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Introduction

In this paper, we introduce coordinates on the moduli spaces of rank 2 meromorphic connections on a Riemann surface, and we describe the symplectic structures on the moduli spaces by the introduced coordinates. Finally, we will have canonical coordinates on the moduli spaces. Our motivation is to give explicit descriptions of the isomonodromic deformations of meromorphic connections over a general Riemann surface. It is well-know that the isomonodromic deformations have non-autonomous Hamiltonian descriptions (in detail, see [START_REF] Krichever | Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations[END_REF], [START_REF] Hurtubise | On the geometry of isomonodromic deformations[END_REF], [START_REF] Fedorov | Algebraic and Hamiltonian approaches to isoStokes deformations[END_REF], for example). If we find explicit formulae for the isomonodromic Hamiltonians, then we have explicit descriptions of isomonodromic deformations. To find explicit formulae of Hamiltonians, it is necessary to introduce canonical coordinates (which are also called Darboux coordinates) on the moduli space of meromorphic connections. The present paper is a first step to give explicit descriptions of isomonodromic deformations.

For the isomonodromic deformations of rank 2 projective connections with regular singular points, there are some results of explicit descriptions. For example, Okamoto considered nonautonomous Hamiltonian descriptions of isomonodromic deformations on elliptic curves in [START_REF] Okamoto | The Hamiltonian structure derived from the holonomic deformation of the linear ordinary differential equations on an elliptic curve[END_REF] and [START_REF] Okamoto | On the holonomic deformation of linear ordinary differential equations on an elliptic curve[END_REF]. Iwasaki generalized for general Riemann surfaces in [START_REF] Iwasaki | Moduli and deformation for Fuchsian projective connections on a Riemann surface[END_REF] and [START_REF] Iwasaki | Fuchsian moduli on a Riemann surface-its Poisson structure and Poincaré-Lefschetz duality[END_REF]. Here the independent variables of the isomonodromic deformations are the position of regular singular points on the Riemann surfaces. That is, they are isomonodromic deformations of fixed Riemann surfaces. On the other hand, Kawai [START_REF] Kawai | Isomonodromic deformation of Fuchsian projective connections on elliptic curves[END_REF] gave explicit descriptions of the isomonodromic Hamiltonians varying the elliptic curve. Okamoto, Iwasaki, and Kawai in these papers introduced canonical coordinates on (a generic part of) the moduli space of rank 2 meromorphic projective connections by using apparent singularities. For our purpose, we take this strategy. That is, we will also introduce canonical coordinates on the moduli space of meromorphic connections by using apparent singularities. On the other hand, in this paper, we are interested in the isomonodromic deformations of GL 2 -connections and of SL 2 -connections. The coordinates using apparent singularities are an analog of the separation of variables in the Hitchin system, which is a birational map from the moduli space of stable Higgs bundles to the Hilbert scheme of points on the cotangent bundle over the underlying curve of the Higgs bundles (see [START_REF] Hurtubise | Integrable systems and algebraic surfaces[END_REF] and [START_REF] Gorsky | Hilbert schemes, separated variables, and D-branes[END_REF]). Here this map is a symplectomorphism of the open dense subsets of the moduli space. The definition of the apparent singularities for general rank meromorphic connections is in [START_REF] Saito | Apparent singularities and canonical coordinates for moduli of parabolic connections and parabolic Higgs bundles[END_REF].

1.1. Our setting. Let ν be a positive integer. We set I := {1, 2, . . . , ν}. Let C be a compact Riemann surface of genus g (g ≥ 0), and D = i∈I m i [t i ] be an effective divisor on C. Let E be a vector bundle over C and ∇ : E → E ⊗ Ω 1 C (D) be a meromorphic connection acting on E. We assume that the leading term of the expansion of a connection matrix of ∇ at t i has distinct eigenvalues. If m i = 1, then we assume that the difference of eigenvalues of the residue matrix at t i is not integer. That is, t i is an generic unramified irregular singular point of ∇ or a non-resonant regular singular point of ∇.

When C is the projective line and E is the trivial bundle, the moduli space of meromorphic connections has been studied by Boalch [START_REF] Boalch | Symplectic manifolds and isomonodromic deformations[END_REF] and Hiroe-Yamakawa [START_REF] Hiroe | Moduli spaces of meromorphic connections and quiver varieties[END_REF]. This moduli space has the natural symplectic structure coming from the symplectic structure on the (extended) coadjoint orbits. For general C and E, the moduli space of meromorphic connections (with quasi-parabolic structures) has been studied by Inaba-Iwasaki-Saito [START_REF] Inaba | Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI[END_REF][START_REF] Inaba | Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. II. Moduli spaces and arithmetic geometry[END_REF], Inaba [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF], and Inaba-Saito [START_REF] Inaba | Moduli of unramified irregular singular parabolic connections on a smooth projective curve[END_REF]. For general C and E, the moduli space has also the natural symplectic structure. In these papers, the symplectic form described by a pairing of the hypercohomologies of some complex. This description of the symplectic structure is an analog of the symplectic structure of the moduli spaces of stable Higgs bundles due to Bottacin [START_REF] Bottacin | Symplectic geometry on moduli spaces of stable pairs[END_REF]. For the case where ∇ has only regular singular points, Inaba showed that this symplectic structure coincides with the pull-back of the Goldman symplectic structure on the character variety via the Riemann-Hilbert map in [21, the proof of Proposition 7.3].

Our purpose in this paper is to introduce canonical coordinates on the moduli spaces of meromorphic connections. For this purpose, there are some strategies. First one is to consider canonical coordinates on the products of coadjoint orbits. This direction was studied by Jimbo-Miwa-Mori-Sato [START_REF] Jimbo | Density Matrix of an Impenetrable Bose Gas and the Fifth Painlevé Equation[END_REF], Harnad [START_REF] Harnad | Dual Isomonodromic Deformations and Moment Maps to Loop Algebras[END_REF], and Woodhouse [START_REF] Woodhouse | Duality for the general isomonodromy problem[END_REF]. Sakai-Kawakami-Nakamura [START_REF] Kawakami | Degeneration scheme of 4-dimensional Painlevé-type equations[END_REF] and Gaiur-Mazzocco-Rubtsov [START_REF] Gaiur | Isomonodromic Deformations: Confluence, Reduction and Quantisation[END_REF] gave some explicit formulae for the isomonodromic Hamiltonians by the coordinates of this direction. Second one is to consider the apparent singularities. As mentioned above, we take this strategies.

In this paper, we consider only the case where the rank of E is two. Let X be an irregular curve, which is described in Section 2.3. That is, X is a tuple of (i) a compact Riemann surface C, (ii) an effective divisor D on C, (iii) local coordinates around the support with D, and (iv) spectral data of meromorphic connections at the support with D (with data of residue parts). Here, the spectral data is described in Section 2.3. We fix an irregular curve X. That is, we fix spectral data of rank 2 meromorphic connections at each point of the support with D. By applying elementary transformations (which is also called Hecke modifications), we may change the degree of the underlying vector bundle of a meromorphic connection freely. So we assume that deg(E) = 2g -1. By this condition, the Euler characteristic of the vector bundle E is 1 by the Riemann-Roch theorem. In this situation, for generic meromorphic connections (E, ∇), we have dim C H 0 (C, E) = 1. So the global section of E is uniquely determined up to constant. This is convenient for the definition of the apparent singularities. In this paper, we consider only meromorphic connections with dim C H 0 (C, E) = 1. Moreover we assume that meromorphic connections (E, ∇) are irreducible. By this condition, the definition of apparent singularities becomes simple.

1.2. GL 2 -connections. In the first part of this paper, we discuss on GL 2 -connections. That is, we consider rank 2 meromorphic connections. We do not fix the determinant bundles of the underlying vector bundles and the traces of connections. Our purpose is to introduce canonical coordinates on the moduli space of rank 2 meromorphic connections by using apparent singularities. When C is the projective line, many people introduced canonical coordinates on the moduli space by using the apparent singularities ( [START_REF] Okamoto | The Hamiltonian structure derived from the holonomic deformation of the linear ordinary differential equations on an elliptic curve[END_REF], [START_REF] Oblezin | Isomonodromic deformations of sl(2) Fuchsian systems on the Riemann sphere[END_REF], [START_REF] Dubrovin | Canonical structure and symmetries of the Schlesinger equations[END_REF], [START_REF] Szabó | The dimension of the space of Garnier equations with fixed locus of apparent singularities[END_REF], [START_REF] Komyo | Explicit description of jumping phenomena on moduli spaces of parabolic connections and Hilbert schemes of points on surfaces[END_REF], [START_REF] Diarra | Normal forms for rank two linear irregular differential equations and moduli spaces[END_REF], and [START_REF] Komyo | Description of generalized isomonodromic deformations of rank two linear differential equations using apparent singularities[END_REF]). In this paper, we consider apparent singularities for general Riemann surfaces.

Let X be the fixed irregular curve. If (E, ∇) is a rank 2 meromorphic connection such that deg(E) = 2g -1, dim C H 0 (C, E) = 1, and (E, ∇) is irreducible, then we can define apparent singularities for (E, ∇). (In detail, see Definition 1 below). The apparent singularities are the set of points {q 1 , . . . , q N } on the underlying curve C. Here we set N := 4g -3 + deg(D). Let M X be the following moduli space

M X :=        (E, ∇) (i) E is a rank 2 vector bundle on C with deg(E) = 2g -1 (ii) ∇ : E → E ⊗ Ω 1 C (D) is a connection (iii) (E, ∇) is irreducible, and (iv) ∇ has the fixed spectral data in X        ∼ = .
This moduli space M X has a natural symplectic structure due to Inaba-Iwasaki-Saito [START_REF] Inaba | Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI[END_REF], Inaba [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF], and Inaba-Saito [START_REF] Inaba | Moduli of unramified irregular singular parabolic connections on a smooth projective curve[END_REF]. We consider a Zariski open subset M 0 X of M X as follows:

M 0 X :=    (E, ∇) ∈ M X (i) dim C H 0 (C, E) = 1, (ii) q 1 + • • • + q N is
reduced, and (iii)

q 1 + • • • + q N has disjoint support with D    ∼ =
(in detail, see Section 3.1). The dimension of the moduli space M 0 X is 2N (Proposition 10). By taking apparent singularities, we have a map App : M 0 X -→ Sym N (C) (E, ∇) -→ {q 1 , q 2 , . . . , q N }.

Remark that the dimension of Sym N (C) is half of the dimension of M 0 X . To introduce coordinates on M 0 X , it is necessary to find further invariants of connections, that are customarily called accessory parameters. To find these parameters, we introduce a twist of Ω By the theory of apparent singularities discussed in Section 2.1, we have a canonical inclusion morphism

O C ⊕ (Ω 1 C (D)) -1 -→ E. By this morphism, we have the connection ∇ 0 on O C ⊕ (Ω 1 C (D)) -1
induced by a connection ∇ on E. Notice that ∇ 0 has simple poles at the apparent singularities. By applying automorphisms on

O C ⊕ (Ω 1 C (D)) -1
, we may normalize ∇ 0 as

∇ 0 = d β 1 δ ,
which is called a companion normal form (in detail, see Section 2.2 below). Here d is the exterior

derivative on C, β ∈ H 0 (C, (Ω 1 C ) ⊗2 (2D + q 1 + • • • + q N ))
, and δ is a connection on (Ω 1 C (D)) -1 , which has poles at the support of D and the apparent singularities q 1 , . . . , q N . Then we may define a map

(1.1) f App : M 0 X -→ Sym N (Ω(D, c d )) (E, ∇) -→ {(q j , res qj (β) + tr(∇)| qj )} 1≤j≤N .
Here, notice that res qj (β) ∈ Ω 

(Ω(D, c d )) is equal to the dimension of M 0 X . A generic part of Sym N (Ω(D, c d ))
has the natural symplectic structure induced by the symplectic structure on the product

(Ω(D, c d )\ π -1 c d (D))× • • • × (Ω(D, c d )\ π -1 c d (D)).
The first main theorem is the following: X is discussed in the paragraph after the proof of Theorem 20 below. In Section 5, we consider an example of this argument. We will calculate the canonical coordinates for an elliptic curve and a divisor D of length 2. The moduli space of rank 2 meromorphic connection with fixed trace connection on an elliptic curve with two simple poles was studied in [START_REF] Loray | Ramírez A map between moduli spaces of connections[END_REF] and [START_REF] Fassarella | Loray Flat parabolic vector bundles on elliptic curves[END_REF]. In this paper, we will discuss the GL 2 -connection case.

1.3. SL 2 -connections. In the second part of this paper, we discuss on SL 2 -connections. That is, we consider rank 2 meromorphic connections with fixed trace connection (L 0 , ∇ 0 ). Here L 0 is a fixed line bundle on C of degree 2g -1 and ∇ 0 :

L 0 → L 0 ⊗ Ω 1 C (D) is a fixed connection.
More precisely, we consider rank 2 quasi-parabolic connections (E, ∇, {l (i) }), defined in [24, Definition 2.1], with fixed trace connection (L 0 , ∇ 0 ). Here the spectral data of ∇ 0 is determined by the fixed irregular curve X. The quasi-parabolic structure l (i) at t i induces a one dimensional subspace l (i) red of E| ti , that is the restriction of l (i) to t i (without multiplicity). Our moduli space is as follows:

M X (L 0 , ∇ 0 ) 0 :=        (E, ∇, {l (i) }) (i) ∇ has the fixed spectral data in X, (ii) E is an extension of L 0 by O C , (iii) dim C H 0 (C, E) = 1, and (iv) l (i) red ∈ O C | ti ⊂ P(E) for any i        ∼ =,
which is described in Section 4.2. Here (E, ∇, {l (i) }) are rank 2 quasi-parabolic connections on (C, D) with fixed trace connection (L 0 , ∇ 0 ). When g = 0, we impose one more condition (in detail, see the paragraph after the proof of Lemma 26 below). This moduli space also has a natural symplectic structure. The dimension of the moduli space M X (L 0 , ∇ 0 ) 0 is 2N 0 , where N 0 := 3g -3 + deg(D). For (E, ∇, {l (i) }) ∈ M X (L 0 , ∇ 0 ) 0 , we can also define apparent singularities (Section 4.2 below). The apparent singularities give an element of PH 0 (C,

L 0 ⊗ Ω 1 C (D)). So we have a map π App : M X (L 0 , ∇ 0 ) 0 -→ PH 0 (C, L 0 ⊗ Ω 1 C (D)).
For (E, ∇, {l (i) }) ∈ M (L 0 , ∇ 0 ) 0 , we forget the connection ∇. So we have a quasi-parabolic bundle (E, {l (i) }). By taking the extension class for the quasi-parabolic bundle (E, {l (i) }), we have a map

π Bun : M X (L 0 , ∇ 0 ) 0 -→ PH 1 (C, L -1 0 (-D)).
Here the extension class is described in Section 4.1 below. We consider the product

π App × π Bun : M X (L 0 , ∇ 0 ) 0 -→ PH 0 (C, L 0 ⊗ Ω 1 C (D)) × PH 1 (C, L -1 0 (-D))
. This map has been studied by Loray-Saito-Simpson [START_REF] Loray | Foliations on the moduli space of rank two connections on the projective line minus four points[END_REF], Loray-Saito [START_REF] Loray | Lagrangian fibrations in duality on moduli spaces of rank 2 logarithmic connections over the projective line[END_REF], Fassarella-Loray [START_REF] Fassarella | Loray Flat parabolic vector bundles on elliptic curves[END_REF], Fassarella-Loray-Muniz [START_REF] Fassarella | Flat parabolic vector bundles on elliptic curves II[END_REF], and Matsumoto [START_REF] Matsumoto | Birational geometry of moduli spaces of rank 2 logarithmic connections[END_REF].

Notice that

H 1 (C, L -1 0 (-D)) is isomorphic to the dual of H 0 (C, L 0 ⊗ Ω 1 C (D)). Remark that dim C PH 0 (C, L 0 ⊗ Ω 1 C (D)) = dim C PH 1 (C, L -1 0 (-D)) = N 0 . Let us introduce the homogeneous coordinates a = (a 0 : • • • : a N0 ) on PH 0 (C, L 0 ⊗ Ω 1 C (D)) ∼ = P N0 a and the dual coordinates b = (b 0 : • • • : b N0 ) on PH 1 (C, L -1 0 (-D)) ∼ = PH 0 (C, L 0 ⊗ Ω 1 C (D)) ∨ ∼ = P N0 b . We may define a 1-form η on P N0 a × P N0 b by η = (constant) • a 0 db 0 + a 1 db 1 + • • • + a N0 db N0 a 0 b 0 + a 1 b 1 + • • • + a N0 b N0 .
(In detail, see Section 4.4). The 2-form dη gives an symplectic structure on P N0 a × P N0 b \ Σ. Here we set Σ : (a

0 b 0 + a 1 b 1 + • • • + a N0 b N0 = 0) ⊂ P N0 a × P N0 b . The image of M (L 0 , ∇ 0 ) 0 is contained in P N0 a × P N0 b \ Σ. (In detail, see Section 4.3).
The second main theorem is the following: Theorem B (Theorem 31 below). We assume that the fixed spectral data satisfies the generic condition (4.8) below. The pull-back of the symplectic form dη on P N0 a × P N0 b \ Σ under the map π App × π Bun coincides with the symplectic form on the moduli space M X (L 0 , ∇ 0 ) 0 .

1.4. The organization of this paper. In Section 2, the apparent singularities for a generic rank 2 meromorphic connection are defined. After the definition of the apparent singularities, we will discuss on the companion normal form of a generic rank 2 meromorphic connection. We will use this companion normal form when we will introduce canonical coordinates. In Section 3, first, we will describe our moduli space of rank 2 meromorphic connections. Second, we will discuss on tangent spaces of the moduli space of rank 2 meromorphic connections. We will recall that the tangent spaces at a meromorphic connection are isomorphic to a hypercohomology of the complex defined by the meromorphic connection. After that, we will describe a natural symplectic structure on the moduli space of rank 2 meromorphic connections. Section 3.3 and Section 3.4 are preliminaries of the proof of the first main theorem. In Section 3.5, we will give the map from a generic part of the moduli space to Sym N (Ω(D, c d )) and will show the first main theorem.

In Section 4, we will consider rank 2 meromorphic connections with fixed trace connection. First, to describe the bundle map π Bun , we recall the moduli space of stable quasi-parabolic bundles with fixed determinant. Second, we will describe our moduli space of rank 2 meromorphic connections with fixed trace connection. Third, we will describe the map π App defined by considering the apparent singularities. In Section 4.4, we will recall a natural symplectic structure on the moduli space of rank 2 meromorphic connections with fixed trace connection, and will show the second main theorem.

In Section 5, we will apply the argument in Section 2 and Section 3 to the case of an elliptic curve with a divisor D of length 2. When D is reduced, this amounts to two logarithmic singularities, otherwise to an irregular singularity. It is remarkable that using our approach these two cases can be studied completely similarly.

In Section 6, we will provide a method for obtaining canonical coordinates pj ∈ Ω(D, c d ) |qi for generic (E, ∇) ∈ M 0 X by introducing a section s ∈ H 0 (C, det(E)) and γ ∈ H 0 (C, Ω 1 C (D)). We will utilize an open set U 0 = C \ {s = 0, γ = 0} and the trivialization of E |U0 to define pj ∈ Ω 1 C (D) |qj . This method can be also used for constructing a meromorphic connection

∇ 1 : E -→ E ⊗ Ω 1 C (D(s)) for a given s ∈ H 0 (C, det(E))
, where D(s) denotes the zero divisor of s. In Theorem 41, we will provide an alternative proof of the birationality of f App (cf. Proposition 17) by utilizing the Higgs fields ∇ -∇ 1 and the BNR correspondence [START_REF] Beauville | Spectral curves and the generalised theta divisor[END_REF]. This approach may shed new light on the relationship between the canonical coordinates of the moduli spaces of connections and the moduli spaces of Higgs bundles. (cf. [START_REF] Saito | Apparent singularities and canonical coordinates for moduli of parabolic connections and parabolic Higgs bundles[END_REF]).
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Companion normal form

Let C be a compact Riemann surface of genus g (g ≥ 0), and D be an effective divisor on C. We assume 4g -3 + n > 0 where n = deg(D). We consider a rank 2 meromorphic connection (2.1)

∇ : E -→ E ⊗ Ω 1 C (D) on C where deg(E) = 2g -1.
When g = 0, Diarra-Loray have given companion normal forms of the rank 2 meromorphic connections in [START_REF] Diarra | Normal forms for rank two linear irregular differential equations and moduli spaces[END_REF]. By the companion normal forms, we may construct a universal family of the rank 2 meromorphic connections on some generic part of the moduli space of rank 2 meromorphic connections. This universal family is useful to describe the isomonodromic deformations [START_REF] Komyo | Description of generalized isomonodromic deformations of rank two linear differential equations using apparent singularities[END_REF]. The purpose of this section is to give companion normal forms of rank 2 meromorphic connections when g ≥ 0. For this purpose, first, we will introduce the apparent singularities for (generic) rank 2 meromorphic connections.

2.1. Apparent singularities. First we assume that dim C H 0 (C, E) = 1 for the rank 2 meromorphic connection (2.1). This assumption holds for a generic vector bundle of the rank 2 meromorphic connection with deg(E) = 2g -1. For an element of H 0 (C, E), we define the sequence of C-linear maps

(2.2) ϕ ∇ : O C -→ E ∇ --→ E ⊗ Ω 1 C (D) -→ E/O C ⊗ Ω 1 C (D).
This composition ϕ ∇ is an O C -linear map. From now on we assume that ϕ ∇ = 0. This assumption holds for every (E, ∇), provided that the eigenvalues of the residues are chosen generically (see Remark 4 below). We call the global section in H 0 (C, E) in (2.2) the cyclic vector.

Let us now define E 0 ⊂ E as the rank 2 locally free subsheaf spanned by O C and

Im ∇| OC ⊗ Id (Ω 1 C (D)) -1 : (Ω 1 C (D)) -1 → E .
This construction gives rise to a short exact sequence of coherent sheaves

0 -→ O C -→ E 0 -→ (Ω 1 C (D)) -1 -→ 0.
We claim that this sequence splits, i.e.

(2.3) D)) ∨ = 0, where we have used Grothendieck-Serre duality. We denote by (2.4) φ ∇ : E 0 -→ E.

E 0 ∼ = O C ⊕ (Ω 1 C (D)) -1 . Indeed, equivalence classes of extensions of (Ω 1 C (D)) -1 by O C are classified by the group Ext 1 ((Ω 1 C (D)) -1 , O C ) = Ext 1 (O C (-D), Ω 1 C ) ∼ = H 0 (C, O C (-
the canonical inclusion morphism, and define the meromorphic connection

(2.5) ∇ 0 = φ * ∇ (∇) on E 0 . We note that the polar divisor of ∇ 0 is D + B where (2.6) B = div(ϕ ∇ ).
We note that (2.7)

deg(B) = 4g -3 + n.
From now on, moreover, we assume that B is reduced, with support disjoint from D. In different terms, in view of (2.7), we have

B = q 1 + • • • + q 4g-
3+n where q i = q j once i = j and q i / ∈ D for all i.

Definition 1. Assume that ϕ ∇ = 0 and div(ϕ ∇ ) is reduced, with support disjoint from D. We call the points of the support {q 1 , . . . , q 4g-3+n } of div(ϕ ∇ ) the apparent singularities of (E, ∇).

2.2.

Companion normal form. The desired companion normal form is a normal form of ∇ 0 in (2.5). So the companion normal form is given by normalization of ∇ 0 by applying automorphisms on

O C ⊕ (Ω 1 C (D)) -1 .
To give the companion normal form, first, we describe a decomposition of ∇ 0 relative to (2.3):

∇ 0 = α β γ δ where        α : O C -→ Ω 1 C (D + B) (connection) β : (Ω 1 C (D)) -1 -→ Ω 1 C (D + B) (O C -linear) γ : O C -→ O C (B) (O C -linear) δ : (Ω 1 C (D)) -1 -→ (Ω 1 C (D)) -1 ⊗ Ω 1 C (D + B) (connection)
This form is unique only up to pre-composition by an element of the automorphism group Aut(E 0 ) of E 0 . Elements of Aut(E 0 ) are described as follows:

λ 1 F 0 λ 2 ,
where λ 1 , λ 2 ∈ C * and F ∈ H 0 (C, Ω 1 C (D)). It follows by construction that ∇ 0 admits no pole in restriction to O C over the divisor B, so that actually we have

α : O C -→ Ω 1 C (D) (connection) γ : O C -→ O C (= identity)
The action of an automorphism of the form

(2.8) 1 F 0 1 , F ∈ H 0 (C, Ω 1 C (D))
transforms α into α -F γ (without affecting γ). Therefore, there exists a unique choice F such that α = d is the trivial connection on O C . We thus get the unique companion normal form (2.9)

∇ 0 = d β 1 δ .
Notice that the same companion normal form is obtained simply by taking the generator ϕ ∇ (1) for the second factor of (2.3), and the action of the automorphism (2.8) in the above argument simply amounts to switching to this particular generator.

2.3. Spectral data. Now we consider the polar part of the meromorphic connection (2.1) at each point of the support of D. We impose some conditions on the polar parts. To describe the conditions, we introduce the notion of irregular curves with residues. Let ν be a positive integer. We set I := {1, 2, . . . , ν}. Let h be the Cartan subalgebra

h = h 1 0 0 h 2 h 1 , h 2 ∈ C
of the Lie algebra gl 2 (C). Let h 0 be the regular locus of h.

Definition 2. We say X = (C, D, {z i } i∈I , {θ i } i∈I , θ res ) is an irregular curve with residues if (i) C is a compact Riemann surface of genus g,

(ii) D = i∈I m i [t i ] is an effective divisor on C. (iii) z i is a generator of the maximal ideal of O C,ti , (iv) θ i = (θ i,-mi , (θ i,-mi+1 , . . . , θ i,-2 )) ∈ h 0 × h mi-2 , and ( 
v) θ res = (θ 1,-1 , θ 2,-1 , . . . , θ ν,-1 ), where θ i,-1 ∈ h, such that ν i=1 tr(θ i,-1 ) = -(2g -1). We set θ i,-1 = θ - i,-1 0 0 θ + i,-1
for each i ∈ I.

We assume that ν i=1 θ ± i,-1 ∈ Z whatever are the signs ±, and, if

m i = 1, then θ + i,-1 -θ - i,-1 ∈ Z.
For an irregular curve with residues X, we set (2.10)

ω i (X) := θ i,-mi dz i z mi i + θ i,-mi+1 dz i z mi-1 i + • • • + θ i,-2 dz i z 2 i + θ i,-1 dz i z i and O mi[ti] := O C,ti /(z mi i ).
For an irregular curve with residues X and a meromorphic connection

(E, ∇) in (2.1), we set E| mi[ti] := E ⊗ O mi[ti] . Let ∇| mi[ti] : E| mi[ti] -→ E| mi[ti] ⊗ Ω 1
C (D) be the morphism induced by ∇. Definition 3. We call (E, ∇) a rank 2 meromorphic connection over an irregular curve with residues X if (i) E is a rank 2 vector bundle of degree 2g -

1 on C, (ii) ∇ : E → E ⊗ Ω 1 C (D) is a connection, and (iii) there exists an isomorphism ϕ mi[ti] : E| mi[ti] → O ⊕2 mi[ti] for each i ∈ I such that (ϕ mi[ti] ⊗ 1) • ∇| mi[ti] • ϕ -1 mi[ti] = d + ω i (X).
Here ω i (X) is defined in (2.10). We call ω i (X) the spectral data of (E, ∇) and call the submodule

ϕ -1 mi[ti] (O mi[ti] ⊕ 0) of E| mi[ti] the quasi-parabolic structure of (E, ∇) at t i .
From now on, by a connection we will mean a rank 2 meromorphic connection over a fixed irregular curve with residues X. So we impose the condition (iii) of Definition 3 on the polar parts of the meromorphic connection ∇ in (2.1) at the points of the support of D. This condition means that the polar parts of ∇ at t i are diagonalizable with eigenvalues equal to the diagonal entries of ω i (X) for i = 1, 2, . . . , n.

Remark 4. In Definition 3, we impose the condition that ν i=1 θ ± i,-1 ∈ Z whatever are the signs ±. By this assumption and the argument as in [START_REF] Komyo | Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification[END_REF]Proposition 6], we have that (E, ∇) is irreducible. Then some arguments become simple. For example, ϕ ∇ = 0 if and only if the free subsheaf O C of E is a proper ∇-invariant subbundle. So we have that ϕ ∇ = 0. Moreover, (E, ∇) is automatically stable (described in Section 3.1 below).

2.4.

The polar parts of δ. We fix an irregular curve with residues X. Let (E, ∇) be a rank 2 meromorphic connection over X and ∇ 0 be the companion normal form for (E, ∇). We consider the (2, 2)-entry δ of this companion normal form ∇ 0 .

It immediately follows from (2.9) that the connection δ coincides with the trace connection tr(∇ 0 ) on det(E 0 ) = (Ω 1 C (D)) -1 . It is further related to the trace connection tr(∇) by δ = tr(∇ 0 ) = tr(∇) + dϕ ∇ ϕ ∇ .

Lemma 5.

(1) The polar part of δ over D is determined by the spectral data;

(2) The polar part of δ over B is logarithmic with residue +1;

(3) δ is determined by the irregular curve with residues X up to adding a holomorphic 1-form of C.

Proof. The polar part of δ at t i is equal to tr(ω i ), showing the first assertion. In view of our assumption q j1 = q j2 for j 1 = j 2 , the second assertion is classical. Let now δ, δ ′ be the (2, 2)-entries of companion normal forms ∇ 0 , ∇ ′ 0 of connections ∇, ∇ ′ satisfying the conditions of Definition 3. By the first part, δδ ′ is then a global holomorphic 1-form of C.

As a consequence of the lemma and by dim C H 0 (C, Ω 1 C ) = g, the possible values for δ represent g free parameters for a meromorphic connection over X.

2.5. The polar parts of β. Next we consider the (1, 2)-entry β of the companion normal form ∇ 0 of a meromorphic connection ∇ over the irregular curve with residues X. By the condition γ = 1 in (2.9), β accounts for the determinant of the characteristic polynomial of the residues. By Definition 3, the eigenvalues of the connection matrix of ∇ are differentials (of the first kind) with a pole of order at most m i at t i . The same condition then holds for ∇ 0 too, because it only differs from ∇ by elementary modifications at points q j = t i . As the determinant of a 2 × 2 matrix is a quadratic expression of the eigenvalues, we see that β must be a quadratic differential with poles of order at most 2m i at t i . Over B, a similar argument shows that β has poles of order at most 2.

Let us fix local coordinate charts z i centered at the pole t i . One may then expand β into Laurent series:

β = β i,-2mi z -2mi i + • • • + β i,-2 z -2 i + O(z -1 i ) (dz i ) ⊗2
. Notice that for given β the coefficient β i,-2 is independent of the chosen coordinate chart z i , however the other coefficients depend on z i . We also fix local coordinate charts z j centered at the apparent singularity q j , and have a similar expansion

β = β j,-2 z -2 j + β j,-1 z -1 j + O(z 0 j ) (dz j ) ⊗2
. Analogously to Lemma 5, we therefore find Lemma 6.

(1) The coefficients β i,-2mi , . . . , β i,-2 are uniquely determined by the irregular curve with residues X (and the holomorphic coordinate z i );

(2) We have β j,-2 = 0.

(3) β is determined by the irregular curve with residues X up to adding a section of (Ω 1 C ) ⊗2 (D).

Proof. The coefficients β i,-2mi , . . . , β i,-2 all admit homogeneous quadratic expressions in terms of the eigenvalues of θ i , θ res , therefore they are determined by them. Conversely, the coefficients β i,-2mi , . . . , β i,-2 determine the polar part of the eigenvalues. It is classical that for an apparent singularity of ∇ 0 , one of the two eigenvalues of the residue must vanish. This implies that for every q ∈ B the product of the eigenvalues of res q (∇ 0 ) vanishes. As this latter product gives the leading (second) order term β j,-2 , we get the second assertion. The last part follows from the first two as in Lemma 5.

As a consequence of the lemma and by dim C H 0 (C, (Ω 1 C ) ⊗2 (D)) = 3g -3 + n, the possible values for β represent 3g -3 + n free parameters for a connection ∇ on X having apparent singularities at a fixed reduced divisor B of length N .

From now on, we set β j,-1 = ζ j , so that we have the expansion

(2.11) β = ζ j (dz j ) ⊗2 z j + β (j)
for some local holomorphic quadratic differential β (j) . Notice that ζ j depends on the coordinate z j , however the element ζ j dz j ∈ Ω 1 C | qj of the fiber of the holomorphic cotangent (or canonical) bundle over q j does not depend on it. As a matter of fact, since β belongs to an affine space modelled over H 0 (C, (Ω 1 C ) ⊗2 (D)) (and in order to be consistent with the decomposition (2.3)), it is even more rigourous to consider ζ j dz j as elements of the fiber

Ω 1 C (D)| qj , using the inclusion Ω 1 C ⊂ Ω 1 C (D).
In the sequel we will consider them to be such elements. It will turn out that these quantities ζ j dz j are closely related to accessory parameters. 2.6. Determination of β and δ in terms of ζ. Fix a reduced divisor B of length N on C with support disjoint from D. In Subsections 2.4, 2.5 we have found that (normal forms of) meromorphic connections with residue on X that have apparent singularities at B can be described by an affine space of complex dimension g + 3g -3 + n = N (g coming from the choice of δ and 3g -3 + n from the choice of β). In this section, we provide a description of such connections in terms of analogs of separated variables. Namely, it will turn out that generically the data of δ, β is equivalent to the

N -tuple (ζ 1 dz 1 , . . . , ζ N dz N ).
The fact that singular points are apparent over B imposes further constraints on β and δ. This constraint gives 1 linear condition for each point q j and we can expect that these constraints fix β and δ uniquely in terms of the data (q j , ζ j dz j ) N j=1 . In fact, this is true for the genus g = 0 case (see [START_REF] Diarra | Normal forms for rank two linear irregular differential equations and moduli spaces[END_REF]) and we will show in Lemma 7 that this is also true for generic choices of (q j , ζ j dz j ) N j=1 if g > 0. In fact, the data of ζ j dz j can be interpreted as a certain quasi-parabolic structure over B. Indeed, at a point q j and with respect to the decomposition (2.3), the residue of ∇ 0 reads as

res qj ∇ 0 = 0 ζ j dz j 0 1 .
So, the vector ζ j dz j 1 is an eigenvector with respect to eigenvalue 1 and the map φ ∇ (see (2.4)) is just the positive elementary transformation with respect to these parabolic directions at all points q j . In summary, the data of all values ζ j dz j is equivalent to the data of a quasi-parabolic structure of E 0 over B (i.e., a line in the fiber of E 0 over each q j ) distinct from the destabilizing subbundle O C ⊂ E 0 for every j.

Let us denote by Ω(D) the total space of the line bundle Ω 1 C (D).

Lemma 7. For generic data (q j , ζ j dz j ) j ∈ Sym 4g-3+n (Ω(D)) there exist unique β and δ as above such that the corresponding ∇ 0 has apparent singular points at all the points q j (1 ≤ j ≤ N := 4g -3 + n), and such that the Laurent expansion (2.11) is fulfilled.

Proof. Let us consider (q j , ζ j dz j ) j such that q j 's are pair-wise distinct, and do not intersect the support of D. Given one point (q j , ζ j dz j ), we can diagonalize the residue res qi ∇ 0 by conjugating by a triangular matrix (2.12)

1 ζ j dz j 0 1 -1 0 β 1 δ 1 ζ j dz j 0 1 + 1 ζ j dz j 0 1 -1 d 1 ζ j dz j 0 1 = -ζ j dz j β -ζ j δ ⊗ dz j -ζ 2 j dz ⊗2 j 1 δ + ζ j dz j = 0 0 0 dzj zj + holomorphic
where z j stands for a local coordinate at q j . Then the elementary transformation φ ∇ is locally equivalent to the conjugacy by

1 0 0 z -1 j yielding (2.13)   -ζ j dz j β-ζj δ⊗dzj-ζ 2 j dz ⊗2 j zj z j δ + ζ j dz j - dzj zj   .
The apparent point condition is therefore equivalent to saying that βζ j δ ⊗ dz jζ 2 j dz ⊗2 j is (holomorphic and) vanishing at q j . This condition is linear on β and δ and rewrites

(2.14) β -ζ j δ ⊗ dz j holomorphic | qj = ζ 2 j dz ⊗2 j | qj ,
where the right hand side does not involve β and δ. If we assume that (q 1 , . . . , q N ) lies in the image of the map App (see (1.2)), then the normal form of any (E, ∇) in the preimage produces a solution (δ 0 , β 0 ). Fixing such solutions, by Lemmas 5, 6 we may rewrite

β = β 0 + b 1 ν 1 + • • • + b N -g ν N -g δ = δ 0 + d 1 ω 1 + • • • + d g ω g where (ω l ) g l=1 , (ν k ) N -g k=1 are respective bases of H 0 (C, Ω 1 C ) and H 0 (C, (Ω 1 C ) ⊗2 (D))
. Using these expressions, the constraint that q j is an apparent singularity can be rewritten as a linear system consisting of N equations in the N variables b k , d l . The condition to uniquely determine β and δ in terms of the data (q j , ζ j dz j ) is that the following determinant does not vanish (2.15) det

   ν 1 (q 1 ) • • • ν N -g (q 1 ) ζ 1 dz 1 ω 1 (q 1 ) • • • ζ 1 dz 1 ω g (q 1 ) . . . . . . . . . . . . . . . . . . ν 1 (q N ) • • • ν N -g (q N ) ζ N dz N ω 1 (q N ) • • • ζ N dz N ω g (q N )   
Of course, it is sufficient for our purpose to check that we can find some (q j , ζ j dz j )'s such that this determinant does not vanish, so that it will be generically non vanishing. If we set

ζ 1 = • • • = ζ N -g = 0,
then the matrix has a zero block of dimension (Ng) × g in the top right corner, and the determinant factors as

ζ N -g+1 dz N -g+1 • • • ζ N dz N • det    ν 1 (q 1 ) • • • ν N -g (q 1 ) . . . . . . . . . ν 1 (q N -g ) • • • ν N -g (q N -g )    • det    ω 1 (q 1 ) • • • ω g (q 1 ) . . . . . . . . . ω 1 (q g ) • • • ω g (q g )   
where qj = q j+N -g . After setting

ζ N -g+1 = • • • = ζ N = 1
, it is enough to find q j 's such that the two smaller determinants are non zero. To conclude the proof, let us denote by L any of the two lines bundles Ω 1 C or (Ω 1 C ) ⊗2 (D), and by µ 1 , . . . , µ N ′ a corresponding basis of H 0 (C, L). Then we want to prove that the image of the curve by the evaluation map

C ev -→ P N ′ -1 ; q → (µ 1 (q) : . . . : µ N ′ (q))
is not contained in some hyperplane, i.e. that we can find q 1 , . . . , q N ′ ∈ C such that the image is not contained in some hyperplane. But this is true, otherwise, we would have a linear relation between µ 1 , . . . , µ N ′ contradicting that they form a basis. Remark 8. In the previous proof, the locus of q j 's for which det(ω i (q j )) i,j vanishes correspond to the Brill-Noether locus for divisor q1 + • • • + qg . Lemma 9. When g = 0, any data (q j , ζ j dz j ) j ∈ Sym n-3 (Ω(D)) gives rise to unique β and δ such that the corresponding ∇ 0 has apparent singular points at all q j 's. However, for g > 0, there always exist data (q j , ζ j dz j ) j such that the determinant (2.15) vanishes.

Proof. When g = 0, this directly follows from [START_REF] Diarra | Normal forms for rank two linear irregular differential equations and moduli spaces[END_REF] (a consequence of Lagrange interpolation). When g > 0, fix generic q j 's and let ω ∈ H 0 (C, Ω 1 C (D)). If we set ζ j := ω(q j ), then the last colum of (2.15) is just the evaluation of the section ω

⊗ ω g ⊂ H 0 (C, (Ω 1 C ) ⊗2 (D)) at q 1 , • • • , q 4g-3+n
and is therefore a linear combination of the 3g -3 + n first colums.

Symplectic structure and canonical coordinates

We fix an irregular curve with residues X = (C, D, {z i } i∈I , {θ i } i∈I , θ res ). As usual, we use the notation N := 4g + n -3, where g is the genus of C and n = deg(D). We will consider the moduli space M X of rank 2 meromorphic connections over X. This moduli space is constructed in [24, Theorem 2.1] and carries a natural symplectic structure described in [START_REF] Inaba | Moduli of unramified irregular singular parabolic connections on a smooth projective curve[END_REF]Proposition 4.1]. The purpose of this section is to give canonical coordinates on an open subset of M X with respect to this symplectic structure. First we describe the moduli space M X .

3.1. Moduli spaces. Let (E, ∇) be a rank 2 meromorphic connection over X. Then, the subsheaf

l (i) := ϕ -1 mi[ti] (O mi[ti] ⊕ 0) ⊂ E mi[ti]
. equips (E, ∇) with a canonical quasi-parabolic structure at each t i . So we may consider (E, ∇) as a quasi-parabolic connection (E, ∇, {l (i) }) defined in [21, Remark 4). So our objects are automatically stable objects. We omit the stability condition of the quasi-parabolic connections.

Let M X be the moduli space of rank 2 meromorphic connections over the irregular curve with residues X.

If (E, ∇) ∈ M X satisfies dim C H 0 (C, E) = 1, then we have a unique O C -morphism ϕ ∇ in (2.2). The O C -morphism ϕ ∇ is nonzero, since (E, ∇) is irreducible. So we may define the divisor div(ϕ ∇ ) in (2.6) for (E, ∇). We set M 0 X :=    (E, ∇) ∈ M X dim C H 0 (C, E) = 1, div(ϕ ∇ ) is reduced, and div(ϕ ∇ ) has disjoint support with D    .
Next we recall the natural symplectic structure on M X .

3.2. Symplectic structure. We will describe the natural symplectic structure on M X via Čech cohomology. This is defined in [21, Proposition 7.2] and [START_REF] Inaba | Moduli of unramified irregular singular parabolic connections on a smooth projective curve[END_REF]Proposition 4.1]. This is analog of the symplectic form on the moduli space of stable Higgs bundles in [START_REF] Bottacin | Symplectic geometry on moduli spaces of stable pairs[END_REF]. This description of the symplectic structure is useful to comparing this symplectic structure with the Goldman symplectic structure on the character variety via the Riemann-Hilbert map (for example, see [21, First we recall the description of the tangent space of M X at (E, ∇) ∈ M X in terms of the hypercohomology of a certain complex ([21, the proof of Theorem 2.1] and [24, the proof of Proposition 4.1]). We consider (E, ∇) as a quasi-parabolic connection (E, ∇, {l (i) }). We define a complex F • for (E, ∇, {l (i) }) by (3.1)

F 0 := s ∈ End(E) s| miti (l (i) ) ⊂ l (i) for any i F 1 := s ∈ End(E) ⊗ Ω 1 C (D) s| miti (l (i) ) ⊂ l (i) ⊗ Ω 1 C for any i ∇ F • : F 0 -→ F 1 ; ∇ F • (s) = ∇ • s -s • ∇.
Then we have an isomorphism between the tangent space T (E,∇,{l (i) }) M X and H 1 (F • ).

Now we recall this isomorphism. We take an analytic (or affine) open covering

C = α U α such that E| Uα ∼ = O ⊕2
Uα for any α, ♯{i | t i ∩ U α = ∅} ≤ 1 for any α and ♯{α | t i ∩ U α = ∅} ≤ 1 for any i. Take a tangent vector v ∈ T (E,∇,{l (i) }) M X . The field v corresponds to an infinitesimal deformation

(E ǫ , ∇ ǫ , {l (i) ǫ }) of (E, ∇, {l (i) }) over C×Spec C[ǫ] such that (E ǫ , ∇ ǫ , {l (i) ǫ })⊗C[ǫ]/(ǫ) ∼ = (E, ∇, {l (i) }), where C[ǫ] = C[t]/(t 2 ).
There is an isomorphism

ϕ α : E ǫ | Uα×Spec C[ǫ] ∼ -→ O ⊕2 Uα×Spec C[ǫ] ∼ -→ E| Uα ⊗ C[ǫ] such that ϕ α ⊗ C[ǫ]/(ǫ) : E ǫ ⊗ C[ǫ]/(ǫ)| Uα ∼ -→ E| Uα ⊗ C[ǫ]/(ǫ) = E| Uα is the given isomorphism and that ϕ α | ti×Spec C[ǫ] (l (i) ǫ ) = l (i) | Uα×Spec C[ǫ] if t i ∩ U α = ∅. We put u αβ := ϕ α • ϕ -1 β -id E| U αβ ×Spec C[ǫ] , v α := (ϕ α ⊗ id) • ∇ ǫ | Uα×Spec C[ǫ] • ϕ -1 α -∇| Uα×Spec C[ǫ] . Then {u αβ } ∈ C 1 ((ǫ) ⊗ F 0 ), {v α } ∈ C 0 ((ǫ) ⊗ F 1
) and we have the cocycle conditions

u βγ -u αγ + u αβ = 0 and ∇ • u αβ -u αβ • ∇ = v β -v α .
So [({u αβ }, {v α })] determines an element of H 1 (F • ). This correspondence gives an isomorphism between the tangent space T (E,∇,{l (i) }) M X and H 1 (F • ).

We define a pairing

(3.2) H 1 (F • ) ⊗ H 1 (F • ) -→ H 2 (O C d -→ Ω 1 C ) ∼ = C [({u αβ }, {v α })] ⊗ [({u ′ αβ }, {v ′ α })] -→ [({tr(u αβ • u ′ βγ )}, -{tr(u αβ • v ′ β ) -tr(v α • u ′ αβ )})], considered in Čech cohomology with respect to an open covering {U α } of C, {u αβ } ∈ C 1 (F 0 ), {v α } ∈ C 0 (F 1
) and so on. This pairing gives a nondegenerate 2-form on the moduli space M X . This fact follows from the Serre duality and the five lemma:

(3.3) H 0 (F 0 ) / / ∼ H 0 (F 1 ) / / ∼ H 1 (F • ) / / ∼ H 1 (F 0 ) / / ∼ H 1 (F 1 ) ∼ H 1 (F 1 ) ∨ / / H 1 (F 0 ) ∨ / / H 1 (F • ) ∨ / / H 0 (F 1 ) ∨ / / H 0 (F 0 ) ∨ .
We denote by ω the nondegenerate 2-form on M X . This 2-form ω is a symplectic structure. That is, we have dω = 0 (see [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF]Proposition 7.3] and [24, Proposition 4.2]). We get as a consequence:

Proposition 10. The dimension of M 0 X is equal to 2N , where N = 4g -3 + n. Proof. By irreducibility of (E, ∇) and Schur's lemma we have

H 0 (F • ) ∼ = C.
On a Zariski open subset of M X , the underlying quasi-parabolic vector bundle (E, {l (i) } i ) is irreducible, so we also have

H 0 (F 0 ) ∼ = C. Clearly, we have deg(F 0 ) = -length(D). From Riemann-Roch we find dim C H 1 (F 0 ) = dim C H 0 (F 0 ) + 4(g -1) -deg(F 0 ) = 4g -3 + n = N.
By Serre duality and Euler characteristic count applied to the hypercohomology long exact sequence (3.3), we get the statement.

3.3.

Trivializations of E. Our purpose is to give canonical coordinates of M 0 X with respect to the symplectic form (3.2). To do it, we will calculate the Čech cohomology by taking trivializations of E. To simplify the calculation, we take trivializations of E by using

φ ∇ : E 0 ⊂ --→ E,
whose cokernel defines the apparent singularities. In this section, we will discuss construction of the trivializations of E by using φ ∇ .

We take (E, ∇, {l (i) }) ∈ M 0 X . Let {(q j , ζ j dz j )} j=1,2,...,N be the point on Sym N (Ω(D)) corresponding to (E, ∇, {l (i) }). We assume that the point {(q j , ζ j dz j )} j=1,2,...,N is generic in the sense of Lemma 7. Let U an qj be an analytic open subset of C such that q j ∈ U an qj and U an ti be an analytic open subset of C such that t i ∈ U an ti . We assume that U an qj and U an ti are small enough. We take an analytic coordinate z j on U an qj such that it is independent of the moduli space M 0 X . We denote also by q j the complex number so that the point q j on C is defined by z jq j = 0.

Definition 11. Let {U α } α be an analytic open covering of C: C = α U α such that (i) ♯{i | t i ∩ U α = ∅} ≤ 1 for any α, and ♯{α | t i ∩ U α = ∅} ≤ 1 for any i, (ii) ♯{j | q j ∩ U α = ∅} ≤ 1 for any α, and ♯{α | q j ∩ U α = ∅} ≤ 1 for any j, (iii) Ω 1 C (D) is free on U α for any α, that is, Ω 1 C (D)| Uα ∼ = O Uα , (iv) U αt i = U an
ti and U αq j = U an qj . Here we denote by α ti the index α such that t i ∈ U α , and by α qj the index α such that q j ∈ U α .

We fix trivializations ω

α : O Uα ∼ --→ Ω 1 C (D)| Uα of Ω 1 C (D).
We assume that ω α is independent of the moduli space M 0 X . By using ω α , we have

ω -1 α : O Uα ∼ --→ (Ω 1 C (D)) -1 | Uα . By the trivializations, we have trivializations ϕ norm α : O ⊕2 Uα ∼ --→ E 0 | Uα of E 0 . Assume that the connection matrices A norm α of ∇ 0 associated to ϕ norm α are (3.4) A norm α = 0 β α γ α δ α , where β α , δ α ∈ Ω 1 C (D + B)| Uα are determined by {(q j , res qj (β))} j=1,2,...,N (see Lemma 7). The 1-form γ α ∈ Ω 1 C (D)| Uα is the image of 1 under the composition O Uα ∼ --→ (Ω 1 C (D)) -1 ⊗ Ω 1 C (D)| Uα αt i at t i is independent of the moduli space M 0
X for any i. We set

(3.5) ζ j := res qj (β) γ αq j | qj ∈ C for j = 1, 2, . . . , N .
Here

β ∈ H 0 (C, (Ω 1 C ) ⊗2 (2D + B)) is the (1,
2)-entry of (2.9). Notice that β| Uα = β α γ α , where β α and γ α are in (3.4). So we have

res qj (A norm αq j ) = 0 ζ j 0 1 for j = 1, 2, . . . , N .
Definition 12. We define other trivializations ϕ App,0

α : O ⊕2 Uα ∼ --→ E 0 |
Uα of E 0 for each α as follows:

(i) When α = α qj , we take a trivialization ϕ App,0

α as ϕ App,0 α = ϕ norm α • 1 ζ j 0 1 .
Note that this triangular matrix appeared in (2.12). (ii) Otherwise, we take a trivialization ϕ App,0

α as ϕ App,0 α = ϕ norm α .
Let A App,0 α be the connection matrix of ∇ 0 associated to ϕ App,0 α , that is,

(ϕ App,0 α ) -1 • (φ * ∇ ∇) • ϕ App,0 α = d +A App,0 α .
We have that

A App,0 α =            -ζ j γ α β α -ζ j δ α -ζ 2 j γ α γ α δ α + ζ j γ α when α = α qj 0 β α γ α δ α otherwise.
We have

res qj (A App,0 αq j ) = 0 0 0 1 for j = 1, 2, . . . , N .
Now we define trivializations of E by using φ ∇ : (i) When α = α qj , we take a trivialization ϕ App α so that

E 0 → E in (2.
(ϕ App α ) -1 • φ ∇ | Uα • ϕ App,0 α = 1 0 0 z j -q j .
(ii) When α = α ti , we take g ti α ∈ Aut(O ⊕2 Uα ) so that the polar part of (g ti α )

-1 A norm α g ti α is diagonal at m i [t i ]. We take a trivialization ϕ App α as ϕ App α = φ ∇ | Uα • ϕ norm α • g ti α .
Here remark that φ ∇ | Uα is invertible. Since the polar part of A norm αt i at t i is independent of the moduli space M 0 X , we may assume that (g ti α ) <mi is independent of the moduli space M 0

X . Here we define (g ti α ) <mi so that g ti α = (g ti α ) <mi + O(z mi i ). (iii) Otherwise, we take a trivialization ϕ App α so that

(ϕ App α ) -1 • φ ∇ | Uα • ϕ norm α = 1 0 0 1 . Since φ ∇ | Uα is invertible in this case, ϕ App α = φ ∇ | Uα • ϕ norm α .
Let A α be the connection matrix of ∇ associated to ϕ App α , that is

(ϕ App α ) -1 • ∇ • ϕ App α = d +A α .
We have that

(3.6) A α =                  -ζ j γ α βα-ζj δα-ζ 2 j γα zj -qj (z j -q j )γ α δ α + ζ j γ α - dzj zj-qj when α = α qj ω i (X) + [holo. part] when α = α ti 0 β α γ α δ α otherwise.
Here ω i (X) is the 1-form defined in (2.10). The connection matrix A αq j on U αq j appeared in (2.13).

The connection matrix A αq j has no pole at q j for any j = 1, 2, . . . , N , since β α , δ α are determined by Lemma 7. We have considered diagonalization of the polar part of the connection (E, ∇) at each t i . The reason why we consider diagonalization of the polar parts is that we use the connection matrix (3.6) to calculate an infinitesimal deformation of (E, ∇). So we will calculate variations of the transition functions with respect to the trivializations in Definition 13 and variations of the connection matrices (3.6). These are elements of F 0 and F 1 of (3.1), respectively. To be elements of F 0 and F 1 , we need the compatibility with the quasi-parabolic structure. However, this compatibility follows directly from diagonalization of the polar parts.

3.4. Descriptions of the cocycles of an infinitesimal deformation. Let Ω(D) → C be the total space of Ω 1 C (D). By the argument as in Lemma 6, we may define a map

(3.7) f App,0 : M 0 X -→ Sym N (Ω(D)) (E, ∇) -→ (q j , res qj (β)) j=1,2,...,N .
Here

β ∈ H 0 (C, (Ω 1 C ) ⊗2 (2D + B)) is the (1,
2)-entry of (2.9) and res qj (β) ∈ Ω 1 C (D)| qj . We take an analytic open subset V of M 0 X . For the analytic open subset V , we assume that we may define a composition

V -→ f App,0 (V ) -→ Sym N (C 2 (q,ζ)
) (E, ∇) -→ (q j , res qj (β)) j=1,2,...,N -→ {(q j , ζ j )} j=1,2,...,N , where ζ j is defined in (3.5), and the image of V under the composition is isomorphic to some analytic open subset of C 2N (q,ζ) . Let U (q,ζ) be such an analytic open subset of C 2N (q,ζ) . So we have a map

(3.8) M 0 X ⊃ V -→ U (q,ζ) ⊂ C 2N (q,ζ) (E, ∇) -→ (q 1 , . . . , q N , ζ 1 , . . . , ζ N ),
which are coordinates that we will use in this subsection. We consider the family of (E, ∇, {l (i) }) parametrized by U (q,ζ) such that this family induces the inverse map of the map V → U (q,ζ) . Here this family is constructed by Lemma 7. By using the trivializations {ϕ App α } α of E in Definition 13, we have transition functions and connection matrices of the family of (E, ∇, {l (i) }) parametrized by U (q,ζ) . Indeed, the transition function is (3.9)

B αβ := (ϕ App α | U αβ ) -1 • ϕ App β | U αβ : O ⊕2 U αβ -→ O ⊕2
U αβ , and the connection matrix is as in (3.6).

Let (q j , ζ j ) j be a point on U (q,ζ) . The purpose of this subsection is to describe the tangent map

(3.10) T (qj ,ζj )j C 2N (q,ζ) -→ T (E,∇,{l (i) }) M 0 X ∼ = H 1 (F • ) v -→ [({u αβ (v)}, {v α (v)})]
induced by the inverse map of (3.8). For this purpose, we will calculate the variations of the transition functions and the connection matrices parametrized by U (q,ζ) with respect to the tangent vector v in U (q,ζ) ⊂ C 2N (q,ζ) . By using these variations, we will calculate the cocycles ({u αβ (v)}, {v α (v)}) of the infinitesimal deformation of (E, ∇, {l (i) }) with respect to v.

First, we calculate u αβ (v) ∈ F 1 (U αβ ). We consider the variation of B αβ in (3.9) by v:

B αβ (id + ǫB -1 αβ v(B αβ )) : O ⊕2 U αβ -→ O ⊕2 U αβ ⊗ C[ǫ].
Then u αβ (v) has the following description:

(3.11) u αβ (v) = ϕ App β | U αβ • B -1 αβ v(B αβ ) • (ϕ App β | U αβ ) -1 .
Lemma 14. Let I cov be the set of the indices of the open covering {U α } in Definition 11. We set I t cov = {α t1 , . . . , α tν } and I q cov = {α q1 , . . . , α qN }, which are subsets of I cov . For v ∈ T (E,∇,{l (i) }) M 0 X , we have the equality (3.12)

u αβ (v) =            0 α, β ∈ I cov \ (I t cov ∪ I q cov ) ϕ App αq j | Uαα q j • 0 v(ζj ) zj -qj 0 v(qj ) zj -qj • (ϕ App αq j | Uαα q j ) -1 α ∈ I cov \ (I t cov ∪ I q cov ), β = α qj ∈ I q cov ϕ App αt i | Uαα t i • (g ti αt i ) -1 v(g ti αt i ) • (ϕ App αt i | Uαα t i ) -1 α ∈ I cov \ (I t cov ∪ I q cov ), β = α ti ∈ I t cov ,
and we have that

(3.13) (g ti αt i ) -1 v(g ti αt i ) = O(z mi i ). Proof. Let α ∈ I cov \ (I t cov ∪ I q cov ). If β ∈ I cov \ (I t cov ∪ I q cov
), then we have the following equalities:

B αβ = (ϕ App α | U αβ ) -1 • ϕ App β | U αβ = (ϕ norm α | U αβ ) -1 • (φ ∇ | U αβ ) -1 • φ ∇ | U αβ • ϕ norm β | U αβ = (ϕ norm α | U αβ ) -1 • ϕ norm β | U αβ = 1 0 0 ((ω -1 α ) -1 • ω -1 αq j ) .
Here

ω -1 α is a trivialization O Uα ∼ = -→ (Ω 1 C (D)) -1 | Uα for any α. Since ((ω -1 α ) -1 • ω -1 αq j ) is independent of the moduli space M 0 X , we have v(B αβ ) = 0. So u αβ (v) = 0.
If β = α qj , then we have the following equalities:

(3.14)

B ααq j = (ϕ App α | Uαα q j ) -1 • ϕ App αq j | Uαα q j = (ϕ App,0 α | Uαα q j ) -1 • (φ ∇ | Uαα q j ) -1 • φ ∇ | Uαα q j • ϕ App,0 αq j | Uαα q j • 1 0 0 1 zj-qj = (ϕ App,0 α | Uαα q j ) -1 • ϕ App,0 αq j | Uαα q j • 1 0 0 1 zj -qj = (ϕ norm α | Uαα q j ) -1 • ϕ norm αq j | Uαα q j • 1 ζ j 0 1 1 0 0 1 zj -qj = 1 0 0 ((ω -1 α ) -1 • ω -1 αq j ) 1 ζj zj-qj 0 1 zj-qj .

So we have

B -1 ααq j v(B ααq j ) = 1 -ζ j 0 z j -q j 0 v(ζj )(zj -qj )+ζj v(qj ) (zj -qj ) 2 0 - -v(qj ) (zj-qj ) 2 = 0 v(ζj ) zj-qj 0 v(qj ) zj-qj
.

If β = α ti , then we have the following equalities:

B ααt i = (ϕ App α | Uαα t i ) -1 • ϕ App αt i | Uαα t i = (ϕ norm α | Uαα t i ) -1 • (φ ∇ | Uαα t i ) -1 • φ ∇ | Uαα t i • ϕ norm αt i | Uαα t i • g ti αt i = 1 0 0 ((ω -1 α ) -1 • ω -1 αq j ) • g ti αt i
.

So we have B -1 ααt i v(B ααt i ) = (g ti αt i ) -1 v(g ti αt i ). Since (g ti α )
<mi is independent of the moduli space M 0 X , we have that v(g ti αt i ) = O(z mi i ). Finally, we have the statement of the lemma.

Next we calculate v α (v) ∈ F 1 (U α ) for v ∈ T (E,∇,{l (i) }) M 0 X . This is given by calculating the variation of the connection matrix A α in (3.6) with respect to v. So we have (3.15)

v α (v) =              ϕ App α •   -v(ζ j )γ α v βα-ζj δα-ζ 2 j γα zj -qj -v(q j )γ α v(tr(A αq j )) + v(ζ j )γ α   • (ϕ App α ) -1 when α = α qj ϕ App α • 0 v(β α ) 0 v(tr(A α )) • (ϕ App α ) -1 when α ∈ I cov \ (I t cov ∪ I q cov )
.

Here remark that γ α is independent of the moduli space M 0 X for any α. When α = α ti , we have that v α (v) is holomorphic at t i .

Canonical coordinates. Now we introduce canonical coordinates on M 0

X with respect to the symplectic form (3.2). We recall that we have set N := 4g + n -3.

Let π : Ω(D) → C and π 0 : Ω → C be the total spaces of Ω 1 C (D) and Ω 1 C , respectively. The total space Ω has the Liouville symplectic form ω Liouv . Since we have an isomorphism

π -1 0 (C \ Supp(D)) ∼ --→ π -1 (C \ Supp(D)),
the Liouville symplectic form induces a symplectic form π -1 (C\Supp(D)). Let π N : Sym N (Ω(D)) → Sym N (C) be the map induced by the map π : Ω(D) → C. We set Sym N (Ω(D)) 0 := {q 1 , . . . , q N } ∈ π -1 N (Sym N (C \ Supp(D))) q j1 = q j2 (j 1 = j 2 ) . Then Sym N (Ω(D)) 0 has the induced symplectic form from the Liouville symplectic form.

Remark 15. We have a map f App,0 : M 0 X → Sym N (Ω(D)) 0 , which is described in (3.7). Notice that M 0 X and Sym N (Ω(D)) 0 have symplectic forms. But by the explicit calculation as below, we realize that this map f App,0 does not preserve these symplectic structures. So f App,0 does not give canonical coordinates directly. To give canonical coordinates, we have to modify the map f App,0 as follows.

We twist Ω(D) by a class in H 1 (C, Ω 1 C ) as follows. Let c d be the image of the line bundle det(E) under the morphism

H 1 (C, O * C ) d log ----→ H 1 (C, Ω 1 C ) ∼ = Ext 1 C (T C , O C ). Let A C (c d )
be the sheaf produced by the Atiyah sequence on C with respect to c d , that is, A C (c d ) is given by the extension

(3.16) 0 -→ O C -→ A C (c d ) -→ T C -→ 0 with respect to c d ∈ H 1 (C, Ω 1 C ). Then, A C (c d
) is naturally a Lie-algebroid, called the Atiyah algebroid of the G m -principal bundle Tot(T C ) \ 0, where 0 stands for the 0-section; for details, see [START_REF] Logares | Moduli of parabolic Higgs bundles and Atiyah algebroids[END_REF]Section 3.1.2]. We denote by symb 1 : A C (c d ) → T C the morphism in (3.16). We consider the subsheaf

T C (-D) ⊂ T C . We set A C (c d , D) := symb -1 1 T C (-D), which is an extension 0 -→ O C -→ A C (c d , D) -→ T C (-D) -→ 0. Let Ω 1 C (D, c d ) be the twisted cotangent bundle over C with respect to A C (c d , D), that is, Ω 1 C (D, c d ) = φ ∈ A C (c d , D) ∨ φ, 1 AC (c d ,D) = 1 .

We denote by

π c d : Ω(D, c d ) -→ C the total space of the twisted cotangent bundle Ω 1 C (D, c d ), and a generic element of this affine bundle by (q, p) in analogy with classical notation (q, p) for points of Ω(D). For each (E, ∇, {l (i) }) ∈ M 0 X , we have (det(E), tr(∇)). The connection tr(∇) on the line bundle det(E) is considered as a global section of Ω(D, c d ) → C, which is the total space of the twisted cotangent bundle with respect to det(E). The global section tr(∇) gives a diffeomorphism Ω(D) -→ Ω(D, c d ); (q, p) -→ (q, p + tr(∇)).

Notice that tr(∇) does depend on M 0 X . So this morphism depends on M 0 X . Moreover, it is not a morphism of vector bundles. Definition 16. We define the accessory parameter associated to (E, ∇) at q j by pj = res qj (β) + tr(∇)| qj ,

where β ∈ H 0 (C, (Ω 1 C ) ⊗2 (2D + B)) is the (1,
2)-entry of (2.9) and res qj (β) ∈ Ω 1 C (D)| qj . The N -tuple {(q j , pj )} j=1,2,...,N will be called canonical coordinates of (E, ∇). We let f App be the map

f App : M 0 X -→ Sym N (Ω(D, c d )) (E, ∇, {l (i) }) -→ {(q j , pj )} j=1,2,...,N .
Notice that the map f App,0 in (3.7) is defined by using only res qj (β). The reason why we consider the twisted cotangent bundle Ω(D, c d ) is to justify tr(∇)| qj . The next proposition shows that the quantities introduced in the definition may indeed be called coordinates.

Proposition 17. The map f App introduced in Definition 16 is birational.

Proof. It follows from Proposition 10 that the dimensions of the source and target of f App agree. We therefore need to show two things: first, that f App is rational, and second, that it admits an inverse over a Zariski open subset of Sym N (Ω(D, c d )).

The first assertion is trivial, because the construction of the apparent singularities q j and their accessory parameters pj follow from algebraic arguments on certain Zariski open subsets.

The key statement is existence of a generic inverse. This is now a variant of Lemma 7. Namely, fixing generic {(q j , pj )} j=1,2,...,N , we must find a unique (δ, β). Since we have δ = tr(∇ 0 ), we get the expression pj = ζ j dz j + δ -dz j z j .

An algebraic manipulation shows that the constraint (2.14) expressing that the singularity at q j be apparent is equivalent to the holomorphicity and vanishing of the expression (3.17) β + δ pj + dz j z j pj + dz j z j

2

.

We now study these conditions by taking the Laurent expansion of this expression with respect to z j . We first observe that it clearly admits a pole of order at most 2 at q j , because q j = t i . Since δ has a simple pole with residue 1, the term of degree -2 is (dz j ) ⊗2 -(dz j ) ⊗2 = 0. So the pole is automatically at most simple.

For the study of the residue, we need to introduce some notation: let us write

δ 0 = dz j z j + δ (j) 0 β 0 = ζ j (dz j ) ⊗2 z j + β (j) 0
for a holomorphic rank 1 connection δ (j) 0 and a holomorphic quadratic differential β (j) 0 on U qj . Then, the degree -1 part of (3.17) is (up to a global factor dz j )

ζ j dz j + pj + δ - dz j z j -2p j = 0
by the definition of pj . Finally, to deal with the vanishing constraint, we make use of the same basis expansions for δ and β as in Lemma 7. Then, the conditions read as

N -g k=1 b k ν k (q j ) + pj g l=1 d l ω l (q j ) = (p j ) ⊗2 -δ (j) 0 (q j )p j -β (j) 0 (q j ).
Now, the determinant of this linear system of N equations (for 1 ≤ j ≤ N ) in N variables b 1 , . . . , b N -g , d 1 , . . . , d g agrees with the determinant studied in Lemma 7, up to replacing each occurrence of ζ j dz j by pj . The end of the proof then follows word by word the method of Lemma 7.

Remark 18. The expression (3.17) has variables pj in the twisted cotangent sheaf rather than the ordinary cotangent sheaf. The quadratic polynomial of pj can be viewed as the characteristic polynomial of the connection matrix of ∇ 0 . Thus, in a sense the vanishing condition on (3.17) may be interpreted as the requirement that pj lie on the quantum spectral curve of ∇ 0 , see e.g. [START_REF] Dumitrescu | Quantum curves for Hitchin fibrations and the Eynard-Orantin theory[END_REF].

By taking a local trivialization of det(E), we have a concrete description of the map f App . Now we will discuss on such a description of f App . The description discussed below is useful for the proof of Theorem 20 below. Let (E, ∇, {l (i) }) ∈ M 0 X . As a local trivialization of det(E), we take the isomorphism (3.18) det(ϕ App αq j ) : O Uα q j -→ det(E)| Uα q j , which is the determinant of the trivialization in Definition 13. Notice that the composition

O Uα q j ω -1 αq j ---→ (Ω 1 C (D)) -1 | Uα q j det(φ∇)|U αq j ---------→ det(E)| Uα q j det(ϕ App αq j ) -1 --------→ O Uα q j
coincides with (z jq j ) : O Uα q j → O Uα q j . Let tr(A αq j ) ∈ Ω 1 C (D)| Uα q j be the connection matrix of (det(E), tr(∇)) on U αq j with respect to the local trivialization det(ϕ App αq j

). Then, by using (3.5), the map f App has the following description:

f App : (E, ∇, {l (i) }) -→ q j , ζ j γ αq j | qj + tr(A αq j )| qj j=1,2,...,N , Here ζ j γ αq j | qj + tr(A αq j )| qj is an element of Ω 1 C (D)| qj . We set (3.19) p j := res qj ζ j γ αq j z j -q j + res qj tr(A αq j ) z j -q j ,
which is the image of ζ j γ αq j | qj + tr(A αq j )| qj under the isomorphism

Ω 1 C (D)| qj ∼ = C.
Remark 19. This p j is just the evaluation of the (2, 2)-entry of the connection matrix A αq j in (3.6) at q j . Note that the (2, 1)-entry of this connection matrix A αq j at q j vanishes. So p j is an "eigenvalue" of ∇ at q j . (On the other hand, ζ j is an "eigenvector" of ∇ 0 at q j ). This fact means that the coordinates (q j , p j ) j are an analog of the coordinates on the moduli space of (parabolic) Higgs bundles given as in [START_REF] Gorsky | Hilbert schemes, separated variables, and D-branes[END_REF] and [START_REF] Hurtubise | Integrable systems and algebraic surfaces[END_REF]. The coordinates on the moduli space of (parabolic) Higgs bundles are by using the BNR correspondence [START_REF] Beauville | Spectral curves and the generalised theta divisor[END_REF]. (See Section 6).

Let π c d ,N : Sym N (Ω(D, c d )) → Sym N (C) be the map induced by the map π c d : Ω(D, c d ) → C. We set

Sym N (Ω(D, c d )) 0 := {(q j , pj )} N j=1 ∈ π -1 c d ,N (Sym N (C \ Supp(D))) q j1 = q j2 (j 1 = j 2 ) .
Then Sym N (Ω(D, c d )) 0 has the induced symplectic form from the Liouville symplectic form. Notice that by construction the image of M 0 X under the map f App is contained in Sym N (Ω(D, c d )) 0 . Theorem 20. Let ω be the symplectic form on M 0 X defined by (3.2). The pull-back of the symplectic form on Sym N (Ω(D, c d )) 0 under the map f App : M 0 X -→ Sym N (Ω(D, c d )) 0 in Definition 16 coincides with ω.

Proof. Let V be an analytic open subset of M 0 X as in Section 3.4. Moreover, we assume that we may define a composition

V -→ f App (V ) -→ Sym N (C 2 (q,p) ) (E, ∇) -→ f App (E, ∇) -→ {(q j , p j )} j=1,2,...,N ,
where p j is defined in (3.19), and the image of V under the composition is isomorphic to some analytic open subset of C 2N (q,p) . Let U (q,p) be such an analytic open subset of C 2N (q,p) . We denote by

f 2 the map M 0 X ⊃ V -→ U (q,p) ⊂ C 2N (q,ζ)
(E, ∇) -→ (q 1 , . . . , q N , p 1 , . . . , p N ).

We consider the following maps

U (q,ζ) V f1 ∼ o o f2 / / U (q,p) .
Here

f 1 : V ∼ -→ U (q,ζ) is the isomorphism (3.8
). The symplectic structure on U (q,p) induced by the symplectic structure on Sym N (Ω(D, c d )) is N j=1 dp j ∧ dq j . We will show that

(f -1 1 ) * (ω| V ) = (f 2 • f -1 1 ) *   N j=1 dp j ∧ dq j   .
Let v, v ′ be elements of T (qj ,ζj )j U (q,ζ) for (q j , ζ j ) j ∈ U (q,ζ) . We will use the description of the tangent map (3.10) of f -1 1 : U (q,ζ) → V . That is, we calculate (f -1 1 ) * (ω| V ) by applying the descriptions (3.12) and (3.15) of u αβ (v) and v α (v), respectively.

First we consider {u αβ (v)u βγ (v ′ )} αβγ . Remark that U αq j 1 ∩ U αq j 2 = ∅ for any j 1 and j 2 , U αt i 1 ∩ U αt i 2 = ∅ for any i 1 and i 2 , and U αq j ∩ U αt i = ∅ for any j and i. Then we have u αβ u βγ = 0 by Lemma 14. So we may take a representative of the class in the pairing (3.2) so that

[-{tr(u αβ (v) • v β (v ′ )) -tr(v α (v) • u αβ (v ′ ))} αβ ] ∈ H 1 (C, Ω 1 C ) ∼ = C. Now we calculate tr(u αβ (v) • v β (v ′ )) -tr(v α (v) • u αβ (v ′ )). If α ∈ I cov \ (I t cov ∪ I q cov
) and β = α qj , then, by applying (3.12) and (3.15), we have the following equalities (3.20)

tr(u ααq j (v)v αq j (v ′ )) -tr(v α (v)u ααq j (v ′ )) = tr 0 v(ζj ) zj -qj 0 v(qj ) zj -qj * * -v ′ (q j )γ αq j v ′ (tr(A αq j )) + v ′ (ζ j )γ αq j -tr * * 0 v(tr(A α )) 0 v ′ (ζj ) zj -qj 0 v ′ (qj ) zj -qj = - v(ζ j )v ′ (q j )γ αq j z j -q j + v(q j ) v ′ (tr(A αq j )) + v ′ (ζ i )γ αq j z j -q j - v ′ (q j ) (v(tr(A α ))) z j -q j = - v(ζ j )γ αq j + v(tr(A α )) v ′ (q j ) z j -q j + v(q j ) v ′ (tr(A αq j )) + v ′ (ζ i )γ αq j z j -q j .
Now we consider the difference between v(tr(A αq j )) and v(tr(A α )). So we consider infinitesimal deformation of (det(∇), tr(∇)). We have that

det(B ααq j ) = det 1 0 0 ((ω -1 α ) -1 • ω -1 αq j ) 1 ζj zj-qj 0 1 zj-qj = ((ω -1 α ) -1 • ω -1 αq j ) z j -q j .
Here B ααq j is calculated in (3.14). Set

(3.21) u det ααq j (v) := det(B ααq j ) -1 v(det(B ααq j )) = v(q j ) z j -q j .
Here remark that ((ω

-1 α ) -1 • ω -1 αq j ) is independent of the moduli space M 0 X . We have a cocycle condition v(tr(A αq j )) -v(tr(A α )) = tr(∇) • u det ααq j -u det ααq j • tr(∇). So we have v(tr(A αq j )) -v(tr(A α )) = d v(q j ) z j -q j = - v(q j ) dz j (z j -q j ) 2
. By applying this difference to (3.20), we have that (3.22) tr(u

ααq j (v)v αq j (v ′ )) -tr(v α (v)u ααq j (v ′ )) = - v(ζ j )γ αq j + v(tr(A αq j )) v ′ (q j ) z j -q j + v(q j ) v ′ (tr(A αq j )) + v ′ (ζ i )γ αq j z j -q j - v(q j )v ′ (q j ) dz j (z j -q j ) 3 . So we may extend the 1-form tr(u ααq j (v)v αq j (v ′ )) -tr(v α (v)u ααq j (v ′ ))
from U ααq j to U αq j by (3.22). Then we have a meromorphic 1-form defined on U αq j , which has a pole at q j . We denote by ω αq j (v, v ′ ) the meromorphic 1-form defined on U αq j .

Next we consider the case where α ∈ I cov \ (I t cov ∪ I q cov ) and β = α ti . We have the following equalities

tr(u ααt i (v)v αt i (v ′ )) -tr(v α (v)u ααt i (v ′ )) = tr (g ti αt i ) -1 v(g ti αt i )v ′ (A αt i ) -tr (g ti αt i ) -1 v(A α )g ti αt i (g ti αt i ) -1 v ′ (g ti αt i ) We have the cocycle condition v(A αt i ) -(g ti αt i ) -1 v(A α )(g ti αt i ) = (d +A αt i ) • (g ti αt i ) -1 v(g ti αt i ) -(g ti αt i ) -1 v(g ti αt i ) • (d +A αt i ) = d (g ti αt i ) -1 v(g ti αt i ) + A αt i , (g ti αt i ) -1 v(g ti αt i )
. By this condition, we have

(3.23) tr(u ααt i (v)v αt i (v ′ )) -tr(v α (v)u ααt i (v ′ )) = tr (g ti αt i ) -1 v(g ti αt i )v ′ (A αt i ) -tr v(A αt i )(g ti αt i ) -1 v ′ (g ti αt i ) + tr d (g ti αt i ) -1 v(g ti αt i ) + A αt i , (g ti αt i ) -1 v(g ti αt i ) (g ti αt i ) -1 v ′ (g ti αt i
) So we may extend the 1-form

tr(u ααt i (v)v αt i (v ′ )) -tr(v α (v)u ααt i (v ′ ))
from U ααt i to U αt i by (3.23). Since we have the vanishing of the lower terms (3.13), the extended 1-form defined on U αt i is holomorphic. We denote by ω αt i (v, v ′ ) the holomorphic 1-form defined on U αt i . For α ∈ I cov \ (I t cov ∪ I q cov ), we set ω α (v, v ′ ) = 0. By (3.22) and (3.23), we have a meromorphic

coboundary {ω α (v, v ′ )} α of {tr(u αβ (v) • v β (v ′ )) -tr(v α (v) • u αβ (v ′ ))} αβ .
So we have

H 1 (C, Ω 1 C ) ∼ = --→ C [-{tr(u αβ (v) • v β (v ′ )) -tr(v α (v) • u αβ (v ′ ))} αβ ] -→ x∈C -res x (ω α (v, v ′ )) .
By taking the residues of the right hand sides of (3.22) and (3.23), we have that

- x∈C res x (ω α (v, v ′ )) = N j=1 res qj   v(ζ j )γ αq j + v(tr(A αq j )) v ′ (q j ) z j q j   - N j=1 res qj   v(q j ) v ′ (tr(A αq j )) + v ′ (ζ i )γ αq j z j -q j   = N j=1 (v(p j )v ′ (q j ) -v(q j )v ′ (p j )) =   N j=1 dp j ∧ dq j   (v, v ′ ).
Here remark that γ α is independent of the moduli space M 0 X for any α.

By the map f App , we have concrete canonical coordinates as follows. We take an analytic open subset V of M 0 X at a point (E, ∇), which is small enough. We define functions q j and p j (j = 1, 2, . . . , N ) on V as follows. (So, here, the notation q j has a double meaning). Let U αq j be an analytic open subset of C such that U αq j contains the apparent singularity q j of the point (E, ∇) and is small enough. Let q ′ j be the apparent singularity of each (E ′ , ∇ ′ ) ∈ V , where q ′ j ∈ U αq j . First we take a local coordinate z j on U αq j . By evaluating the apparent singularity q ′ j by the local coordinate z j for each (E ′ , ∇ ′ ) ∈ V , we have a function q j : V → C. Second, let (E V , ∇ V ) be a vector bundles on C × V , which is a family of vector bundles on C parametrized by V . We take a trivialization of det(E V ) on U αq j × V which depends on only q j : V → C (which is described in (3.18)). We take the connection matrix of tr(∇ V ) with respect to the local trivialization. Let Ω(D, c d ) V → C × V be the relative twisted cotangent bundle over V with respect to the family of line bundles det(E V ) on C × V . We have an identification between Ω(D, c d ) V and Ω(D) × V on U αq j × V that depends only on q j : V → C. By evaluating res q ′ j (β ′ ) + tr(∇ ′ )| q ′ j by the identification

Ω(D, c d )| q ′ j ∼ = Ω(D)| q ′ j ∼ = C for each (E ′ , ∇ ′ ) ∈ V ,
we have a function p j : V → C. This is just (3.19). That is, this is the following composition:

V -→ U αq j × V -→ Ω(D, c d ) V | Uα q j ×V -→ Ω(D)| Uα q j -→ C (E ′ , ∇ ′ ) -→ (q ′ j , (E ′ , ∇ ′ )) -→ (ζ j γ αq j ) V + tr(∇ V ) | (q ′ j ,(E ′ ,∇ ′ )) -→ ζ ′ j γ αq j + tr(A ′ αq j ) | q ′ j -→ res q ′ j ζ ′ j γ αq j + tr(A ′ αq j ) z j -q ′ j .
By Theorem 20, the symplectic structure on V has the following description:

N j=1 dp j ∧ dq j . Remark 21. We set

p 0 j := res qj ζ j γ αq j z j -q j ∈ C.
If g = 0, then res qj tr(Aα q j ) zj -qj depends on only q j . So we have N j=1 dp j ∧ dq j = N j=1 dp 0 j ∧ dq j .

Here the symplectic form N j=1 dp 0 j ∧ dq j is induced by the symplectic form on Sym N (Ω(D)) 0 .

Remark 22. In general,

N j=1 dp j ∧ dq j = N j=1 dp 0 j ∧ dq j , that is, (3.24) 
j d res qj tr(A αq j ) z jq j ∧ dq j does not vanish. This is related to the determinant map

M 0 X -→ M rk=1 X (ν res ) (E, ∇, {l (i) }) -→ (det(E), tr(∇)).
The 2-form (3.24) comes from

{u det αβ (v)u det βγ (v ′ )}, -{u det αβ (v)v ′ (tr(A β )) -v(tr(A α ))u det αβ (v ′ )} ∈ H 2 (O C → Ω 1 C ).
Here u det αβ (v) is defined as in (3.21). This class gives rise to the 2-form on M 0 X which is just the pullback of the natural symplectic form on M rk=1 X (θ res ) under the determinant map. The determinant map is not degenerate in general. So the class (3.24) does not vanish in general.

Symplectic structure on the moduli space with fixed trace connection

In this section, we consider the moduli spaces of rank 2 quasi-parabolic connections with fixed trace connection. When the effective divisor D is reduced, this moduli space is detailed in [START_REF] Arinkin | Isomorphisms between moduli spaces of SL(2)-bundles with connections on P 1 \ {x 1[END_REF], [START_REF] Loray | Lagrangian fibrations in duality on moduli spaces of rank 2 logarithmic connections over the projective line[END_REF] (when g = 0), [START_REF] Fassarella | Loray Flat parabolic vector bundles on elliptic curves[END_REF], [START_REF] Fassarella | Flat parabolic vector bundles on elliptic curves II[END_REF] (when g = 1), and [START_REF] Matsumoto | Birational geometry of moduli spaces of rank 2 logarithmic connections[END_REF] (when g ≥ 1). The moduli spaces of rank 2 quasiparabolic connections with fixed trace connection has a natural symplectic structure described as in Section 3.2. The purpose of this section is to give coordinates on some generic part of the moduli space and to describe the natural symplectic structure by using the coordinates. As in the case where the effective divisor D is reduced ( [START_REF] Loray | Lagrangian fibrations in duality on moduli spaces of rank 2 logarithmic connections over the projective line[END_REF], [START_REF] Fassarella | Loray Flat parabolic vector bundles on elliptic curves[END_REF], [START_REF] Fassarella | Flat parabolic vector bundles on elliptic curves II[END_REF], [START_REF] Matsumoto | Birational geometry of moduli spaces of rank 2 logarithmic connections[END_REF]), we may define the map forgetting connections and the apparent map. These maps are from a generic part of the moduli space to projective spaces. These maps will give our coordinates on the generic part of the moduli space. First we describe these maps.

4.1.

Moduli space of quasi-parabolic bundles with fixed determinant. To describe the map forgetting connections, we recall the moduli space of quasi-parabolic bundles. The moduli space of (quasi-)parabolic bundles was introduced in Mehta-Seshadri [START_REF] Mehta | Moduli of vector bundles on curves with parabolic structures[END_REF]. Yokogawa generalized this notion to (quasi-)parabolic sheaves and studied their moduli [START_REF] Yokogawa | Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves[END_REF].

Let ν be a positive integer. Set I := {1, 2, . . . , ν}. Let C be a compact Riemann surface of genus g, and D = i∈I m i [t i ] be an effective divisor on C. We assume 3g -3 + n > 0 where n = length(D). Let z i be a generator of the maximal ideal of O C,ti . We fix a line bundle L 0 with deg(L 0 ) = 2g -1.

Definition 23. We say (E, {l (i) }) a rank 2 quasi-parabolic bundle with determinant L 0 over (C, D) if (i) E is a rank 2 vector bundle of degree 2g -1 on C with det(E) ∼ = L 0 , and

(ii) E| mi[ti] ⊃ l (i) ⊃ 0 is a filtration by free O mi[ti] -modules such that E| mi[ti] /l (i) ∼ = O mi[ti]
and

l (i) ∼ = O mi[ti]
for any i ∈ I.

We fix weights w = (w 1 , . . . , w ν ) such that w i ∈ [0, 1] for any i ∈ I. When g = 0, we assume that (w i ) i∈I satisfies (4.1)

w 1 = • • • = w ν and 1 deg(D) < w i < 1 deg(D) -2 .
When g ≥ 1, we assume that

(w i ) i∈I satisfy (4.2) 0 < w i ≪ 1.
Definition 24. Let (E, {l (i) }) be a rank 2 quasi-parabolic bundle with determinant L 0 . Let L be a line subbundle of E. We define the w-stability index of L to be the real number

Stab w (L) := deg(E) -2 deg(L) + i∈I w i m i -2 length(l i ∩ L| mi[ti] ) .
Definition 25. A rank 2 quasi-parabolic bundle (E, {l (i) }) is w-stable if for any subbundle L ⊂ E, the inequality Stab w (L) > 0 holds.

We say that a quasi-parabolic bundle (E, {l (i) }) is decomposable if there exists a decomposition

E = L 1 ⊕ L 2 such that l (i) = l (i) 1 or l (i) = l (i)
2 for any i ∈ I, where we set l (i)

1 := l (i) ∩ (L 1 | mi[ti] ) and l (i) 2 := l (i) ∩ (L 2 | mi[ti] ). We say that (E, {l (i) }) is undecomposable if (E, {l (i) }) is not decomposable. A free O mi[ti] -submodule l (i) of E| mi[ti] induces a one dimensional subspace l (i)
red of E| ti , that is the restriction of l (i) to t i (without multiplicity).

Lemma 26. Let (E, {l (i) }) be a rank 2 quasi-parabolic bundle with determinant L 0 . If (i) E is an extension of L 0 by O C (when g = 0, moreover we assume that (E,

{l (i) }) is unde- composable) (ii) dim C H 1 (C, E) = 0 (iii) l (i) red ∈ O C | ti ⊂ P(E) for any i, then (E, {l (i) }) is w-stable.
Proof. When g = 0, we have this statement from [START_REF] Komyo | Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification[END_REF]Proposition 46] by the condition (4.1). When g ≥ 1, we have that E is stable, that is, deg(E)-2 deg(L) is a positive integer for any line subbundle L ⊂ E. This claim follows from the same argument as in [START_REF] Matsumoto | Birational geometry of moduli spaces of rank 2 logarithmic connections[END_REF]Lemma 4.2]. Since 0 < w i ≪ 1 in (4.2), we have that Stab w (L) > 0.

Let P w (C,D) be a moduli space of w-stable quasi-parabolic bundles constructed in [START_REF] Yokogawa | Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves[END_REF]. Let P w (C,D) (L 0 ) be the fiber of L 0 under the determinant map

P w (C,D) -→ Pic 2g-1 C ; (E, {l (i) }) -→ det(E).
We set

P (C,D) (L 0 ) 0 :=        (E, {l (i) }) (E, {l (i) }) is rank 2 quasi-parabolic bundle over (C, D) such that (i) det(E) ∼ = L 0 , (ii) E is an extension of L 0 by O C , (iii) dim C H 1 (C, E) = 0, (iv) l (i) red ∈ O C | ti ⊂ P(E) for any i, (v) (E, {l (i) }) is undecomposable (when g = 0)        .
By Lemma 26, we have an inclusion

P (C,D) (L 0 ) 0 ⊂ P w (C,D) (L 0 ). For (E, {l (i) }) ∈ P (C,D) (L 0 ) 0 , we have an extension (4.3) 0 -→ O C -→ E -→ L 0 -→ 0. Since dim C H 1 (C, E) = 0, we have that dim C H 0 (C, E) = 1. So the injection O C ⊂ -→ E in (4.3) is unique up to a constant. Definition 27. Let (E, {l (i) }) ∈ P (C,D) (L 0 ) 0 . We take an affine open covering {U α } α of C, i.e. C = α U α . Let {ϕ Ext α } α be trivializations ϕ Ext α : O ⊕2 Uα → E| Uα of the underlying vector bundle E such that (i) the composition O Uα -→ O ⊕2 Uα ϕ Ext α ---→ E| Uα f -→ (f, 0)
is just the inclusion O C ⊂ E of the extension (4.3) for any α, and (ii) the image of the composition

O Uα -→ O ⊕2 Uα ϕ Ext α ---→ E| Uα -→ E| mi[ti] f -→ (0, f ) generates the submodule l (i) ⊂ E| mi[ti]
for each i and α where t i ∈ U α .

Notice that the claim that we may take ϕ Ext α which satisfies the condition (ii) of Definition 27 follows from the condition that l D)) as follows. Let {ϕ Ext α } α be the trivializations in Definition 27. We have the transition matrices

(i) red ∈ O C | ti ⊂ P(E) for any i. Now we define a map (4.4) P (C,D) (L 0 ) 0 -→ PH 1 (C, L -1 0 (-
B αβ := (ϕ Ext α | U αβ ) -1 • ϕ Ext β | U αβ : O ⊕2 U αβ -→ O ⊕2 U αβ .
We represent B αβ as a matrix: Remark that {b 22 αβ } αβ is a multiplicative cocycle which defines the fixed line bundle L 0 . We take a meromorphic coboundary 

(E, {l (i) }) -→ [{b Bun αβ }]. 4.2.
Moduli space of quasi-parabolic connections with fixed trace connection. Now we recall the moduli space of quasi-parabolic connections. We fix an irregular curve with residues X = (C, D, {z i }, {θ i }, θ res ) defined in Definition 2. Moreover we assume that

(4.8) i∈I θ - i,-1 = 0. Let (L 0 , ∇ L0 : L 0 → L 0 ⊗ Ω 1 C (D)
) be a rank 1 connection on C with degree 2g -1 such that the polar part of ∇ L0 at t i is tr(ω i (X)).

Definition 28. We say (E, ∇, λ, {l (i) }) a rank 2 quasi-parabolic λ-connection over X with fixed trace connection (L 0 , ∇ L0 ) if (i) E is a rank 2 vector bundle on C with det(E) ∼ = L 0 , (ii) λ ∈ C and ∇ : E → E ⊗ Ω 1 C (D) is a λ-connection that is, ∇(f s) = λs ⊗ df + f ∇(s) for any f ∈ O C and s ∈ E, and (iii) ∇(s 1 ) ∧ s 2 + s 1 ∧ ∇(s 2 ) = λ∇ L (s 1 ∧ s 2 ) for s 1 , s 2 ∈ E, (iv) E| mi[ti] ⊃ l (i) ⊃ 0 is a filtration by free O mi[ti] -modules such that, for any i ∈ I, -E| mi[ti] /l (i) ∼ = O mi[ti] and l (i) ∼ = O mi[ti] , -∇| mi[ti] (l (i) ) ⊂ l (i) ⊗ Ω 1 C (D), and -the image of (E| mi[ti] /l (i) ) ⊕ l (i) under Gr i (∇) -λ • ω i (X) is contained in (E| mi[ti] /l (i) ) ⊕ l (i) ⊗ Ω 1 C .
Here Gr i (∇) is the induced morphism

Gr i (∇) : (E| mi[ti] /l (i) ) ⊕ l (i) -→ (E| mi[ti] /l (i) ) ⊕ l (i) ⊗ Ω 1 C (D).
Notice that, if λ = 0, then ∇ is an O C -morphism, which is called a Higgs field. So (E, ∇, λ, {l (i) }) is called a (trace free) quasi-parabolic Higgs bundle when λ = 0. We consider only rank 2 quasiparabolic λ-connections (E, ∇, λ, {l (i) }) over X with (L 0 , ∇ L0 ) such that the underlying quasiparabolic bundle (E, {l (i) }) is in the moduli space P (C,D) (L 0 ) 0 .

We define the moduli spaces M X (L 0 , ∇ L0 ) 0 and M X (L 0 , ∇ L0 ) 0 as follows:

M X (L 0 , ∇ L0 ) 0 =    (E, ∇, λ, {l (i) }) quasi-parabolic λ-connection over X with trace (L 0 , ∇ L0 ) (E, {l (i) }) ∈ P (C,D) (L 0 ) 0    ∼ = and M X (L 0 , ∇ L0 ) 0 =    (E, ∇, λ, {l (i) }) quasi-parabolic λ-connection over X with trace (L 0 , ∇ L0 ) (E, {l (i) }) ∈ P (C,D) (L 0 ) 0 and λ = 0    ∼ = .
4.3. Maps from the moduli space. Now we describe two maps: the forgetful map π Bun forgetting connections and the apparent map π App . First we consider the composition

M X (L 0 , ∇ L0 ) 0 -→ P (C,D) (L 0 ) 0 -→ PH 1 (C, L -1 0 (-D)).
Here the first map is the forgetful map, and the second map is (4.4). We denote by

π Bun : M X (L 0 , ∇ L0 ) 0 -→ PH 1 (C, L -1 0 (-D)). the composition.
Second we define a map (4.9)

π App : M X (L 0 , ∇ L0 ) 0 -→ PH 0 (C, L 0 ⊗ Ω 1 C (D)) as follows. Let (E, ∇, λ, {l (i) }) be a point on M X (L 0 , ∇ L0 ) 0 . Let {ϕ Ext
α } α be the trivializations in Definition 27. Let A α be the connection matrix of the λ-connection ∇ with respect to ϕ Ext α , that is,

λ d +A α := (ϕ Ext α ) -1 • ∇ • ϕ Ext α : O ⊕2 Uα -→ (Ω 1 Uα (D)) ⊕2
. We denote the matrix A α as follows: By the condition (ii) in Definition 27 and the condition (iv) in Definition 28, the polar part of the connection matrix A α at t i is a lower triangular matrix, that is, the Laurent expansion of A α at t i is as follows:

(4.11)

A α = λν - i 0 * λν + i 1 z mi i + [ holo. part ].
Here

ν - i , ν + i ∈ Ω 1 C (D)| mi[ti] are defined so that λ • ω i (X) = λν - i 0 0 λν + i .
By using the coboundary {b 22 α } α in (4.6), we define cocycles (4.12)

a App α := a 21 α (b 22 α ) -1 , which give a class [{a App α }] ∈ H 0 (C, L 0 ⊗ Ω 1 C (D)).
Then we have a map (4.9):

(E, ∇, λ, {l (i) }) -→ [{a App α }]. Finally, we have a map (4.13) (π App , π Bun ) : M X (L 0 , ∇ L0 ) 0 -→ PH 0 (C, L 0 ⊗ Ω 1 C (D)) × PH 1 (C, L -1 0 (-D)). We consider the natural pairing (4.14) H 0 (C, L 0 ⊗ Ω 1 C (D)) × H 1 (C, L -1 0 (-D)) -→ H 1 (C, Ω 1 C ) ∼ = C. Lemma 29. Let (E, ∇, λ, {l (i) }) ∈ M X (L 0 , ∇ L0 ) 0 . Let a App α
and b Bun αβ be the cocycles in (4.7) and in (4.12), respectively. Then we have

[{b Bun αβ • a App β }] = λ • i∈I θ - i,-1 .
Here the left hand side is the pairing (4.14).

Proof. Let B αβ be the transition function in (4.5). Let A α be the connection matrix in (4.10).

Then we have

λ • dB αβ + A α B αβ = B αβ A β .
By comparing the (1, 1)-entries of the both hand sides, we have

a 11 α -a 11 β = b Bun αβ • a App β .
By (4.11) and the isomorphism

H 1 (C, Ω 1 C ) ∼ = C, we have [{b Bun αβ • a App β }}] = λ • i θ - i,-1 .
Set

N 0 := dim C PH 0 (C, L 0 ⊗ Ω 1 C (D)) = 3g + n -3. Let us introduce the homogeneous coordinates a = (a 0 : • • • : a N0 ) on PH 0 (C, L 0 ⊗ Ω 1 C (D)) ∼ = P N0 a and the dual coordinates b = (b 0 : • • • : b N0 ) on PH 1 (C, L -1 0 (-D)) ∼ = PH 0 (C, L 0 ⊗ Ω 1 C (D)) ∨ ∼ = P N0 b . Let Σ ⊂ P N0
a × P N0 b be the incidence variety whose defining equation is given by j a j b j = 0. By Lemma 29, we have that

M X (L 0 , ∇ L0 ) 0 \ M X (L 0 , ∇ L0 ) 0 (πApp,πBun) ---------→ Σ.
Remark 30. Loray-Saito (for g = 0) and Matsumoto (for g ≥ 1) discussed on the birationality of the map (4.13). They showed the birationality of the map (4.13) when D is a reduced effective divisor ([37, Theorem 4.3] for g = 0 and [39, Theorem 4.5] for g ≥ 1). In these cases, quasi-parabolic connections have only simple poles. But we may apply the arguments in [START_REF] Loray | Lagrangian fibrations in duality on moduli spaces of rank 2 logarithmic connections over the projective line[END_REF]Theorem 4.3] and in [START_REF] Matsumoto | Birational geometry of moduli spaces of rank 2 logarithmic connections[END_REF]Theorem 4.5] to our cases where quasi-parabolic connections admit generic unramified irregular singular points. So we can reconstruct (E, ∇, λ, {l (i) }) ∈ M X (L 0 , ∇ L0 ) 0 from an element of

PH 1 (C, L -1 0 (-D)) 0 × PH 0 (C, L 0 ⊗ Ω 1 C (D)). Here we set PH 1 (C, L -1 0 (-D)) 0 := b ∈ PH 1 (C, L -1 0 (-D))
The extension E corresponding to b satisfies dim C H 1 (C, E) = 0 .

Then we have isomorphisms

M X (L 0 , ∇ L0 ) 0 ∼ = PH 1 (C, L -1 0 (-D)) 0 × PH 0 (C, L 0 ⊗ Ω 1 C (D)) and M X (L 0 , ∇ L0 ) 0 ∼ = PH 1 (C, L -1 0 (-D)) 0 × PH 0 (C, L 0 ⊗ Ω 1 C (D)) \ Σ.
4.4. Symplectic structure and explicit description. Now we recall the natural symplectic structure on M X (L 0 , ∇ L0 ) 0 . We define a complex F • 0 for (E, 1 λ ∇, {l (i) }) by F 0 0 := s ∈ End(E) tr(s) = 0, s| miti (l (i) ) ⊂ l (i) for any i

F 1 0 := s ∈ End(E) ⊗ Ω 1 C (D) tr(s) = 0, s| miti (l (i) ) ⊂ l (i) ⊗ Ω 1 C for any i ∇ F • : F 0 0 -→ F 1 0 ; ∇ F • 0 (s) = ( 1 λ ∇) • s -s • ( 1 λ ∇).
We define the following morphism (4.15) (3.2). This pairing gives the symplectic form on M X (L 0 , ∇ L0 ) 0 . We denote by ω 0 the symplectic form.

H 1 (F • 0 ) ⊗ H 1 (F • 0 ) -→ H 2 (O C d -→ Ω 1 C ) ∼ = C as in
The maps π App and π Bun give coordinates on M X (L 0 , ∇ L0 ) 0 (see Remark 30). Now we describe the symplectic structure (4.15) by using the coordinates on M X (L 0 , ∇ L0 ) 0 . We define a 1-form η on P N0 a × P N0 b as follows: Proof. Let v, v ′ ∈ T (E, 1 λ ∇,{l (i) }) M X (L 0 , ∇ L0 ) 0 . We have the isomorphism

η := - i θ - i,-1 • a 0 db 0 + a 1 db 1 + • • • + a N0 db N0 a 0 b 0 + a 1 b 1 + • • • + a N0 b N0 . Theorem 31. Assume that i∈I θ - i,-1 = 0. Let ω a
T (E, 1 λ ∇,{l (i) }) M X (L 0 , ∇ L0 ) 0 ∼ = --→ H 1 (F • 0 )
. Let u αβ (v) and v α (v) be cocycles such that the class [{u αβ (v)} αβ , {v α (v)} α ] is the image of v under the isomorphism. We calculate u αβ (v) and v α (v) by using the trivialization {ϕ Ext α } α as follows:

(4.16)

u αβ (v) = ϕ Ext β | U αβ • B -1 αβ v(B αβ ) • (ϕ Ext β | U αβ ) -1 = ϕ Ext β | U αβ • 0 v(b 12 αβ ) 0 0 • (ϕ Ext β | U αβ ) -1 = ϕ Ext β | U αβ • 0 v(b Bun αβ ) b 22 α 0 0 • (ϕ Ext β | U αβ ) -1
and (4.17)

v α (v) = ϕ Ext α • v 1 λ A α • (ϕ Ext α ) -1 = ϕ Ext α • v(a 11 α /λ) v(a 12 α /λ) v(a 21 α /λ) v(a 22 α /λ) • (ϕ Ext α ) -1 = ϕ Ext α • v(a 11 α /λ) v(a 12 α /λ) v(a App α /λ)b 22 α v(a 22 α /λ) • (ϕ Ext α ) -1 .
Here {b 22 α } α is the coboundary in (4.6). Since we fix the determinant bundle L 0 , we may assume that the coboundary {b 22 α } α is independent of the moduli space M X (L 0 , ∇ L0 ) 0 . Now we calculate the class (4.18) [({tr(u

αβ (v)u βγ (v ′ ))}, -{tr (u αβ (v)v β (v ′ )) -tr (v α (v)u αβ (v ′ ))})] in H 2 (O C d -→ Ω 1 C ) ∼ = C.
First we calculate u αβ (v)u βγ (v ′ ) as follows:

u αβ (v)u βγ (v ′ ) = ϕ Ext β | U αβ • 0 v(b Bun αβ ) b 22 α 0 0 • (ϕ Ext β | U αβ ) -1 • ϕ Ext γ | U αβ • 0 v(b Bun βγ ) b 22 α 0 0 • (ϕ Ext γ | U αβ ) -1 = ϕ Ext β | U αβ • 0 v(b Bun αβ ) b 22 α 0 0 B βγ 0 v(b Bun βγ ) b 22 α 0 0 • (ϕ Ext γ | U αβ ) -1 = ϕ Ext β | U αβ • 0 0 0 0 • (ϕ Ext γ | U αβ ) -1 = 0.
So we may take a representative of the class (4.18) so that

[-{tr (u αβ (v)v β (v ′ )) -tr (v α (v)u (v ′ ))}]
is in H 1 (C, Ω 1 C ). By using equalities (4.16) and (4.17), we have the following equality

(4.19) tr (u αβ (v)v β (v ′ )) -tr (v α (v)u αβ (v ′ )) = v(b Bun αβ )v ′ a App β λ -v a App α λ v ′ (b Bun αβ ).
We take bases a App(0) , a App(1) , . . . , a App(N0) ∈ H 0 (C,

L 0 ⊗ Ω 1 C (D)) of H 0 (C, L 0 ⊗ Ω 1 C (D)) and [{b App(0) αβ }], [{b App(1) αβ }], . . . , [{b App(N0) αβ }]
of H 1 (C, L -1 0 (-D)) so that these bases give the homogeneous coordinates (a 0 :

• • • : a N0 ) on P N0 a and (b 0 : • • • : b N0 ) on P N0 b .
We may assume that these bases are independent of the moduli space M X (L 0 , ∇ L0 ) 0 . We set

a App α = a 0 a App(0) | Uα + a 1 a App(1) | Uα + • • • + a N0 a App(N0) | Uα and b App αβ = b 0 b App(0) αβ + b 1 b App(1) αβ + • • • + b N0 b App(N0) αβ . By (4.19), we have that tr (u αβ (v)v β (v ′ )) -tr (v α (v)u αβ (v ′ )) = v N0 k=0 b k b App(k) αβ v ′ N0 k=0 a k a App(k) | Uα λ -v N0 k=0 a k a App(k) | Uα λ v ′ N0 k=0 b k b App(k) αβ = N0 k=0 v (b k ) b App(k) αβ N0 k=0 v ′ a k λ a App(k) | Uα - N0 k=0 v a k λ a App(k) | Uα N0 k=0 v ′ (b k ) b App(k) αβ . Since (b 0 : • • • : b N0 ) is dual of (a 0 : • • • : a N0
) with respect to the natural pairing

H 0 (C, L 0 ⊗ Ω 1 C (D)) × H 1 (C, L -1 0 (-D)) -→ H 1 (C, Ω 1 C ) ∼ = C, we have that tr (u αβ (v)v β (v ′ )) -tr (v α (v)u αβ (v ′ )) = N0 k=0 v (b k ) v ′ a k λ - N0 k=0 v ′ (b k ) v a k λ .
On the other hand, we have that

λ = [{a App α }, [{b Bun αβ }] -i θ - i,-1 = a 0 b 0 + a 1 b 1 + • • • + a N0 b N0 -i θ - i,-1
.

Then we have

H 1 (C, Ω 1 C ) ∼ = --→ C [-{tr (u αβ (v)v β (v ′ )) -tr (v α (v)u αβ (v ′ ))}] -→ dη(v, v ′
). This means the statement.

Companion normal forms for an elliptic curve with two poles

In Section 2, we introduced the companion normal form of a rank 2 meromorphic connection with some assumption. The purpose of the present section is to detail the case of an elliptic curve with two simple poles, or with an unramified irregular singularity of order 2. The latter case arises by confluence from the first one, up to some modification in the arguments. We will give explicit description of the companion normal form for an elliptic curve in these cases. Moreover, we will calculate the canonical coordinates introduced in Section 3.5. First we start from construction of the companion normal form (O C ⊕ (Ω 1 C (D)) -1 , ∇ 0 ). Next we will construct a rank 2 meromorphic connection (E, ∇) by transforming the companion normal form.

Let C be the elliptic curve constructed by gluing affine cubic curves

U 0 := (y 2 1 -x 1 (x 1 -1)(x 1 -λ) = 0) and U ∞ := (y 2 2 -x 2 (1 -x 2 )(1 -λx 2 ) = 0) with the relations x 1 = x -1
2 and y 1 = y 2 x -2 2 . We fix some t ∈ C and set D = t 1 +t 2 where t 1 = (t, s) and t 2 = (t, -s), so that D is the positive part of div(xt). Let q 1 , q 2 , q 3 be points on C: q j : (x 1 , y 1 ) = (u j , v j ) for each j = 1, 2, 3. Now we assume that u j ∈ {0, 1, λ, ∞, t} for any j.

We take trivialization of the line bundle (Ω 1 C (D)) -1 over C as follows:

(5.1)

O U0 ∼ --→ (Ω 1 C (D)) -1 | U0 ; 1 -→ dx 1 (x 1 -t)y 1 -1 and (5.2) O U∞ ∼ --→ (Ω 1 C (D)) -1 | U∞ ; 1 -→ dx 2 (1 -tx 2 )y 2 -1 .
Then the corresponding transition function f 0∞ is as follows:

(5.3)

f ∞0 : O U0 | U0∩U∞ ∼ --→ O U∞ | U0∩U∞ 1 -→ - 1 x 2 . 5.1. Definition of a connection ∇ 0 on O C ⊕ (Ω 1 C (D)) -1 . For ζ 1 , ζ 2 , ζ 3 ∈ C,
we define 1-forms ω 12 , ω 21 , and ω 22 as follows:

(5.4)

ω 12 = 3 j=1 ζ j 2 • y 1 + v j x 1 -u j • dx 1 y 1 + A 1 + A 2 y 1 x 1 -t + A 3 + A 4 x 1 dx 1 y 1 ω 21 := 1 x 1 -t dx 1 y 1 ω 22 := 3 j=1 1 2 • y 1 + v j x 1 -u j • dx 1 y 1 + B 1 + B 2 y 1 x 1 -t + B 3 dx 1 y 1 .
Here A 1 , . . . , A 4 ∈ C and B 1 , . . . , B 3 ∈ C are parameters. Notice that ω 12 ⊗ ω 21 is a global section of (Ω 1 C ) ⊗2 (2D + B) and ω 22 is a global section of Ω 1 C (D + B + ∞). 5.1.1. Fixing the polar parts in the logarithmic case. We start by analyzing the case where t / ∈ {0, 1, λ, ∞}. In this case, we have s = 0, so t 1 = t 2 . We fix complex numbers θ ± 1 , θ ± 2 such that are given by θ + 2 , θ - 2 . (To be coherent with Definition 2, we should write θ 1,-1 and θ 2,-1 for elements of the Cartan subalgebra, and θ ± 1,-1 and θ ± 2,-1 for their eigenvalues; however, we drop the subscript -1 for ease of notation, because there are only poles of order 1, so no confusion is possible.) Specifically, these conditions read as (5.5) res 

2 i=1 (θ + i + θ - i ) = -1,
ω 22 = θ + 1 + θ - 1 , res (t,-s) ω 22 = θ + 2 + θ - 2 .
Notice that res (uj ,vj ) ω 22 = 1 for each j. By the residue theorem, res ∞ ω 22 = -2. By the assumption (5.5) and (5.6), we may determine the parameters A 1 , A Proof. By the equalities (5.5), we have

A 1 + A 2 s s • 1 s = θ + 1 • θ - 1 and A 1 -A 2 s -s • 1 -s = θ + 2 • θ - 2 .
By the equalities in (5.6), we have 

B 1 + B 2 s s = θ + 1 + θ - 1 and B 1 -B 2 s -s = θ + 2 + θ - 2 . By these equalities, A 1 , A 2 , B

5.1.2.

Fixing the polar part in the irregular case. We now study the situation t ∈ {0, 1, λ, ∞}. For sake of concreteness, we let t = 0, the other cases being similar. Then, s = 0 and t 1 = t 2 , so the divisor D is reduced of length 2. A local holomorphic coordinate of the elliptic curve C in a neighbourhood of t 1 is given by y 1 .

We fix θ

± -2 , θ + -1 ∈ C so that θ + -2 = θ - -2 and set θ - -1 = -1-θ + -1 .
(To be coherent with Definition 2, we should write θ 1,-2 and θ 1,-1 for elements of the Cartan subalgebra, and θ ± 1,-2 and θ ± 1,-1 for their eigenvalues; however, we omit the subscript 1 for ease of notation, because there is only one singular point, so no confusion is possible.) Lemma 33. Fix θ ± -2 , θ ± -1 as above. Then, there exist unique values A 1 , A 

± -2 1 y 2 1 + θ ± -1 1 y 1 + O(1) ⊗ dy 1 .
Moreover, the values of the solutions are independent of u i , ζ i .

Proof. By the inverse function theorem, there exists an analytic open subset U ⊂ C and a holomorphic function h : U → C satisfying h(0) = 0 such that C is given by the explicit equation x 1 = h(y 2 1 ). It is obvious that this function h is independent of the choice of u i , ζ i , and it is easy to see that h ′ (0) = 1 λ = 0. From the defining equation of C we get

dx 1 y 1 = 2 dy 1 3x 2 1 -2(1 + λ)x 1 + λ , so dx1 y1 is a holomorphic 1-form around t 1 . Moreover, dx 1 x 1 y 1 = dy 1 y 2 1 g(y 2 1 )
for some holomorphic function g : U → C satisfying g(0) = 2. The polar parts of the coefficients can be separated as

ω 12 = (A 1 + A 2 y 1 ) dx 1 x 1 y 1 + O(1) = 2(A 1 + A 2 y 1 ) dy 1 y 2 1 + O(1) ω 21 = 2 dy 1 y 2 1 + O(1) ω 22 = (B 1 + B 2 y 1 ) dx 1 x 1 y 1 + O(1) = 2(B 1 + B 2 y 1 ) dy 1 y 2 1 + O(1).
Now, the sum of the eigenvalues must be

(θ + -2 + θ - -2 ) 1 y 2 1 + (θ + -1 + θ - -1 ) 1 y 1 .
These conditions determine

B 1 = 1 2 (θ + -2 + θ - -2 ), B 2 = 1 2 (θ + -1 + θ - -1 ) = - 1 2 
.

Moreover, we have

-ω 12 ω 21 = -4(A 1 + A 2 y 1 ) (dy 1 ) ⊗2 y 4 1 + O 1 y 2 1 .
On the other hand, the product of the eigenvalues must have the expansion (up to a global factor

(dy 1 ) ⊗2 ) θ + -2 θ - -2 1 y 4 1 + (θ + -2 θ - -1 + θ - -2 θ + -1 ) 1 y 3 1 
.

These condition then determine

A 1 = - 1 4 θ + -2 θ - -2 , A 3 = - 1 4 (θ + -2 θ - -1 + θ - -2 θ + -1
). This finishes the proof. 5.1.3. Construction of the connection. We define

β : (Ω 1 C (D)) -1 -→ Ω 1 C (D + B) (O C -morphism) δ : (Ω 1 C (D)) -1 -→ (Ω 1 C (D)) -1 ⊗ Ω 1 C (D + B) (connection) γ : O C -→ (Ω 1 C (D)) -1 ⊗ Ω 1 C (D) (O C -morphism)
by using the trivializations (5.1) and (5.2) of (Ω 1 C (D)) -1 as follows:

β = ω 12 : O U0 → O U0 ⊗ Ω 1 C (D + B)| U0 id • ω 12 • f -1 ∞0 : O U∞ → O U∞ ⊗ Ω 1 C (D + B)| U∞ , δ = d +ω 22 : O U0 → O U0 ⊗ Ω 1 C (D + B)| U0 d +f ∞0 • ω 22 • f -1 ∞0 + f ∞0 • df -1 ∞0 : O U∞ → O U∞ ⊗ Ω 1 C (D + B)| U∞ , γ := ω 21 : O U0 → O U0 ⊗ Ω 1 C (D + B)| U0 f ∞0 • ω 21 • id : O U∞ → O U∞ ⊗ Ω 1 C (D + B)| U∞ . Here f ∞0 is the transition function of (Ω 1 C (D)) -1 described in (5.3). Notice that f ∞0 • ω 22 • f -1 ∞0 + f ∞0 • df -1 ∞0 = ω 22 + dx 2 x 2 ,
which is holomorphic at ∞ ∈ C, since we have res ∞ ω 22 = -2. We define a connection as follows:

(5.7)

∇ 0 := d + 0 β γ δ : O C ⊕ (Ω 1 C (D)) -1 -→ O C ⊕ (Ω 1 C (D)) -1 ⊗ Ω 1 C (D + B),
which is the companion normal form. Remark that res qj (∇ 0 ) = 0 ζ j 0 1 for j = 1, 2, 3.

Lemma 34. The fact that ∇ 0 has apparent singular points at q 1 , q 2 , q 3 imposes 3 linear conditions on A 3 , A 4 , B 3 in terms of spectral data, and ((u j , v j ), ζ j )'s; we can uniquely determine A 3 , A 4 , B 3 from these conditions if, and only if, we have

(5.8) det   1 u 1 ζ 1 1 u 2 ζ 2 1 u 3 ζ 3   = 0.
Proof. It is just Lemma 7 specified to the present elliptic case with 2 poles. We set (5.9)

C j = j ′ ∈{1,2,3}\{j} ζ j ′ -ζ j 2 • v j + v j ′ u j -u j ′ + A 1 + A 2 v j -ζ j (B 1 + B 2 v j ) -ζ 2 j u j -t .
We denote by ((a j ) j , (b j ) j , (c j ) j ) the 3 × 3-matrix

((a j ) j , (b j ) j , (c j ) j ) =   a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3   .
The condition where q 1 , q 2 , q 3 are apparent singularities means that (5.10) ((1) j , (u j ) j , (-ζ j ) j )

  A 3 A 4 B 3   = -   C 1 C 2 C 3   .
By Cramer's rule, the parameters A 3 , A 4 , B 3 of the family of connections ∇ 0 are uniquely determined

A 3 = - det((C j ) j , (u j ) j , (ζ j ) j ) det(((1) j , (u j ) j , (ζ j ) j )) A 4 = - det((1) j , (C j ) j , (ζ j ) j ) det((1) j , (u j ) j , (ζ j ) j ) B 3 = det((1) j , (u j ) j , (C j ) j ) det((1) j , (u j ) j , (ζ j ) j ) ,
if and only if (5.8).

Lemma 35. We have:

det   1 u 1 ζ 1 1 u 2 ζ 2 1 u 3 ζ 3   = 0
if, and only if, E is not stable.

Proof. The vanishing of the determinant gives that ζ j = σ(q j ) for a global section σ ∈ H 0 (C, Ω 1 C (D)). In other words, the quasi-parabolic structure on E 0 given over each q j by the eigenvectors corresponding to eigenvalue 1 lie on a subbundle (Ω 1 C (D)) -1 ⊂ E 0 . After elementary transformations at each q j , we get L ⊂ E with deg(L) = 1 (in fact L = det(E)).

5.2.

Definition of a rank 2 vector bundle E. We set Ũ0 := U 0 \ {q 1 , q 2 , q 3 } and Ũ∞ := U ∞ \ {q 1 , q 2 , q 3 }.

We take an analytic open subsets Ũqj (j = 1, 2, 3) of C such that q j ∈ Ũqj and Ũqj are small enough. In particular, (u j , -v j ) ∈ Ũqj . On Ũqj , the apparent singular point q j is defined by x 1u j = 0. We have an open covering ( Ũk ) k∈{0,1,q1,q2,q3} of C. We define transition functions B k1k2 (k 1 , k 2 ∈ {0, 1, q 1 , q 2 , q 3 }) as follows:

B 0qj := 1 ζj x1-uj 0 1 x1-uj : O ⊕2 Ũq j | Ũ0∩ Ũq j ∼ --→ O ⊕2 Ũ0 | Ũ0∩ Ũq j ; B 0∞ := 1 0 0 -x 2 : O ⊕2 Ũ∞ | Ũ0∩ Ũ∞ ∼ --→ O ⊕2 Ũ0 | Ũ0∩ Ũ∞ .
Then we have a vector bundle

E = ( Ũk ) k∈{0,1,q1,q2,q3} , (B k1k2 ) k1,k2∈{0,1,q1,q2,q3}
,

where E is trivial on each Ũk and the transition function from Ũk2 to Ũk1 is B k1k2 .

5.3.

Definition of a connection ∇ on E. We define matrices A 0 , A qj , A ∞ as follows:

A 0 := 0 ω 12 ω 21 ω 22 , A ∞ := 0 -x 2 ω 12 -ω21 x2 ω 22 + dx2 x2 , A qj := ω (j) 11 
ω (j) 12 x1-uj (x 1 -u j )ω 21 ω (j) 22 
.

The 1-form ω 12 , ω 21 , and ω 22 are defined in (5.4). The 1-form ω (j) [START_REF] Fassarella | Loray Flat parabolic vector bundles on elliptic curves[END_REF] , ω

22 are defined as follows:

ω (j) 11 = - ζ j x 1 -t • dx 1 y 1 , ω (j) 12 = j ′ ∈{1,2,3}\{j} ζ j ′ -ζ j 2 • y 1 + v j ′ x 1 -u j ′ • dx 1 y 1 + A 1 + A 2 y 1 -ζ j (B 1 + B 2 y 1 ) -ζ 2 j x 1 -t + A 3 + A 4 x 1 -ζ j B 3 dx 1 y 1 , ω (j) 22 = 1 2 • -y 1 + v j x 1 -u j • dx 1 y 1 + j ′ ∈{1,2,3}\{j} 1 
2 • y 1 + v j ′ x 1 -u j ′ • dx 1 y 1 + B 1 + B 2 y 1 x 1 -t + B 3 + ζ j x 1 -t dx 1 y 1 . Proposition 36. • The (1, 2)-entry of A qj is a section of Ω 1 C (D)| Ũq j for each j = 1, 2, 3. • We define a local connection on each Ũk (k ∈ {0, 1, q 1 , q 2 , q 3 }) by        d +A 0 : O ⊕2 Ũ0 -→ O ⊕2 Ũ0 ⊗ Ω 1 C (D)| Ũ0 on Ũ0 d +A qj : O ⊕2 Ũq j -→ O ⊕2 Ũq j ⊗ Ω 1 C (D)| Ũq j on Ũqj d +A ∞ : O ⊕2 Ũ∞ -→ O ⊕2 Ũ∞ ⊗ Ω 1 C (D)| Ũ∞ on Ũ∞ .
Then we can glue these local connections. So we have a global connection ∇ : E → E ⊗ Ω 1 C (D) on E. Proof. Since A 3 , A 4 , B 3 are determined so that these parameters satisfy the condition (5.10), we have

ω (j) 12 | qj = (C j + A 3 + A 4 u j -ζ j B 3 ) dx 1 | qj v j = 0.
Here, C j is in (5.9). So

ω (j) 12 
x1-uj has no pole at q j for each j = 1, 2, 3. Since we have

B -1 k1k2 A k1 B k1k2 + B -1 k1k2 dB k1k2 = A k2 for each k 1 , k 2 ∈ {0, ∞, q 1 ,
q 2 , q 3 }, the connection ∇ acting on E is defined globally.

Remark 37. By Definition 13 in Section 3.3, we have trivializations of E. On C \ {t 1 , t 2 }, the trivializations in Definition 13 coincide with the trivializations described in the present section. We have defined the trivialization in Definition 13 at t i (i = 1, 2) so that the residue matrix (respectively, the polar part in the reduced case) is a diagonal matrix. On the other hand, by the trivializations described in the present section, the residue matrix at t i (i = 1, 2) (respectively, the polar part) is not a diagonal matrix. The reason why the residue matrix at t i (i = 1, 2) is a diagonal matrix is that the corresponding description of the variation (3.11) satisfies the compatibility conditions of the quasi-parabolic structure in F 0 and F 1 of (3.1). On the other hand, now we are interested in behavior of the connection ∇ around q j (j = 1, 2, 3). So now we do not consider the diagonalization of the residue matrices at t i (i = 1, 2) (respectively, of the polar part when D is reduced). 5.4. Canonical coordinates. We will calculate the canonical coordinates introduced in Section 3.5. For the transition functions B k1k2 (k 1 , k 2 ∈ {0, 1, q 1 , q 2 , q 3 }) of E, we have transition functions of det(E) as follows: Set U 0 = C \ {u 1 , . . . , u 2g-1 , c 1 , . . . , c 2g-2+n }. Moreover we take small an analytic neighborhood U i of u i for 1 ≤ i ≤ 2g -1 and U 2g-1+k of c k for 1 ≤ k ≤ 2g-2+n. For i = 1, . . . , 4g-3+n, we can identify U i with a unit disc ∆ = {z ∈ C | |z| < 1} with the origin corresponding to u i (1 ≤ i ≤ 2g -1) and c i-2g+1 (2g ≤ i ≤ 4g -3 + n). We can assume that U i1 ∩ U i2 = ∅ for i 1 = i 2 , i 1 , i 2 ≥ 1. Note that since U 0 is an affine variety and U 0 ∩ U i ∼ = ∆ \ {0} for i = 1, . . . , 4g -3 + n, the covering C = U 0 ∪ U 1 ∪ • • • ∪ U 4g-3+n gives a Stein covering of C. For 0 ≤ i ≤ 4g -3 + n, we have nonzero sections e 

E |Ui ≃ O |Ui e (i) 1 ⊕ O |Ui e (i) 2 .
Moreover we have a transition matrix H 0i on U 0 ∩ U i of the form (6.2) H 0i = 1 h 0i 0 g 0i satisfying (6.3) (e

(i)
1 , e

2 ) = (e

(0)
1 , e

2 )H 0i = (e

(0)
1 , h 0i e (0)

1 + g 0i e (0)
2 ). Here {h 0i } i ∈ Ext 1 (L 0 , O C ) ∼ = H 1 (C, L -1 0 ) corresponds to the extension class of (6.1) and {g 0i } i ∈ H 1 (C, O * C ) gives the transition function of L 0 = det(E). With these trivializations we have connection matrices A (i) : (6.4)

∇(e

2 )A (i) of the form (6.5)

A (i) = a (i) 11 γ i a (i) 12 γ i a (i) 21 γ i a (i) 22 γ i .
Here a (i) kl ∈ Γ(U i , O Ui ) and γ i ∈ Γ(U i , Ω 1 Ui (D)). We set γ 0 = γ |U0 as above. From (6.3) and (6.4), we can verify the following Lemma 38. For 1 ≤ i ≤ 4g -3 + n, on U 0 ∩ U i , we gave (6.6) A (i) = H -1 0i A (0) H 0i + H -1 0i dH 0i . Specifically, we have the following identities: The identity (6.7) shows that a (i) 21 γ i defines a section of H 0 (C, Ω 1 (D) ⊗ L 0 ) and the zeros of this section are nothing but the apparent singularities q 1 , . . . , q N . Evaluating the identity (6.8) at q j (j = 1, . . . , N ), we then have (6.9) (a corresponds to c d = c 1 (L 0 ), from (6.9), we have the following Proposition 39. For each 0 ≤ j ≤ N , the data (E, ∇) ∈ M 0 X defines N points (q j , pj ) on the total space of Ω(D, c d ) by the formula f App : M 0 X -→ Sym N (Ω(D, c d )). Now we consider q j as a local coordinate near q j and we write γ = c(q j ) dq j for some local holomorphic function c(q j ). Then we have pj = p j dq j with p j = a (0)

22 (q j )c(q j ). As we have proved in Theorem 20, the map f App is symplectic. 6.1. From a connection to a Higgs field. Keeping the notation, let us consider the section s ∈ H 0 (C, L 0 ) as before, and set s (0) = s. Take trivialization of L 0|Ui over U i we have a holomorphic function s (i) ∈ Γ(U i , O Ui ) such that s (0) = g 0i s (i) . Note that s (i) has zeros at u i ∈ U i for 1 ≤ i ≤ 2g -1. Set D(s) = u 1 + • • • + u 2g-1 . We can show that Lemma 40. There exists a connection

∇ 1 : E -→ E ⊗ Ω 1 (D(s))
such that for each 0 ≤ i ≤ N = 4g -3 + n, on U i it has the form

∇ (i) 1 = d + S (i) = d + 0 βi s (i) 0 ds (i)
s (i) with respect to the trivialization (e

(i)
1 , e (i) 2 ). Here β i ∈ Γ(U i , Ω 1 Ui ). Proof. Since s (0) = g 0i s (i) , one has ds (0) s (0) = dg 0i g 0i + ds (i) s (i) in U 0i = U 0 ∩ U i . The compatibility condition for connection matrices S (i) is (6.12) S (i) = H -1 0i S (0) H 0i + H -1 0i dH 0i . The right hand side of (6.12) is (6.13)

  0 g 0i β0 s (0) -h 0i ds (0) s (0) -dg0i g0i -dh 0i 0 ds (0) s (0) -dg0i g0i  
Since {h 0i } i is a class in H 1 (C, L -1 0 ) and s ∈ H 0 (C, L 0 ), the class {s (i) h 0i } i defines a class in H 1 (C, O C ). Then, by the Hodge theory, the derivative {d(s (i) h 0i )} i ∈ H 1 (C, Ω 1 C ) vanishes, so there exist β i ∈ Γ(U i , Ω 1 Ui ) such that d(s (i) h 0i ) = β 0β i .

Choose such β i 's for the formula. Then we have dh 0i = -h 0i ds (i) s (i) + g 0i β 0 s (0) -β i s (i) . Then the right hand side of (6.13) becomes 0 βi s (i) 0 ds (i) s (i) as desired.

For any (E, ∇) ∈ M 0 X , the difference ∇ -∇ 1 : E -→ E ⊗ Ω 1 C (D + D(s)) defines an O C -homomorphism, that is a rational Higgs fields on E. We reprove Proposition 17.

Theorem 41. For generic (E, ∇) ∈ M 0 X , the point (q j , pj ) j=1,...,N ∈ Sym N (Ω(D, c d )) determines (E, ∇). So the map f App is birational.

Proof. Consider the Higgs field

Φ = Φ ∇ = ∇ -∇ 1 : E -→ E ⊗ Ω 1
C (D + D(s)) where D = t 1 + • • • + t n and D(s) = u 1 + • • • + u 2g-1 as in the notation above. We assume that the set of apparent singularities q 1 , . . . , q N of (E, ∇) is disjoint from D and D(s). We will consider the characteristic curve of Φ. On U i , we have

Φ i = A (i) -S (i) = ã11 ã12 -βi s (i) ã21 ã22 -ds (i)
s (i) .

The characteristic curve C s can be defined in the total space of Ω(D + D(s)) of the line bundle Then eigenvalues of the residue matrix are 0, -1 and the β i (0) gives a restriction on C s . Then totally we have 3 × (2g -1) conditions.

(3) At q j , j = 1, . . . , N , the points ã22 (q j ) -ds (i) s (i) (q j ) = pjc j ∈ Ω(D + D(s)) lie on the characteristic curve C s . These give N = 4g -3 + n conditions.

For generic choice of q 1 , • • • , q N and s ∈ H 0 (C, L 0 ), we can see using the method of Lemma 7 and Proposition 17 that these conditions are independent, so we obtain a total of 2n -1 + 3(2g -1) + (4g -3 + n) = 10g -7 + 3n conditions, so these determine the spectral curve C s . Now the divisor µ = N j=1 (p j -c j )+ 2g-1 k=1 (1 k ) determines the rank 1 sheaf O Cs (µ) where (1 k ) ∈ C s denotes the point over u k corresponding to the eigenvalue -1 of the residue of Φ at u k . Then (π : C s -→ C, O Cs (µ)) determines (E, Φ) uniquely by [START_REF] Beauville | Spectral curves and the generalised theta divisor[END_REF]Proposition 3.6]. Hence E and ∇ = Φ + ∇ 1 is determined uniquely.
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 1 (D) by c d , which is the first Chern class c 1 (det(E)) ∈ H 1 (C, Ω 1 C ) of E. (In detail, Section 3.5 below). We denote by Ω 1 C (D, c d ) the twist of Ω 1 C (D). Let π c d : Ω(D, c d ) -→ C the total space of Ω 1 C (D, c d ). Let ω D,c d be the rational 2-form on Ω(D, c d ) induced by the Liouville symplectic form. This rational 2-form ω D,c d induces a symplectic structure on Ω(D, c d ) \ π -1 c d (D). We consider the symmetric product Sym N (Ω(D, c d )). Let N j=1 pr * j (ω D,c d ) be the rational 2-form on the product Ω(D, c d ) N . Here pr j : Ω(D, c d ) N → Ω(D, c d ) is the j-th projection. This rational 2-form N j=1 pr * j (ω D,c d ) induces a symplectic structure on a generic part of Sym N (Ω(D, c d )). We will define a map from M 0 X to Sym N (Ω(D, c d )) by the following idea.

  Theorem A (Theorem 20 below). The pull-back of the symplectic form on a generic part of Sym N (Ω(D, c d )) under the map (1.1) coincides with the symplectic form on M 0 X . If we take canonical coordinates on Ω(D, c d ), then we have canonical coordinate on Sym N (Ω(D, c d )), since the symplectic structure on Sym N (Ω(D, c d )) is induced by the 2-form N j=1 pr * j (ω D,c d ). Then we have canonical coordinates on M 0 X by Theorem A. Detail of construction of concrete canonical coordinates on M 0

  4) and the trivialization of E 0 in Definition 12. Definition 13. Now we define trivialization ϕ App α : O ⊕2 Uα ∼ --→ E| Uα of E for the open covering {U α } α in Definition 11 as follows.

22 β

 22 of the multiplicative cocycle {b 22 αβ } αβ . By using the coboundary {b 22 α } α , we define a cocycle (4.7) b Bun αβ := b 12 αβ b 22 α , which gives a class [{b Bun αβ }] ∈ H 1 (C, L -1 0 (-D)). Then we have a map (4.4):

  ,b be the 2-form on P N0 a × P N0 b defined by ω a,b = dη. The pull-back of ω a,b under the mapM X (L 0 , ∇ L0 ) 0 (πApp,πBun) ---------→ P N0 a × P N0 bcoincides with the symplectic form ω 0 on M X (L 0 , ∇ L0 ) 0 .

x 2 , 22 : 1 C 22 = 22 + dx 2 x 2 =

 222122222 det(B 0qj ) = 1 x 1u j : O Ũq j | Ũ0∩ Ũq j ∼ --→ O Ũ0 | Ũ0∩ Ũq j ; det(B 0∞ ) = -x 2 : O Ũ∞ | Ũ0∩ Ũ∞ ∼ --→ O Ũ0 | Ũ0∩ Ũ∞ . So we have a cocycle (det(B k1k2 )) k1,k2∈{0,1,q1,q2,q3} , which gives a class of H 1 (C, O * C ). We have d log(det(B 0qj )) = -dx 1 x 1u j and d log(det(B 0∞ )) = dx 2and these 1-forms give a class of H 1 (C, Ω 1 C ). We denote by c 1 and Ω(D, c 1 ) the class of H 1 (C, Ω 1 C ) and the total space of the twisted cotangent bundle corresponding to c 1 , respectively. We have the following description of tr(O Ũ0 -→ O Ũ0 ⊗ Ω ω 22 + d log(det(B 0qj )), and ω ω 22 + d log(det(B 0∞ )).

2 ∈

 2 (L 0 ) |Ui giving trivializations of E on U i respectively:

  Noting that the cohomology class of the cocycle dg0i g0i i

  ) qj ∈ Ω 1 C (D, c d ) |qjThe above definition of pj does not depend on the choice of the sections s ∈ H 0 (C, L 0 ) and γ ∈ H 0 (C, Ω 1 C (D)) and defines the same map as in Definition 16:(6.11) 

Ω 1 C

 1 (D + D(s)) by C s : x 2b 1 xb 2 = 0 with b i ∈ H 0 (C, (Ω 1 C (D + D(s))) ⊗i ), and x the canonical section. The dimension of the family of spectral curves is thus given bydim H 0 (C, Ω 1 C (D + D(s))) + dim H 0 (C, (Ω 1 C (D + D(s))) ⊗2 ) = N + 1g + 2N + 1g = 3N + 2 -2g = 3(4g -3 + n) + 2 -2g = 10g -7 + 3n.Then Φ is constrained the following conditions.(1) At t i , i = 1, . . . , n, Φ has eigenvalues fixed by data X. These impose 2n -1 conditions because of the Fuchs relation. (2) At u k , k = 1, . . . , 2g -1, take a local coordinate z k such that z k (u k ) = 0. Then Φ has the following form near z k

  1 C (D)| qj and tr(∇)| qj is justified by considering the twisted cotangent bundle (in detail, see Definition 16 below). Remark that the dimension of Sym N

  Definition 1.1] and [24, Definition 2.1]. A stability condition for quasi-parabolic connections is introduced in [21, Definition 2.1] and [24, Definition 2.2]. The moduli space of stable quasi-parabolic connections is constructed in [21, Theorem 2.1] and [24, Theorem 2.1]. In our situation, any rank 2 meromorphic connections over X are irreducible (see

  which is called Fuchs' relation. Now we assume that the eigenvalues of the matrix

	res t1	0 ω 12 ω 21 ω 22
	are given by θ + 1 , θ -1 and the eigenvalues of the matrix
	res t2	0 ω 12 ω 21 ω 22

  2 , B 1 , and B 2 . Lemma 32. Let complex numbers θ ± 1 , θ ± 2 satisfying Fuchs' relation be given. Then, there exist unique values of the parameters A 1 , A 2 , B 1 , and B 2 such that (5.5) and (5.6) are fulfilled. Moreover, these parameter values are independent of u 1 , u 2 , u 3 , ζ 1 , ζ 2 , and ζ 3 . So the polar parts of ω 12 , ω 21 , and ω 22 at t i are independent of u 1 , u 2 , u 3 , ζ 1 , ζ 2 , and ζ 3 .

  1 , and B 2 are determined, and A 1 , A 2 , B 1 , and B 2 are independent of u 1 , u 2 , u 3 , ζ 1 , ζ 2 , and ζ 3 . It is clear that the polar parts of ω 12 , ω 21 , and ω 22 at t i are independent of u 1 , u 2 , u 3 , ζ 1 , ζ 2 , and ζ 3 .
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C (D). In particular, γ α is independent of the moduli space M 0 X for any α. The polar part of A norm

So these connection matrices of tr(∇) give an explicit global section of Ω(D, c 1 ) → C. We consider a section of Ω(D, c 1 )| Ũq j → Ũqj

+ ω (j) [START_REF] Dumitrescu | Quantum curves for Hitchin fibrations and the Eynard-Orantin theory[END_REF] + ω (j) [START_REF] Inaba | Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI[END_REF] .

For this section on Ũqj , we define p j (j = 1, 2, 3) by

x 1u j .

Then we have a map

where j=1 dp j ∧ du j by Theorem 20.

Canonical coordinates revised and another proof for birationality

In this section, we will give another proof of Proposition 17. For simplicity, we will consider the cases where D is a reduced effective divisor. Let (E, ∇) ∈ M 0 X be a connection on a fixed irregular curve X = (C, D, {z i } i∈I , {θ i } i∈I , θ res ) with genericity conditions as before.

We set D = t 1 + • • • + t n and the connection is given by

In this section, we assume that g = g(C) ≥ 1 and n ≥ 1 as in the previous sections. Moreover if g = g(C) = 1, we assume that n ≥ 2.

Note that we have the unique extension (6.1)

Then we can define apparent singularities q 1 , . . . , q N ∈ C where

) and s ∈ H 0 (C, L 0 ) whose zeros are given by {γ = 0} = {c 1 , . . . , c 2g-2+n } and {s = 0} = {u 1 , . . . , u 2g-1 }.

We assume the following genericity conditions:

(1) u i1 = u i2 (for i 1 = i 2 ), and c k1 = c k2 (for k 1 = k 2 );

(2) {u 1 , . . . , u 2g-1 } ∩ {c 1 , . . . , c 2g-2+n } = ∅;

(3) {q 1 , . . . , q N } ∩ {u 1 , . . . , u 2g-1 , c 1 , . . . , c 2g-2+n } = ∅.