj ∈ Uan

qj
and Uan

ti
be an analytic

open subset of C such that ti ∈ Uan
ti

. We assume that Uan
qj

and Uan
ti

are small enough. We take an
analytic coordinate zj on Uan

qj
such that it is independent of the moduli space M0

X . We denote also
by qj the complex number so that the point qj on C is defined by zj − qj = 0.

Definition 11. Let {Uα}α be an analytic open covering of C: C =
⋃

α Uα such that

(i) ♯{i | ti ∩ Uα 6= ∅} ≤ 1 for any α, and ♯{α | ti ∩ Uα 6= ∅} ≤ 1 for any i,
(ii) ♯{j | qj ∩ Uα 6= ∅} ≤ 1 for any α, and ♯{α | qj ∩ Uα 6= ∅} ≤ 1 for any j,
(iii) Ω1

C(D) is free on Uα for any α, that is, Ω1
C(D)|Uα

∼= OUα
,

(iv) Uαti
= Uan

ti
and Uαqj

= Uan
qj

.

Here we denote by αti the index α such that ti ∈ Uα, and by αqj the index α such that qj ∈ Uα.

We fix trivializations ωα : OUα

∼
−−→ Ω1

C(D)|Uα
of Ω1

C(D). We assume that ωα is independent of
the moduli space M0

X . By using ωα, we have ω−1
α : OUα

∼
−−→ (Ω1

C(D))−1|Uα
. By the trivializations,

we have trivializations ϕnorm
α : O⊕2

Uα

∼
−−→ E0|Uα

of E0. Assume that the connection matrices Anorm
α

of ∇0 associated to ϕnorm
α are

(3.4) Anorm
α =

(
0 βα

γα δα

)
,

where βα, δα ∈ Ω1
C(D + B)|Uα

are determined by {(qj , resqj (β))}j=1,2,...,N (see Lemma 7). The
1-form γα ∈ Ω1

C(D)|Uα
is the image of 1 under the composition

OUα

∼
−−→ (Ω1

C(D))−1 ⊗ Ω1
C(D)|Uα

ωα⊗1
−−−−→ OUα

⊗ Ω1
C(D).

In particular, γα is independent of the moduli space M0
X for any α. The polar part of Anorm

αti
at ti

is independent of the moduli space M0
X for any i. We set

(3.5) ζj :=
resqj (β)

γαqj
|qj

∈ C for j = 1, 2, . . . , N .

Here β ∈ H0(C, (Ω1
C)

⊗2(2D + B)) is the (1, 2)-entry of (2.9). Notice that β|Uα
= βαγα, where βα

and γα are in (3.4). So we have

resqj (A
norm
αqj

) =

(
0 ζj
0 1

)
for j = 1, 2, . . . , N .

Definition 12. We define other trivializations ϕApp,0
α : O⊕2

Uα

∼
−−→ E0|Uα

of E0 for each α as follows:
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(i) When α = αqj , we take a trivialization ϕApp,0
α as

ϕApp,0
α = ϕnorm

α ◦

(
1 ζj
0 1

)
.

Note that this triangular matrix appeared in (2.12).
(ii) Otherwise, we take a trivialization ϕApp,0

α as ϕApp,0
α = ϕnorm

α .

Let AApp,0
α be the connection matrix of ∇0 associated to ϕApp,0

α , that is,

(ϕApp,0
α )−1 ◦ (φ∗

∇∇) ◦ ϕApp,0
α = d+AApp,0

α .

We have that

AApp,0
α =





(
−ζjγα βα − ζjδα − ζ2j γα

γα δα + ζjγα

)
when α = αqj

(
0 βα

γα δα

)
otherwise.

We have

resqj (A
App,0
αqj

) =

(
0 0
0 1

)
for j = 1, 2, . . . , N .

Now we define trivializations of E by using φ∇ : E0 → E in (2.4) and the trivialization of E0 in
Definition 12.

Definition 13. Now we define trivialization ϕApp
α : O⊕2

Uα

∼
−−→ E|Uα

of E for the open covering
{Uα}α in Definition 11 as follows.

(i) When α = αqj , we take a trivialization ϕApp
α so that

(ϕApp
α )−1 ◦ φ∇|Uα

◦ ϕApp,0
α =

(
1 0
0 zj − qj

)
.

(ii) When α = αti , we take gtiα ∈ Aut(O⊕2
Uα

) so that the polar part of (gtiα )
−1Anorm

α gtiα is diagonal

at mi[ti]. We take a trivialization ϕApp
α as

ϕApp
α = φ∇|Uα

◦ ϕnorm
α ◦ gtiα .

Here remark that φ∇|Uα
is invertible. Since the polar part of Anorm

αti
at ti is independent

of the moduli space M0
X , we may assume that (gtiα )<mi

is independent of the moduli space
M0

X. Here we define (gtiα )<mi
so that gtiα = (gtiα )<mi

+O(zmi

i ).
(iii) Otherwise, we take a trivialization ϕApp

α so that

(ϕApp
α )−1 ◦ φ∇|Uα

◦ ϕnorm
α =

(
1 0
0 1

)
.

Since φ∇|Uα
is invertible in this case, ϕApp

α = φ∇|Uα
◦ ϕnorm

α .

Let Aα be the connection matrix of ∇ associated to ϕApp
α , that is

(ϕApp
α )−1 ◦ ∇ ◦ ϕApp

α = d+Aα.
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We have that

(3.6) Aα =





(
−ζjγα

βα−ζjδα−ζ2
j γα

zj−qj

(zj − qj)γα δα + ζjγα − dzj
zj−qj

)
when α = αqj

ωi(X) + [holo. part] when α = αti(
0 βα

γα δα

)
otherwise.

Here ωi(X) is the 1-form defined in (2.10). The connection matrix Aαqj
on Uαqj

appeared in (2.13).
The connection matrix Aαqj

has no pole at qj for any j = 1, 2, . . . , N , since βα, δα are determined
by Lemma 7. We have considered diagonalization of the polar part of the connection (E,∇) at each
ti. The reason why we consider diagonalization of the polar parts is that we use the connection
matrix (3.6) to calculate an infinitesimal deformation of (E,∇). So we will calculate variations
of the transition functions with respect to the trivializations in Definition 13 and variations of
the connection matrices (3.6). These are elements of F0 and F1 of (3.1), respectively. To be
elements of F0 and F1, we need the compatibility with the quasi-parabolic structure. However,
this compatibility follows directly from diagonalization of the polar parts.

3.4. Descriptions of the cocycles of an infinitesimal deformation. Let Ω(D) → C be the
total space of Ω1

C(D). By the argument as in Lemma 6, we may define a map

(3.7)
fApp,0 : M

0
X −→ SymN (Ω(D))

(E,∇) 7−→
{
(qj , resqj (β))

}
j=1,2,...,N

.

Here β ∈ H0(C, (Ω1
C)

⊗2(2D+B)) is the (1, 2)-entry of (2.9) and resqj (β) ∈ Ω1
C(D)|qj . We take an

analytic open subset V of M0
X . For the analytic open subset V , we assume that we may define a

composition

V −→ fApp,0(V ) −→ SymN (C2
(q,ζ))

(E,∇) 7−→
{
(qj , resqj (β))

}
j=1,2,...,N

7−→ {(qj , ζj)}j=1,2,...,N ,

where ζj is defined in (3.5), and the image of V under the composition is isomorphic to some
analytic open subset of C2N

(q,ζ). Let U(q,ζ) be such an analytic open subset of C2N
(q,ζ). So we have a

map

(3.8)
M0

X ⊃ V −→ U(q,ζ) ⊂ C
2N
(q,ζ)

(E,∇) 7−→ (q1, . . . , qN , ζ1, . . . , ζN ),

which are coordinates that we will use in this subsection. We consider the family of (E,∇, {l(i)})
parametrized by U(q,ζ) such that this family induces the inverse map of the map V → U(q,ζ). Here
this family is constructed by Lemma 7. By using the trivializations {ϕApp

α }α of E in Definition 13,
we have transition functions and connection matrices of the family of (E,∇, {l(i)}) parametrized
by U(q,ζ). Indeed, the transition function is

(3.9) Bαβ := (ϕApp
α |Uαβ

)−1 ◦ ϕApp
β |Uαβ

: O⊕2
Uαβ

−→ O⊕2
Uαβ

,

and the connection matrix is as in (3.6).
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Let (qj , ζj)j be a point on U(q,ζ). The purpose of this subsection is to describe the tangent map

(3.10)
T(qj ,ζj)jC

2N
(q,ζ) −→ T(E,∇,{l(i)})M

0
X

∼= H
1(F•)

v 7−→ [({uαβ(v)}, {vα(v)})]

induced by the inverse map of (3.8). For this purpose, we will calculate the variations of the transi-
tion functions and the connection matrices parametrized by U(q,ζ) with respect to the tangent vector
v in U(q,ζ) ⊂ C2N

(q,ζ). By using these variations, we will calculate the cocycles ({uαβ(v)}, {vα(v)}) of
the infinitesimal deformation of (E,∇, {l(i)}) with respect to v.

First, we calculate uαβ(v) ∈ F1(Uαβ). We consider the variation of Bαβ in (3.9) by v:

Bαβ(id + ǫB−1
αβ v(Bαβ)) : O

⊕2
Uαβ

−→ O⊕2
Uαβ

⊗ C[ǫ].

Then uαβ(v) has the following description:

(3.11) uαβ(v) = ϕApp
β |Uαβ

◦
(
B−1

αβ v(Bαβ)
)
◦ (ϕApp

β |Uαβ
)−1.

Lemma 14. Let Icov be the set of the indices of the open covering {Uα} in Definition 11. We set
Itcov = {αt1 , . . . , αtν} and Iqcov = {αq1 , . . . , αqN}, which are subsets of Icov. For v ∈ T(E,∇,{l(i)})M

0
X ,

we have the equality
(3.12)

uαβ(v) =





0 α, β ∈ Icov \ (Itcov ∪ Iqcov)

ϕApp
αqj

|Uααqj
◦

(
0

v(ζj)
zj−qj

0
v(qj)
zj−qj

)
◦ (ϕApp

αqj
|Uααqj

)−1 α ∈ Icov \ (Itcov ∪ Iqcov), β = αqj ∈ Iqcov

ϕApp
αti

|Uααti
◦
(
(gtiαti

)−1v(gtiαti
)
)
◦ (ϕApp

αti
|Uααti

)−1 α ∈ Icov \ (Itcov ∪ Iqcov), β = αti ∈ Itcov,

and we have that

(3.13) (gtiαti
)−1v(gtiαti

) = O(zmi

i ).

Proof. Let α ∈ Icov \ (Itcov ∪ Iqcov). If β ∈ Icov \ (Itcov ∪ Iqcov), then we have the following equalities:

Bαβ = (ϕApp
α |Uαβ

)−1 ◦ ϕApp
β |Uαβ

= (ϕnorm
α |Uαβ

)−1 ◦ (φ∇|Uαβ
)−1 ◦ φ∇|Uαβ

◦ ϕnorm
β |Uαβ

= (ϕnorm
α |Uαβ

)−1 ◦ ϕnorm
β |Uαβ

=

(
1 0
0 ((ω−1

α )−1 ◦ ω−1
αqj

)

)
.

Here ω−1
α is a trivialization OUα

∼=
−→ (Ω1

C(D))−1|Uα
for any α. Since ((ω−1

α )−1 ◦ω−1
αqj

) is independent

of the moduli space M0
X , we have v(Bαβ) = 0. So uαβ(v) = 0.
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If β = αqj , then we have the following equalities:

(3.14)

Bααqj
= (ϕApp

α |Uααqj
)−1 ◦ ϕApp

αqj
|Uααqj

= (ϕApp,0
α |Uααqj

)−1 ◦ (φ∇|Uααqj
)−1 ◦ φ∇|Uααqj

◦ ϕApp,0
αqj

|Uααqj
◦

(
1 0
0 1

zj−qj

)

= (ϕApp,0
α |Uααqj

)−1 ◦ ϕApp,0
αqj

|Uααqj
◦

(
1 0
0 1

zj−qj

)

= (ϕnorm
α |Uααqj

)−1 ◦ ϕnorm
αqj

|Uααqj
◦

(
1 ζj
0 1

)(
1 0
0 1

zj−qj

)

=

(
1 0
0 ((ω−1

α )−1 ◦ ω−1
αqj

)

)(
1

ζj
zj−qj

0 1
zj−qj

)
.

So we have

B−1
ααqj

v(Bααqj
) =

(
1 −ζj
0 zj − qj

)(
0

v(ζj)(zj−qj)+ζjv(qj)
(zj−qj)2

0 − −v(qj)
(zj−qj)2

)
=

(
0

v(ζj)
zj−qj

0
v(qj)
zj−qj

)
.

If β = αti , then we have the following equalities:

Bααti
= (ϕApp

α |Uααti
)−1 ◦ ϕApp

αti
|Uααti

= (ϕnorm
α |Uααti

)−1 ◦ (φ∇|Uααti
)−1 ◦ φ∇|Uααti

◦ ϕnorm
αti

|Uααti
◦ gtiαti

=

(
1 0
0 ((ω−1

α )−1 ◦ ω−1
αqj

)

)
◦ gtiαti

.

So we have B−1
ααti

v(Bααti
) = (gtiαti

)−1v(gtiαti
). Since (gtiα )<mi

is independent of the moduli space
M0

X , we have that v(gtiαti
) = O(zmi

i ). Finally, we have the statement of the lemma. �

Next we calculate vα(v) ∈ F1(Uα) for v ∈ T(E,∇,{l(i)})M
0
X . This is given by calculating the

variation of the connection matrix Aα in (3.6) with respect to v. So we have
(3.15)

vα(v) =





ϕApp
α ◦


−v(ζj)γα v

(
βα−ζjδα−ζ2

j γα

zj−qj

)

−v(qj)γα v(tr(Aαqj
)) + v(ζj)γα


 ◦ (ϕApp

α )−1 when α = αqj

ϕApp
α ◦

(
0 v(βα)

0 v(tr(Aα))

)
◦ (ϕApp

α )−1 when α ∈ Icov \ (Itcov ∪ Iqcov)

.

Here remark that γα is independent of the moduli space M0
X for any α. When α = αti , we have

that vα(v) is holomorphic at ti.

3.5. Canonical coordinates. Now we introduce canonical coordinates on M0
X with respect to the

symplectic form (3.2). We recall that we have set N := 4g + n− 3.
Let π : Ω(D) → C and π0 : Ω → C be the total spaces of Ω1

C(D) and Ω1
C , respectively. The total

space Ω has the Liouville symplectic form ωLiouv. Since we have an isomorphism

π−1
0 (C \ Supp(D))

∼
−−→ π−1(C \ Supp(D)),
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the Liouville symplectic form induces a symplectic form π−1(C\Supp(D)). Let πN : SymN (Ω(D)) →
SymN (C) be the map induced by the map π : Ω(D) → C. We set

SymN (Ω(D))0 :=
{
{q1, . . . , qN} ∈ π−1

N (SymN (C \ Supp(D)))
∣∣ qj1 6= qj2 (j1 6= j2)

}
.

Then SymN (Ω(D))0 has the induced symplectic form from the Liouville symplectic form.

Remark 15. We have a map fApp,0 : M
0
X → SymN (Ω(D))0, which is described in (3.7). Notice

that M0
X and SymN (Ω(D))0 have symplectic forms. But by the explicit calculation as below, we

realize that this map fApp,0 does not preserve these symplectic structures. So fApp,0 does not give
canonical coordinates directly. To give canonical coordinates, we have to modify the map fApp,0 as
follows.

We twist Ω(D) by a class in H1(C,Ω1
C) as follows. Let cd be the image of the line bundle det(E)

under the morphism

H1(C,O∗
C)

d log
−−−−→ H1(C,Ω1

C)
∼= Ext1C(TC ,OC).

Let AC(cd) be the sheaf produced by the Atiyah sequence on C with respect to cd, that is, AC(cd)
is given by the extension

(3.16) 0 −→ OC −→ AC(cd) −→ TC −→ 0

with respect to cd ∈ H1(C,Ω1
C). Then, AC(cd) is naturally a Lie-algebroid, called the Atiyah

algebroid of the Gm-principal bundle Tot(TC) \ 0, where 0 stands for the 0-section; for details,
see [35, Section 3.1.2]. We denote by symb1 : AC(cd) → TC the morphism in (3.16). We consider
the subsheaf TC(−D) ⊂ TC . We set AC(cd, D) := symb−1

1 TC(−D), which is an extension

0 −→ OC −→ AC(cd, D) −→ TC(−D) −→ 0.

Let Ω1
C(D, cd) be the twisted cotangent bundle over C with respect to AC(cd, D), that is,

Ω1
C(D, cd) =

{
φ ∈ AC(cd, D)∨

∣∣ 〈φ, 1AC(cd,D)〉 = 1
}
.

We denote by
πcd : Ω(D, cd) −→ C

the total space of the twisted cotangent bundle Ω1
C(D, cd), and a generic element of this affine bundle

by (q, p̃) in analogy with classical notation (q, p) for points of Ω(D). For each (E,∇, {l(i)}) ∈ M0
X ,

we have (det(E), tr(∇)). The connection tr(∇) on the line bundle det(E) is considered as a global
section of Ω(D, cd) → C, which is the total space of the twisted cotangent bundle with respect to
det(E). The global section tr(∇) gives a diffeomorphism

Ω(D) −→ Ω(D, cd); (q, p) 7−→ (q, p+ tr(∇)).

Notice that tr(∇) does depend on M0
X . So this morphism depends on M0

X . Moreover, it is not a
morphism of vector bundles.

Definition 16. We define the accessory parameter associated to (E,∇) at qj by

p̃j = resqj (β) + tr(∇)|qj ,

where β ∈ H0(C, (Ω1
C)

⊗2(2D + B)) is the (1, 2)-entry of (2.9) and resqj (β) ∈ Ω1
C(D)|qj . The

N -tuple {(qj , p̃j)}j=1,2,...,N will be called canonical coordinates of (E,∇). We let fApp be the map

fApp : M
0
X −→ SymN (Ω(D, cd))

(E,∇, {l(i)}) 7−→ {(qj , p̃j)}j=1,2,...,N .
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Notice that the map fApp,0 in (3.7) is defined by using only resqj (β). The reason why we consider
the twisted cotangent bundle Ω(D, cd) is to justify tr(∇)|qj . The next proposition shows that the
quantities introduced in the definition may indeed be called coordinates.

Proposition 17. The map fApp introduced in Definition 16 is birational.

Proof. It follows from Proposition 10 that the dimensions of the source and target of fApp agree.
We therefore need to show two things: first, that fApp is rational, and second, that it admits an
inverse over a Zariski open subset of SymN (Ω(D, cd)).

The first assertion is trivial, because the construction of the apparent singularities qj and their
accessory parameters p̃j follow from algebraic arguments on certain Zariski open subsets.

The key statement is existence of a generic inverse. This is now a variant of Lemma 7. Namely,
fixing generic {(qj , p̃j)}j=1,2,...,N , we must find a unique (δ, β). Since we have δ = tr(∇0), we get
the expression

p̃j = ζj dzj + δ −
dzj
zj

.

An algebraic manipulation shows that the constraint (2.14) expressing that the singularity at qj be
apparent is equivalent to the holomorphicity and vanishing of the expression

(3.17) β + δ

(
p̃j +

dzj
zj

)
−

(
p̃j +

dzj
zj

)2

.

We now study these conditions by taking the Laurent expansion of this expression with respect to
zj . We first observe that it clearly admits a pole of order at most 2 at qj , because qj 6= ti. Since δ
has a simple pole with residue 1, the term of degree −2 is

(dzj)
⊗2 − (dzj)

⊗2 = 0.

So the pole is automatically at most simple.
For the study of the residue, we need to introduce some notation: let us write

δ0 =
dzj
zj

+ δ
(j)
0

β0 = ζj
(dzj)

⊗2

zj
+ β

(j)
0

for a holomorphic rank 1 connection δ
(j)
0 and a holomorphic quadratic differential β(j)

0 on Uqj . Then,
the degree −1 part of (3.17) is (up to a global factor dzj)

ζj dzj + p̃j +

(
δ −

dzj
zj

)
− 2p̃j = 0

by the definition of p̃j.
Finally, to deal with the vanishing constraint, we make use of the same basis expansions for δ

and β as in Lemma 7. Then, the conditions read as
N−g∑

k=1

bkνk(qj) + p̃j

g∑

l=1

dlωl(qj) = (p̃j)
⊗2 − δ

(j)
0 (qj)p̃j − β

(j)
0 (qj).

Now, the determinant of this linear system of N equations (for 1 ≤ j ≤ N) in N variables
b1, . . . , bN−g, d1, . . . , dg agrees with the determinant studied in Lemma 7, up to replacing each occur-
rence of ζj dzj by p̃j . The end of the proof then follows word by word the method of Lemma 7. �
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Remark 18. The expression (3.17) has variables p̃j in the twisted cotangent sheaf rather than
the ordinary cotangent sheaf. The quadratic polynomial of p̃j can be viewed as the characteristic
polynomial of the connection matrix of ∇0. Thus, in a sense the vanishing condition on (3.17) may
be interpreted as the requirement that p̃j lie on the quantum spectral curve of ∇0, see e.g. [11].

By taking a local trivialization of det(E), we have a concrete description of the map fApp. Now
we will discuss on such a description of fApp. The description discussed below is useful for the
proof of Theorem 20 below. Let (E,∇, {l(i)}) ∈ M0

X . As a local trivialization of det(E), we take
the isomorphism

(3.18) det(ϕApp
αqj

) : OUαqj
−→ det(E)|Uαqj

,

which is the determinant of the trivialization in Definition 13. Notice that the composition

OUαqj

ω−1
αqj

−−−→ (Ω1
C(D))−1|Uαqj

det(φ∇)|Uαqj

−−−−−−−−−→ det(E)|Uαqj

det(ϕApp
αqj

)−1

−−−−−−−−→ OUαqj

coincides with (zj − qj) : OUαqj
→ OUαqj

. Let tr(Aαqj
) ∈ Ω1

C(D)|Uαqj
be the connection matrix of

(det(E), tr(∇)) on Uαqj
with respect to the local trivialization det(ϕApp

αqj
). Then, by using (3.5), the

map fApp has the following description:

fApp : (E,∇, {l(i)}) 7−→
{(

qj , ζjγαqj
|qj + tr(Aαqj

)|qj

)}
j=1,2,...,N

,

Here ζjγαqj
|qj + tr(Aαqj

)|qj is an element of Ω1
C(D)|qj . We set

(3.19) pj := resqj

(
ζjγαqj

zj − qj

)
+ resqj

(
tr(Aαqj

)

zj − qj

)
,

which is the image of ζjγαqj
|qj + tr(Aαqj

)|qj under the isomorphism Ω1
C(D)|qj

∼= C.

Remark 19. This pj is just the evaluation of the (2, 2)-entry of the connection matrix Aαqj
in

(3.6) at qj. Note that the (2, 1)-entry of this connection matrix Aαqj
at qj vanishes. So pj is an

“eigenvalue” of ∇ at qj. (On the other hand, ζj is an “eigenvector” of ∇0 at qj). This fact means
that the coordinates (qj , pj)j are an analog of the coordinates on the moduli space of (parabolic)
Higgs bundles given as in [16] and [19]. The coordinates on the moduli space of (parabolic) Higgs
bundles are by using the BNR correspondence [3]. (See Section 6).

Let πcd,N : SymN (Ω(D, cd)) → SymN (C) be the map induced by the map πcd : Ω(D, cd) → C.
We set

SymN (Ω(D, cd))0 :=
{
{(qj , p̃j)}

N
j=1 ∈ π−1

cd,N
(SymN (C \ Supp(D)))

∣∣∣ qj1 6= qj2 (j1 6= j2)
}
.

Then SymN (Ω(D, cd))0 has the induced symplectic form from the Liouville symplectic form. Notice
that by construction the image of M0

X under the map fApp is contained in SymN (Ω(D, cd))0.

Theorem 20. Let ω be the symplectic form on M0
X defined by (3.2). The pull-back of the symplectic

form on SymN (Ω(D, cd))0 under the map

fApp : M
0
X −→ SymN (Ω(D, cd))0

in Definition 16 coincides with ω.
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Proof. Let V be an analytic open subset of M0
X as in Section 3.4. Moreover, we assume that we

may define a composition

V −→ fApp(V ) −→ SymN (C2
(q,p))

(E,∇) 7−→ fApp(E,∇) 7−→ {(qj , pj)}j=1,2,...,N ,

where pj is defined in (3.19), and the image of V under the composition is isomorphic to some
analytic open subset of C2N

(q,p). Let U(q,p) be such an analytic open subset of C2N
(q,p). We denote by

f2 the map
M0

X ⊃ V −→ U(q,p) ⊂ C
2N
(q,ζ)

(E,∇) 7−→ (q1, . . . , qN , p1, . . . , pN ).

We consider the following maps

U(q,ζ) V
f1

∼
oo

f2 // U(q,p).

Here f1 : V
∼
−→ U(q,ζ) is the isomorphism (3.8). The symplectic structure on U(q,p) induced by the

symplectic structure on SymN (Ω(D, cd)) is
∑N

j=1 dpj ∧ dqj . We will show that

(f−1
1 )∗(ω|V ) = (f2 ◦ f

−1
1 )∗




N∑

j=1

dpj ∧ dqj


 .

Let v, v′ be elements of T(qj ,ζj)jU(q,ζ) for (qj , ζj)j ∈ U(q,ζ). We will use the description of the tangent
map (3.10) of f−1

1 : U(q,ζ) → V . That is, we calculate (f−1
1 )∗(ω|V ) by applying the descriptions

(3.12) and (3.15) of uαβ(v) and vα(v), respectively.
First we consider {uαβ(v)uβγ(v

′)}αβγ . Remark that Uαqj1
∩Uαqj2

= ∅ for any j1 and j2, Uαti1
∩

Uαti2
= ∅ for any i1 and i2, and Uαqj

∩ Uαti
= ∅ for any j and i. Then we have uαβuβγ = 0 by

Lemma 14. So we may take a representative of the class in the pairing (3.2) so that

[−{tr(uαβ(v) ◦ vβ(v
′))− tr(vα(v) ◦ uαβ(v

′))}αβ ] ∈ H1(C,Ω1
C)

∼= C.

Now we calculate tr(uαβ(v) ◦ vβ(v′))− tr(vα(v) ◦ uαβ(v
′)). If α ∈ Icov \ (Itcov ∪ Iqcov) and β = αqj ,

then, by applying (3.12) and (3.15), we have the following equalities

(3.20)

tr(uααqj
(v)vαqj

(v′))− tr(vα(v)uααqj
(v′))

= tr

((
0

v(ζj)
zj−qj

0
v(qj)
zj−qj

)(
∗ ∗

−v′(qj)γαqj
v′(tr(Aαqj

)) + v′(ζj)γαqj

))

− tr

((
∗ ∗
0 v(tr(Aα))

)(
0

v′(ζj)
zj−qj

0
v′(qj)
zj−qj

))

= −
v(ζj)v

′(qj)γαqj

zj − qj
+

v(qj)
(
v′(tr(Aαqj

)) + v′(ζi)γαqj

)

zj − qj
−

v′(qj) (v(tr(Aα)))

zj − qj

= −

(
v(ζj)γαqj

+ v(tr(Aα))
)
v′(qj)

zj − qj
+

v(qj)
(
v′(tr(Aαqj

)) + v′(ζi)γαqj

)

zj − qj
.
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Now we consider the difference between v(tr(Aαqj
)) and v(tr(Aα)). So we consider infinitesimal

deformation of (det(∇), tr(∇)). We have that

det(Bααqj
) = det

((
1 0
0 ((ω−1

α )−1 ◦ ω−1
αqj

)

)(
1

ζj
zj−qj

0 1
zj−qj

))
=

((ω−1
α )−1 ◦ ω−1

αqj
)

zj − qj
.

Here Bααqj
is calculated in (3.14). Set

(3.21) udet
ααqj

(v) := det(Bααqj
)−1v(det(Bααqj

)) =
v(qj)

zj − qj
.

Here remark that ((ω−1
α )−1 ◦ ω−1

αqj
) is independent of the moduli space M0

X . We have a cocycle
condition

v(tr(Aαqj
))− v(tr(Aα)) = tr(∇) ◦ udet

ααqj
− udet

ααqj
◦ tr(∇).

So we have

v(tr(Aαqj
))− v(tr(Aα)) = d

(
v(qj)

zj − qj

)
= −

v(qj) dzj
(zj − qj)2

.

By applying this difference to (3.20), we have that
(3.22)

tr(uααqj
(v)vαqj

(v′))− tr(vα(v)uααqj
(v′))

= −

(
v(ζj)γαqj

+ v(tr(Aαqj
))
)
v′(qj)

zj − qj
+

v(qj)
(
v′(tr(Aαqj

)) + v′(ζi)γαqj

)

zj − qj
−

v(qj)v
′(qj) dzj

(zj − qj)3
.

So we may extend the 1-form

tr(uααqj
(v)vαqj

(v′))− tr(vα(v)uααqj
(v′))

from Uααqj
to Uαqj

by (3.22). Then we have a meromorphic 1-form defined on Uαqj
, which has a

pole at qj . We denote by ωαqj
(v, v′) the meromorphic 1-form defined on Uαqj

.
Next we consider the case where α ∈ Icov \ (Itcov ∪ Iqcov) and β = αti . We have the following

equalities

tr(uααti
(v)vαti

(v′))− tr(vα(v)uααti
(v′))

= tr
(
(gtiαti

)−1v(gtiαti
)v′(Aαti

)
)
− tr

((
(gtiαti

)−1v(Aα)g
ti
αti

)
(gtiαti

)−1v′(gtiαti
)
)

We have the cocycle condition

v(Aαti
)− (gtiαti

)−1v(Aα)(g
ti
αti

)

= (d+Aαti
) ◦
(
(gtiαti

)−1v(gtiαti
)
)
−
(
(gtiαti

)−1v(gtiαti
)
)
◦ (d+Aαti

)

= d
(
(gtiαti

)−1v(gtiαti
)
)
+
[
Aαti

,
(
(gtiαti

)−1v(gtiαti
)
) ]

.

By this condition, we have

(3.23)

tr(uααti
(v)vαti

(v′))− tr(vα(v)uααti
(v′))

= tr
(
(gtiαti

)−1v(gtiαti
)v′(Aαti

)
)
− tr

(
v(Aαti

)(gtiαti
)−1v′(gtiαti

)
)

+ tr
((

d
(
(gtiαti

)−1v(gtiαti
)
)
+
[
Aαti

,
(
(gtiαti

)−1v(gtiαti
)
)])

(gtiαti
)−1v′(gtiαti

)
)
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So we may extend the 1-form

tr(uααti
(v)vαti

(v′))− tr(vα(v)uααti
(v′))

from Uααti
to Uαti

by (3.23). Since we have the vanishing of the lower terms (3.13), the extended
1-form defined on Uαti

is holomorphic. We denote by ωαti
(v, v′) the holomorphic 1-form defined

on Uαti
.

For α ∈ Icov \ (Itcov ∪ Iqcov), we set ωα(v, v
′) = 0. By (3.22) and (3.23), we have a meromorphic

coboundary {ωα(v, v
′)}α of

{tr(uαβ(v) ◦ vβ(v
′))− tr(vα(v) ◦ uαβ(v

′))}αβ .

So we have

H1(C,Ω1
C)

∼=
−−→ C

[−{tr(uαβ(v) ◦ vβ(v
′))− tr(vα(v) ◦ uαβ(v

′))}αβ ] 7−→
∑

x∈C

−resx (ωα(v, v
′)) .

By taking the residues of the right hand sides of (3.22) and (3.23), we have that

−
∑

x∈C

resx (ωα(v, v
′)) =

N∑

j=1

resqj




(
v(ζj)γαqj

+ v(tr(Aαqj
))
)
v′(qj)

zj − qj




−
N∑

j=1

resqj



v(qj)

(
v′(tr(Aαqj

)) + v′(ζi)γαqj

)

zj − qj




=

N∑

j=1

(v(pj)v
′(qj)− v(qj)v

′(pj)) =




N∑

j=1

dpj ∧ dqj


 (v, v′).

Here remark that γα is independent of the moduli space M0
X for any α. �

By the map fApp, we have concrete canonical coordinates as follows. We take an analytic
open subset V of M0

X at a point (E,∇), which is small enough. We define functions qj and pj
(j = 1, 2, . . . , N) on V as follows. (So, here, the notation qj has a double meaning). Let Uαqj

be an
analytic open subset of C such that Uαqj

contains the apparent singularity qj of the point (E,∇)

and is small enough. Let q′j be the apparent singularity of each (E′,∇′) ∈ V , where q′j ∈ Uαqj
.

First we take a local coordinate zj on Uαqj
. By evaluating the apparent singularity q′j by the local

coordinate zj for each (E′,∇′) ∈ V , we have a function qj : V → C. Second, let (EV ,∇V ) be a
vector bundles on C × V , which is a family of vector bundles on C parametrized by V . We take
a trivialization of det(EV ) on Uαqj

× V which depends on only qj : V → C (which is described
in (3.18)). We take the connection matrix of tr(∇V ) with respect to the local trivialization. Let
Ω(D, cd)V → C × V be the relative twisted cotangent bundle over V with respect to the family of
line bundles det(EV ) on C × V . We have an identification between Ω(D, cd)V and Ω(D) × V on
Uαqj

×V that depends only on qj : V → C. By evaluating resq′j (β
′)+ tr(∇′)|q′j by the identification

Ω(D, cd)|q′j
∼= Ω(D)|q′j

∼= C for each (E′,∇′) ∈ V , we have a function pj : V → C. This is just
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(3.19). That is, this is the following composition:

V −→ Uαqj
× V −→ Ω(D, cd)V |Uαqj

×V −→ Ω(D)|Uαqj
−→ C

(E′,∇′) 7−→ (q′j , (E
′,∇′)) 7−→

(
(ζjγαqj

)V + tr(∇V )
)
|(q′j ,(E′,∇′))

7−→
(
ζ′jγαqj

+ tr(A′
αqj

)
)
|q′

j
7−→ resq′

j

(
ζ′jγαqj

+ tr(A′
αqj

)

zj − q′j

)
.

By Theorem 20, the symplectic structure on V has the following description:
∑N

j=1 dpj ∧ dqj .

Remark 21. We set

p0j := resqj

(
ζjγαqj

zj − qj

)
∈ C.

If g = 0, then resqj

(
tr(Aαqj

)

zj−qj

)
depends on only qj. So we have

∑N
j=1 dpj ∧ dqj =

∑N
j=1 dp

0
j ∧ dqj .

Here the symplectic form
∑N

j=1 dp
0
j ∧ dqj is induced by the symplectic form on SymN (Ω(D))0.

Remark 22. In general,
∑N

j=1 dpj ∧ dqj 6=
∑N

j=1 dp
0
j ∧ dqj, that is,

(3.24)
∑

j

d

(
resqj

(
tr(Aαqj

)

zj − qj

))
∧ dqj

does not vanish. This is related to the determinant map

M0
X −→ M rk=1

X (νres)

(E,∇, {l(i)}) 7−→ (det(E), tr(∇)).

The 2-form (3.24) comes from
[
{udet

αβ (v)u
det
βγ (v

′)},−{udet
αβ (v)v

′(tr(Aβ))− v(tr(Aα))u
det
αβ (v

′)}
]
∈ H

2(OC → Ω1
C).

Here udet
αβ (v) is defined as in (3.21). This class gives rise to the 2-form on M0

X which is just the pull-

back of the natural symplectic form on M rk=1
X (θres) under the determinant map. The determinant

map is not degenerate in general. So the class (3.24) does not vanish in general.

4. Symplectic structure on the moduli space with fixed trace connection

In this section, we consider the moduli spaces of rank 2 quasi-parabolic connections with fixed
trace connection. When the effective divisor D is reduced, this moduli space is detailed in [1], [37]
(when g = 0), [12], [13] (when g = 1), and [39] (when g ≥ 1). The moduli spaces of rank 2 quasi-
parabolic connections with fixed trace connection has a natural symplectic structure described as
in Section 3.2. The purpose of this section is to give coordinates on some generic part of the moduli
space and to describe the natural symplectic structure by using the coordinates. As in the case
where the effective divisor D is reduced ([37], [12], [13], [39]), we may define the map forgetting
connections and the apparent map. These maps are from a generic part of the moduli space to
projective spaces. These maps will give our coordinates on the generic part of the moduli space.
First we describe these maps.
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4.1. Moduli space of quasi-parabolic bundles with fixed determinant. To describe the
map forgetting connections, we recall the moduli space of quasi-parabolic bundles. The moduli
space of (quasi-)parabolic bundles was introduced in Mehta–Seshadri [40]. Yokogawa generalized
this notion to (quasi-)parabolic sheaves and studied their moduli [48].

Let ν be a positive integer. Set I := {1, 2, . . . , ν}. Let C be a compact Riemann surface of
genus g, and D =

∑
i∈I mi[ti] be an effective divisor on C. We assume 3g − 3 + n > 0 where

n = length(D). Let zi be a generator of the maximal ideal of OC,ti . We fix a line bundle L0 with
deg(L0) = 2g − 1.

Definition 23. We say (E, {l(i)}) a rank 2 quasi-parabolic bundle with determinant L0 over (C,D)
if

(i) E is a rank 2 vector bundle of degree 2g − 1 on C with det(E) ∼= L0, and
(ii) E|mi[ti] ⊃ l(i) ⊃ 0 is a filtration by free Omi[ti]-modules such that E|mi[ti]/l

(i) ∼= Omi[ti] and

l(i) ∼= Omi[ti] for any i ∈ I.

We fix weights w = (w1, . . . , wν) such that wi ∈ [0, 1] for any i ∈ I. When g = 0, we assume
that (wi)i∈I satisfies

(4.1) w1 = · · · = wν and
1

deg(D)
< wi <

1

deg(D)− 2
.

When g ≥ 1, we assume that (wi)i∈I satisfy

(4.2) 0 < wi ≪ 1.

Definition 24. Let (E, {l(i)}) be a rank 2 quasi-parabolic bundle with determinant L0. Let L be a
line subbundle of E. We define the w-stability index of L to be the real number

Stabw(L) := deg(E)− 2 deg(L) +
∑

i∈I

wi

(
mi − 2 length(li ∩ L|mi[ti])

)
.

Definition 25. A rank 2 quasi-parabolic bundle (E, {l(i)}) is w-stable if for any subbundle L ⊂ E,
the inequality Stabw(L) > 0 holds.

We say that a quasi-parabolic bundle (E, {l(i)}) is decomposable if there exists a decomposition
E = L1⊕L2 such that l(i) = l

(i)
1 or l(i) = l

(i)
2 for any i ∈ I, where we set l(i)1 := l(i) ∩ (L1|mi[ti]) and

l
(i)
2 := l(i)∩ (L2|mi[ti]). We say that (E, {l(i)}) is undecomposable if (E, {l(i)}) is not decomposable.

A free Omi[ti]-submodule l(i) of E|mi[ti] induces a one dimensional subspace l
(i)
red of E|ti , that is the

restriction of l(i) to ti (without multiplicity).

Lemma 26. Let (E, {l(i)}) be a rank 2 quasi-parabolic bundle with determinant L0. If

(i) E is an extension of L0 by OC (when g = 0, moreover we assume that (E, {l(i)}) is unde-
composable)

(ii) dimC H1(C,E) = 0

(iii) l
(i)
red 6∈ OC |ti ⊂ P(E) for any i,

then (E, {l(i)}) is w-stable.

Proof. When g = 0, we have this statement from [32, Proposition 46] by the condition (4.1). When
g ≥ 1, we have that E is stable, that is, deg(E)−2 deg(L) is a positive integer for any line subbundle
L ⊂ E. This claim follows from the same argument as in [39, Lemma 4.2]. Since 0 < wi ≪ 1 in
(4.2), we have that Stabw(L) > 0. �
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Let Pw

(C,D) be a moduli space of w-stable quasi-parabolic bundles constructed in [48]. Let
Pw

(C,D)(L0) be the fiber of L0 under the determinant map

Pw

(C,D) −→ Pic2g−1
C ; (E, {l(i)}) 7−→ det(E).

We set

P(C,D)(L0)0 :=




(E, {l(i)})

∣∣∣∣∣∣∣∣

(E, {l(i)}) is rank 2 quasi-parabolic bundle over (C,D) such that
(i) det(E) ∼= L0, (ii) E is an extension of L0 by OC ,
(iii) dimC H1(C,E) = 0, (iv) l

(i)
red 6∈ OC |ti ⊂ P(E) for any i,

(v) (E, {l(i)}) is undecomposable (when g = 0)





.

By Lemma 26, we have an inclusion

P(C,D)(L0)0 ⊂ Pw

(C,D)(L0).

For (E, {l(i)}) ∈ P(C,D)(L0)0, we have an extension

(4.3) 0 −→ OC −→ E −→ L0 −→ 0.

Since dimC H1(C,E) = 0, we have that dimC H0(C,E) = 1. So the injection OC
⊂
−→ E in (4.3) is

unique up to a constant.

Definition 27. Let (E, {l(i)}) ∈ P(C,D)(L0)0. We take an affine open covering {Uα}α of C, i.e.

C =
⋃

α Uα. Let {ϕExt
α }α be trivializations ϕExt

α : O⊕2
Uα

→ E|Uα
of the underlying vector bundle E

such that

(i) the composition

OUα
−→ O⊕2

Uα

ϕExt
α−−−→ E|Uα

f 7−→ (f, 0)

is just the inclusion OC ⊂ E of the extension (4.3) for any α, and
(ii) the image of the composition

OUα
−→ O⊕2

Uα

ϕExt
α−−−→ E|Uα

−→ E|mi[ti]

f 7−→ (0, f)

generates the submodule l(i) ⊂ E|mi[ti] for each i and α where ti ∈ Uα.

Notice that the claim that we may take ϕExt
α which satisfies the condition (ii) of Definition 27

follows from the condition that l
(i)
red 6∈ OC |ti ⊂ P(E) for any i.

Now we define a map

(4.4) P(C,D)(L0)0 −→ PH1(C,L−1
0 (−D))

as follows. Let {ϕExt
α }α be the trivializations in Definition 27. We have the transition matrices

Bαβ := (ϕExt
α |Uαβ

)−1 ◦ ϕExt
β |Uαβ

: O⊕2
Uαβ

−→ O⊕2
Uαβ

.

We represent Bαβ as a matrix:

(4.5) Bαβ =

(
1 b12αβ
0 b22αβ

)
.
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Remark that {b22αβ}αβ is a multiplicative cocycle which defines the fixed line bundle L0. We take a
meromorphic coboundary

(4.6) {b22α }α

(
where b22αβ =

b22α
b22β

)

of the multiplicative cocycle {b22αβ}αβ. By using the coboundary {b22α }α, we define a cocycle

(4.7) bBun
αβ := b12αβb

22
α ,

which gives a class [{bBun
αβ }] ∈ H1(C,L−1

0 (−D)). Then we have a map (4.4):

(E, {l(i)}) 7−→ [{bBun
αβ }].

4.2. Moduli space of quasi-parabolic connections with fixed trace connection. Now we
recall the moduli space of quasi-parabolic connections. We fix an irregular curve with residues
X = (C,D, {zi}, {θi}, θres) defined in Definition 2. Moreover we assume that

(4.8)
∑

i∈I

θ−i,−1 6= 0.

Let (L0,∇L0 : L0 → L0 ⊗ Ω1
C(D)) be a rank 1 connection on C with degree 2g − 1 such that the

polar part of ∇L0 at ti is tr(ωi(X)).

Definition 28. We say (E,∇, λ, {l(i)}) a rank 2 quasi-parabolic λ-connection over X with fixed
trace connection (L0,∇L0) if

(i) E is a rank 2 vector bundle on C with det(E) ∼= L0,
(ii) λ ∈ C and ∇ : E → E⊗Ω1

C(D) is a λ-connection that is, ∇(fs) = λs⊗ df + f∇(s) for any
f ∈ OC and s ∈ E, and

(iii) ∇(s1) ∧ s2 + s1 ∧ ∇(s2) = λ∇L(s1 ∧ s2) for s1, s2 ∈ E,
(iv) E|mi[ti] ⊃ l(i) ⊃ 0 is a filtration by free Omi[ti]-modules such that, for any i ∈ I,

– E|mi[ti]/l
(i) ∼= Omi[ti] and l(i) ∼= Omi[ti],

– ∇|mi[ti](l
(i)) ⊂ l(i) ⊗ Ω1

C(D), and

– the image of (E|mi[ti]/l
(i))⊕ l(i) under Gri(∇)− λ · ωi(X) is contained in
(
(E|mi[ti]/l

(i))⊕ l(i)
)
⊗ Ω1

C .

Here Gri(∇) is the induced morphism

Gri(∇) : (E|mi[ti]/l
(i))⊕ l(i) −→

(
(E|mi[ti]/l

(i))⊕ l(i)
)
⊗ Ω1

C(D).

Notice that, if λ = 0, then ∇ is an OC -morphism, which is called a Higgs field. So (E,∇, λ, {l(i)})
is called a (trace free) quasi-parabolic Higgs bundle when λ = 0. We consider only rank 2 quasi-
parabolic λ-connections (E,∇, λ, {l(i)}) over X with (L0,∇L0) such that the underlying quasi-
parabolic bundle (E, {l(i)}) is in the moduli space P(C,D)(L0)0.

We define the moduli spaces M̃X(L0,∇L0)0 and MX(L0,∇L0)0 as follows:

M̃X(L0,∇L0)0 =





(E,∇, λ, {l(i)})
quasi-parabolic λ-connection
over X with trace (L0,∇L0)

∣∣∣∣∣∣
(E, {l(i)}) ∈ P(C,D)(L0)0





/
∼=
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and

MX(L0,∇L0)0 =





(E,∇, λ, {l(i)})
quasi-parabolic λ-connection
over X with trace (L0,∇L0)

∣∣∣∣∣∣
(E, {l(i)}) ∈ P(C,D)(L0)0
and λ 6= 0





/
∼= .

4.3. Maps from the moduli space. Now we describe two maps: the forgetful map πBun forgetting
connections and the apparent map πApp. First we consider the composition

M̃X(L0,∇L0)0 −→ P(C,D)(L0)0 −→ PH1(C,L−1
0 (−D)).

Here the first map is the forgetful map, and the second map is (4.4). We denote by

πBun : M̃X(L0,∇L0)0 −→ PH1(C,L−1
0 (−D)).

the composition.
Second we define a map

(4.9) πApp : M̃X(L0,∇L0)0 −→ PH0(C,L0 ⊗ Ω1
C(D))

as follows. Let (E,∇, λ, {l(i)}) be a point on M̃X(L0,∇L0)0. Let {ϕExt
α }α be the trivializations in

Definition 27. Let Aα be the connection matrix of the λ-connection ∇ with respect to ϕExt
α , that

is,
λd+Aα := (ϕExt

α )−1 ◦ ∇ ◦ ϕExt
α : O⊕2

Uα
−→ (Ω1

Uα
(D))⊕2.

We denote the matrix Aα as follows:

(4.10) Aα =

(
a11α a12α
a21α a22α

)
.

By the condition (ii) in Definition 27 and the condition (iv) in Definition 28, the polar part of the
connection matrix Aα at ti is a lower triangular matrix, that is, the Laurent expansion of Aα at ti
is as follows:

(4.11) Aα =

(
λν−i 0
∗ λν+i

)
1

zmi

i

+ [ holo. part ].

Here ν−i , ν+i ∈ Ω1
C(D)|mi[ti] are defined so that

λ · ωi(X) =

(
λν−i 0
0 λν+i

)
.

By using the coboundary {b22α }α in (4.6), we define cocycles

(4.12) aApp
α := a21α (b22α )−1,

which give a class [{aApp
α }] ∈ H0(C,L0 ⊗ Ω1

C(D)). Then we have a map (4.9):

(E,∇, λ, {l(i)}) 7−→ [{aApp
α }].

Finally, we have a map

(4.13) (πApp, πBun) : M̃X(L0,∇L0)0 −→ PH0(C,L0 ⊗ Ω1
C(D)) × PH1(C,L−1

0 (−D)).

We consider the natural pairing

(4.14) H0(C,L0 ⊗ Ω1
C(D))×H1(C,L−1

0 (−D)) −→ H1(C,Ω1
C)

∼= C.
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Lemma 29. Let (E,∇, λ, {l(i)}) ∈ M̃X(L0,∇L0)0. Let aApp
α and bBun

αβ be the cocycles in (4.7) and

in (4.12), respectively. Then we have

[{bBun
αβ · aApp

β }] = λ ·
∑

i∈I

θ−i,−1.

Here the left hand side is the pairing (4.14).

Proof. Let Bαβ be the transition function in (4.5). Let Aα be the connection matrix in (4.10).
Then we have

λ · dBαβ +AαBαβ = BαβAβ .

By comparing the (1, 1)-entries of the both hand sides, we have

a11α − a11β = bBun
αβ · aApp

β .

By (4.11) and the isomorphism H1(C,Ω1
C)

∼= C, we have [{bBun
αβ · aApp

β }}] = λ ·
∑

i θ
−
i,−1. �

Set

N0 := dimC PH0(C,L0 ⊗ Ω1
C(D)) = 3g + n− 3.

Let us introduce the homogeneous coordinates a = (a0 : · · · : aN0) on PH0(C,L0 ⊗ Ω1
C(D)) ∼= PN0

a

and the dual coordinates b = (b0 : · · · : bN0) on

PH1(C,L−1
0 (−D)) ∼= PH0(C,L0 ⊗ Ω1

C(D))∨ ∼= P
N0

b
.

Let Σ ⊂ PN0
a

× P
N0

b
be the incidence variety whose defining equation is given by

∑
j ajbj = 0. By

Lemma 29, we have that

M̃X(L0,∇L0)0 \MX(L0,∇L0)0
(πApp,πBun)

−−−−−−−−−→ Σ.

Remark 30. Loray–Saito (for g = 0) and Matsumoto (for g ≥ 1) discussed on the birationality
of the map (4.13). They showed the birationality of the map (4.13) when D is a reduced effective
divisor ([37, Theorem 4.3] for g = 0 and [39, Theorem 4.5] for g ≥ 1). In these cases, quasi-parabolic
connections have only simple poles. But we may apply the arguments in [37, Theorem 4.3] and in
[39, Theorem 4.5] to our cases where quasi-parabolic connections admit generic unramified irregular

singular points. So we can reconstruct (E,∇, λ, {l(i)}) ∈ M̃X(L0,∇L0)0 from an element of

PH1(C,L−1
0 (−D))0 × PH0(C,L0 ⊗ Ω1

C(D)).

Here we set

PH1(C,L−1
0 (−D))0 :=

{
b ∈ PH1(C,L−1

0 (−D))

∣∣∣∣
The extension E corresponding to b
satisfies dimC H1(C,E) = 0

}
.

Then we have isomorphisms

M̃X(L0,∇L0)0
∼= PH1(C,L−1

0 (−D))0 × PH0(C,L0 ⊗ Ω1
C(D))

and

MX(L0,∇L0)0
∼= PH1(C,L−1

0 (−D))0 × PH0(C,L0 ⊗ Ω1
C(D)) \ Σ.
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4.4. Symplectic structure and explicit description. Now we recall the natural symplectic
structure on MX(L0,∇L0)0. We define a complex F•

0 for (E, 1
λ
∇, {l(i)}) by

F0
0 :=

{
s ∈ End(E)

∣∣∣ tr(s) = 0, s|miti(l
(i)) ⊂ l(i) for any i

}

F1
0 :=

{
s ∈ End(E)⊗ Ω1

C(D)
∣∣∣ tr(s) = 0, s|miti(l

(i)) ⊂ l(i) ⊗ Ω1
C for any i

}

∇F• : F0
0 −→ F1

0 ; ∇F•
0
(s) = (

1

λ
∇) ◦ s− s ◦ (

1

λ
∇).

We define the following morphism

(4.15) H
1(F•

0 )⊗H
1(F•

0 ) −→ H
2(OC

d
−→ Ω1

C)
∼= C

as in (3.2). This pairing gives the symplectic form on MX(L0,∇L0)0. We denote by ω0 the
symplectic form.

The maps πApp and πBun give coordinates on MX(L0,∇L0)0 (see Remark 30). Now we describe
the symplectic structure (4.15) by using the coordinates on MX(L0,∇L0)0. We define a 1-form η

on PN0
a

× P
N0

b
as follows:

η :=

(
−
∑

i

θ−i,−1

)
·
a0 db0 + a1 db1 + · · ·+ aN0 dbN0

a0b0 + a1b1 + · · ·+ aN0bN0

.

Theorem 31. Assume that
∑

i∈I θ
−
i,−1 6= 0. Let ωa,b be the 2-form on PN0

a × P
N0

b
defined by

ωa,b = dη. The pull-back of ωa,b under the map

MX(L0,∇L0)0
(πApp,πBun)

−−−−−−−−−→ P
N0
a × P

N0

b

coincides with the symplectic form ω0 on MX(L0,∇L0)0.

Proof. Let v, v′ ∈ T(E, 1
λ
∇,{l(i)})MX(L0,∇L0)0. We have the isomorphism

T(E, 1
λ
∇,{l(i)})MX(L0,∇L0)0

∼=
−−→ H

1(F•
0 ).

Let uαβ(v) and vα(v) be cocycles such that the class [{uαβ(v)}αβ , {vα(v)}α] is the image of v under
the isomorphism. We calculate uαβ(v) and vα(v) by using the trivialization {ϕExt

α }α as follows:

(4.16)

uαβ(v) = ϕExt
β |Uαβ

◦
(
B−1

αβ v(Bαβ)
)
◦ (ϕExt

β |Uαβ
)−1

= ϕExt
β |Uαβ

◦

(
0 v(b12αβ)

0 0

)
◦ (ϕExt

β |Uαβ
)−1

= ϕExt
β |Uαβ

◦

(
0

v(bBun

αβ )

b22α

0 0

)
◦ (ϕExt

β |Uαβ
)−1

and

(4.17)

vα(v) = ϕExt
α ◦ v

(
1

λ
Aα

)
◦ (ϕExt

α )−1

= ϕExt
α ◦

(
v(a11α /λ) v(a12α /λ)
v(a21α /λ) v(a22α /λ)

)
◦ (ϕExt

α )−1

= ϕExt
α ◦

(
v(a11α /λ) v(a12α /λ)

v(aApp
α /λ)b22α v(a22α /λ)

)
◦ (ϕExt

α )−1.
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Here {b22α }α is the coboundary in (4.6). Since we fix the determinant bundle L0, we may assume
that the coboundary {b22α }α is independent of the moduli space MX(L0,∇L0)0.

Now we calculate the class

(4.18) [({tr(uαβ(v)uβγ(v
′))},−{tr (uαβ(v)vβ(v

′))− tr (vα(v)uαβ(v
′))})]

in H
2(OC

d
−→ Ω1

C)
∼= C. First we calculate uαβ(v)uβγ(v

′) as follows:

uαβ(v)uβγ(v
′)

= ϕExt
β |Uαβ

◦

(
0

v(bBun

αβ )

b22α

0 0

)
◦ (ϕExt

β |Uαβ
)−1 ◦ ϕExt

γ |Uαβ
◦

(
0

v(bBun

βγ )

b22α

0 0

)
◦ (ϕExt

γ |Uαβ
)−1

= ϕExt
β |Uαβ

◦

(
0

v(bBun

αβ )

b22α

0 0

)
Bβγ

(
0

v(bBun

βγ )

b22α

0 0

)
◦ (ϕExt

γ |Uαβ
)−1

= ϕExt
β |Uαβ

◦

(
0 0
0 0

)
◦ (ϕExt

γ |Uαβ
)−1 = 0.

So we may take a representative of the class (4.18) so that

[−{tr (uαβ(v)vβ(v
′))− tr (vα(v)uαβ(v

′))}]

is in H1(C,Ω1
C). By using equalities (4.16) and (4.17), we have the following equality

(4.19) tr (uαβ(v)vβ(v
′))− tr (vα(v)uαβ(v

′)) = v(bBun
αβ )v′

(
aApp
β

λ

)
− v

(
aApp
α

λ

)
v′(bBun

αβ ).

We take bases

aApp(0), aApp(1), . . . , aApp(N0) ∈ H0(C,L0 ⊗ Ω1
C(D))

of H0(C,L0 ⊗ Ω1
C(D)) and

[{b
App(0)
αβ }], [{b

App(1)
αβ }], . . . , [{b

App(N0)
αβ }]

of H1(C,L−1
0 (−D)) so that these bases give the homogeneous coordinates (a0 : · · · : aN0) on PN0

a

and (b0 : · · · : bN0) on P
N0

b
. We may assume that these bases are independent of the moduli space

MX(L0,∇L0)0. We set

aApp
α = a0a

App(0)|Uα
+ a1a

App(1)|Uα
+ · · ·+ aN0a

App(N0)|Uα

and

bApp
αβ = b0b

App(0)
αβ + b1b

App(1)
αβ + · · ·+ bN0b

App(N0)
αβ .
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By (4.19), we have that

tr (uαβ(v)vβ(v
′))− tr (vα(v)uαβ(v

′)) = v

(
N0∑

k=0

bkb
App(k)
αβ

)
v′

(∑N0

k=0 aka
App(k)|Uα

λ

)

− v

(∑N0

k=0 aka
App(k)|Uα

λ

)
v′

(
N0∑

k=0

bkb
App(k)
αβ

)

=

(
N0∑

k=0

v (bk) b
App(k)
αβ

)(
N0∑

k=0

v′
(ak
λ

)
aApp(k)|Uα

)

−

(
N0∑

k=0

v
(ak
λ

)
aApp(k)|Uα

)(
N0∑

k=0

v′ (bk) b
App(k)
αβ

)
.

Since (b0 : · · · : bN0) is dual of (a0 : · · · : aN0) with respect to the natural pairing

H0(C,L0 ⊗ Ω1
C(D))×H1(C,L−1

0 (−D)) −→ H1(C,Ω1
C)

∼= C,

we have that
tr (uαβ(v)vβ(v

′))− tr (vα(v)uαβ(v
′))

=

N0∑

k=0

v (bk) v
′
(ak
λ

)
−

N0∑

k=0

v′ (bk) v
(ak
λ

)
.

On the other hand, we have that

λ =
〈[{aApp

α }, [{bBun
αβ }]〉

−
∑

i θ
−
i,−1

=
a0b0 + a1b1 + · · ·+ aN0bN0

−
∑

i θ
−
i,−1

.

Then we have
H1(C,Ω1

C)
∼=

−−→ C

[−{tr (uαβ(v)vβ(v
′))− tr (vα(v)uαβ(v

′))}] 7−→ dη(v, v′).

This means the statement. �

5. Companion normal forms for an elliptic curve with two poles

In Section 2, we introduced the companion normal form of a rank 2 meromorphic connection
with some assumption. The purpose of the present section is to detail the case of an elliptic curve
with two simple poles, or with an unramified irregular singularity of order 2. The latter case arises
by confluence from the first one, up to some modification in the arguments. We will give explicit
description of the companion normal form for an elliptic curve in these cases. Moreover, we will
calculate the canonical coordinates introduced in Section 3.5. First we start from construction of
the companion normal form (OC ⊕ (Ω1

C(D))−1,∇0). Next we will construct a rank 2 meromorphic
connection (E,∇) by transforming the companion normal form.

Let C be the elliptic curve constructed by gluing affine cubic curves

U0 := (y21 − x1(x1 − 1)(x1 − λ) = 0) and U∞ := (y22 − x2(1− x2)(1− λx2) = 0)

with the relations x1 = x−1
2 and y1 = y2x

−2
2 . We fix some t ∈ C and set D = t1+t2 where t1 = (t, s)

and t2 = (t,−s), so that D is the positive part of div(x− t). Let q1, q2, q3 be points on C:

qj : (x1, y1) = (uj , vj)
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for each j = 1, 2, 3. Now we assume that uj 6∈ {0, 1, λ,∞, t} for any j.
We take trivialization of the line bundle (Ω1

C(D))−1 over C as follows:

(5.1) OU0

∼
−−→ (Ω1

C(D))−1|U0 ; 1 7−→

(
dx1

(x1 − t)y1

)−1

and

(5.2) OU∞

∼
−−→ (Ω1

C(D))−1|U∞
; 1 7−→

(
dx2

(1− tx2)y2

)−1

.

Then the corresponding transition function f0∞ is as follows:

(5.3)
f∞0 : OU0 |U0∩U∞

∼
−−→ OU∞

|U0∩U∞

1 7−→ −
1

x2
.

5.1. Definition of a connection ∇0 on OC ⊕ (Ω1
C(D))−1. For ζ1, ζ2, ζ3 ∈ C, we define 1-forms

ω12, ω21, and ω22 as follows:

(5.4)

ω12 =

3∑

j=1

ζj
2

·
y1 + vj
x1 − uj

·
dx1

y1
+

(
A1 +A2y1
x1 − t

+A3 +A4x1

)
dx1

y1

ω21 :=
1

x1 − t

dx1

y1

ω22 :=

3∑

j=1

1

2
·
y1 + vj
x1 − uj

·
dx1

y1
+

(
B1 +B2y1
x1 − t

+B3

)
dx1

y1
.

Here A1, . . . , A4 ∈ C and B1, . . . , B3 ∈ C are parameters. Notice that ω12 ⊗ ω21 is a global section
of (Ω1

C)
⊗2(2D +B) and ω22 is a global section of Ω1

C(D +B +∞).

5.1.1. Fixing the polar parts in the logarithmic case. We start by analyzing the case where t /∈
{0, 1, λ,∞}. In this case, we have s 6= 0, so t1 6= t2. We fix complex numbers θ±1 , θ

±
2 such that∑2

i=1(θ
+
i + θ−i ) = −1, which is called Fuchs’ relation. Now we assume that the eigenvalues of the

matrix

rest1

(
0 ω12

ω21 ω22

)

are given by θ+1 , θ
−
1 and the eigenvalues of the matrix

rest2

(
0 ω12

ω21 ω22

)

are given by θ+2 , θ
−
2 . (To be coherent with Definition 2, we should write θ1,−1 and θ2,−1 for elements

of the Cartan subalgebra, and θ±1,−1 and θ±2,−1 for their eigenvalues; however, we drop the subscript
−1 for ease of notation, because there are only poles of order 1, so no confusion is possible.)
Specifically, these conditions read as

(5.5) res(t,s)ω12 · res(t,s)ω21 = θ+1 · θ−1 , res(t,−s)ω12 · res(t,−s)ω21 = θ+2 · θ−2 ,

and

(5.6) res(t,s)ω22 = θ+1 + θ−1 , res(t,−s)ω22 = θ+2 + θ−2 .
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Notice that res(uj ,vj)ω22 = 1 for each j. By the residue theorem, res∞ω22 = −2. By the assumption
(5.5) and (5.6), we may determine the parameters A1, A2, B1, and B2.

Lemma 32. Let complex numbers θ±1 , θ
±
2 satisfying Fuchs’ relation be given. Then, there exist

unique values of the parameters A1, A2, B1, and B2 such that (5.5) and (5.6) are fulfilled. Moreover,
these parameter values are independent of u1, u2, u3, ζ1, ζ2, and ζ3. So the polar parts of ω12, ω21,
and ω22 at ti are independent of u1, u2, u3, ζ1, ζ2, and ζ3.

Proof. By the equalities (5.5), we have

A1 +A2s

s
·
1

s
= θ+1 · θ−1 and

A1 −A2s

−s
·
1

−s
= θ+2 · θ−2 .

By the equalities in (5.6), we have

B1 +B2s

s
= θ+1 + θ−1 and

B1 −B2s

−s
= θ+2 + θ−2 .

By these equalities, A1, A2, B1, and B2 are determined, and A1, A2, B1, and B2 are independent of
u1, u2, u3, ζ1, ζ2, and ζ3. It is clear that the polar parts of ω12, ω21, and ω22 at ti are independent
of u1, u2, u3, ζ1, ζ2, and ζ3. �

5.1.2. Fixing the polar part in the irregular case. We now study the situation t ∈ {0, 1, λ,∞}. For
sake of concreteness, we let t = 0, the other cases being similar. Then, s = 0 and t1 = t2, so
the divisor D is reduced of length 2. A local holomorphic coordinate of the elliptic curve C in a
neighbourhood of t1 is given by y1.

We fix θ±−2, θ
+
−1 ∈ C so that θ+−2 6= θ−−2 and set θ−−1 = −1−θ+−1. (To be coherent with Definition 2,

we should write θ1,−2 and θ1,−1 for elements of the Cartan subalgebra, and θ±1,−2 and θ±1,−1 for their
eigenvalues; however, we omit the subscript 1 for ease of notation, because there is only one singular
point, so no confusion is possible.)

Lemma 33. Fix θ±−2, θ
±
−1 as above. Then, there exist unique values A1, A2, B1, B2 ∈ C such that

the eigenvalues of

res

(
0 ω12

ω21 ω22

)

admit Laurent expansions of the form
(
θ±−2

1

y21
+ θ±−1

1

y1
+O(1)

)
⊗ dy1.

Moreover, the values of the solutions are independent of ui, ζi.

Proof. By the inverse function theorem, there exists an analytic open subset U ⊂ C and a holomor-
phic function h : U → C satisfying h(0) = 0 such that C is given by the explicit equation x1 = h(y21).
It is obvious that this function h is independent of the choice of ui, ζi, and it is easy to see that
h′(0) = 1

λ
6= 0. From the defining equation of C we get

dx1

y1
=

2dy1
3x2

1 − 2(1 + λ)x1 + λ
,

so dx1

y1
is a holomorphic 1-form around t1. Moreover,

dx1

x1y1
=

dy1
y21

g(y21)
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for some holomorphic function g : U → C satisfying g(0) = 2. The polar parts of the coefficients
can be separated as

ω12 = (A1 +A2y1)
dx1

x1y1
+O(1) = 2(A1 +A2y1)

dy1
y21

+O(1)

ω21 = 2
dy1
y21

+O(1)

ω22 = (B1 +B2y1)
dx1

x1y1
+O(1) = 2(B1 +B2y1)

dy1
y21

+O(1).

Now, the sum of the eigenvalues must be

(θ+−2 + θ−−2)
1

y21
+ (θ+−1 + θ−−1)

1

y1
.

These conditions determine

B1 =
1

2
(θ+−2 + θ−−2), B2 =

1

2
(θ+−1 + θ−−1) = −

1

2
.

Moreover, we have

−ω12ω21 = −4(A1 +A2y1)
(dy1)

⊗2

y41
+O

(
1

y21

)
.

On the other hand, the product of the eigenvalues must have the expansion (up to a global factor
(dy1)

⊗2)

θ+−2θ
−
−2

1

y41
+ (θ+−2θ

−
−1 + θ−−2θ

+
−1)

1

y31
.

These condition then determine

A1 = −
1

4
θ+−2θ

−
−2, A3 = −

1

4
(θ+−2θ

−
−1 + θ−−2θ

+
−1).

This finishes the proof. �

5.1.3. Construction of the connection. We define

β : (Ω1
C(D))−1 −→ Ω1

C(D +B) (OC -morphism)

δ : (Ω1
C(D))−1 −→ (Ω1

C(D))−1 ⊗ Ω1
C(D +B) (connection)

γ : OC −→ (Ω1
C(D))−1 ⊗ Ω1

C(D) (OC -morphism)

by using the trivializations (5.1) and (5.2) of (Ω1
C(D))−1 as follows:

β =

{
ω12 : OU0 → OU0 ⊗ Ω1

C(D +B)|U0

id ◦ ω12 ◦ f
−1
∞0 : OU∞

→ OU∞
⊗ Ω1

C(D +B)|U∞
,

δ =

{
d+ω22 : OU0 → OU0 ⊗ Ω1

C(D +B)|U0

d+f∞0 ◦ ω22 ◦ f
−1
∞0 + f∞0 ◦ df

−1
∞0 : OU∞

→ OU∞
⊗ Ω1

C(D +B)|U∞
,

γ :=

{
ω21 : OU0 → OU0 ⊗ Ω1

C(D +B)|U0

f∞0 ◦ ω21 ◦ id : OU∞
→ OU∞

⊗ Ω1
C(D +B)|U∞

.

Here f∞0 is the transition function of (Ω1
C(D))−1 described in (5.3). Notice that

f∞0 ◦ ω22 ◦ f
−1
∞0 + f∞0 ◦ df

−1
∞0 = ω22 +

dx2

x2
,
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which is holomorphic at ∞ ∈ C, since we have res∞ω22 = −2. We define a connection as follows:

(5.7) ∇0 := d+

(
0 β
γ δ

)
: OC ⊕ (Ω1

C(D))−1 −→
(
OC ⊕ (Ω1

C(D))−1
)
⊗ Ω1

C(D +B),

which is the companion normal form. Remark that

resqj (∇0) =

(
0 ζj
0 1

)

for j = 1, 2, 3.

Lemma 34. The fact that ∇0 has apparent singular points at q1, q2, q3 imposes 3 linear conditions
on A3, A4, B3 in terms of spectral data, and ((uj , vj), ζj)’s; we can uniquely determine A3, A4, B3

from these conditions if, and only if, we have

(5.8) det



1 u1 ζ1
1 u2 ζ2
1 u3 ζ3


 6= 0.

Proof. It is just Lemma 7 specified to the present elliptic case with 2 poles. We set

(5.9) Cj =
∑

j′∈{1,2,3}\{j}

ζj′ − ζj
2

·
vj + vj′

uj − uj′
+

A1 +A2vj − ζj(B1 +B2vj)− ζ2j
uj − t

.

We denote by ((aj)j , (bj)j , (cj)j) the 3× 3-matrix

((aj)j , (bj)j , (cj)j) =



a1 b1 c1
a2 b2 c2
a3 b3 c3


 .

The condition where q1, q2, q3 are apparent singularities means that

(5.10) ((1)j , (uj)j , (−ζj)j)



A3

A4

B3


 = −



C1

C2

C3


 .

By Cramer’s rule, the parameters A3, A4, B3 of the family of connections ∇0 are uniquely deter-
mined

A3 = −
det((Cj)j , (uj)j , (ζj)j)

det(((1)j , (uj)j , (ζj)j))
A4 = −

det((1)j , (Cj)j , (ζj)j)

det((1)j , (uj)j , (ζj)j)

B3 =
det((1)j , (uj)j , (Cj)j)

det((1)j , (uj)j , (ζj)j)
,

if and only if (5.8). �

Lemma 35. We have:

det



1 u1 ζ1
1 u2 ζ2
1 u3 ζ3


 = 0

if, and only if, E is not stable.

Proof. The vanishing of the determinant gives that ζj = σ(qj) for a global section σ ∈ H0(C,Ω1
C(D)).

In other words, the quasi-parabolic structure on E0 given over each qj by the eigenvectors corre-
sponding to eigenvalue 1 lie on a subbundle (Ω1

C(D))−1 ⊂ E0. After elementary transformations at
each qj , we get L ⊂ E with deg(L) = 1 (in fact L = det(E)). �
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5.2. Definition of a rank 2 vector bundle E. We set

Ũ0 := U0 \ {q1, q2, q3} and Ũ∞ := U∞ \ {q1, q2, q3}.

We take an analytic open subsets Ũqj (j = 1, 2, 3) of C such that qj ∈ Ũqj and Ũqj are small
enough. In particular, (uj,−vj) 6∈ Ũqj . On Ũqj , the apparent singular point qj is defined by
x1 − uj = 0. We have an open covering (Ũk)k∈{0,1,q1,q2,q3} of C. We define transition functions
Bk1k2 (k1, k2 ∈ {0, 1, q1, q2, q3}) as follows:

B0qj :=

(
1

ζj
x1−uj

0 1
x1−uj

)
: O⊕2

Ũqj

|Ũ0∩Ũqj

∼
−−→ O⊕2

Ũ0
|Ũ0∩Ũqj

;

B0∞ :=

(
1 0
0 −x2

)
: O⊕2

Ũ∞

|Ũ0∩Ũ∞

∼
−−→ O⊕2

Ũ0
|Ũ0∩Ũ∞

.

Then we have a vector bundle

E =
(
(Ũk)k∈{0,1,q1,q2,q3}, (Bk1k2)k1,k2∈{0,1,q1,q2,q3}

)
,

where E is trivial on each Ũk and the transition function from Ũk2 to Ũk1 is Bk1k2 .

5.3. Definition of a connection ∇ on E. We define matrices A0, Aqj , A∞ as follows:

A0 :=

(
0 ω12

ω21 ω22

)
, A∞ :=

(
0 −x2ω12

−ω21

x2
ω22 +

dx2

x2

)
,

Aqj :=

(
ω
(j)
11

ω
(j)
12

x1−uj

(x1 − uj)ω21 ω
(j)
22

)
.

The 1-form ω12, ω21, and ω22 are defined in (5.4). The 1-form ω
(j)
12 , ω(j)

21 , and ω
(j)
22 are defined as

follows:

ω
(j)
11 = −

ζj
x1 − t

·
dx1

y1
,

ω
(j)
12 =

∑

j′∈{1,2,3}\{j}

ζj′ − ζj
2

·
y1 + vj′

x1 − uj′
·
dx1

y1

+

(
A1 +A2y1 − ζj(B1 +B2y1)− ζ2j

x1 − t
+A3 +A4x1 − ζjB3

)
dx1

y1
,

ω
(j)
22 =

1

2
·
−y1 + vj
x1 − uj

·
dx1

y1
+

∑

j′∈{1,2,3}\{j}

1

2
·
y1 + vj′

x1 − uj′
·
dx1

y1

+

(
B1 +B2y1
x1 − t

+B3 +
ζj

x1 − t

)
dx1

y1
.

Proposition 36. • The (1, 2)-entry of Aqj is a section of Ω1
C(D)|Ũqj

for each j = 1, 2, 3.

• We define a local connection on each Ũk (k ∈ {0, 1, q1, q2, q3}) by




d+A0 : O
⊕2

Ũ0
−→ O⊕2

Ũ0
⊗ Ω1

C(D)|Ũ0
on Ũ0

d+Aqj : O
⊕2

Ũqj

−→ O⊕2

Ũqj

⊗ Ω1
C(D)|Ũqj

on Ũqj

d+A∞ : O⊕2

Ũ∞

−→ O⊕2

Ũ∞

⊗ Ω1
C(D)|Ũ∞

on Ũ∞.
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Then we can glue these local connections. So we have a global connection ∇ : E → E ⊗
Ω1

C(D) on E.

Proof. Since A3, A4, B3 are determined so that these parameters satisfy the condition (5.10), we
have

ω
(j)
12 |qj = (Cj +A3 +A4uj − ζjB3)

dx1|qj
vj

= 0.

Here, Cj is in (5.9). So ω
(j)
12

x1−uj
has no pole at qj for each j = 1, 2, 3. Since we have

B−1
k1k2

Ak1Bk1k2 +B−1
k1k2

dBk1k2 = Ak2

for each k1, k2 ∈ {0,∞, q1, q2, q3}, the connection ∇ acting on E is defined globally. �

Remark 37. By Definition 13 in Section 3.3, we have trivializations of E. On C \ {t1, t2}, the
trivializations in Definition 13 coincide with the trivializations described in the present section. We
have defined the trivialization in Definition 13 at ti (i = 1, 2) so that the residue matrix (respectively,
the polar part in the reduced case) is a diagonal matrix. On the other hand, by the trivializations
described in the present section, the residue matrix at ti (i = 1, 2) (respectively, the polar part) is
not a diagonal matrix. The reason why the residue matrix at ti (i = 1, 2) is a diagonal matrix is
that the corresponding description of the variation (3.11) satisfies the compatibility conditions of
the quasi-parabolic structure in F0 and F1 of (3.1). On the other hand, now we are interested in
behavior of the connection ∇ around qj (j = 1, 2, 3). So now we do not consider the diagonalization
of the residue matrices at ti (i = 1, 2) (respectively, of the polar part when D is reduced).

5.4. Canonical coordinates. We will calculate the canonical coordinates introduced in Section
3.5. For the transition functions Bk1k2 (k1, k2 ∈ {0, 1, q1, q2, q3}) of E, we have transition functions
of det(E) as follows:

det(B0qj ) =
1

x1 − uj

: OŨqj
|Ũ0∩Ũqj

∼
−−→ OŨ0

|Ũ0∩Ũqj
;

det(B0∞) = −x2 : OŨ∞
|Ũ0∩Ũ∞

∼
−−→ OŨ0

|Ũ0∩Ũ∞
.

So we have a cocycle (det(Bk1k2))k1,k2∈{0,1,q1,q2,q3}, which gives a class of H1(C,O∗
C). We have

d log(det(B0qj )) = −
dx1

x1 − uj

and d log(det(B0∞)) =
dx2

x2
,

and these 1-forms give a class of H1(C,Ω1
C). We denote by c1 and Ω(D, c1) the class of H1(C,Ω1

C)
and the total space of the twisted cotangent bundle corresponding to c1, respectively. We have the
following description of tr(∇):

tr(∇) =





d+ω22 : OŨ0
−→ OŨ0

⊗ Ω1
C(D)|Ũ0

on Ũ0

d+ω
(j)
11 + ω

(j)
22 : OŨqj

−→ O⊕2

Ũqj

⊗ Ω1
C(D)|Ũqj

on Ũqj

d+ω22 +
dx2

x2
: OŨ∞

−→ O⊕2

Ũ∞

⊗ Ω1
C(D)|Ũ∞

on Ũ∞.

Notice that we have
ω
(j)
11 + ω

(j)
22 = ω22 + d log(det(B0qj )), and

ω22 +
dx2

x2
= ω22 + d log(det(B0∞)).
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So these connection matrices of tr(∇) give an explicit global section of Ω(D, c1) → C. We consider
a section of Ω(D, c1)|Ũqj

→ Ũqj

ζj dx1

(x1 − t)y1
+ ω

(j)
11 + ω

(j)
22 .

For this section on Ũqj , we define pj (j = 1, 2, 3) by

pj = resqj

(
ζj

x1 − uj

·
dx1

(x1 − t)y1

)
+ resqj

(
ω
(j)
11 + ω

(j)
22

x1 − uj

)
.

Then we have a map

(E,∇) 7−→ (u1, u2, u3, ζ1, ζ2, ζ3) 7−→ (u1, u2, u3, p1, p2, p3),

where

pj =
ζj

(uj − t)vj
−

K ′(uj)

4v2j
+

∑

j′∈{1,2,3}\{j}

1

2
·
vj + vj′

uj − uj′
·
1

vj

+

(
B1 +B2vj
uj − t

+B3

)
1

vj

Here we set K(x1) := x1(x1 − 1)(x1−λ). Notice that B1 and B2 are determined by Lemma 32 and
B3 is determined by Lemma 34. Notice that B3 depends on ζ1, ζ2 and ζ3. The symplectic structure
is
∑3

j=1 dpj ∧ duj by Theorem 20.

6. Canonical coordinates revised and another proof for birationality

In this section, we will give another proof of Proposition 17. For simplicity, we will consider the
cases where D is a reduced effective divisor. Let (E,∇) ∈ M0

X be a connection on a fixed irregular
curve X = (C,D, {zi}i∈I , {θi}i∈I , θres) with genericity conditions as before.

We set D = t1 + · · ·+ tn and the connection is given by

∇ : E −→ E ⊗ Ω1
C(D).

In this section, we assume that g = g(C) ≥ 1 and n ≥ 1 as in the previous sections. Moreover if
g = g(C) = 1, we assume that n ≥ 2.

Note that we have the unique extension

(6.1) 0 −→ OC −→ E −→ L0 −→ 0

with L0 = det(E). Moreover for (E,∇) ∈ M0
X we have degL0 = 2g − 1 and dimC H0(C,E) = 1.

Then we can define apparent singularities q1, . . . , qN ∈ C where N = 4g − 3 + n. Since degD =
2g − 2 + n ≥ 1 and degL0 = 2g − 1 ≥ 1, we see that dimC H0(C,Ω1

C(D)) = g − 1 + n ≥ 2. We can
choose γ ∈ H0(C,Ω1

C(D)) and s ∈ H0(C,L0) whose zeros are given by

{γ = 0} = {c1, . . . , c2g−2+n} and {s = 0} = {u1, . . . , u2g−1}.

We assume the following genericity conditions:

(1) ui1 6= ui2 (for i1 6= i2), and ck1 6= ck2 (for k1 6= k2);
(2) {u1, . . . , u2g−1} ∩ {c1, . . . , c2g−2+n} = ∅;
(3) {q1, . . . , qN} ∩ {u1, . . . , u2g−1, c1, . . . , c2g−2+n} = ∅.
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Set
U0 = C \ {u1, . . . , u2g−1, c1, . . . , c2g−2+n}.

Moreover we take small an analytic neighborhood Ui of ui for 1 ≤ i ≤ 2g− 1 and U2g−1+k of ck for
1 ≤ k ≤ 2g−2+n. For i = 1, . . . , 4g−3+n, we can identify Ui with a unit disc ∆ = {z ∈ C | |z| < 1}
with the origin corresponding to ui (1 ≤ i ≤ 2g − 1) and ci−2g+1 (2g ≤ i ≤ 4g − 3 + n). We can
assume that Ui1 ∩ Ui2 = ∅ for i1 6= i2, i1, i2 ≥ 1. Note that since U0 is an affine variety and
U0 ∩Ui

∼= ∆ \ {0} for i = 1, . . . , 4g− 3 + n, the covering C = U0 ∪U1 ∪ · · · ∪U4g−3+n gives a Stein
covering of C. For 0 ≤ i ≤ 4g − 3 + n, we have nonzero sections e

(i)
1 ∈ OUi

, e
(i)
2 ∈ (L0)|Ui

giving
trivializations of E on Ui respectively:

E|Ui
≃ O|Ui

e
(i)
1 ⊕O|Ui

e
(i)
2 .

Moreover we have a transition matrix H0i on U0 ∩ Ui of the form

(6.2) H0i =

(
1 h0i

0 g0i

)

satisfying

(6.3) (e
(i)
1 , e

(i)
2 ) = (e

(0)
1 , e

(0)
2 )H0i = (e

(0)
1 , h0ie

(0)
1 + g0ie

(0)
2 ).

Here {h0i}i ∈ Ext1(L0,OC) ∼= H1(C,L−1
0 ) corresponds to the extension class of (6.1) and {g0i}i ∈

H1(C,O∗
C) gives the transition function of L0 = det(E). With these trivializations we have con-

nection matrices A(i):

(6.4) ∇(e
(i)
1 , e

(i)
2 ) = (e

(i)
1 , e

(i)
2 )A(i)

of the form

(6.5) A(i) =

(
a
(i)
11 γi a

(i)
12 γi

a
(i)
21 γi a

(i)
22 γi

)
.

Here a
(i)
kl ∈ Γ(Ui,OUi

) and γi ∈ Γ(Ui,Ω
1
Ui
(D)). We set γ0 = γ|U0

as above.
From (6.3) and (6.4), we can verify the following

Lemma 38. For 1 ≤ i ≤ 4g − 3 + n, on U0 ∩ Ui, we gave

(6.6) A(i) = H−1
0i A(0)H0i +H−1

0i dH0i.

Specifically, we have the following identities:

(6.7) a
(i)
21 γi = a

(0)
21 γ0g

−1
0i ; and

(6.8) a
(i)
22 γi = a

(0)
22 γ0 + a

(0)
21 γ0h0ig

−1
0i +

dg0i
g0i

.

The identity (6.7) shows that a(i)21 γi defines a section of H0(C,Ω1(D)⊗L0) and the zeros of this
section are nothing but the apparent singularities q1, . . . , qN . Evaluating the identity (6.8) at qj
(j = 1, . . . , N), we then have

(6.9) (a
(i)
22 γi)qj = (a

(0)
22 γ0)qj +

(
dg0i
g0i

)

qj

Noting that the cohomology class of the cocycle
{

dg0i
g0i

}
i

corresponds to cd = c1(L0), from (6.9),

we have the following
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Proposition 39. For each 0 ≤ j ≤ N , the data (E,∇) ∈ M0
X defines N points (qj , p̃j) on the total

space of Ω(D, cd) by the formula

(6.10) p̃j = (a
(0)
22 γ0)qj ∈ Ω1

C(D, cd)|qj

The above definition of p̃j does not depend on the choice of the sections s ∈ H0(C,L0) and
γ ∈ H0(C,Ω1

C(D)) and defines the same map as in Definition 16:

(6.11) fApp : M
0
X −→ SymN(Ω(D, cd)).

Now we consider qj as a local coordinate near qj and we write γ = c(qj) dqj for some local
holomorphic function c(qj). Then we have

p̃j = pj dqj

with
pj = a

(0)
22 (qj)c(qj).

As we have proved in Theorem 20, the map fApp is symplectic.

6.1. From a connection to a Higgs field. Keeping the notation, let us consider the section
s ∈ H0(C,L0) as before, and set s(0) = s. Take trivialization of L0|Ui

over Ui we have a holomorphic
function s(i) ∈ Γ(Ui,OUi

) such that
s(0) = g0is

(i).

Note that s(i) has zeros at ui ∈ Ui for 1 ≤ i ≤ 2g − 1. Set D(s) = u1 + · · ·+ u2g−1. We can show
that

Lemma 40. There exists a connection

∇1 : E −→ E ⊗ Ω1(D(s))

such that for each 0 ≤ i ≤ N = 4g − 3 + n, on Ui it has the form

∇
(i)
1 = d+S(i) = d+

(
0 βi

s(i)

0 ds(i)

s(i)

)

with respect to the trivialization (e
(i)
1 , e

(i)
2 ). Here βi ∈ Γ(Ui,Ω

1
Ui
).

Proof. Since s(0) = g0is
(i), one has

ds(0)

s(0)
=

dg0i
g0i

+
ds(i)

s(i)

in U0i = U0 ∩ Ui. The compatibility condition for connection matrices S(i) is

(6.12) S(i) = H−1
0i S(0)H0i +H−1

0i dH0i.

The right hand side of (6.12) is

(6.13)


0 g0i

β0

s(0)
− h0i

(
ds(0)

s(0)
− dg0i

g0i

)
− dh0i

0 ds(0)

s(0)
− dg0i

g0i




Since {h0i}i is a class in H1(C,L−1
0 ) and s ∈ H0(C,L0), the class {s(i)h0i}i defines a class in

H1(C,OC). Then, by the Hodge theory, the derivative {d(s(i)h0i)}i ∈ H1(C,Ω1
C) vanishes, so

there exist βi ∈ Γ(Ui,Ω
1
Ui
) such that

d(s(i)h0i) = β0 − βi.
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Choose such βi’s for the formula. Then we have

dh0i = −h0i
ds(i)

s(i)
+ g0i

β0

s(0)
−

βi

s(i)
.

Then the right hand side of (6.13) becomes
(
0 βi

s(i)

0 ds(i)

s(i)

)

as desired. �

For any (E,∇) ∈ M0
X , the difference

∇−∇1 : E −→ E ⊗ Ω1
C(D +D(s))

defines an OC -homomorphism, that is a rational Higgs fields on E. We reprove Proposition 17.

Theorem 41. For generic (E,∇) ∈ M0
X , the point (qj , p̃j)j=1,...,N ∈ SymN (Ω(D, cd)) determines

(E,∇). So the map fApp is birational.

Proof. Consider the Higgs field

Φ = Φ∇ = ∇−∇1 : E −→ E ⊗ Ω1
C(D +D(s))

where D = t1 + · · ·+ tn and D(s) = u1 + · · ·+ u2g−1 as in the notation above. We assume that the
set of apparent singularities q1, . . . , qN of (E,∇) is disjoint from D and D(s). We will consider the
characteristic curve of Φ. On Ui, we have

Φi = A(i) − S(i) =

(
ã11 ã12 −

βi

s(i)

ã21 ã22 −
ds(i)

s(i)

)
.

The characteristic curve Cs can be defined in the total space of Ω(D + D(s)) of the line bundle
Ω1

C(D +D(s)) by
Cs : x

2 − b1x− b2 = 0

with bi ∈ H0(C, (Ω1
C(D +D(s)))⊗i), and x the canonical section. The dimension of the family of

spectral curves is thus given by

dimH0(C,Ω1
C(D +D(s))) + dimH0(C, (Ω1

C(D +D(s)))⊗2) = N + 1− g + 2N + 1− g

= 3N + 2− 2g = 3(4g − 3 + n) + 2− 2g

= 10g − 7 + 3n.

Then Φ is constrained the following conditions.
(1) At ti, i = 1, . . . , n, Φ has eigenvalues fixed by data X . These impose 2n − 1 conditions

because of the Fuchs relation.
(2) At uk, k = 1, . . . , 2g − 1, take a local coordinate zk such that zk(uk) = 0. Then Φ has the

following form near zk = 0

Φ =

(
0 βi(0)

zk

0 − dzk
zk

)
+ holomorphic.

Then eigenvalues of the residue matrix are 0,−1 and the βi(0) gives a restriction on Cs.
Then totally we have 3× (2g − 1) conditions.
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(3) At qj , j = 1, . . . , N , the points ã22(qj) −
ds(i)

s(i)
(qj) = p̃j − cj ∈ Ω(D + D(s)) lie on the

characteristic curve Cs. These give N = 4g − 3 + n conditions.

For generic choice of q1, · · · , qN and s ∈ H0(C,L0), we can see using the method of Lemma 7
and Proposition 17 that these conditions are independent, so we obtain a total of

2n− 1 + 3(2g − 1) + (4g − 3 + n) = 10g − 7 + 3n

conditions, so these determine the spectral curve Cs. Now the divisor µ =
∑N

j=1(p̃j−cj)+
∑2g−1

k=1 (1k)

determines the rank 1 sheaf OCs
(µ) where (1k) ∈ Cs denotes the point over uk corresponding to the

eigenvalue −1 of the residue of Φ at uk. Then (π : Cs −→ C,OCs
(µ)) determines (E,Φ) uniquely

by [3, Proposition 3.6]. Hence E and ∇ = Φ +∇1 is determined uniquely. �
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