
HAL Id: hal-04201369
https://hal.science/hal-04201369v1

Submitted on 28 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Constraint Automata on Infinite Data Trees: from
CTL(�)/ CTL*(�) to Decision Procedures

Stéphane Demri, Karin Quaas

To cite this version:
Stéphane Demri, Karin Quaas. Constraint Automata on Infinite Data Trees: from CTL(�)/ CTL*(�)
to Decision Procedures. 34th International Conference on Concurrency Theory (CONCUR 2023), Sep
2023, Antwerp, Belgium. �10.4230/LIPIcs.CONCUR.2023.29�. �hal-04201369�

https://hal.science/hal-04201369v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Constraint Automata on Infinite Data Trees:1

From CTLpZq/CTL˚pZq To Decision Procedures2

Stéphane Demri3

Université Paris-Saclay, LMF, CNRS, ENS Paris-Saclay, France4

Karin Quaas1
5

Universität Leipzig, Fakultät für Mathematik und Informatik, Germany6

Abstract7

We introduce the class of tree constraint automata with data values in Z (equipped with the less8

than relation and equality predicates to constants), and we show that the nonemptiness problem is9

ExpTime-complete. Using an automata-based approach, we establish that the satisfiability problem10

for CTLpZq (CTL with constraints in Z) is ExpTime-complete, and the satisfiability problem for11

CTL˚
pZq is 2ExpTime-complete (only decidability was known so far). By-product results with12

other concrete domains and other logics, are also briefly discussed.13

2012 ACM Subject Classification Theory of computation Ñ Logic and verification14

Keywords and phrases Constraints, Constraint Automata, Temporal Logics, Infinite Data Trees15

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.2916

1 Introduction17

In this paper, we study the satisfiability problem for the branching-time temporal logics18

CTLpZq and CTL˚pZq, extending the classical temporal logics CTL and CTL˚ in that atomic19

formulae express constraints about the relational structure pZ,ă,“, p“dqdPZq. Formulae in20

these logics are interpreted over Kripke structures that are annotated with values in Z. A21

typical CTL˚pZq formula is the formula AGFpx ă Xxq stating that on all paths infinitely often22

the value of the variable x at the current position is strictly smaller than the value of x at the23

next position. Formalisms defined over relational structures, also known as concrete domains,24

are considered in many works, including works on temporal logics [40, 13, 54, 48, 19, 35],25

description logics [50, 51, 52, 53, 16, 45, 3], and automata [38, 61, 43, 71, 65, 57]. Combining26

reasoning in your favourite logic with reasoning in a relevant concrete domain reveals to27

be essential for numerous applications, for instance for reasoning about ontologies, see28

e.g. [52, 46], or data-aware systems, see e.g. [28, 34]. A brief survey can be found in [26].29

Decidability results for concrete domains handled in [53, 38, 3] exclude the ubiquitous30

concrete domain pZ,ă,“, p“dqdPZq. By contrast, decidability results for logics with concrete31

domain Z require dedicated proof techniques, see e.g. [11, 23, 61, 46]. In particular, fragments32

of CTL˚pZq are shown decidable in [11] using integral relational automata from [17], and33

the satisfiability problem for existential and universal CTL˚ with gap-order constraints34

(more general than the ones in this paper) can be solved in PSpace [12, Theorem 14].35

Another important breakthrough came with the decidability of CTL˚pZq [15, Theorem 32]36

(see also [14]) by designing a reduction to a decidable second-order logic, whose formulae are37

made of Boolean combinations of formulae from MSO and from WMSO+U [10], where U is38

the unbounding second-order quantifier, see e.g. [8, 9]. This is all the more remarkable as39

the decidability result is part of a powerful general approach [15], but no sharp complexity40

upper bound can be inferred. More recently, the condition CZ [23] to approximate the set41

1 Supported by the Deutsche Forschungsgemeinschaft (DFG), project 504343613.

© Stéphane Demri and Karin Quaas;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Constraint Automata on Infinite Data Trees

of satisfiable symbolic models of a given LTLpZq formula is extended to the branching case42

in [46] leading to the ExpTime-easiness of a major reasoning task for the description logic43

ALCFPpZcq. However, no elementary complexity upper bounds for the satisfiability problem44

for CTLpZq nor CTL˚pZq were known since their decidability was established in [13, 15].45

In this paper, we prove that the satisfiability problem for CTLpZq is ExpTime-complete,46

and the satisfiability problem for CTL˚pZq is 2ExpTime-complete. We pursue the automata-47

based approach for solving decision problems for temporal logics, following seminal works48

for temporal logics, see e.g. [68, 69, 44]. This popular approach consists of reducing logical49

problems (satisfiability, model-checking) to automata-based decision problems while taking50

advantage of existing results and decision procedures from automata theory, see e.g. [67].51

It is well-known that decision procedures for CTL˚ are difficult to design, and the52

combination with the concrete domain Z is definitely challenging. Moreover, we aim at53

proposing a general framework: we do not wish for every new logic with concrete domain54

to study again and again what is the proper way to define products of automata leading55

to optimal complexity. That is why our main goal in this work is to investigate a new56

class of tree constraint automata, understood as a target formalism in the pure tradition57

of the automata-based approach, and easy to reuse. The structures accepted by such tree58

constraint automata are infinite trees in which nodes are labelled by a letter from a finite59

alphabet and a tuple in Zβ for some β ě 1 (this excludes the automata designed in [36, 37]60

dedicated to finite trees where no predicate ă is involved). Decision problems for alternating61

automata over infinite alphabets are often undecidable, see e.g. [56, 47, 25, 41], and therefore62

we advocate the introduction of nondeterministic constraint automata without alternation.63

Our definition of tree constraint automata naturally extends the definition of constraint64

automata for words (see e.g. [17, 59, 61, 43, 57]) and as far as we know, the extension to65

infinite trees in the way done herein has not been considered earlier in the literature.66

As a key result, we show that the nonemptiness problem for tree constraint automata67

over pZ,ă,“, p“dqdPZq is ExpTime-complete. In order to obtain the ExpTime upper68

bound, we adapt results from [46, 45] (originally expressed in the context of interpretations69

for description logics) and we take advantage of several automata-based constructions for70

Rabin/Streett tree automata. As a corollary, we establish that the satisfiability problem for71

CTLpZq is ExpTime-complete (Theorem 14), which is one of the main results of the paper.72

As a by-product, it also allows us to conclude that the concept satisfiability problem w.r.t.73

general TBoxes for ALCFPpZcq is in ExpTime, a result known since [46].74

Our main contribution is the characterisation of the complexity for CTL˚pZq satisfiability,75

which is an open problem evoked in [15, Section 9] and [46, Section 5] (decidability was76

established ten years ago in [14]). In Section 6, we show that the satisfiability problem for77

CTL˚pZq is in 2ExpTime by using Rabin tree constraint automata (introduced herein).78

We have to check that the essential steps for CTL˚ can be lifted to CTL˚pZq to get the79

optimal upper bound. In general, our contributions stem from the cross-fertilisation of80

automata-based techniques for temporal logics and reasoning about (infinite) structures81

made of Z-constraints.82

A complete version with all the proofs can be found in [27].83

2 Temporal Logics with Numerical Domains84

2.1 Concrete Domain pZ, ă, “, p“dqdPZq and Kripke Structures85

In the sequel, we consider the concrete domain pZ,ă,“, p“dqdPZq (also written Z), where86

“d is a unary predicate stating the equality with the constant d and, ă and “ are the usual87

Constraint Automata on Infinite Data Trees 29:3

relations on Z. Let VAR “ tx, y, . . .u be a countably infinite set of variables. A term t88

over VAR is an expression of the form Xix, where x P VAR and Xi is a (possibly empty)89

sequence of i symbols ‘X’. A term Xix should be understood as a variable (that needs to be90

interpreted) but, later on, we will see that the prefix Xi will have a temporal interpretation.91

We write TVAR to denote the set of all terms over VAR. For all i P N, we write Tďi
VAR to92

denote the subset of terms of the form Xjx, where j ď i. For instance, Tď0
VAR “ VAR. An93

atomic constraint θ over TVAR is an expression of one of the forms below:94

t ă t1 t “ t1 “d ptq (also written t “ d),95

where d P Z and t, t1 P TVAR. A constraint Θ is defined as a Boolean combination of96

atomic constraints. Constraints are interpreted on valuations v : TVAR Ñ Z that assign97

elements from Z to the terms in TVAR, so that v satisfies θ, written v |ù θ, if and only if, the98

interpretation of the terms in θ makes θ true in Z in the usual way. The Boolean connectives99

are interpreted as usual. A constraint Θ is satisfiable def
ô there is a valuation v : TVAR Ñ Z100

such that v |ù Θ. Similarly, a constraint Θ1 entails a constraint Θ2 (written Θ1 |ù Θ2) def
ô101

for all valuations v, we have v |ù Θ1 implies v |ù Θ2. The satisfiability problem restricted102

to finite conjunctions of atomic constraints can be solved in PTime (see e.g. [17, Lemma103

5.5]) and entailment is in coNP. In the sequel, quite often, the valuations v are of the form104

tx1, . . . , xβu Ñ Z when we are only interested in the values for the variables in tx1, . . . , xβu.105

Kripke structures. In order to define logics with the concrete domain Z, the semantical106

structures of such logics are enriched with valuations that interpret the variables by elements107

in Z. A Z-decorated Kripke structure (or Kripke structure for short) K is a triple pW, R, vq,108

where W is a non-empty set of worlds, R Ď W ˆ W is the accessibility relation and109

v : W ˆ VAR Ñ Z is a valuation function. A Kripke structure K is total whenever for all110

w P W, there is w1 P W such that pw, w1q P R. Given a Kripke structure K “ pW, R, vq111

and a world w P W, an infinite path π from w is an ω-sequence w0, w1 . . . wn, . . . such that112

w0 “ w and for all i P N, we have pwi, wi`1q P R. Finite paths are defined accordingly.113

Labelled trees. Given D ě 1, a labelled tree of degree D is a map t : domptq Ñ Σ114

where Σ is some (potentially infinite) alphabet and domptq is an infinite subset of r0, D´ 1s˚115

such that n P domptq and n ¨ i P domptq for all 0 ď i ă j whenever n ¨ j P domptq for some116

n P r0, D ´ 1s˚ and j P r0, D ´ 1s. The elements of domptq are called nodes. The empty117

word ε is the root node of t. For every n P domptq, the elements n ¨ i (i P r0, D ´ 1s) are118

called the children nodes of n, and n is called the parent node of n ¨ i. We say that the tree119

t is a full D-ary tree if every node n has exactly D children n ¨ 0, . . . , n ¨ pD ´ 1q. Given a120

tree t and a node n in domptq, an infinite path in t starting from n is an infinite sequence121

n ¨ j1 ¨ j2 ¨ j3 . . . , where ji P r0, D ´ 1s and n ¨ j1 . . . ji P domptq for all i ě 1.122

A tree Kripke structure K is a Kripke structure pW, R, vq such that pW, Rq is a tree123

(not necessarily a full D-ary tree). Tree Kripke structures pW, R, vq such that pW, Rq124

is isomorphic to the tree induced by r0, D ´ 1s˚ are represented by maps of the form125

t : r0, D ´ 1s˚ Ñ Zβ . This assumes that we only care about the value of the variables126

x1, . . . , xβ and tpnq “ pd1, . . . , dβq encodes that for all i P r1, βs, we have vpn, xiq “ di.127

2.2 The Logic CTL˚pZq128

We introduce the logic CTL˚pZq extending the temporal logic CTL˚ from [29] but with129

constraints over Z. State formulae ϕ and path formulae Φ of CTL˚pZq are defined below130

ϕ :“ ␣ϕ | ϕ^ ϕ | EΦ Φ :“ ϕ | t “ d | t1 “ t2 | t1 ă t2 | ␣Φ | Φ^ Φ | XΦ | ΦUΦ,131

where t, t1, t2 P TVAR. The size of a formula is understood as its number of symbols with132

integers encoded with a binary representation. We use also the universal path quantifier A133

CONCUR 2023

29:4 Constraint Automata on Infinite Data Trees

and the standard temporal connectives R and G (AΦ def
“ ␣E␣Φ, Φ1RΦ2

def
“ ␣p␣Φ1U␣Φ2q,134

and GΦ def
“K R Φ with K equal to Epx ă xq). No propositional variables occur in CTL˚pZq135

formulae, but it is easy to simulate them with atomic formulae of the form Epx “ 0q. We say136

that a formula in CTL˚pZq is in simple form if it is in negation normal form (using A, R and137

_ as primitive) and all terms occurring in the formula are from Tď1
VAR. State formulae are138

interpreted on worlds from a Kripke structure, whereas path formulae are interpreted on139

infinite paths. The two satisfaction relations are defined as follows (we omit the clauses for140

Boolean connectives), where K “ pW, R, vq is a total Kripke structure, and w P W.141

K, w |ù EΦ def
ô there is an infinite path π from w such that K, π |ù Φ.142

Let π “ w0, w1, . . . be an infinite path of K. Let us define vpπ, Xjxq def
“ vpwj , xq, for all terms143

of the form Xjx. For every n, πrn,`8q is the suffix of π truncated by the n first worlds.144

K, π |ù t “ d
def
ô vpπ, tq “ d; K, π |ù t1 „ t2

def
ô vpπ, t1q „ vpπ, t2q for all „P tă,“u,145

K, π |ù ΦUΨ def
ô there is j ě 0 such that K, πrj,`8q |ù Ψ and for all j1 P r0, j ´ 1s, we146

have K, πrj1,`8q |ù Φ;147

K, π |ù XΦ def
ô K, πr1,`8q |ù Φ.148

Let us define two fragments of CTL˚pZq. Formulae in the logic CTLpZq are of the form149

ϕ :“ E Θ | A Θ | ␣ϕ | ϕ^ ϕ | ϕ_ ϕ | EXϕ | EϕUϕ | EϕRϕ | AXϕ | AϕUϕ | AϕRϕ,150

where Θ is a constraint. LTLpZq formulae are defined from path formulae for CTL˚pZq151

according to Φ :“ Θ | Φ^ Φ | Φ_ Φ | XΦ | ΦUΦ | ΦRΦ, where Θ is a constraint. Negation152

occurs only in constraints since the LTL logical connectives have their dual in LTLpZq. In153

contrast to CTL˚pZq and CTLpZq, LTLpZq formulae are evaluated over infinite paths of154

valuations v : VAR Ñ Z (no branching involved).155

The satisfiability problem for CTL˚pZq, written SATpCTL˚pZqq, is defined as follows.156

Input: A CTL˚pZq state formula ϕ.157

Question: Is there a total Kripke structure K and a world w such that K, w |ù ϕ?158

The satisfiability problem SATpCTLpZqq for CTLpZq is defined analogously; for LTLpZq,159

SATpLTLpZqq is the problem to decide whether there exists an infinite sequence of valuations160

v : VAR Ñ Z for a given LTLpZq formula Φ.161

Decidability, and, more precisely, PSpace-completeness of SATpLTLpZqq is shown in [24].162

For some strict fragments of CTL˚pZq, decidability is shown in [11, 12]. It is only recently163

in [14, 13, 15], that decidability is established for the full logic using a translation into a164

decidable second-order logic:165

§ Proposition 1 ([14, 15]). SATpCTL˚pZqq is decidable.166

The proof in [14, 15] does not provide a complexity upper bound as the target decidable167

2nd-order logic admits an automata-based decision procedure with open complexity [10, 8, 9].168

Let us shortly explain why the satisfiability problem is challenging. First of all, observe169

that CTL˚pZq has atomic formulae in which integer values at the current and successor states170

are compared. This prevents us from using a simple translation from CTL˚pZq to CTL˚
171

with new propositions. Models of CTL˚pZq formulae can be viewed as an infinite network172

of constraints on Z; even if a formula contains only a finite set of constants, a model may173

contain an infinite set of values, as it is the case for, e.g., the formula EGpx ă Xxq. Hence174

a direct Boolean abstraction does not work. On the other hand, CTL˚pZq has no freeze175

quantifier and no data variable quantification, and hence no way to directly compare values176

at unbounded distance (but this can only be done by propagating local constraints), unlike177

e.g. the formalisms in [21, 63, 5, 1]. Hence, the lower bounds from [42] cannot apply either.178

A problem related to satisfiability is the model-checking problem. Fragments of the179

model-checking problem involving a temporal logic similar to CTL˚pZq are investigated180

Constraint Automata on Infinite Data Trees 29:5

in [17, 11, 12, 34] (see also [39, 20, 70, 2]). However, model-checking problems with CTL˚pZq-181

like languages are easily undecidable, see e.g. [17, Theorem 1] and [54, Theorem 4.1] (more182

general constraints are used in [54] but undecidability proof uses only the constraints involved183

herein). The difference between model-checking and satisfiability is subtle and underlines184

that decidability/complexity of CTLpZq/CTL˚pZq satisfiability is not immediate.185

In this paper, we prove the precise computational complexity of SATpCTL˚pZqq and186

SATpCTLpZqq. We follow the automata-based approach, that is, we translate formulae in187

our logics into equivalent automata – tree constraint automata for CTLpZq, and Rabin tree188

constraint automata for CTL˚pZq – so that we can reduce the satisfiability problem for the189

logics to the nonemptiness problem for the corresponding automata.190

3 Tree Constraint Automata191

In this section, we introduce the class of tree constraint automata that accept sets of infinite192

trees of the form t : r0, D ´ 1s˚ Ñ pΣ ˆ Zβq for some finite alphabet Σ and some β ě 1.193

The transition relation of such automata states constraints between the β integer values194

at a node and the integer values at its children nodes. The acceptance condition is a195

Büchi condition (applied to the infinite branches of the input tree), but this can be easily196

extended to more general conditions (which we already consider by the end of this section).197

Moreover, our definition is specific to the concrete domain Z but it can be easily adapted to198

other concrete domains. Formally, a tree constraint automaton (TCA, for short) is a tuple199

A “ pQ, Σ, D, β, Qin, δ, F q, where200

Q is a finite set of locations; Σ is a finite alphabet,201

D ě 1 is the (branching) degree of (the trees accepted by) A,202

β ě 1 is the number of variables (a.k.a. registers),203

Qin Ď Q is the set of initial locations; F Ď Q encodes the Büchi acceptance condition,204

δ is a finite subset of Q ˆ Σ ˆ pTreeConspβq ˆ QqD, the transition relation. Here,205

TreeConspβq denotes the constraints (Boolean combinations of atomic constraints) built206

over the terms x1, . . . , xβ , x1
1, . . . , x1

β , where x1
i denotes the term Xxi. δ consists of207

tuples pq, a, pΘ0, q0q, . . . , pΘD´1, qD´1qq, where q P Q is called the source location, q0,. . . ,208

qD´1 P Q, a P Σ, and Θ0, . . . , ΘD´1 are constraints.209

Runs. Let t : r0, D ´ 1s˚ Ñ pΣˆ Zβq be an infinite full D-ary tree over Σˆ Zβ . A run210

of A on t is a mapping ρ : r0, D ´ 1s˚ Ñ δ satisfying the following conditions:211

ρpεq “ pqin, . . . q such that qin P Qin;212

for every n P r0, D´ 1s˚ with ρpnq “ pq, a, pΘ0, q0q, . . . , pΘD´1, qD´1qq, tpn ¨ iq “ pai, ziq,213

and ρpn ¨ iq starts by the location qi for all 0 ď i ă D, we have tpnq of the form214

pa, zq and Z |ù Θipz, ziq for all 0 ď i ă D. Here, Z |ù Θipz, ziq is a shortcut for215

r⃗x Ð z, x⃗1 Ð zis |ù Θi where r⃗x Ð z, x⃗1 Ð zis is a valuation v on the variables216

txj , x1
j | j P r1, βsu with vpxjq “ zpjq and vpx1

jq “ zipjq for all j P r1, βs.217

We show an example of a run ρ on t in Figure 1. Suppose ρ is a run of A. Given a path218

π “ j1 ¨j2 ¨j3 . . . in ρ starting from ε, we define infpρ, πq to be the set of locations that appear219

infinitely often as the source locations of the transitions in ρpεqρpj1qρpj1 ¨ j2qρpj1 ¨ j2 ¨ j3q220

A run ρ is accepting if for all paths π in ρ starting from ε, we have infpρ, πq X F ‰ H. We221

write LpAq to denote the set of trees t that admit an accepting run.222

Nonemptiness problem. As usual, the nonemptiness problem for TCA asks whether223

a TCA A satisfies LpAq ‰ H. To define the size of A in a reasonably succinct encoding, we224

need to consider the size of constraints from TreeConspβq. Indeed, unlike (plain) Büchi tree225

automata [68], the number of transitions in a tree constraint automaton is a priori unbounded226

CONCUR 2023

29:6 Constraint Automata on Infinite Data Trees

(TreeConspβq is infinite) and the maximal size of a constraint occurring in transitions is227

unbounded too. In particular, this means that cardpδq is a priori unbounded, even if Q and228

Σ are fixed. We write MCSpAq to denote the maximal size of a constraint occurring in A229

(with binary encoding of the integers). The complexity of the nonemptiness problem should230

take into account these parameters. Note also that our automaton model differs from the231

Presburger Büchi tree automata from [62, 6] for which, in the runs, arithmetical expressions232

are related to constraints between numbers of children labelled by different locations. Herein,233

the arithmetical expressions state constraints between integer values.234

Next, we introduce a variant of TCA by considering the Rabin acceptance condition (as235

opposed to the Büchi acceptance condition). A Rabin tree constraint automaton (Rabin236

TCA, for short) is a tuple A “ pQ, Σ, D, β, Qin, δ, Fq defined as for TCA except that F is a237

set of pairs of the form pL, Uq, where L, U Ď Q. All the definitions about TCA apply except238

that a run ρ : r0, D ´ 1s˚ Ñ δ is accepting iff for all paths π in ρ starting from ε, there is239

some pL, Uq P F such that infpρ, πq X L ‰ H and infpρ, πq X U “ H.240

Finite alphabet. The set Σ in data trees t : r0, D ´ 1s˚ Ñ pΣˆ Zβq plays no specific241

role herein, especially that it could be encoded with simple constraints of the form x‹ “ d,242

where x‹ is a distinguished variables. Its inclusion is more handy when the logical atomic243

formulae include constraints on variables and propositional variables, as done in [27, Section244

5.2] dedicated to description logics (developments on description logics are very little in this245

paper, due to lack of space).246

4 Complexity of the Nonemptiness Problem for TCA247

This section is dedicated to prove the ExpTime-completeness of the nonemptiness problem248

for TCA (Theorem 11) and Rabin TCA (Theorem 13) (we make a distinction between TCA249

and Rabin TCA because the complexity bounds differ slightly, see Lemma 10 and Lemma 12).250

Before we prove the ExpTime upper bound, let us drop a few words on the lower bound.251

We show ExpTime-hardness of the nonemptiness problem for TCA by reduction from the252

acceptance problem for alternating Turing machines running in polynomial space, see e.g. [18,253

Corollary 3.6]. Indeed, the polynomial-space tape using a finite alphabet Σ can be encoded254

by a polynomial amount of variables taking values in r1, cardpΣqs, details can be found255

in [27, Section 4.1]. ExpTime-hardness for Rabin TCA follows, as every TCA with set F of256

accepting locations can be encoded as a Rabin TCA with a single Rabin pair pF,Hq.257

The proof of the ExpTime upper bound is divided into two parts. In order to determine258

whether LpAq is nonempty for a given TCA A, we first reduce the existence of some tree259

t P LpAq to the existence of some regular symbolic tree that is satisfiable, that is, it admits a260

concrete model (Sections 4.1 and 4.2). Second, we characterise the complexity of determining261

the existence of such satisfiable regular symbolic trees (Section 4.3). The result for Rabin262

TCA is presented in Section 4.4.263

From now on, we assume a fixed TCA A “ pQ, Σ, D, β, Qin, δ, F q with the constants264

d1, . . . , dα occurring in A such that d1 ă ¨ ¨ ¨ ă dα (we assume there is at least one constant).265

4.1 Symbolic Trees266

A type over the variables z1, . . . , zn is an expression of the form267

p
Ź

i ΘCST
i q ^ p

Ź

iăj zi „i,j zjq, where268

for all i P r1, ns, ΘCST
i is equal to either zi ă d1, or zi ą dα or zi “ d for some d P rd1, dαs.269

This definition goes a bit beyond the constraint language in Z (because of expressions of270

Constraint Automata on Infinite Data Trees 29:7

ρ
Ta

Tb Ta

Tb Ta

...

...
...

t a, p3, 7q

b, p0, 0q a, p2, 7q

b, p0, 0q a, p1, 7q
...

...
...

tt a, Θ

b, Θ0 a, Θ1

b, Θ0 a, Θ1

...

...
...

Θ def
“ d1 “ x1 “ x2 ă x1

1 ă x1
2

Θ0
def
“ d1 “ x1

1 “ x1
2 ă x1 ă x2

Θ1
def
“ d1 ă x1

1 ă x1 ă x2 “ x1
2

Figure 1 A tree t (middle), a run ρ of some TCA on t (left), where, Ta “ pq, a, pΘ0, qq, pΘ1, qqq

and Tb “ pq, b, pΘ0, qq, pΘ1, qqq, and the symbolic tree tt (abstraction of t) (right).

the form zi ă d1 and zi ą dα), but this is harmless in the sequel. What really matters in271

a type is the way the variables are compared to each other and to the constants.272

„i,jP tą,“,ău for all i ă j.273

Checking the satisfiability of a type can be done in polynomial-time, based on a standard274

cycle detection, see e.g. [17, Lemma 5.5]. The set of satisfiable types built over the variables275

x1, . . . , xβ , x1
1, . . . , x1

β is written SatTypespβq (n above is equal here to 2β). Observe that276

cardpSatTypespβqq ď ppdα ´ d1q ` 3q2β ˆ 3β2 . The restriction of the type Θ to some set277

of variables X Ď txi, x1
i | i P r1, βsu is made of all the conjuncts in which only variables in278

X occur. The type Θ restricted to tx1
i | i P r1, βsu agrees with the type Θ1 restricted to279

txi | i P r1, βsu iff Θ and Θ1 are logically equivalent modulo the renaming for which xi and x1
i280

are substituted, for all i P r1, βs. For instance, in Figure 1, Θ restricted to tx1
1, x1

2u agrees281

with Θ0 restricted to tx1, x2u. The main properties we use about satisfiable types are stated282

below.283

(I) Let z, z1 P Zβ . There is a unique Θ P SatTypespβq such that Z |ù Θpz, z1q.284

(II) For every constraint Θ built over the variables x1, . . . , xβ , x1
1, . . . , x1

β and the constants285

d1, . . . , dα there is a disjunction Θ1 _ ¨ ¨ ¨ _ Θγ logically equivalent to Θ and each Θi286

belongs to SatTypespβq (empty disjunction stands for K).287

(III) For all Θ ‰ Θ1 P SatTypespβq, the constraint Θ^Θ1 is not satisfiable.288

The proof is by an easy verification and this justifies the term ‘type’ used in this context.289

Abstraction with types. A symbolic tree t is a map t : r0, D´ 1s˚ Ñ Σˆ SatTypespβq.290

Symbolic trees are intended to be abstractions of trees labelled with concrete values in Z.291

Given a tree t : r0, D ´ 1s˚ Ñ Σˆ Zβ , its abstraction is the symbolic tree tt : r0, D ´ 1s˚ Ñ292

Σˆ SatTypespβq such that for all n ¨ i P r0, D´ 1s˚ with tpnq “ pa, zq and tpn ¨ iq “ pai, ziq,293

ttpn ¨ iq
def
“ pai, Θiq for the unique Θi P SatTypespβq such that Z |ù Θipz, ziq. Note that294

the primed variables in Θi refer to the β values at the node n ¨ i, whereas the unprimed295

ones refer to the β values at the parent node n. At the root ε with tpεq “ pa, zq, we have296

ttpεq
def
“ pa, Θq for the unique Θ P SatTypespβq such that Z |ù Θp0, zq, where 0 P Zβ is297

arbitrary as there are actually no parent values at the root. A symbolic tree t is satisfiable298
def
ô there is t : r0, D´1s˚ Ñ ΣˆZβ such that tt “ t. We say that t witnesses the satisfaction299

of t, also written t |ù t. A symbolic tree t is regular if its set of subtrees is finite.300

A-consistency. In our quest to decide whether LpAq ‰ H, we are interested in symbolic301

trees that satisfy certain properties that we subsume under the name A-consistent. A symbolic302

tree t : r0, D´ 1s˚ Ñ ΣˆSatTypespβq is A-consistent if the following conditions are satisfied:303

t is locally consistent: for every node n, the type Θ labelling n restricted to x1
1, . . . , x1

β304

agrees with all types Θi labelling its children nodes n ¨ i restricted to x1, . . . , xβ , and305

there is an accepting run ρ of A (but ignoring the conditions on data values) such that306

for all n P r0, D ´ 1s˚ with tpnq “ pa, Θq, tpn ¨ iq “ pai, Θiq for all i P r0, D ´ 1s, and307

ρpnq “ pq, a, pΘ1
0, q0q . . . pΘ1

D´1, qD´1qq, we have Θi |ù Θ1
i for all i P r0, D ´ 1s.308

CONCUR 2023

29:8 Constraint Automata on Infinite Data Trees

§ Example 2. In Figure 1, we show a tree t with concrete values in Zβ for β “ 2 (middle) and309

its abstraction tt (right). We assume that d1 “ 0 is the only constant; consequently, tt uses310

constraints in SatTypespβq that are built with variables x1, x2, their primed variants x1
1, x1

2,311

and the constant d1. We underline constraints to illustrate the property of local consistency.312

It is not hard to prove that the set of all A-consistent symbolic trees is ω-regular, that is, it313

can be accepted by a classical tree automaton without constraints. In the following, we use314

the standard letter A to distinguish automata without constraints from TCA.315

§ Lemma 3. There exists a Büchi tree automaton (without constraints) Acons(A) such that316

LpAcons(A)q is equal to the set of A-consistent symbolic trees.317

The locations in Acons(A) are from SatTypespβq ˆ Q and the transition relation for Acons(A)318

can be decided in polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.319

However, not every A-consistent symbolic tree admits a concrete model. Thus the more320

important property is to check whether LpAcons(A)q contains some satisfiable symbolic tree321

(and we explain how to do this in the next two subsections). The result below is a variant322

of many similar results relating symbolic models and concrete models in logics for concrete323

domains, see e.g. [23, Corollary 4.1], [38, Lemma 3.4], [16, Theorem 25], [46, Theorem 11].324

§ Lemma 4. LpAq ‰ H iff there is a satisfiable symbolic tree in LpAcons(A)q.325

4.2 Satisfiability for Regular Locally Consistent Symbolic Trees326

Below, we focus on deciding when LpAcons(A)q contains a satisfiable symbolic tree, while327

evaluating the complexity to check its existence. Given a locally consistent symbolic tree328

t : r0, D ´ 1s˚ Ñ Σ ˆ SatTypespβq, we introduce an infinite labelled graph that contains329

exactly the same types as t but expressed in a tree-like graph from which it is convenient330

to characterize satisfiability in terms of paths, under the premise that t is regular. Similar331

symbolic structures are introduced in [49, 23, 14, 46]. The graph is equal to the structure332

GC
t “ pVt,

“
ÝÑ,

ă
ÝÑ, Uăd1 , pUiqiPrd1,dαs, Uądα

q,333

where Vt “ r0, D´ 1s˚ˆptx1, . . . , xβuY td1, dαuq,
“
ÝÑ and ă

ÝÑ are two binary relations over Vt,334

and tUăd1 , Ud1 , Ud1`1, . . . , Udα , Uądαu is a partition of Vt. Elements in tx1, . . . , xβuYtd1, dαu335

are denoted by xd, xd1, xd2, . . . (variables or constants). Moreover, V β
t

def
“ r0, D ´ 1s˚ ˆ336

tx1, . . . , xβu. The rationale behind the construction of GC
t is to reflect the constraints between337

parent and children nodes as well as the constraints regarding constants, in such a way that,338

if t witnesses the satisfaction of t, then, e.g., tpnqpxdq ă tpn1qpxd1q if pn, xdq ă
ÝÑ pn1, xd1q, and339

tpnqpxdq “ d1 if pn, xdq P Ud1 . Here are all conditions for building GC
t .340

(VAR) For all pn, xiq, pn1, xi1q P V β
t , for all „P tă,“u, pn, xiq

„
ÝÑ pn1, xi1q iff either n1 “ n ¨ j341

and xi „ x1
i1 in Θ with tpn1q “ pa, Θq, or n “ n1 and x1

i „ x1
i1 in Θ with tpn1q “ pa, Θq, or342

n “ n1 ¨ j and x1
i „ xi1 in Θ with tpnq “ pa, Θq.343

(P1) For all d P rd1, dαs and pn, xjq P V β
t , pn, xjq P Ud iff x1

j “ d in Θ with tpnq “ pa, Θq.344

(P2) For all pn, xjq P V β
t , pn, xjq P Uăd1 iff x1

j ă d1 in Θ with tpnq “ pa, Θq.345

(P3) For all pn, xjq P V β
t , pn, xjq P Uądα

iff x1
j ą dα in Θ with tpnq “ pa, Θq.346

(P4) For all n P r0, D ´ 1s˚, pn, d1q P Ud1 and pn, dαq P Udα
.347

(CONS) This is about elements of Vt labelled by constants and how the edge labels reflect the348

relationships between the constants. Formally, for all ppn, xdq, pn1, xd1qq P pVtˆVtqzpV
β

t ˆ349

V β
t q, for all d:, d:: in ‘ă d1’, d1, . . . , dα, ‘ą dα’ s.t. pn, xdq P Ud: and pn1, xd1q P Ud:: , for350

all „P tă,“u, pn, xdq „
ÝÑ pn1, xd1q iff either d:, d:: P rd1, dαs and d: „ d::, or d: “ ‘ă d1’,351

d:: ‰ ‘ă d1’ and „ is equal to ă or d: ‰ ‘ą dα’, d:: “ ‘ą dα’ and „ is equal to ă.352

Constraint Automata on Infinite Data Trees 29:9

Below, we illustrate the definition of the graph GC
tt

for the symbolic tree tt in Figure 1.353

The edges labelled with “ or ă reflect the constraints (we omit edges if they can be inferred354

from the other edges).
For instance, p1, x1q

ă
ÝÑ

pε, x1q corresponds to the
constraint x1

1 ă x1. Grey
nodes are in Ud1 , all other
nodes are in Uąd1 (no
nodes in Uăd1).

pε, d1q pε, x1q pε, x2q

p0, d1q p0, x1q p0, x2q p1, d1q p1, x1q p1, x2q

p10, d1q p10, x1q p10, x2q p11, d1q p11, x1q p11, x2q

...
...

ă ă

“ “

“ ą“

“

ă ă

“

“

“ “

ă ă

“ ą

355

A map p : N Ñ Vt is a path map in GC
t

def
ô for all i P N, either ppiq

“
ÝÑ ppi ` 1q or356

ppiq
ă
ÝÑ ppi ` 1q in GC

t . Similarly, r : N Ñ Vt is a reverse path map in GC
t

def
ô for all i P N,357

either rpiq
“
ÝÑ rpi ` 1q or rpi ` 1q ă

ÝÑ rpiq. A path map p (resp. reverse path map r) is358

strict def
ô ti P N | ppiq

ă
ÝÑ ppi ` 1qu (resp. ti P N | rpi ` 1q ă

ÝÑ rpiqu) is infinite. An infinite359

branch B is an element of r0, D ´ 1sω. We write Bri, js with i ď j to denote the subsequence360

Bpiq ¨ Bpi` 1q ¨ ¨ ¨Bpjq. Given pn, xdq P Vt, a path map p from pn, xdq along B is such that361

pp0q “ pn, xdq and for all i ě 0, ppiq is of the form pn ¨ Br0, is, ¨q. A reverse path map r from362

pn, xdq along B admits a similar definition. We present the condition p‹Cq that is the central363

property for characterising regular symbolic trees in LpAcons(A)q that are satisfiable, following364

the remarkable result established in [46, Lemma 22] that non-satisfiability of a symbolic tree365

can be witnessed along a single branch.366

p‹Cq There are no elements pn, xdq, pn, xd1q in GC
t (same node n from r0, D ´ 1s˚) and no367

infinite branch B such that368

1. there exists a path map p from pn, xdq along B,369

2. there exists a reverse path map r from pn, xd1q along B,370

3. p or r is strict, and371

4. for all i P N, ppiq
ă
ÝÑ rpiq.372

The following proposition states a key property: non-satisfaction of a regular locally consistent373

symbolic tree can be witnessed along a single branch by violation of p‹Cq.374

§ Proposition 5. For every regular locally consistent symbolic tree t, GC
t satisfies p‹Cq iff t is375

satisfiable.376

A proof can be found in [27, Section 7].377

§ Example 6. Assume that every node along the rightmost branch in the symbolic tree378

tt in Figure 1 is labelled with pa, Θ1q. Then tt is not satisfiable: in order to satisfy Θ1’s379

conjunct x1
1 ă x1, the value of x1 must inevitably become finally smaller than d1, violating380

the conjunct d1 ă x1. Consequently, the rightmost branch of GC
tt

presented above does not381

satisfy p‹Cq: there exists a path map p from pε, d1q along 1ω, there exists a strict reverse382

path map r from pε, x1q along 1ω, and for all i P N we have ppiq
ă
ÝÑ rpiq.383

New constant nodes. Proposition 5 above is a variant of [46, Lemma 22]. Before going384

any further, let us in short explain the improvement of our developments compared to what is385

done in [46, 45]. The framified constraint graphs defined in [46, Definition 14] correspond to386

the above defined graph GC
t without r0, D´1s˚ˆtd1, dαu and corresponding edges. However,387

Example 6 illustrates the importance of taking into account these elements when deciding388

satisfiability (without d1, the graph would satisfy p‹Cq). Actually, Example 6 invalidates p‹q389

as used in [46, 45] because the constants are missing to apply properly [15]. The problematic390

part in [46, 45] is due to the proof of [45, Lemma 5.18] whose main argument takes advantage391

CONCUR 2023

29:10 Constraint Automata on Infinite Data Trees

of [15] but without the elements related to constant values (see also [24, Lemma 8]). With392

Proposition 5, we also propose a proof to characterise satisfiability of symbolic trees that393

is independent of [15]. Note also that the condition p‹q in [46, Section 3.3] generalises the394

condition CZ from [23, Section 6] (see also the condition C in [24, Definition 2] and a similar395

condition in [32, Section 2]). A condition similar to p‹q is also introduced recently in [7,396

Lemma 18] to decide a realizability problem based on LTLpZ,ă,“q.397

We recall that there are nonregular locally consistent symbolic trees t such that GC
t398

satisfies p‹Cq (see e.g. [23, 46]) but t is not satisfiable; indeed, satisfiability of symbolic trees is399

not an ω-regular property. The next result states that p‹Cq is ω-regular; hence, satisfiability400

of symbolic trees can be overapproximated advantageously.401

§ Lemma 7. There is a Rabin tree automaton A‹C such that LpA‹Cq “ tt | GC
t satisfies p‹Cqu,402

the number of Rabin pairs is bounded above by 8pβ ` 2q2 ` 3, the number of locations is403

exponential in β, the transition relation can be decided in polynomial-time in404

maxprlogp|d1|qs, rlogp|dα|qsq ` β ` cardpΣq `D.405

Proof sketch. The proof of Lemma 7 is structured as follows (see [27, Section 4.3]).406

(1) We construct a Büchi word automaton AB accepting the complement of p‹Cq for D “ 1.407

(2) AB is nondeterministic, but we can determinize it and get a deterministic Rabin word408

automaton ABÑR such that LpABq “ LpABÑRq (using the determinisation construction409

from [60, Theorem 1.1]). (3) By an easy construction, we obtain a deterministic Street word410

automaton AS accepting the complement of LpABÑRq; it accepts words that satisfy p‹Cq for411

D “ 1. (4) By [60, Lemma 1.2], we construct a deterministic Rabin word automaton AR s.t.412

LpASq “ LpARq. (5) Finally, we construct a Rabin tree automaton A‹C , the intuitive idea is413

to "let run the automaton AR" along every branch of a run of A‹C , doable thanks to the414

determinism of AR. Since p‹Cq states a property on every branch, we are done.415

Differences with [46]. Lemma 7 is similar to [46, Proposition 26] but there is an416

essential difference: the number of Rabin pairs in Lemma 7 is not a constant but a value417

depending on β, an outcome of our investigations. It is important to know the number418

of Rabin pairs in A‹C for our complexity analysis as checking nonemptiness of Rabin tree419

automata is exponential in the number of Rabin pairs [30, Theorem 4.1]. Our proof of420

Lemma 7 also proposes a slight novelty compared to the construction in [46]: we design421

A‹C without firstly constructing a tree automaton for the complement language (as done422

in [46]) and then using results from [55] (elimination of alternation in tree automata). Our423

new approach shall be rewarding: not only we can better understand how to express the424

condition p‹Cq, but also we control the size parameters of A‹C involved in our forthcoming425

complexity analysis. Furthermore, it may be useful to implement the decision procedure for426

solving the satisfiability problem for CTLpZq (resp. for CTL˚pZq). Note also that the above427

analysis about the number of Rabin pairs is independent from the question discussed above428

about having the elements in r0, D ´ 1s˚ ˆ td1, dαu within GC
t .429

Summarizing the developments so far, we can conclude this subsection as follows:430

§ Lemma 8. LpAq ‰ H iff LpAcons(A)q X LpA‹Cq ‰ H.431

For its proof, by way of example, if LpAcons(A)qXLpA‹Cq is non-empty, then as LpAcons(A)qX432

LpA‹Cq is regular, it contains a regular A-consistent symbolic tree t (see e.g. [58] and [64,433

Section 6.3] for the existence of regular trees) and by Proposition 5, t is satisfiable. By434

Lemma 4, we get LpAq ‰ H. For the other direction, we use Lemma 3 as well as the property435

that for every satisfiable symbolic tree t, GC
t satisfies the condition p‹Cq.436

Constraint Automata on Infinite Data Trees 29:11

4.3 ExpTime Upper Bound for TCAs437

Lemma 8 justifies why deciding the nonemptiness of LpAcons(A)q X LpA‹Cq is crucial. In the438

proof of Lemma 9 below (see [27, Section 4.4]), we propose a construction for the intersection439

of Rabin tree automata that only performs an exponential blow-up for the number of locations,440

which is fine for our purposes.441

§ Lemma 9. There is a Rabin tree automaton A such that LpAq “ LpAcons(A)qXLpA‹Cq and the442

number of Rabin pairs is polynomial in β, the number of locations is in OpcardpSatTypespβqqˆ443

cardpQq ˆ 2P pβqq for some polynomial P p¨q and the transition relation can be decided in444

polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.445

Nonemptiness of Rabin tree automata is polynomial in the cardinality of the transition446

relation and exponential in the number of Rabin pairs, see e.g. [30, Theorem 4.1]. More447

precisely, it is in time pmˆ nqOpnq, where m is the number of locations and n is the number448

of Rabin pairs, see the statement [30, Theorem 4.1]. However, this is not exactly what449

we need herein, as the complexity expression above concerns binary trees, and it assumes450

that the transition relation δ can be decided in constant time. If, as in our case, D ě 1451

and deciding whether a tuple belongs to δ requires γ time units, checking nonemptiness is452

actually in time pcardpδq ˆ γ ˆ nqOpnq (by scrutiny of the proof of [30, Theorem 4.1], page453

144). Here, γ may depend on parameters related to A and in Lemma 10 below, γ takes the454

value cardpδq ` β ` cardpΣq `D ` MCSpAq (by Lemma 9). Hence the following result:455

§ Lemma 10. The nonemptiness problem for TCA can be solved in time in OpR1
`

cardpQq ˆ456

cardpδq ˆ MCSpAq ˆ cardpΣq ˆR2pβq
˘R2pβqˆR3pDq

q for some polynomials R1, R2 and R3.457

Assuming that the size of the TCA A “ pQ, Σ, D, β, Qin, δ, F q, written sizepAq, is polynomial458

in cardpQq`cardpδq`D`β`MCSpAq (which makes sense for a reasonably succinct encoding),459

from the computation of the bound in Lemma 10, the nonemptiness of LpAq can be checked in460

time OpRpsizepAqqR
1
pβ`Dqq for some polynomials R and R1. The ExpTime upper bound of461

the nonemptiness problem for TCA is now a consequence of the above complexity expression.462

§ Theorem 11. Nonemptiness problem for tree constraint automata is ExpTime-complete.463

4.4 Rabin Tree Constraint Automata464

We can prove the ExpTime upper bound of the nonemptiness problem for Rabin TCA465

(Theorem 13) and follow the same lines of arguments as for TCA. Given a Rabin TCA466

A “ pQ, Σ, D, β, Qin, δ, Fq, we define a Rabin tree automaton A1
cons(A) such that LpAq ‰ H467

iff there is t P LpA1
cons(A)q that is satisfiable (cf. Lemma 4 for TCA). Moreover, we take468

advantage of A‹C so that LpAq ‰ H iff LpA1
cons(A)q X LpA‹Cq is non-empty (cf. Lemma 8). It469

remains to determine the cost for testing nonemptiness of LpA1
cons(A)q X LpA‹Cq. Here is the470

counterpart of Lemma 9 (same kind of arguments).471

§ Lemma 12. There is a Rabin tree automaton A s.t. LpAq “ LpA1
cons(A)q X LpA‹Cq,472

the number of Rabin pairs is polynomial in β ` cardpFq, the number of locations is in473

OpcardpSatTypespβqq ˆ cardpQq ˆ 2P pβ`cardpFqqq for some polynomial P p¨q, and the trans-474

ition relation can be decided in polynomial-time in cardpδq ` β ` cardpΣq `D ` MCSpAq.475

As for Lemma 10, we conclude that the nonemptiness problem for Rabin TCA can be solved in476

time OpR1
`

cardpQqˆcardpδqˆMCSpAqˆcardpΣqˆR2pβ`cardpFqq
˘R2pβ`cardpFqqˆR3pDq

q for477

polynomials R1, R2 and R3. The nonemptiness problem for Rabin TCA is also in ExpTime.478

479

CONCUR 2023

29:12 Constraint Automata on Infinite Data Trees

§ Theorem 13. The nonemptiness problem for Rabin TCA is ExpTime-complete.480

This result is mainly useful to characterize the complexity of SATpCTL˚pZqq in Section 6.481

5 Tree Constraint Automata for CTLpZq482

Below, we harvest the first results from what is achieved in the previous section: SATpCTLpZqq483

is in ExpTime. So, enriching the CTL models with numerical values interpreted in Z does484

not cause a complexity blow-up. We follow the automata-based approach and (after proving485

a refined version of the tree model property for CTLpZq) the key step is to translate CTLpZq486

formulae into equivalent TCA. Theorem 14 below is one of our main results.487

§ Theorem 14. The satisfiability problem for CTLpZq is ExpTime-complete.488

Sketch. ExpTime-hardness is inherited from CTL. For ExpTime-easiness, let ϕ be a CTLpZq489

formula. A first step is to preprocess the formula into a formula in simple form (see definition490

in Section 2.2). Then, we can construct from a formula ϕ in simple form a TCA Aϕ s.t. ϕ is491

satisfiable iff LpAϕq ‰ H and Aϕ satisfies the following properties.492

The degree D and the number of variables β are bounded by sizepϕq.493

The number of locations is bounded by pD ˆ 2sizepϕqq ˆ psizepϕq ` 1q.494

The number of transitions is in Op2P psizepϕqqq for some polynomial P p¨q.495

The finite alphabet Σ in Aϕ is unary; MCSpAϕq is quadratic in sizepϕq.496

By Lemma 10, the nonemptiness problem for TCA can be solved in time497

OpR1
`

cardpQq ˆ cardpδq ˆ MCSpAq ˆ cardpΣq ˆR2pβq
˘R2pβqˆR3pDq

q.498

Since the transition relations of the automata Acons(A) and A‹C can be built in polynomial-time,499

we get that nonemptiness of LpAϕq can be solved in exponential-time. đ500

Let N be the concrete domain pN,ă,“, p“dqdPNq for which we can also show that nonemptiness501

of TCA with constraints interpreted on N has the same complexity as for TCA with constraints502

interpreted on Z. Let CTLpNq be the variant of CTLpZq with constraints interpreted503

on N. As a corollary, SAT(CTLpNq) is ExpTime-complete. With the concrete domain504

pQ,ă,“, p“dqdPQq, all the trees in LpAcons(A)q are satisfiable (no need to intersect Acons(A) with505

a hypothetical A‹C , see e.g. [49, 4, 23, 38]), and therefore SATpCTLpQqq is in ExpTime too.506

TCA can be also used to show that the concept satisfiability w.r.t. general TBoxes for the507

description logic ALCFPpZcq is in ExpTime [46, 45], see more details in [27, Section 5.2].508

6 Complexity of the Satisfiability Problem for the Logic CTL˚pZq509

We show that SATpCTL˚pZqq can be solved in 2ExpTime. We follow the automata-based510

approach for CTL˚, see e.g. [31, 30], but adapted to Rabin TCA. The main challenge here511

is to carefully check that essential steps for CTL˚ can be lifted to CTL˚pZq, but also that512

computationally we are in a position to provide an optimal complexity upper bound.513

Let us explain in short all steps necessary to obtain the result. We start by establishing a514

special form for CTL˚pZq formulae from which Rabin TCA will be defined, following ideas515

from [31] for CTL˚. A CTL˚pZq state formula ϕ is in special form if it has the form below516

E px “ 0q ^
`

Ź

iPr1,D´1s AGE Φi

˘

^
`

Ź

jPr1,D1s A Φ1
j

˘

,517

where the Φi’s and the Φ1
j ’s are LTLpZq formulae in simple form (see Section 2), for some518

D ě 1, D1 ě 0. We can restrict ourselves to CTL˚pZq state formulae in special form (see519

the proof of [27, Proposition 6]).520

Constraint Automata on Infinite Data Trees 29:13

§ Proposition 15. For every CTL˚pZq formula ϕ, one can construct in polynomial time in521

the size of ϕ a CTL˚pZq formula ϕ1 in special form s.t. ϕ is satisfiable iff ϕ1 is satisfiable.522

So ϕ1 is also of polynomial size in the size of ϕ. Let us state a tree model property of special523

formulae, with a strict discipline on the witness paths. Proposition 16 below is a counterpart524

of [31, Theorem 3.2] but for CTL˚pZq instead of CTL˚, see also the variant [38, Lemma 3.3].525

§ Proposition 16. Let ϕ be a CTL˚pZq formula in special form built over x1, . . . , xβ. ϕ is526

satisfiable iff there is a tree t : r0, D ´ 1s Ñ Zβ such that t, ε |ù ϕ and for each i P r1, D ´ 1s,527

t satisfies AGE Φi via i, that is, if t, n |ù E Φi, then Φi is satisfied on the path n ¨ i ¨ 0ω.528

Proposition 16 justifies our restriction to infinite trees and to TCA in the rest of this section.529

Proposition 15 allows us to restrict our attention to constructing automata for formulae of530

(only) the form AGE Φ and A Φ, where Φ is a simple formula in LTLpZq. The first step is to531

translate simple formulae in LTLpZq into equivalent word constraint automata (TCA with532

degree D “ 1). Adapting the standard automata-based approach for LTL [69], we can show533

the following proposition (see the proof of [27, Proposition 8]).534

§ Proposition 17. Let Φ be an LTLpZq formula in simple form. There is a constraint word535

automaton AΦ such that tw : N Ñ Zβ | w |ù Φu “ LpAΦq, and the following conditions hold.536

(I) The number of locations in AΦ is bounded by sizepΦq ˆ 22ˆsizepΦq.537

(II) The cardinality of δ in AΦ is in Op2P psizepΦqqq for some polynomial P p¨q.538

(III) The maximal size of a constraint in AΦ is quadratic in sizepΦq.539

We can now construct, for every i P r0, D ´ 1s, a TCA Ai such that LpAiq “ tt :540

r0, D ´ 1s˚ Ñ Zβ | t |ù AGE Φi and t satisfies AGE Φi via iu. The idea is to construct Ai so541

that it starts off the word constraint automaton AΦi at each node n of the tree and runs it542

down the designated path n ¨ i ¨ 0ω to check whether Φi actually holds along this path. This543

can be easily done for AGE Φi; however, for formulas of the form A Φ1
j , for this construction544

to be correct, the underlying constraint word automaton A1
j must be deterministic, that545

is, for all locations s, letters a and pairs of valuations pz, z1q P Z2β , there exists in A1
j at546

most a single transition ps, a, Θ, s1q such that Z |ù Θpz, z1q. A well-known construction to547

transform nondeterministic Büchi automata to equivalent deterministic Rabin automata548

is due to Safra [60, Theorem 1.1]. An important step towards the optimal complexity for549

CTL˚pZq is to show that it is possible to lift this construction to word constraint automata,550

which is a result of its own interest. A special attention is given to the cardinality of the551

transition relation and to the size of the constraints in transitions, as these two parameters552

are, a priori, unbounded in constraint automata but essential to perform a forthcoming553

complexity analysis.554

§ Theorem 18. Let A “ pQ, Σ, β, Qin, δ, F q be a Büchi word constraint automaton involving555

the constants d1, . . . , dα. There is a deterministic Rabin word constraint automaton A1 “556

pQ1, Σ, β, Q1
in, δ1, Fq such that LpAq “ LpA1q verifying the following quantitative properties.557

(I) cardpQ1q is exponential in cardpQq and the number of Rabin pairs in A1 is bounded by558

2 ¨ cardpQq (same bounds as in [60, Theorem 1.1]).559

(II) The constraints in the transitions are from SatTypespβq, are of size cubic in β `560

maxprlogp|d1|qs, rlogp|dα|qsq and cardpδ1q ď cardpQ1q2ˆ cardpΣq ˆ ppdα´ d1q ` 3q2β ˆ 3β2 .561

This and Proposition 17 lead us to the result below on LTLpZq formulae in simple form.562

§ Corollary 19. Let Φ be an LTLpZq formula in simple form built over the variables x1, . . . , xβ563

and the constants d1, . . . , dα. There exists a deterministic Rabin word constraint automaton564

AΦ such that tw : N Ñ Zβ | w |ù Φu “ LpAΦq, and the following conditions hold.565

CONCUR 2023

29:14 Constraint Automata on Infinite Data Trees

(I) The number of locations in AΦ is bounded by 22P :psizepΦqq for some polynomial P :p¨q.566

(II) The number of Rabin pairs is bounded by 2ˆ sizepΦq ˆ 22ˆsizepΦq.567

(III) The cardinality of δ in AΦ is bounded by cardpSatTypespβqq ˆ 22P :psizepΦqq`1 .568

(IV) MCSpAΦq is cubic in β `maxprlogp|d1|qs, rlogp|dα|qsq, i.e. polynomial in sizepΦq.569

This enables us to use the idea illustrated above for formulas of the form AGE Φi also for570

formulas of the form A Φ1
j , and define Rabin TCA A1

j such that LpA1
jq “ tt : r0, D ´ 1s˚ Ñ571

Zβ | t satisfies A Φ1
ju. We are now ready to perform the final step towards the main result of572

this section. Let us recapitulate what we have so far.573

One can define a TCA A0 with two locations such that LpA0q is the set of trees t :574

r0, D´ 1s˚ Ñ Zβ such that tpεqpx1q “ 0, to handle Epx1 “ 0q in formulae in special form.575

For all 1 ď i ă D, there are (Büchi) TCA Ai such that LpAiq is the set of trees576

t : r0, D ´ 1s˚ Ñ Zβ such that t, ε |ù AGE Φi and t satisfies AGE Φi via i. Recall that577

TCA can be seen as Rabin TCA with a single Rabin pair.578

For all 1 ď j ď D1, there are Rabin TCA A1
j such that LpA1

jq is the set of trees t such579

that t satisfies A Φj , with an exponential number of Rabin pairs in sizepΦq.580

To define a Rabin TCA A such that LpAq “ LpA0q
Ş

iPr1,D´1s LpAiq
Ş

jPr1,D1s LpA1
jq, and581

then use the complexity bounds previously established, we need the result below (see the full582

proof in [27, Section 6.5]).583

§ Lemma 20. Let pAkq1ďkďn be a family of Rabin TCA such that Ak “ pQk, Σ, D, β, Qk,in, δk, Fkq,584

cardpFkq “ Nk and N “ Π
k

Nk. There is a Rabin TCA A such that LpAq “
Ş

k LpAkq and585

the number of Rabin pairs is equal to N ; MCSpAq ď n` MCSpA1q ` ¨ ¨ ¨ ` MCSpAnq,586

the number of locations (resp. transitions) is less than
`

Π
k

cardpQkq
˘

p2nqN (resp. Π
k

cardpδkq).587

Putting all results together, the nonemptiness of LpAq can be checked in double-exponential588

time in sizepϕq, leading to Theorem 21 below, which is the main result of the paper. It589

answers open questions from [11, 15, 16, 46].590

§ Theorem 21. SATpCTL˚pZqq is 2ExpTime-complete.591

2ExpTime-hardness is from SAT(CTL˚) [66, Theorem 5.2]. As a corollary, SATpCTL˚pNqq592

is also 2ExpTime-complete. Furthermore, assuming that ăpre is the prefix relation on t0, 1u˚,593

we can use the reduction from [22, Section 4.2] to conclude SATpCTL˚pt0, 1u˚,ăpreqq is594

2ExpTime-complete too. Furthermore, as observed earlier, when the concrete domain is595

pQ,ă,“, p“dqdPQq, all the trees in LpAcons(A)q are satisfiable, and therefore SATpCTL˚pQqq is596

also in 2ExpTime, which is already known from [38, Theorem 4.3].597

7 Concluding Remarks598

We developed an automata-based approach to solve SAT(CTLpZq) and SAT(CTL˚pZq), by599

introducing tree constraint automata that accept infinite data trees with data domain Z. The600

nonemptiness problem for tree constraint automata with Büchi acceptance conditions (resp.601

with Rabin pairs) is ExpTime-complete, see Theorem 11 (resp. Theorem 13). The difficult602

part consists in proving the ExpTime-easiness for which we show how to substantially adapt603

the material in [45, Section 5.2] that guided us to design the correctness proof of p‹Cq. The604

work [46] was indeed a great inspiration but we adjusted a few statements from there (see605

also [27]). We recall that p‹q in [46] is not fully correct (see Section 4.2) as we need to606

add constants (leading to the variant condition p‹Cq). Moreover, our construction of the607

automaton in Lemma 7 does depend on the number of variables unlike [46, Proposition 26].608

Constraint Automata on Infinite Data Trees 29:15

This is crucial for complexity, as it is related to the number of Rabin pairs. We also use [30]609

more precisely than [46, p.621] as we handle non-binary trees. In short, we introduced610

TCA for which we characterise complexity of the non-emptiness problem (providing a few611

improvements to [46]). We left aside the question of the expressiveness of TCA, which is612

interesting but out of the scope of this paper.613

This lead us to show that SATpCTLpZqq is ExpTime-complete (Theorem 14), and614

SATpCTL˚pZqq is 2ExpTime-complete (Theorem 21). The only decidability proof for615

SATpCTL˚pZqq done so far, see [15, Theorem 32], is by reduction to a decidable second-order616

logic. Our complexity characterisation for SATpCTL˚pZqq provides an answer to several617

open problems related to CTL˚pZq fragments, see e.g. [11, 38, 15, 16, 46]. We believe that618

our results on TCA can help to establish complexity results for other logics (see also Section 6619

about a domain for strings and [33, Section 4] to handle more concrete domains).620

References621

1 S. Abriola, D. Figueira, and S. Figueira. Logics of repeating values on data trees and branching622

counter systems. In FoSSaCS’17, volume 10203 of LNCS, pages 196–212, 2017.623

2 E.G. Amparore, S. Donatelli, and F. Gallà. A CTL* model checker for Petri nets. In Petri624

Nets’20, volume 12152 of LNCS, pages 403–413. Springer, 2020.625

3 F. Baader and J. Rydval. Using model theory to find decidable and tractable description626

logics with concrete domains. JAR, 66(3):357–407, 2022.627

4 Ph. Balbiani and J.F. Condotta. Computational complexity of propositional linear temporal628

logics based on qualitative spatial or temporal reasoning. In FroCoS’02, volume 2309 of LNAI,629

pages 162–173. Springer, 2002.630

5 K. Bartek and M. Lelyk. Modal mu-calculus with atoms. In CSL’17, pages 30:1–30:21.631

Leibniz-Zentrum für Informatik, LIPICS, 2017.632

6 B. Bednarczyk and O. Fiuk. Presburger Büchi tree automata with applications to logics with633

expressive counting. In WoLLIC’22, volume 13468 of LNCS, pages 295–308. Springer, 2022.634

7 A. Bhaskar and M. Praveen. Realizability problem for constraint LTL. In TIME’22, volume635

247 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.636

8 M. Bojańczyk. A bounding quantifier. In CSL’04, volume 3210 of LNCS, pages 41–55. Springer,637

2004.638

9 M. Bojańczyk and Th. Colcombet. Bounds in ω-Regularity. In LiCS’06, pages 285–296. IEEE639

Computer Society, 2006.640

10 M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees. In STACS’12, LIPIcs,641

pages 648–660, 2012.642

11 L. Bozzelli and R. Gascon. Branching-time temporal logic extended with Presburger constraints.643

In LPAR’06, volume 4246 of LNCS, pages 197–211. Springer, 2006.644

12 L. Bozzelli and S. Pinchinat. Verification of gap-order constraint abstractions of counter645

systems. TCS, 523:1–36, 2014.646

13 C. Carapelle. On the satisfiability of temporal logics with concrete domains. PhD thesis, Leipzig647

University, 2015.648

14 C. Carapelle, A. Kartzow, and M. Lohrey. Satisfiability of CTL˚ with constraints. In649

CONCUR’13, LNCS, pages 455–463. Springer, 2013.650

15 C. Carapelle, A. Kartzow, and M. Lohrey. Satisfiability of ECTL˚ with constraints. Journal651

of Computer and System Sciences, 82(5):826–855, 2016.652

16 C. Carapelle and A.-Y. Turhan. Description Logics Reasoning w.r.t. General TBoxes is653

Decidable for Concrete Domains with the EHD-property. In ECAI’16, volume 285, pages654

1440–1448. IOS Press, 2016.655

17 K. Čerans. Deciding properties of integral relational automata. In ICALP’94, volume 820 of656

LNCS, pages 35–46. Springer, 1994.657

18 A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. JACM, 28(1):114–133, 1981.658

CONCUR 2023

29:16 Constraint Automata on Infinite Data Trees

19 R. Condurache, C. Dima, Y. Oualhdaj, and N. Troquard. Rational Synthesis in the Commons659

with Careless and Careful Agents. In AAMAS’21, pages 368–376, 2021.660

20 B. Cook, H. Khlaaf, and N. Piterman. On automation of CTL* verification for infinite-state661

systems. In CAV’15, volume 9206 of LNCS, pages 13–29. Springer, 2015.662

21 N. Decker, P. Habermehl, M. Leucker, and D. Thoma. Ordered navigation on multi-attributed663

data words. In CONCUR’14, volume 8704 of LNCS, pages 497–511, 2014.664

22 S. Demri and M. Deters. Temporal logics on strings with prefix relation. Journal of Logic and665

Computation, 26:989–1017, 2016.666

23 S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL. I & C,667

205(3):380–415, 2007.668

24 S. Demri and R. Gascon. Verification of qualitative Z constraints. TCS, 409(1):24–40, 2008.669

25 S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM ToCL,670

10(3), 2009.671

26 S. Demri and K. Quaas. Concrete domains in logics: a survey. ACM SIGLOG News, 8(3):6–29,672

2021.673

27 S. Demri and K. Quaas. Constraint automata on infinite data trees: From CTL(Z)/CTL*(Z)674

to decision procedures. CoRR, abs/2302.05327, 2023.675

28 A. Deutsch, R. Hull, and V. Vianu. Automatic verification of database-centric system. SIGMOD676

Record, 43(3):5–17, 2014.677

29 E.A. Emerson and J. Halpern. ‘sometimes‘ and ’not never’ revisited: on branching versus678

linear time temporal logic. JACM, 33:151–178, 1986.679

30 E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of programs. SIAM680

Journal of Computing, 29(1):132–158, 2000.681

31 E.A. Emerson and P. Sistla. Deciding full branching time logic. Information and Control,682

61:175–201, 1984.683

32 L. Exibard, E. Filiot, and A. Khalimov. Church synthesis on register automata over linearly684

ordered data domains. In STACS’21, volume 187 of LIPIcs, pages 28:1–28:16. Schloss Dagstuhl685

- Leibniz-Zentrum für Informatik, 2021.686

33 L. Exibard, E. Filiot, and A. Khalimov. A generic solution to register-bounded synthesis with687

an application to discrete orders. In ICALP’22, volume 229 of LIPIcs, pages 122:1–122:19.688

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.689

34 P. Felli, M. Montali, and S. Winkler. CTL* model checking for data-aware dynamic systems690

with arithmetic. In IJCAR’22, volume 13385 of LNCS, pages 36–56. Springer, 2022.691

35 P. Felli, M. Montali, and S. Winkler. Linear-time verification of data-aware dynamic systems692

with arithmetic. In AAAI’22, pages 5642–5650. AAAI Press, 2022.693

36 D. Figueira. Reasoning on words and trees with data. PhD thesis, ENS Cachan, 2010.694

37 D. Figueira. Decidability of Downward XPath. ACM ToCL, 13(4):1–40, 2012.695

38 R. Gascon. An automata-based approach for CTL* with constraints. Electronic Notes in696

Theoretical Computer Science, 239:193–211, 2009.697

39 S. Göller, Ch. Haase, J. Ouaknine, and J. Worrell. Branching-time model checking of parametric698

one-counter automata. In FoSSaCS’12, volume 7213 of LNCS, pages 406–420. Springer, 2012.699

40 J.F. Groote and R. Mastescu. Verification of temporal properties of processes in a setting700

with data. In AMAST’98, volume 1548 of LNCS, pages 74–90, 1998.701

41 R. Iosif and X. Xu. Alternating automata modulo first order theories. In CAV’19, volume702

11562 of LNCS, pages 46–63, 2019.703

42 M. Jurdziński and R. Lazić. Alternating automata on data trees and XPath satisfiability.704

ACM ToCL, 12(3):19:1–19:21, 2011.705

43 A. Kartzow and Th. Weidner. Model checking constraint LTL over trees. CoRR, abs/1504.06105,706

2015.707

44 O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to branching-time708

model checking. JACM, 47(2):312–360, 2000.709

Constraint Automata on Infinite Data Trees 29:17

45 N. Labai. Automata-based reasoning for decidable logics with data values. PhD thesis, TU710

Wien, May 2021.711

46 N. Labai, M. Ortiz, and M. Simkus. An Exptime Upper Bound for ALC with integers. In712

KR’20, pages 425–436. Morgan Kaufman, 2020.713

47 S. Lasota and I. Walukiewicz. Alternating timed automata. ACM ToCL, 9(2):10:1–10:27,714

2008.715

48 A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell. Model checking flat freeze LTL716

on one-counter automata. Logical Methods in Computer Science, 14(4), 2018.717

49 C. Lutz. Interval-based temporal reasoning with general TBoxes. In IJCAI’01, pages 89–94.718

Morgan-Kaufmann, 2001.719

50 C. Lutz. The Complexity of Description Logics with Concrete Domains. PhD thesis, RWTH,720

Aachen, 2002.721

51 C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal Logics722

Volume 4, pages 265–296. King’s College Publications, 2003.723

52 C. Lutz. NEXPTIME-complete description logics with concrete domains. ACM ToCL,724

5(4):669–705, 2004.725

53 C. Lutz and M. Milicić. A Tableau Algorithm for Description Logics with Concrete Domains726

and General Tboxes. JAR, 38(1-3):227–259, 2007.727

54 R. Mayr and P. Totzke. Branching-time model checking gap-order constraint systems. Funda-728

menta Informaticae, 143(3–4):339–353, 2016.729

55 D. Muller and E. Schupp. Simulating alternating tree automata by nondeterministic automata:730

New results and new proofs of the theorems of Rabin, McNaughton and Safra. TCS, 141(1–731

2):69–107, 1995.732

56 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets.733

ACM ToCL, 5(3):403–435, 2004.734

57 D. Peteler and K. Quaas. Deciding Emptiness for Constraint Automata on Strings with735

the Prefix and Suffix Order. In MFCS’22, volume 241 of LIPIcs, pages 76:1–76:15. Schloss736

Dagstuhl - Leibniz-Zentrum für Informatik, 2022.737

58 M.O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions738

of the AMS, 141:1–35, 1969.739

59 P. Revesz. Introduction to Constraint Databases. Springer, New York, 2002.740

60 S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Institute of741

Science, Rehovot, 1989.742

61 L. Segoufin and S. Toruńczyk. Automata based verification over linearly ordered data domains.743

In STACS’11, pages 81–92, 2011.744

62 H. Seidl, Th. Schwentick, and A. Muscholl. Counting in trees. In Logic and Automata: History745

and Perspectives, volume 2 of Texts in Logic and Games, pages 575–612. Amsterdam University746

Press, 2008.747

63 F. Song and Z. Wu. On temporal logics with data variable quantifications: decidability and748

complexity. I & C, 251:104–139, 2016.749

64 W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer Science,750

Volume B, Formal models and semantics, pages 133–191. Elsevier, 1990.751

65 Sz. Torunczyk and Th. Zeume. Register automata with extrema constraints, and an application752

to two-variable logic. Logical Methods in Computer Science, 18(1), 2022.753

66 M. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of programs.754

In STOC’85, pages 240–251. ACM, 1985.755

67 M. Vardi and Th. Wilke. Automata: from logics to algorithms. In Logic and Automata:756

History and Perspectives, number 2 in Texts in Logic and Games, pages 629–736. Amsterdam757

University Press, 2008.758

68 M. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal759

of Computer and System Sciences, 32:183–221, 1986.760

69 M. Vardi and P. Wolper. Reasoning about infinite computations. I & C, 115:1–37, 1994.761

CONCUR 2023

29:18 Constraint Automata on Infinite Data Trees

70 S. Vester. On the complexity of model-checking branching and alternating-time temporal762

logics in one-counter systems. In ATVA’15, volume 9364 of LNCS, pages 361–377. Springer,763

2015.764

71 Th. Weidner. Probabilistic Logic, Probabilistic Regular Expressions, and Constraint Temporal765

Logic. PhD thesis, University of Leipzig, 2016.766

	1 Introduction
	2 Temporal Logics with Numerical Domains
	2.1 Concrete Domain (Z,<,=,(=d)dZ) and Kripke Structures
	2.2 The Logic CTL* (Z)

	3 Tree Constraint Automata
	4 Complexity of the Nonemptiness Problem for TCA
	4.1 Symbolic Trees
	4.2 Satisfiability for Regular Locally Consistent Symbolic Trees
	4.3 ExpTime Upper Bound for TCAs
	4.4 Rabin Tree Constraint Automata

	5 Tree Constraint Automata for CTL (Z)
	6 Complexity of the Satisfiability Problem for the Logic CTL* (Z)
	7 Concluding Remarks

