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Introduction

Improving the ability to detect small earthquakes can increase the resolution of monitoring seismic processes at depth and imaging fault-zone structures and the crust. Earthquake detection consists of identifying phase arrivals at the recording stations (phase detection) and associating the arrivals from multiple stations to an individual event (phase association). Modern earthquake catalogs usually use phase arrivals picked by data analysts or traditional automated algorithms that use one or multiple waveform characteristics, such as short-term average/long-term average (STA/LTA; [START_REF] Allen | Automatic phase pickers: Their present use and future prospects[END_REF] or higherorder statistics (Ross, White, et al., 2016). However, manual analysis varies from person to person, and traditional automated algorithms are generally less precise than manual picking. With the increasing number of seismic networks and large volume of data, more precise automated detection algorithms are needed to detect smaller earthquakes. Separating small earthquakes from nontectonic sources at and above the surface pose significant challenges (e.g., [START_REF] Inbal | Sources of long-range anthropogenic noise in southern California and implications for tectonic tremor detection sources of long-range anthropogenic noise in Southern California[END_REF]Meng and Ben-Zion, 2018a,b;[START_REF] Johnson | Characteristics of ground motion generated by wind interaction with trees, structures, and other surface obstacles[END_REF].

One highly successful method that can enhance detection of small events using existing earthquake waveforms is the template-matching algorithm [START_REF] Peng | Migration of early aftershocks following the 2004 Parkfield earthquake[END_REF][START_REF] Shelly | Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm[END_REF]. This technique uses waveforms of catalog events as templates, searches over continuous seismic records, and detects new events with waveforms highly similar to the templates. This method is widely applied and often detects several times more events than the standard detection workflow. However, event-similarity-based detection can only identify events that are very similar (and inferred to be located very close) to the templates. Recently, supervised deep-learning algorithms, which learn features from large amounts of labeled data to perform signal recognition, can better differentiate earthquake signals from the other signals with higher precision (>90%) than traditional methods (e.g., [START_REF] Ross | Generalized seismic phase detection with deep learning[END_REF][START_REF] Zhu | PhaseNet: A deep-neural-networkbased seismic arrival-time picking method[END_REF]. Because of the requirement of large amounts of manually labeled data in the study region and the regional variations of earthquake waveform features, it would be difficult to apply algorithms trained at one region to others without a training dataset. Because both the template-matching method and supervised deep-learning algorithms are based on known earthquakes' signals, they are not able to detect earthquakes that have highly different rupture processes or hypocenters compared with the known earthquakes. These missing small events are likely to provide (if detected) additional important information on properties and dynamics of the crust.

One possible way to identify unknown seismic signals is to utilize waveform correlations across closely spaced seismometers. Over the past decade, increasing number of dense array deployments provide important opportunities to detect small earthquakes (e.g., [START_REF] Ben-Zion | Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone[END_REF][START_REF] Inbal | Localized seismic deformation in the upper mantle revealed by dense seismic arrays[END_REF][START_REF] Li | High-resolution seismic event detection using local similarity for large-N arrays[END_REF]. On the one hand, recorded waveforms from the same signal exhibit high similarity across the whole or parts of the array and can be stacked to enhance the signal-to-noise ratio. On the other hand, the relative time delays of the signals across the array provide important information about wave propagation directions and velocities. One can detect small earthquakes and other sources of seismic signals by stacking or backpropagating the signals recorded at all stations based on the time delay from possible source locations to the stations. However, separating subsurface from other events requires careful analyses (e.g., Meng and Ben-Zion, 2018a;[START_REF] Gradon | Analysis of surface and seismic sources in dense array data with match field processing and Markov chain Monte Carlo sampling[END_REF][START_REF] Johnson | Characteristics of ground motion generated by wind interaction with trees, structures, and other surface obstacles[END_REF]. In addition, there are unsolved methodological problems with dense array data such as the high sensitivity to the used velocity model and limited location resolution caused by the small apertures of dense arrays (<3 km).

In this study, we propose a high-precision automated method for detection and location of earthquakes and apply it to a 23-day continuous waveforms data recorded (from 20 July to 11 August 2018) by a dense array and 24 regional stations located within 50 km of the dense array (Fig. 1; see Data and Resources). The dense array is located at the Cahuilla Reservation close to the San Jacinto fault zone in southern California, and it consists of 99 vertical-component geophones with 100 m spacing, distributed in nine rows and 11 columns, and recording with 250 Hz sampling rate. The method, a representative example of its implementation, and its application to a one-day continuous waveforms are described in the Method and Representative Examples section. The advantages of the method and its potential applications are discussed in the Discussion and Conclusions section. The results from the entire 23-day dataset are provided in the supplemental material available to this article. 

Method and Representative Examples

In this section, we explain the method and describe the obtained results step by step. We first automatically detect coherent signals from dense array data and discriminate P-wave arrivals from detected signals without using any local velocity models (see the Signal Detection and Discrimination with Dense Array Data section). Earthquakes are located (see the Earthquake Location section) by associating the detected P-wave arrivals at the array sensors with arrivals from the surrounding regional stations using an average 1D velocity model for southern California [START_REF] Fang | A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region[END_REF]. The magnitude estimation of the detected events is presented in the Magnitude Estimation section.

Signal detection and discrimination with dense array data Method. Interstation waveform similarity can be used to identify coherent signals from continuous waveform. When the source-station distance is much larger than the interstation distance, the signals from common sources are expected to share highly similar travel paths and hence similar waveforms, whereas signals from random noise or very local sources are expected to be different.

Signals from a common source arrive at different stations at different times, and it is thus useful to correlate the waveforms based on their relative arrival-time differences, which requires a good velocity model. However, the seismic velocities can vary considerably around fault zones, are generally not well known in the uppermost ∼100-500 m of the crust, and are strongly frequency dependent (e.g., [START_REF] Allam | Seismic velocity structure in the hot springs and trifurcation areas of the San Jacinto fault zone, California, from double-difference tomography[END_REF][START_REF] Hillers | Focal spot imaging based on zero lag cross-correlation amplitude fields: Application to dense array data at the San Jacinto fault zone[END_REF][START_REF] Mordret | Shallow threedimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array[END_REF]. Therefore, instead of using a velocity model, we assume a given constant apparent horizontal slowness and grid search a range of values (Fig. 2b). To determine the incoming direction of the signals, we search all candidate epicentral locations around the array (Fig. 2a). For slowness s i , the estimated travel time t k;ij from source location j to station k is E Q -T A R G E T ; t e m p : i n t r a l i n k -; d f 1 ; 3 0 8 ; 2 7 5 t k;ij d k;j × s i ; 1 in which d k;j is the distance from location j to station k.

Similarly, the travel time from location j to the center of the array c can be written as E Q -T A R G E T ; t e m p : i n t r a l i n k -; d f 2 ; 3 0 8 ; 2 0 1 t c;ij d c;j × s i : 2

We use the time that the signal arrives at the array center as the reference time and shift the recorded waveforms at each station accordingly. If a coherent signal propagates across the array at time t, the waveforms recorded at multiple station pairs are expected to be similar with waveform similarity (CC) exceeding a threshold value CC thres . The waveform similarity CC mn;ij t between station m and n for possible source location j and slowness s i at time t can be written as E Q -T A R G E T ; t e m p : i n t r a l i n k -; d f 3 ; 5 3 ; 7 4 3 f 4 ;5 3 ;6 6 6 CC mn;ij t 0; if CC mn;ij t ≤ CC thres ; 4 in which δ is the sampling rate and 2L 1δ is the sliding window length. We obtain the average neighboring station similarity, avgCC ij t, for the mean correlation value CC ij mn observed at station pairs with interstation distance distm; n smaller than dist min (Fig. 2c,d):

CC mn;ij t j P L l-L u m t t m;ij -t c;ij lδu n t t n;ij -t c;ij lδj P L l-L u 2 m t t m;ij -t c;ij lδu 2 n t t n;ij -t c;ij lδ q ; if CC mn;ij t>CC thres ; 3 E Q -T A R G E T ; t e m p : i n t r a l i n k -; d
E Q -T A R G E T ; t e m p : i n t r a l i n k -; d f 5 ; 5 3 ; 5 6 2 avgCC ij t avg m;n CC mn;ij ; ∀ distm; n < dist min : 5 
The source location j and apparent horizontal slowness s i with the largest avgCC ij t are selected as the best-fitting solution for time t (Fig. 2e). The source incoming azimuth can be determined using the best-fitting source location, and the source depth can be estimated from the best-fitting apparent horizontal slowness. If the source is very shallow, most of its travel paths to the dense array are either along the near-surface layer with high apparent horizontal slowness or diving into the medium with different paths and hence different waveforms. If the source is located deep beneath the array, stations in the dense array will receive its signals almost at the same time with low apparent horizontal slowness. Therefore, the best-fitting apparent horizontal slowness can be used to differentiate earthquake signals and near-surface signals.

For the Cahuilla array, 338 stations pairs have interstation distance smaller than 150 m and are chosen for calculating waveform correlation (of these, 212 station pairs were active through the entire 23-day period). We search possible apparent horizontal slowness from 0 to 15 s=km, with 0:025 s=km spacing from 0 to 1 s=km, 0.05 bin from 1 to 5 s=km, and 0:2 s=km spacing from 5 to 15 s=km, considering all possible signals propagating in the crust and along the surface. The pattern of recorded signals is strongly related to the epicentral location. If the distance from the source to the array is much larger than the array aperture, the signals recorded by the array are approximately plane waves with similar waveforms and are not sensitive to source location variation. If the source is close to the array, a small location change may strongly affect the relative time delays and waveform similarity. Therefore, we search epicentral locations within a 0:20°× 0:20°box around the array with increasing spacing from 0.002°at the array center to 0.02°at the edge of the box (magenta box in Fig. 1a). Considering local noise and the different travel paths from a common source to the station pair, we use CC thres 0:7 to differentiate signals from noise.

An appropriate frequency band selection is also essential for detection accuracy. Ideally, the selected frequency band only has earthquake signals, related to used phase and event size and proximity, or it is easy to separate earthquake signals from other signals in this frequency band. Here, we aim at detecting near-field P waves from small local earthquakes that have more high-frequency component (>15 Hz) compared with teleseismic signals and S waves. In addition, surface-wave slowness is comparable with that of earthquake signals in the low-frequency band (<10 Hz) but is much higher in the high-frequency band (>15 Hz). We perform the detection using 15-25 Hz frequency band, which can sufficiently suppress other low-frequency signals and easily distinguish earthquake P-wave arrivals from surface sources. Because P-wave velocity below 300 m or so is usually larger than 2:5 km=s (e.g., [START_REF] Mordret | Shallow threedimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array[END_REF], we use 0:4 s=km as the threshold to discriminate P-wave arrivals from other signals. To detect P-wave arrivals from the continuous stacked neighboring station similarity avgCC ij t, we first extract the largest avgCC ij t value at each time window avgCC max t and then search local maximum avgCC max t above the chosen threshold avgCC thres . In the analysis later, we apply the median value plus 12 times the median absolute deviation of avgCC max t as the threshold avgCC thres for event detection. This threshold is based on a visual examination of waveforms from 21 July 2018 T00:00:00 to 22 July 2018 T00:00:00, and the thresholds used in the other waveform similarity-based detection methods [START_REF] Shelly | Non-volcanic tremor and low-frequency earthquake swarms[END_REF][START_REF] Li | High-resolution seismic event detection using local similarity for large-N arrays[END_REF][START_REF] Ross | Searching for hidden earthquakes in Southern California[END_REF].

Representative example. Figure 3a displays 1 min waveforms (15-25 Hz) of the dense array from 21 July 2018 T00:26:30 to 21 July 2018 T00:27:30. There are three coherent signals recorded in this time window with different apparent horizontal slowness. Figure 3b shows the spectrogram of data at one of the dense array stations. Events 1 and 2 are near-surface signals with high slowness values (∼4 s=km), narrow-frequency band (at ∼18 Hz), and long duration (>5 s). Event 3 is an earthquake with two peaks in the spectrogram (corresponding to Pand S-wave arrivals), low slowness (∼0:1 s=km), wider frequency band (0-60 Hz), and short duration (∼3 s).

For each 0.5 s waveform, we calculate the averaged neighboring station similarity avgCCt for all slowness-location combinations and show the variation of the maximum avgCCt with respect to slowness (Fig. 3c). If the temporal maximum of avgCC max t (magenta line) is above the calculated threshold avgCC thres in a certain period, we retain the local maximum avgCC max t with best-fitting time, slowness, location, and regard it as a detection. Whereas events 1 and 2 (near-surface signals) in this time window show high avgCCt at high slowness region, event 3 (earthquake) has peak avgCCt at very low slowness region. From the spatial distribution of the avgCCt at the best-fitting time of the detections (Fig. 3d-f), we observe that events 1 and 2 propagate from southwest to northeast, but event 3 comes from south of the array. The detection time of event 3 is very close to the manually picked P-wave arrival with only a 0.025s time difference (Fig. S1).

Application to one-day dataset. We apply the detection method to a one-day waveform dataset from 21 July 2018 T00:00:00 to 22 July 2018 T00:00:00 and obtain 966 detections with avgCC max t above the calculated threshold avgCC thres (Fig. S2). For each detection, we keep the best-fitting location and apparent horizontal slowness with the maximum avgCCt. Based on the slowness value, the detections in the test day are separated into 635 high-slowness detections (slowness ≥0:4 s=km) and 331 low-slowness detections (slowness <0:4 s=km). Whereas most high-slowness detections occur around 6:00:00 UTC time, most low-slowness detections occur around 12:00:00 UTC time (Fig. 4a). Spatially, most lowslowness detections are located southwest to the array (Fig. 4b), corresponding generally to the long-duration Cahuilla swarm [START_REF] Hauksson | Slow-growing and extended-duration seismicity swarms: Reactivating joints or foliations in the Cahuilla Valley Pluton, Central Peninsular Ranges, Southern California[END_REF]. Highslowness detections corresponding to near-surface signals exhibit a more uniform distribution (Fig. 4c). These highslowness signals may originate from multiple local sources such as possible small failures at the subsurface [START_REF] Ben-Zion | Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone[END_REF][START_REF] Qin | Spectral characteristics of daily to seasonal ground motion at the Piñon Flats Observatory from coherence of seismic data[END_REF], air and surface traffic [START_REF] Inbal | Sources of long-range anthropogenic noise in southern California and implications for tectonic tremor detection sources of long-range anthropogenic noise in Southern California[END_REF]Meng and Ben-Zion, 2018b), wind shaking surface objects [START_REF] Johnson | Characteristics of ground motion generated by wind interaction with trees, structures, and other surface obstacles[END_REF], and other sources of cultural noise.

We check all 67 M l > 0 catalog events in our study period [START_REF] Hauksson | Waveform relocated earthquake catalog for southern California (1981 to June 2011)[END_REF], extended to later years) and find that 46 of 47 events located within 90 km from the array are detected with slowness <0:4 s=km, and 16 events located at least 120 km away from the array are not detected because of the high attenuation of high-frequency signals from distant sources to the stations. We manually check the waveforms of 333 low-slowness detections to ensure that almost all stations record clear Pand S-wave arrivals, both Pand S-wave signals have wide-frequency band, the P-wave arrivals show higher frequency component and smaller apparent horizontal slowness compared with S-wave arrivals, and the median P-wave arrival time is within a 0.5 s time window around the detection. Of 331 detections, 324 satisfy these criteria and are considered as earthquake P-wave arrivals (∼98% accuracy). We also manually pick P-wave arrivals from the continuous waveform data in the entire day 21 July 2018 based on the criteria mentioned. Only 28 manually picked P-wave arrivals are not detected (∼92% recall). This method detects six times more earthquake P-wave arrivals than the relocated earthquake catalog [START_REF] Hauksson | Waveform relocated earthquake catalog for southern California (1981 to June 2011)[END_REF], extended to later years), including 46 of 47 catalog events within 90 km epicentral distance from the array.

Earthquake location

Most earthquake detections are located outside of the array (Fig. 4b), where the dense array data cannot provide good location solutions. As a result, we combine the results with detected arrivals from the surrounding regional stations to perform earthquake location analysis.

Method. Traditional earthquake location methods search all possible earthquake locations and origin times, calculate theoretical arrival times, and try to find the location-time combination that matches most of the picked arrival times. Because dense array detection provides high-accuracy P-wave arrivals, we can use the dense array P-wave arrivals to predict earthquake origin times and perform phase association. For each dense array P-wave detection, if we assume the source is at location i, the P-wave arrival time to the dense array center t p;c can be regarded as the summation of event origin time t orig;i and the P-wave travel time TT p;ic : E Q -T A R G E T ; t e m p : i n t r a l i n k -; d f 6 ; 4 4 5 ; 7 1 7 t p;c t orig;i TT p;ic : 6

Similarly, the theoretical Pand S-wave arrival times t p;ij , t s;ij at the regional station j can be written as E Q -T A R G E T ; t e m p : i n t r a l i n k -; d f 7 ; 4 4 5 ; 6 1 3 t p;ij t orig;i TT p;ij t p;c -TT p;ic TT p;ij ; 7 E Q -T A R G E T ; t e m p : i n t r a l i n k -; d f 8 ; 4 4 5 ; 5 4 0 t s;ij t orig;i TT s;ij t s;c -TT s;ic TT s;ij ; 8 in which TT p;ij and TT s;ij are P and S travel times from location i to the regional station j (Fig. 5a). Therefore, we first estimate the theoretical arrival times using 1D velocity model for the region. We search all possible source locations and consider the one that minimizes the misfit between the theoretical and observed arrival times of detected Pand S-wave arrivals as the earthquake location (Fig. 5b).

Representative example and application to one-day dataset. To detect the arrivals from the surrounding stations and combine them with the dense array arrivals, we first apply the convolutional neural network (CNN) phase picker [START_REF] Ross | Generalized seismic phase detection with deep learning[END_REF] to all 24 stations located within 50 km of the dense array to detect Pand S-wave arrivals. All phase arrivals within 40 s from the dense array P-wave detection are selected for phase association. Because most of the detected catalog events are located within 90 km from the array in the red square in Figure 1a (Fig. S3), we search all source locations within this area using 1 km spacing, estimate their corresponding theoretical arrival times at all 24 stations using an average 1D velocity model for southern California [START_REF] Fang | A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region[END_REF], and obtain the total number of Pand S-wave arrivals within 0:75 s from the theoretical arrival times (equations 7 and 8) for each location. The location with the maximum number of Pand S-wave arrivals is selected as the event location (white star in Fig. 5c-e). We obtain all source locations with >80% of the maximum number of Pand Sarrivals (green circles in Fig. 5c-e) and calculate the standard deviation of their latitudes, longitudes, and depths as the location uncertainties of the located event. The source location of event 3 is close to the dense array, which is consistent with the small Pand S-wave arrival-time differences (Fig. 3a,b).

The entire phase detection, association, and location process is applied to all candidate detections in the Application to One-Day Dataset section. There are 242 well-located detections with at least four Pand S-wave arrivals in total from the surrounding regional stations, which is about four times of the catalog events. The median uncertainties of events' latitudes, longitudes, and depths are 0.024°(∼2:7 km), 0.027°( ∼2:5 km), and 3.6 km, respectively (Fig. S4). Events with larger than 50 km epicentral distances from the array may have relatively larger location uncertainties because of limited station azimuthal coverage (Fig. S5). Compared with catalog events [START_REF] Hauksson | Waveform relocated earthquake catalog for southern California (1981 to June 2011)[END_REF], extended to later years), >80% of the common events have time differences within 0.4 s, horizontal location differences within 2.2 km, and depth differences within 3.2 km (Fig. 6 and Fig. S6).

Magnitude estimation

We utilize the nearby catalog events to estimate the magnitude of the detected events by assuming that nearby events share similar path and site effects when the station-event distance is much larger than the interevent distances. For each welllocated detection, we first find the reference catalog events (Hauksson et al., 2012, extended to later years) within a 5 km hypocentral distance from the detected event. If a station i has P-wave arrivals from both the reference event j and the detected event k, we obtain a magnitude estimation by measuring the peak amplitude ratio between event j and k under the assumption that a one-unit magnitude difference corresponds to a factor of 10 in amplitude ratio. The magnitude of the detected event k is estimated to be the median value of magnitude estimations from all available reference-event-station combinations: E Q -T A R G E T ; t e m p : i n t r a l i n k -; d f 9 ; 3 0 8 ; 1 8 4

M lk median ij log 10 A i k A i j M lj : 9 
We apply the magnitude estimation to all well-located events and obtain 191 well-estimated event magnitudes with >10 individual magnitude estimations and standard deviation of the estimations smaller than one unit. The magnitude-time distribution of our results is consistent with that of the catalog events with >80% of the common events having magnitude differences <0:13 unit (Fig. 6 and Fig. S6d). Many newly detected events have magnitudes as low as -1 (Fig. 6a). Eighty-two events are not detected by template-matching method [START_REF] Ross | Searching for hidden earthquakes in Southern California[END_REF] but are detected using our new method.

Discussion and Conclusions

Similar to the other dense array detection methods [START_REF] Inbal | Localized seismic deformation in the upper mantle revealed by dense seismic arrays[END_REF][START_REF] Li | High-resolution seismic event detection using local similarity for large-N arrays[END_REF]Meng and Ben-Zion, 2018a;[START_REF] Gradon | Analysis of surface and seismic sources in dense array data with match field processing and Markov chain Monte Carlo sampling[END_REF], we time shift and stack the characteristic functions of waveforms based on the estimated travel-time delay to extract correlated signals hidden in noise. However, our method has several improvements that allow detecting earthquake P waves with high accuracy and temporal resolution. Instead of shifting and stacking amplitude or phase information (Meng and Ben-Zion, 2018a;[START_REF] Gradon | Analysis of surface and seismic sources in dense array data with match field processing and Markov chain Monte Carlo sampling[END_REF], we utilize waveform similarity of neighboring stations as the characteristic functions, which does not require significantly high amplitude or waveform coherency across the whole array and is more sensitive to weak signals. The method does not require narrowband frequency with bandwidth <3 Hz (like phase-based detection methods) and can be applied to a wide-frequency range.

Instead of using traditional earthquake detection frequency band (2-15 Hz), we use a higher frequency band (15-25 Hz), which helps us focus on P waves of local small events, avoid low-frequency S and teleseismic waves, separate P waves from surface waves in slowness domain, and finally achieve high detection precision. For relative time-delay estimation, we assume a circular wave at the surface with constant slowness and search over a wide range of slowness, considering not only the small relative time delay for earthquake P wave (<0:4 s across the whole array) but also a wide range of slowness values for surface wave. The assumption approximates actual wave propagation and is expected to be better than assuming plane wave or spherical wave propagation in a fixed-layered velocity model. Moreover, we apply the shiftand-stack process to all nonoverlapping 0.5 s time windows in the study period without time-window preselection, which allows us to obtain more detections with high temporal resolution. To sum up, our detection method does not require preknowledge about velocity models, earthquake waveform features, or time-window preselection and can successfully detect earthquake P-wave arrivals with high precision (>95%) and temporal resolution (∼0:5 s). This method is transferable to other regions, totally automated, and highly accurate and can potentially be applied in real time.

The combination of dense array and regional stations can significantly improve the earthquake catalog and outperform detections using dense arrays or regional stations separately. Benefitting from interstation waveform similarity of the dense array, many more earthquake P-wave arrivals can be detected with high precision. On the other hand, the regional station networks have large apertures, which are important for high spatial resolution. After associating the dense array arrivals with regional station arrivals, many traditional earthquake detection methods and magnitude estimation methods can be applied and combined with the dense array detections. In this study, we use a CNN phase picker [START_REF] Ross | Generalized seismic phase detection with deep learning[END_REF] to detect earthquakes at regional stations and relative amplitude ratio to estimate local magnitudes. We can also use traditional detection methods such as STA/LTA [START_REF] Allen | Automatic phase pickers: Their present use and future prospects[END_REF] and high-order statistics (Ross, White, et al., 2016) to pick Pand S-wave arrivals. Similarly, many other magnitude estimation methods, such as absolute peak amplitude for local magnitude estimation [START_REF] Richter | An instrumental earthquake magnitude scale[END_REF] and amplitude spectrum for potency magnitude estimation (Ross, Ben-Zion, et al., 2016), can be applied as well. The association between dense array P-wave arrivals and regional station phase arrivals successfully merges the dense array detection method within the traditional earthquake detection workflow and allows us to estimate the locations and magnitudes of the large number of additional detections from the dense array. A future network configuration combining multiple dense arrays with different intersensor spacing and surrounding regional stations can significantly enhance the detectability of small events. Despite the advantages discussed, the performance of our detection method strongly depends on the shallow medium properties and array spacing. The interstation waveform similarity is strongly affected by travel-path differences, seismic wavelength, and attenuation effects. Only when interstation distances are close enough compared with the source-array distance (e.g., <1=5) can the recorded array signals from the same source be similar. The wavelength is required to be larger than the interstation distance to ensure the alignment of waveforms and avoid cycle skipping. Moreover, the source energy for given magnitude and propagation distance should be larger than the background noise level for possible detection (e.g., [START_REF] Kwiatek | Theoretical limits on detection and analysis of small earthquakes[END_REF]. If the signal frequency of an event is so high or ray paths of station pairs are so different that even adjacent stations cannot record similar waveforms, the presented detection method will not be useful, and amplitude-based methods may work better. Furthermore, our method may not be suitable to areas with strong contrasts of seismic properties due to high scattering attenuation and violation of the constant slowness assumption. Even for areas with relatively simple and homogeneous structures, our method can separate surface-wave signals from earthquake P-wave arrivals only when the surface-wave slowness for the selected frequency band (15-25 Hz in this study) is much larger than that of the subsurface signals (0:4 s=km).

The proposed procedure can be augmented in multiple ways. The detected earthquake P-wave arrivals can be used for template-matching detection and training deep-learning algorithms, which can further improve the earthquake catalog and help perform more detailed analyses. Besides earthquake signals, the detected surface signals can also help identify the surface sources and estimate the near-surface medium properties. We can apply the detection algorithm to multiple frequency bands selected to detect surface signals (e.g., [START_REF] Gradon | Analysis of surface and seismic sources in dense array data with match field processing and Markov chain Monte Carlo sampling[END_REF]. The spatiotemporal patterns as well as the waveform features of the detected surface signals can be used to explore the signal sources. If there are repeating surface events occurring at the same location and covering long time periods, we can investigate their waveform variation across the whole array to estimate temporal changes of the near-surface seismic properties. The combination of the presented detection algorithm with other new techniques for signal characterization, detection, and location of events while utilizing detected phases for tomography can improve considerably the understanding of properties and dynamics of the crust.

Figure 1 .

 1 Figure 1. (a) Map view of Cahuilla dense array (magenta square) and the 24 regional stations (blue triangles) within 50 km of the dense array. Magenta box outlines the candidate epicentral locations for dense array detection. (b) Spatial distribution of the vertical geophones of the dense array colored by elevation. Inset shows the fault map of southern California. Red box denotes the area of (a). EF, Elsinore fault; SAF, San Andreas fault; SJF, San Jacinto fault. The color version of this figure is available only in the electronic edition.

Figure 2 .

 2 Figure 2. Schematic diagrams of the dense array earthquake detection workflow. For all combinations of (a) candidate source epicentral location d (within 0:2°× 0:2°box around the array) and (b) apparent horizontal slowness s (0-15 s=km), (c) waveforms are shifted based on the estimated travel time t and (d) correlated with neighboring stations' waveforms. (e) The time windows with averaged neighboring station similarity above the chosen threshold are selected as positive detections. S&D corresponds to apparent horizontal slowness and horizontal distance. The color version of this figure is available only in the electronic edition.

Figure 3 .

 3 Figure 3. (a) One min waveforms (15-25 Hz) of the dense array from 21 July 2018 T00:26:30 to 21 July 2018 T00:27:30. (b) Spectrogram of station index 70 in (a). (c) Temporal variation of the maximum averaged neighboring station similarity (CC) versus apparent horizontal slowness. (d-f) Spatial distribution of the maximum CC at the best-fitting times of the detected events in (c). Vertical red lines and white stars highlight the best-fitting times, slowness values, and locations of the detected events. The color version of this figure is available only in the electronic edition.

Figure 4 .

 4 Figure 4. (a) Histogram of detected events from 21 July 2018 T00:00:00 to 22 July 2018 T00:00:00 with respect to the slowness and time. Spatial density of detections with slowness (b) below and (c) above 0:4 s=km. The color version of this figure is available only in the electronic edition.

Figure 5 .

 5 Figure 5. Diagrams of the earthquake phase association and location. (a) For each possible source location, we calculate its P-wave travel time to the dense array as well as Pand S-wave travel times to the regional stations. (b) The location (Loc) with the maximum number of phase arrivals within the estimated arrival-time window is selected as the earthquake location. (c-e) Spatial distribution of the number of arrivals within 0.75 s from the predicted arrival times for event 3 in Figure 3. White star denotes the best-fitting location. The color version of this figure is available only in the electronic edition.

Figure 6 .

 6 Figure 6. (a) Temporal variation and (b) spatial distribution of the catalog events (yellow dots) and additional detected events (blue dots) from 21 July 2018 T00:00:00 to 22 July 2018 T00:00:00 scaled by event magnitude. The color version of this figure is available only in the electronic edition.
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Data and Resources

The Cahuilla dense array data are available upon request to F. Brenguier. The relocated earthquake catalog is from Hauksson et al. (2012, extended to later years) (https://scedc.caltech.edu/researchtools/altcatalogs.html; last accessed November 2019). The continuous waveforms of the stations around the dense array are available at Southern California Earthquake Data Center (SCEDC; doi: 10.7909/C3WD3xH1, last accessed November 2019). The used average 1D velocity model is from Fang et al. (2016). The convolutional neural network (CNN) phase picker is from Ross et al. (2018). Figures were prepared using Matplotlib [START_REF] Hunter | Matplotlib: A 2D graphics environment[END_REF] and Cartopy (https:// scitools.org.uk/cartopy, last accessed August 2019). Supplemental material for this article includes various figures showing the strategy for choosing the detection threshold, the temporal variation of detection threshold, spatiotemporal variation of all detected events in the study period, the uncertainties of the obtained detections, the comparisons between the detected events and their corresponding catalog events, and the detection results using different characteristic functions like waveform similarity in 2-15 Hz and short-term average/ long-term average (STA/LTA).