Stéphane Demri

Karin Quaas

Constraint Automata on Infinite Data Trees: From CTLpZq/CTL ˚pZq To Decision Procedures

Keywords: 2012 ACM Subject Classification Theory of computation Ñ Logic and verification Keywords and phrases Constraints, Constraint Automata, Temporal Logics, Infinite Data Trees Digital Object Identifier 10

We introduce the class of tree constraint automata with data values in Z (equipped with the less than relation and equality predicates to constants), and we show that the nonemptiness problem is ExpTime-complete. Using an automata-based approach, we establish that the satisfiability problem for CTLpZq (CTL with constraints in Z) is ExpTime-complete, and the satisfiability problem for CTL ˚pZq is 2ExpTime-complete (only decidability was known so far). By-product results with other concrete domains and other logics, are also briefly discussed.

Introduction

In this paper, we study the satisfiability problem for the branching-time temporal logics CTLpZq and CTL ˚pZq, extending the classical temporal logics CTL and CTL ˚in that atomic formulae express constraints about the relational structure pZ, ă, ", p" d q dPZ q. Formulae in these logics are interpreted over Kripke structures that are annotated with values in Z. A typical CTL ˚pZq formula is the formula AGFpx ă Xxq stating that on all paths infinitely often the value of the variable x at the current position is strictly smaller than the value of x at the next position. Formalisms defined over relational structures, also known as concrete domains, are considered in many works, including works on temporal logics [START_REF] Groote | Verification of temporal properties of processes in a setting with data[END_REF][START_REF] Carapelle | On the satisfiability of temporal logics with concrete domains[END_REF][START_REF] Mayr | Branching-time model checking gap-order constraint systems[END_REF][START_REF] Lechner | Model checking flat freeze LTL on one-counter automata[END_REF][START_REF] Condurache | Rational Synthesis in the Commons with Careless and Careful Agents[END_REF][START_REF] Felli | Linear-time verification of data-aware dynamic systems with arithmetic[END_REF], description logics [START_REF] Lutz | The Complexity of Description Logics with Concrete Domains[END_REF][START_REF] Lutz | Description logics with concrete domains-a survey[END_REF][START_REF] Lutz | NEXPTIME-complete description logics with concrete domains[END_REF][START_REF] Lutz | A Tableau Algorithm for Description Logics with Concrete Domains and General Tboxes[END_REF][START_REF] Carapelle | Description Logics Reasoning w.r.t. General TBoxes is Decidable for Concrete Domains with the EHD-property[END_REF][START_REF] Labai | Automata-based reasoning for decidable logics with data values[END_REF][START_REF] Baader | Using model theory to find decidable and tractable description logics with concrete domains[END_REF], and automata [START_REF] Gascon | An automata-based approach for CTL* with constraints[END_REF][START_REF] Segoufin | Automata based verification over linearly ordered data domains[END_REF][START_REF] Kartzow | Model checking constraint LTL over trees[END_REF][START_REF] Th | Probabilistic Logic, Probabilistic Regular Expressions, and Constraint Temporal Logic[END_REF][START_REF] Sz | Register automata with extrema constraints, and an application to two-variable logic[END_REF][START_REF] Peteler | Deciding Emptiness for Constraint Automata on Strings with the Prefix and Suffix Order[END_REF]. Combining reasoning in your favourite logic with reasoning in a relevant concrete domain reveals to be essential for numerous applications, for instance for reasoning about ontologies, see e.g. [START_REF] Lutz | NEXPTIME-complete description logics with concrete domains[END_REF][START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF], or data-aware systems, see e.g. [START_REF] Deutsch | Automatic verification of database-centric system[END_REF][START_REF] Felli | CTL* model checking for data-aware dynamic systems with arithmetic[END_REF]. A brief survey can be found in [START_REF] Demri | Concrete domains in logics: a survey[END_REF].

Decidability results for concrete domains handled in [START_REF] Lutz | A Tableau Algorithm for Description Logics with Concrete Domains and General Tboxes[END_REF][START_REF] Gascon | An automata-based approach for CTL* with constraints[END_REF][START_REF] Baader | Using model theory to find decidable and tractable description logics with concrete domains[END_REF] exclude the ubiquitous concrete domain pZ, ă, ", p" d q dPZ q. By contrast, decidability results for logics with concrete domain Z require dedicated proof techniques, see e.g. [START_REF] Bozzelli | Branching-time temporal logic extended with Presburger constraints[END_REF][START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF][START_REF] Segoufin | Automata based verification over linearly ordered data domains[END_REF][START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]. In particular, fragments of CTL ˚pZq are shown decidable in [START_REF] Bozzelli | Branching-time temporal logic extended with Presburger constraints[END_REF] using integral relational automata from [START_REF] Čerans | Deciding properties of integral relational automata[END_REF], and the satisfiability problem for existential and universal CTL ˚with gap-order constraints (more general than the ones in this paper) can be solved in PSpace [START_REF] Bozzelli | Verification of gap-order constraint abstractions of counter systems[END_REF]Theorem 14].

Another important breakthrough came with the decidability of CTL ˚pZq [15, Theorem 32] (see also [START_REF] Carapelle | Satisfiability of CTL ˚with constraints[END_REF]) by designing a reduction to a decidable second-order logic, whose formulae are made of Boolean combinations of formulae from MSO and from WMSO+U [START_REF] Bojańczyk | Weak MSO+U over infinite trees[END_REF], where U is the unbounding second-order quantifier, see e.g. [START_REF] Bojańczyk | A bounding quantifier[END_REF][START_REF] Bojańczyk | Bounds in ω-Regularity[END_REF]. This is all the more remarkable as the decidability result is part of a powerful general approach [START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF], but no sharp complexity upper bound can be inferred. More recently, the condition C Z [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF] to approximate the set

29:2

Constraint Automata on Infinite Data Trees of satisfiable symbolic models of a given LTLpZq formula is extended to the branching case in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF] leading to the ExpTime-easiness of a major reasoning task for the description logic ALCF P pZ c q. However, no elementary complexity upper bounds for the satisfiability problem for CTLpZq nor CTL ˚pZq were known since their decidability was established in [START_REF] Carapelle | On the satisfiability of temporal logics with concrete domains[END_REF][START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF].

In this paper, we prove that the satisfiability problem for CTLpZq is ExpTime-complete, and the satisfiability problem for CTL ˚pZq is 2ExpTime-complete. We pursue the automatabased approach for solving decision problems for temporal logics, following seminal works for temporal logics, see e.g. [START_REF] Vardi | Automata-theoretic techniques for modal logics of programs[END_REF][START_REF] Vardi | Reasoning about infinite computations[END_REF][START_REF] Kupferman | An automata-theoretic approach to branching-time model checking[END_REF]. This popular approach consists of reducing logical problems (satisfiability, model-checking) to automata-based decision problems while taking advantage of existing results and decision procedures from automata theory, see e.g. [START_REF] Vardi | Automata: from logics to algorithms[END_REF].

It is well-known that decision procedures for CTL ˚are difficult to design, and the combination with the concrete domain Z is definitely challenging. Moreover, we aim at proposing a general framework: we do not wish for every new logic with concrete domain to study again and again what is the proper way to define products of automata leading to optimal complexity. That is why our main goal in this work is to investigate a new class of tree constraint automata, understood as a target formalism in the pure tradition of the automata-based approach, and easy to reuse. The structures accepted by such tree constraint automata are infinite trees in which nodes are labelled by a letter from a finite alphabet and a tuple in Z β for some β ě 1 (this excludes the automata designed in [START_REF] Figueira | Reasoning on words and trees with data[END_REF][START_REF] Figueira | Decidability of Downward XPath[END_REF] dedicated to finite trees where no predicate ă is involved). Decision problems for alternating automata over infinite alphabets are often undecidable, see e.g. [START_REF] Neven | Finite state machines for strings over infinite alphabets[END_REF][START_REF] Lasota | Alternating timed automata[END_REF][START_REF] Demri | LTL with the freeze quantifier and register automata[END_REF][START_REF] Iosif | Alternating automata modulo first order theories[END_REF], and therefore we advocate the introduction of nondeterministic constraint automata without alternation.

Our definition of tree constraint automata naturally extends the definition of constraint automata for words (see e.g. [START_REF] Čerans | Deciding properties of integral relational automata[END_REF][START_REF] Revesz | Introduction to Constraint Databases[END_REF][START_REF] Segoufin | Automata based verification over linearly ordered data domains[END_REF][START_REF] Kartzow | Model checking constraint LTL over trees[END_REF][START_REF] Peteler | Deciding Emptiness for Constraint Automata on Strings with the Prefix and Suffix Order[END_REF]) and as far as we know, the extension to infinite trees in the way done herein has not been considered earlier in the literature.

As a key result, we show that the nonemptiness problem for tree constraint automata over pZ, ă, ", p" d q dPZ q is ExpTime-complete. In order to obtain the ExpTime upper bound, we adapt results from [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF][START_REF] Labai | Automata-based reasoning for decidable logics with data values[END_REF] (originally expressed in the context of interpretations for description logics) and we take advantage of several automata-based constructions for Rabin/Streett tree automata. As a corollary, we establish that the satisfiability problem for CTLpZq is ExpTime-complete (Theorem 14), which is one of the main results of the paper.

As a by-product, it also allows us to conclude that the concept satisfiability problem w.r.t.

general TBoxes for ALCF P pZ c q is in ExpTime, a result known since [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF].

Our main contribution is the characterisation of the complexity for CTL ˚pZq satisfiability, which is an open problem evoked in [START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF]Section 9] and [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]Section 5] (decidability was established ten years ago in [START_REF] Carapelle | Satisfiability of CTL ˚with constraints[END_REF]). In Section 6, we show that the satisfiability problem for CTL ˚pZq is in 2ExpTime by using Rabin tree constraint automata (introduced herein).

We have to check that the essential steps for CTL ˚can be lifted to CTL ˚pZq to get the optimal upper bound. In general, our contributions stem from the cross-fertilisation of automata-based techniques for temporal logics and reasoning about (infinite) structures made of Z-constraints.

A complete version with all the proofs can be found in [START_REF] Demri | Constraint automata on infinite data trees: From CTL(Z)/CTL*(Z) to decision procedures[END_REF].

2

Temporal Logics with Numerical Domains 2.1 Concrete Domain pZ, ă, ", p" d q dPZ q and Kripke Structures

In the sequel, we consider the concrete domain pZ, ă, ", p" d q dPZ q (also written Z), where " d is a unary predicate stating the equality with the constant d and, ă and " are the usual

Constraint Automata on

relations on Z. Let VAR " tx, y, . . .u be a countably infinite set of variables. A term t over VAR is an expression of the form X i x, where x P VAR and X i is a (possibly empty) sequence of i symbols 'X'. A term X i x should be understood as a variable (that needs to be interpreted) but, later on, we will see that the prefix X i will have a temporal interpretation.

We write T VAR to denote the set of all terms over VAR. For all i P N, we write T ďi VAR to denote the subset of terms of the form X j x, where j ď i. For instance, T ď0 VAR " VAR. An atomic constraint θ over T VAR is an expression of one of the forms below:

t ă t 1 t " t 1 " d ptq (also written t " d),
where d P Z and t, t where W is a non-empty set of worlds, R Ď W ˆW is the accessibility relation and v : W ˆVAR Ñ Z is a valuation function. A Kripke structure K is total whenever for all w P W, there is w 1 P W such that pw, w 1 q P R. Given a Kripke structure K " pW, R, vq and a world w P W, an infinite path π from w is an ω-sequence w 0 , w 1 . . . w n , . . . such that w 0 " w and for all i P N, we have pw i , w i`1 q P R. Finite paths are defined accordingly.

Labelled trees. Given D ě 1, a labelled tree of degree D is a map t : domptq Ñ Σ where Σ is some (potentially infinite) alphabet and domptq is an infinite subset of r0, D ´1s such that n P domptq and n ¨i P domptq for all 0 ď i ă j whenever n ¨j P domptq for some n P r0, D ´1s ˚and j P r0, D ´1s. The elements of domptq are called nodes. The empty word ε is the root node of t. For every n P domptq, the elements n ¨i (i P r0, D ´1s) are called the children nodes of n, and n is called the parent node of n ¨i. We say that the tree t is a full D-ary tree if every node n has exactly D children n ¨0, . . . , n ¨pD ´1q. Given a tree t and a node n in domptq, an infinite path in t starting from n is an infinite sequence n ¨j1 ¨j2 ¨j3 . . . , where j i P r0, D ´1s and n ¨j1 . . . j i P domptq for all i ě 1.

A tree Kripke structure K is a Kripke structure pW, R, vq such that pW, Rq is a tree (not necessarily a full D-ary tree). Tree Kripke structures pW, R, vq such that pW, Rq is isomorphic to the tree induced by r0, D ´1s ˚are represented by maps of the form t : r0, D ´1s ˚Ñ Z β . This assumes that we only care about the value of the variables x 1 , . . . , x β and tpnq " pd 1 , . . . , d β q encodes that for all i P r1, βs, we have vpn, x i q " d i .

The Logic CTL ˚pZq

We introduce the logic CTL ˚pZq extending the temporal logic CTL ˚from [START_REF] Emerson | sometimes' and 'not never' revisited: on branching versus linear time temporal logic[END_REF] ô vpπ, t 1 q " vpπ, t 2 q for all "P tă, "u, K, π |ù ΦUΨ def ô there is j ě 0 such that K, πrj, `8q |ù Ψ and for all j 1 P r0, j ´1s, we have K, πrj 1 , `8q |ù Φ;

K, π |ù XΦ def ô K, πr1, `8q |ù Φ.
Let us define two fragments of CTL ˚pZq. Formulae in the logic CTLpZq are of the form

ϕ :" E Θ | A Θ | ␣ϕ | ϕ ^ϕ | ϕ _ ϕ | EXϕ | EϕUϕ | EϕRϕ | AXϕ | AϕUϕ | AϕRϕ,
where Θ is a constraint. LTLpZq formulae are defined from path formulae for CTL ˚pZq The satisfiability problem for CTL ˚pZq, written SATpCTL ˚pZqq, is defined as follows.

according to Φ :" Θ | Φ ^Φ | Φ _ Φ | XΦ | ΦUΦ | ΦRΦ,
Input: A CTL ˚pZq state formula ϕ.

Question: Is there a total Kripke structure K and a world w such that K, w |ù ϕ?

The satisfiability problem SATpCTLpZqq for CTLpZq is defined analogously; for LTLpZq, SATpLTLpZqq is the problem to decide whether there exists an infinite sequence of valuations v : VAR Ñ Z for a given LTLpZq formula Φ.

Decidability, and, more precisely, PSpace-completeness of SATpLTLpZqq is shown in [START_REF] Demri | Verification of qualitative Z constraints[END_REF].

For some strict fragments of CTL ˚pZq, decidability is shown in [START_REF] Bozzelli | Branching-time temporal logic extended with Presburger constraints[END_REF][START_REF] Bozzelli | Verification of gap-order constraint abstractions of counter systems[END_REF]. It is only recently in [START_REF] Carapelle | Satisfiability of CTL ˚with constraints[END_REF][START_REF] Carapelle | On the satisfiability of temporal logics with concrete domains[END_REF][START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF], that decidability is established for the full logic using a translation into a decidable second-order logic: § Proposition 1 ([14, 15]). SATpCTL ˚pZqq is decidable.

The proof in [START_REF] Carapelle | Satisfiability of CTL ˚with constraints[END_REF][START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF] in [START_REF] Čerans | Deciding properties of integral relational automata[END_REF][START_REF] Bozzelli | Branching-time temporal logic extended with Presburger constraints[END_REF][START_REF] Bozzelli | Verification of gap-order constraint abstractions of counter systems[END_REF][START_REF] Felli | CTL* model checking for data-aware dynamic systems with arithmetic[END_REF] (see also [START_REF] Göller | Branching-time model checking of parametric one-counter automata[END_REF][START_REF] Cook | On automation of CTL* verification for infinite-state systems[END_REF]70,[START_REF] Amparore | A CTL* model checker for Petri nets[END_REF]). However, model-checking problems with CTL ˚pZqlike languages are easily undecidable, see e.g. [17, Theorem 1] and [54, Theorem 4.1] (more general constraints are used in [START_REF] Mayr | Branching-time model checking gap-order constraint systems[END_REF] but undecidability proof uses only the constraints involved herein). The difference between model-checking and satisfiability is subtle and underlines that decidability/complexity of CTLpZq/CTL ˚pZq satisfiability is not immediate.

In this paper, we prove the precise computational complexity of SATpCTL ˚pZqq and SATpCTLpZqq. We follow the automata-based approach, that is, we translate formulae in our logics into equivalent automata -tree constraint automata for CTLpZq, and Rabin tree constraint automata for CTL ˚pZq -so that we can reduce the satisfiability problem for the logics to the nonemptiness problem for the corresponding automata.

Tree Constraint Automata

In this section, we introduce the class of tree constraint automata that accept sets of infinite trees of the form t : r0, D ´1s ˚Ñ pΣ ˆZβ q for some finite alphabet Σ and some β ě 1.

The transition relation of such automata states constraints between the β integer values at a node and the integer values at its children nodes. The acceptance condition is a Büchi condition (applied to the infinite branches of the input tree), but this can be easily extended to more general conditions (which we already consider by the end of this section).

Moreover, our definition is specific to the concrete domain Z but it can be easily adapted to other concrete domains. Formally, a tree constraint automaton (TCA, for short) is a tuple

A " pQ, Σ, D, β, Q in , δ, F q,
where Q is a finite set of locations; Σ is a finite alphabet, D ě 1 is the (branching) degree of (the trees accepted by) A,

β ě 1 is the number of variables (a.k.a. registers), Q in Ď Q is the set of initial locations; F Ď Q encodes the Büchi acceptance condition,
δ is a finite subset of Q ˆΣ ˆpTreeConspβq ˆQq D , the transition relation. Here, TreeConspβq denotes the constraints (Boolean combinations of atomic constraints) built over the terms x 1 , . . . , x β , x 1 1 , . . . , x 1 β , where x 1 i denotes the term Xx i . δ consists of tuples pq, a, pΘ 0 , q 0 q, . . . , pΘ D´1 , q D´1 qq, where q P Q is called the source location, q 0 ,. . . , q D´1 P Q, a P Σ, and Θ 0 , . . . , Θ D´1 are constraints.

Runs. Let t : r0, D ´1s ˚Ñ pΣ ˆZβ q be an infinite full D-ary tree over Σ ˆZβ . A run of A on t is a mapping ρ : r0, D ´1s ˚Ñ δ satisfying the following conditions:

ρpεq " pq in , . . . q such that q in P Q in ;

for every n P r0, D ´1s ˚with ρpnq " pq, a, pΘ 0 , q 0 q, . . . , pΘ D´1 , q D´1 qq, tpn ¨iq " pa i , z i q, and ρpn ¨iq starts by the location q i for all 0 ď i ă D, we have tpnq of the form pa, zq and Z |ù Θ i pz, z i q for all 0 ď i ă D. Here, Z |ù Θ i pz, z i q is a shortcut for

r⃗ x Ð z, ⃗ x 1 Ð z i s |ù Θ i where r⃗ x Ð z, ⃗ x 1 Ð z i s is a valuation v on the variables tx j , x 1 j | j P r1
, βsu with vpx j q " zpjq and vpx 1 j q " z i pjq for all j P r1, βs.

We show an example of a run ρ on t in Figure 1. Suppose ρ is a run of A. Given a path π " j 1 ¨j2 ¨j3 . . . in ρ starting from ε, we define infpρ, πq to be the set of locations that appear infinitely often as the source locations of the transitions in ρpεqρpj 1 qρpj 1 ¨j2 qρpj 1 ¨j2 ¨j3 q

A run ρ is accepting if for all paths π in ρ starting from ε, we have infpρ, πq X F ‰ H. We write LpAq to denote the set of trees t that admit an accepting run.

Nonemptiness problem. As usual, the nonemptiness problem for TCA asks whether a TCA A satisfies LpAq ‰ H. To define the size of A in a reasonably succinct encoding, we need to consider the size of constraints from TreeConspβq. Indeed, unlike (plain) Büchi tree automata [START_REF] Vardi | Automata-theoretic techniques for modal logics of programs[END_REF], the number of transitions in a tree constraint automaton is a priori unbounded The proof of the ExpTime upper bound is divided into two parts. In order to determine whether LpAq is nonempty for a given TCA A, we first reduce the existence of some tree t P LpAq to the existence of some regular symbolic tree that is satisfiable, that is, it admits a concrete model (Sections 4.1 and 4.2). Second, we characterise the complexity of determining the existence of such satisfiable regular symbolic trees (Section 4.3). The result for Rabin TCA is presented in Section 4.4.

C O N C U R
From now on, we assume a fixed TCA A " pQ, Σ, D, β, Q in , δ, F q with the constants d 1 , . . . , d α occurring in A such that d 1 ă ¨¨¨ă d α (we assume there is at least one constant).

Symbolic Trees

A type over the variables z 1 , . . . , z n is an expression of the form

p Ź i Θ CST i q ^pŹ iăj z i " i,j z j q,
Θ def " d1 " x1 " x2 ă x 1 1 ă x 1 2 Θ0 def " d1 " x 1 1 " x 1 2 ă x1 ă x2 Θ1 def " d1 ă x 1 1 ă x1 ă x2 " x 1 2
Figure 1 A tree t (middle), a run ρ of some TCA on t (left), where, Ta " pq, a, pΘ0, qq, pΘ1, qqq and Tb " pq, b, pΘ0, qq, pΘ1, qqq, and the symbolic tree t t (abstraction of t) (right).

the form z i ă d 1 and z i ą d α), but this is harmless in the sequel. What really matters in a type is the way the variables are compared to each other and to the constants.

" i,j P tą, ", ău for all i ă j.

Checking the satisfiability of a type can be done in polynomial-time, based on a standard cycle detection, see e.g. [START_REF] Čerans | Deciding properties of integral relational automata[END_REF]Lemma 5.5]. The set of satisfiable types built over the variables (I) Let z, z 1 P Z β . There is a unique Θ P SatTypespβq such that Z |ù Θpz, z 1 q.

x 1 , . . . , x β , x 1 1 , . . . ,
(II) For every constraint Θ built over the variables x 1 , . . . , x β , x 1 1 , . . . , x 1 β and the constants d 1 , . . . , d α there is a disjunction Θ 1 _ ¨¨¨_ Θ γ logically equivalent to Θ and each Θ i belongs to SatTypespβq (empty disjunction stands for K).

(III) For all Θ ‰ Θ 1 P SatTypespβq, the constraint Θ ^Θ1 is not satisfiable.

The proof is by an easy verification and this justifies the term 'type' used in this context.

Abstraction with types.

A symbolic tree t is a map t : r0, D ´1s ˚Ñ Σ ˆSatTypespβq.

Symbolic trees are intended to be abstractions of trees labelled with concrete values in Z.

Given a tree t : r0, D ´1s ˚Ñ Σ ˆZβ , its abstraction is the symbolic tree t t : r0, D ´1s ˚Ñ Σ ˆSatTypespβq such that for all n ¨i P r0, D ´1s ˚with tpnq " pa, zq and tpn ¨iq " pa i , z i q, t t pn ¨iq def " pa i , Θ i q for the unique Θ i P SatTypespβq such that Z |ù Θ i pz, z i q. Note that the primed variables in Θ i refer to the β values at the node n ¨i, whereas the unprimed ones refer to the β values at the parent node n. At the root ε with tpεq " pa, zq, we have t t pεq def " pa, Θq for the unique Θ P SatTypespβq such that Z |ù Θp0, zq, where 0 P Z β is arbitrary as there are actually no parent values at the root. A symbolic tree t is satisfiable def ô there is t : r0, D ´1s ˚Ñ Σ ˆZβ such that t t " t. We say that t witnesses the satisfaction of t, also written t |ù t. A symbolic tree t is regular if its set of subtrees is finite.

A-consistency. In our quest to decide whether LpAq ‰ H, we are interested in symbolic trees that satisfy certain properties that we subsume under the name A-consistent. A symbolic tree t : r0, D ´1s ˚Ñ Σ ˆSatTypespβq is A-consistent if the following conditions are satisfied:

t is locally consistent: for every node n, the type Θ labelling n restricted to x 1 1 , . . . , x 1 β agrees with all types Θ i labelling its children nodes n ¨i restricted to x 1 , . . . , x β , and there is an accepting run ρ of A (but ignoring the conditions on data values) such that for all n P r0, D ´1s ˚with tpnq " pa, Θq, tpn ¨iq " pa i , Θ i q for all i P r0, D ´1s, and ρpnq " pq, a, pΘ 1 0 , q 0 q . . . pΘ 1 D´1 , q D´1 qq, we have Θ i |ù Θ 1 i for all i P r0, D ´1s.

C O N C U R 2 0 2 3

29:8

Constraint Automata on Infinite Data Trees § Example 2. In Figure 1, we show a tree t with concrete values in Z β for β " 2 (middle) and its abstraction t t (right). We assume that d 1 " 0 is the only constant; consequently, t t uses constraints in SatTypespβq that are built with variables x 1 , x 2 , their primed variants

x 1 1 , x 1 2 ,
and the constant d 1 . We underline constraints to illustrate the property of local consistency.

It is not hard to prove that the set of all A-consistent symbolic trees is ω-regular, that is, it can be accepted by a classical tree automaton without constraints. In the following, we use the standard letter A to distinguish automata without constraints from TCA. § Lemma 3. There exists a Büchi tree automaton (without constraints) A cons(A) such that LpA cons(A) q is equal to the set of A-consistent symbolic trees.

The locations in A cons(A) are from SatTypespβq ˆQ and the transition relation for A cons(A) can be decided in polynomial-time in cardpδq `β `cardpΣq `D `MCSpAq.

However, not every A-consistent symbolic tree admits a concrete model. Thus the more important property is to check whether LpA cons(A) q contains some satisfiable symbolic tree (and we explain how to do this in the next two subsections). The result below is a variant of many similar results relating symbolic models and concrete models in logics for concrete

Satisfiability for Regular Locally Consistent Symbolic Trees

Below, we focus on deciding when LpA cons(A) q contains a satisfiable symbolic tree, while evaluating the complexity to check its existence. Given a locally consistent symbolic tree t : r0, D ´1s ˚Ñ Σ ˆSatTypespβq, we introduce an infinite labelled graph that contains exactly the same types as t but expressed in a tree-like graph from which it is convenient to characterize satisfiability in terms of paths, under the premise that t is regular. Similar symbolic structures are introduced in [START_REF] Lutz | Interval-based temporal reasoning with general TBoxes[END_REF][START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF][START_REF] Carapelle | Satisfiability of CTL ˚with constraints[END_REF][START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]. The graph is equal to the structure (VAR) For all pn, x i q, pn 1 , x i 1 q P V β t , for all "P tă, "u, pn, x i q " Ý Ñ pn 1 , x i 1 q iff either n 1 " n ¨j and x i " x 1 i 1 in Θ with tpn 1 q " pa, Θq, or n " n 1 and x 1 i " x 1 i 1 in Θ with tpn 1 q " pa, Θq, or n " n 1 ¨j and x 1 i " x i 1 in Θ with tpnq " pa, Θq.

G C t " pV t , " Ý Ñ, ă Ý Ñ, U ăd1 , pU i q iPrd1,
(P1) For all d P rd 1 , d α s and pn, x j q P V β t , pn, x j q P U d iff x 1 j " d in Θ with tpnq " pa, Θq.

(P2) For all pn, x j q P V β t , pn, x j q P U ăd1 iff x 1 j ă d 1 in Θ with tpnq " pa, Θq.

(P3) For all pn, x j q P V β t , pn, x j q P U ądα iff x 1 j ą d α in Θ with tpnq " pa, Θq.

(P4) For all n P r0, D ´1s ˚, pn, d 1 q P U d1 and pn, d α q P U dα .

(CONS) This is about elements of V t labelled by constants and how the edge labels reflect the relationships between the constants. Formally, for all ppn, xdq, pn

Constraint Automata on

Below, we illustrate the definition of the graph G C t t for the symbolic tree t t in Figure 1.

The edges labelled with " or ă reflect the constraints (we omit edges if they can be inferred from the other edges).

For instance, p1, x 1 q ă Ý Ñ pε, x 1 q corresponds to the constraint x 1 1 ă x 1 . Grey nodes are in U d1 , all other nodes are in U ąd1 (no nodes in U ăd1).

pε, d 1 q pε, x 1 q pε, x 2 q p0, d 1 q p0, x 1 q p0, x 2 q p1, d 1 q p1, x 1 q p1, x 2 q p10, d 1 q p10, x 1 q p10, x 2 q p11, d 1 q p11, x 1 q p11, x 2 q

ă ă " " " ą " " ă ă " " " " ă ă " ą A map p : N Ñ V t is a path map in G C t def ô for all i P N, either ppiq " Ý Ñ ppi `1q or ppiq ă Ý Ñ ppi `1q in G C t . Similarly, r : N Ñ V t is a reverse path map in G C t def ô for all i P N, either rpiq " Ý Ñ rpi `1q or rpi `1q ă Ý Ñ rpiq. A path map p (resp. reverse path map r) is strict def ô ti P N | ppiq ă Ý Ñ ppi `1qu (resp. ti P N | rpi `1q ă Ý Ñ rpiqu) is infinite. An infinite
branch B is an element of r0, D ´1s ω . We write Bri, js with i ď j to denote the subsequence Bpiq ¨Bpi `1q ¨¨¨Bpjq. Given pn, xdq P V t , a path map p from pn, xdq along B is such that pp0q " pn, xdq and for all i ě 0, ppiq is of the form pn ¨Br0, is, ¨q. A reverse path map r from pn, xdq along B admits a similar definition. We present the condition p‹ C q that is the central property for characterising regular symbolic trees in LpA cons(A) q that are satisfiable, following the remarkable result established in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]Lemma 22] that non-satisfiability of a symbolic tree can be witnessed along a single branch.

p‹ C q There are no elements pn, xdq, pn, xd 1 q in G C t (same node n from r0, D ´1s ˚) and no infinite branch B such that 1. there exists a path map p from pn, xdq along B, 2. there exists a reverse path map r from pn, xd 1 q along B, The following proposition states a key property: non-satisfaction of a regular locally consistent symbolic tree can be witnessed along a single branch by violation of p‹ C q. § Proposition 5. For every regular locally consistent symbolic tree t, G C t satisfies p‹ C q iff t is satisfiable.

A proof can be found in [START_REF] Demri | Constraint automata on infinite data trees: From CTL(Z)/CTL*(Z) to decision procedures[END_REF]Section 7]. § Example 6. Assume that every node along the rightmost branch in the symbolic tree t t in Figure 1 is labelled with pa, Θ 1 q. Then t t is not satisfiable: in order to satisfy Θ 1 's conjunct x 1 1 ă x 1 , the value of x 1 must inevitably become finally smaller than d 1 , violating the conjunct d 1 ă x 1 . Consequently, the rightmost branch of G C t t presented above does not satisfy p‹ C q: there exists a path map p from pε, d 1 q along 1 ω , there exists a strict reverse path map r from pε, x 1 q along 1 ω , and for all i P N we have ppiq ă Ý Ñ rpiq.

New constant nodes. Proposition 5 above is a variant of [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]Lemma 22]. Before going any further, let us in short explain the improvement of our developments compared to what is done in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF][START_REF] Labai | Automata-based reasoning for decidable logics with data values[END_REF]. The framified constraint graphs defined in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]Definition 14] correspond to the above defined graph G C t without r0, D ´1s ˚ˆtd 1 , d α u and corresponding edges. However, Example 6 illustrates the importance of taking into account these elements when deciding satisfiability (without d 1 , the graph would satisfy p‹ C q). Actually, Example 6 invalidates p‹q as used in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF][START_REF] Labai | Automata-based reasoning for decidable logics with data values[END_REF] because the constants are missing to apply properly [START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF]. The problematic part in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF][START_REF] Labai | Automata-based reasoning for decidable logics with data values[END_REF] is due to the proof of [START_REF] Labai | Automata-based reasoning for decidable logics with data values[END_REF]Lemma 5.18] whose main argument takes advantage

C O N C U R 2 0 2 3
29:10 Constraint Automata on Infinite Data Trees of [START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF] but without the elements related to constant values (see also [START_REF] Demri | Verification of qualitative Z constraints[END_REF]Lemma 8]). With Proposition 5, we also propose a proof to characterise satisfiability of symbolic trees that is independent of [START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF]. Note also that the condition p‹q in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]Section 3.3] generalises the condition C Z from [23, Section 6] (see also the condition C in [24, Definition 2] and a similar condition in [32, Section 2]). A condition similar to p‹q is also introduced recently in [7, Lemma 18] to decide a realizability problem based on LTLpZ, ă, "q.

We recall that there are nonregular locally consistent symbolic trees t such that G C t satisfies p‹ C q (see e.g. [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF][START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]) but t is not satisfiable; indeed, satisfiability of symbolic trees is not an ω-regular property. The next result states that p‹ C q is ω-regular; hence, satisfiability of symbolic trees can be overapproximated advantageously. § Lemma 7. There is a Rabin tree automaton

A ‹ C such that LpA ‹ C q " tt | G C t satisfies p‹ C qu,
the number of Rabin pairs is bounded above by 8pβ `2q 2 `3, the number of locations is exponential in β, the transition relation can be decided in polynomial-time in

maxprlogp|d 1 |qs, rlogp|d α |qsq `β `cardpΣq `D.
Proof sketch. The proof of Lemma 7 is structured as follows (see [START_REF] Demri | Constraint automata on infinite data trees: From CTL(Z)/CTL*(Z) to decision procedures[END_REF]Section 4.3]).

(1) We construct a Büchi word automaton A B accepting the complement of p‹ C q for D " 1.

(2) A B is nondeterministic, but we can determinize it and get a deterministic Rabin word automaton A BÑR such that LpA B q " LpA BÑR q (using the determinisation construction from [60, Theorem 1.1]). (3) By an easy construction, we obtain a deterministic Street word automaton A S accepting the complement of LpA BÑR q; it accepts words that satisfy p‹ C q for D " 1. (4) By [60, Lemma 1.2], we construct a deterministic Rabin word automaton A R s.t.

LpA S q " LpA R q. (5) Finally, we construct a Rabin tree automaton A ‹ C , the intuitive idea is to "let run the automaton A R " along every branch of a run of A ‹ C , doable thanks to the determinism of A R . Since p‹ C q states a property on every branch, we are done.

Differences with [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]. Lemma 7 is similar to [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]Proposition 26] but there is an essential difference: the number of Rabin pairs in Lemma 7 is not a constant but a value depending on β, an outcome of our investigations. It is important to know the number of Rabin pairs in A ‹ C for our complexity analysis as checking nonemptiness of Rabin tree automata is exponential in the number of Rabin pairs [30, Theorem 4.1]. Our proof of Lemma 7 also proposes a slight novelty compared to the construction in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]: we design A ‹ C without firstly constructing a tree automaton for the complement language (as done in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]) and then using results from [START_REF] Muller | Simulating alternating tree automata by nondeterministic automata: New results and new proofs of the theorems of Rabin, McNaughton and Safra[END_REF] (elimination of alternation in tree automata). Our new approach shall be rewarding: not only we can better understand how to express the condition p‹ C q, but also we control the size parameters of A ‹ C involved in our forthcoming complexity analysis. Furthermore, it may be useful to implement the decision procedure for solving the satisfiability problem for CTLpZq (resp. for CTL ˚pZq). Note also that the above analysis about the number of Rabin pairs is independent from the question discussed above about having the elements in r0,

D ´1s ˚ˆtd 1 , d α u within G C t .
Summarizing the developments so far, we can conclude this subsection as follows:

§ Lemma 8. LpAq ‰ H iff LpA cons(A) q X LpA ‹ C q ‰ H.
For its proof, by way of example, if LpA cons(A) qXLpA ‹ C q is non-empty, then as LpA cons(A) qX

LpA ‹ C q is regular, it contains a regular A-consistent symbolic tree t (see e.g. [START_REF] Rabin | Decidability of second-order theories and automata on infinite trees[END_REF] and [START_REF] Thomas | Automata on infinite objects[END_REF]Section 6.3] for the existence of regular trees) and by Proposition 5, t is satisfiable. By Lemma 4, we get LpAq ‰ H. For the other direction, we use Lemma 3 as well as the property that for every satisfiable symbolic tree t, G C t satisfies the condition p‹ C q.

Constraint Automata on Infinite Data Trees 29:11

ExpTime Upper Bound for TCAs

Lemma 8 justifies why deciding the nonemptiness of LpA cons(A) q X LpA ‹ C q is crucial. In the proof of Lemma 9 below (see [START_REF] Demri | Constraint automata on infinite data trees: From CTL(Z)/CTL*(Z) to decision procedures[END_REF]Section 4.4]), we propose a construction for the intersection of Rabin tree automata that only performs an exponential blow-up for the number of locations, which is fine for our purposes. § Lemma 9. There is a Rabin tree automaton A such that LpAq " LpA cons(A) qXLpA ‹ C q and the number of Rabin pairs is polynomial in β, the number of locations is in OpcardpSatTypespβqq443 cardpQq ˆ2P pβq q for some polynomial P p¨q and the transition relation can be decided in polynomial-time in cardpδq `β `cardpΣq `D `MCSpAq.). Here, γ may depend on parameters related to A and in Lemma 10 below, γ takes the value cardpδq `β `cardpΣq `D `MCSpAq (by Lemma 9). Hence the following result: § Lemma 10. The nonemptiness problem for TCA can be solved in time in OpR 1 `cardpQq cardpδq ˆMCSpAq ˆcardpΣq ˆR2 pβq ˘R2pβqˆR3pDq q for some polynomials R 1 , R 2 and R 3 .

Nonemptiness of

Assuming that the size of the TCA A " pQ, Σ, D, β, Q in , δ, F q, written sizepAq, is polynomial in cardpQq`cardpδq`D `β `MCSpAq (which makes sense for a reasonably succinct encoding), from the computation of the bound in Lemma 10, the nonemptiness of LpAq can be checked in time OpRpsizepAqq R 1 pβ`Dq q for some polynomials R and R 1 . The ExpTime upper bound of the nonemptiness problem for TCA is now a consequence of the above complexity expression. § Theorem 11. Nonemptiness problem for tree constraint automata is ExpTime-complete.

Rabin Tree Constraint Automata

We can prove the ExpTime upper bound of the nonemptiness problem for Rabin TCA (Theorem 13) and follow the same lines of arguments as for TCA. Given a Rabin TCA A " pQ, Σ, D, β, Q in , δ, Fq, we define a Rabin tree automaton A 1 cons(A) such that LpAq ‰ H iff there is t P LpA 1 cons(A) q that is satisfiable (cf. Lemma 4 for TCA). Moreover, we take advantage of A ‹ C so that LpAq ‰ H iff LpA 1 cons(A) q X LpA ‹ C q is non-empty (cf. Lemma 8). It remains to determine the cost for testing nonemptiness of LpA 1 cons(A) q X LpA ‹ C q. Here is the counterpart of Lemma 9 (same kind of arguments). § Lemma 12. There is a Rabin tree automaton A s.t. LpAq " LpA 1 cons(A) q X LpA ‹ C q, the number of Rabin pairs is polynomial in β `cardpFq, the number of locations is in OpcardpSatTypespβqq ˆcardpQq ˆ2P pβ`cardpF qq q for some polynomial P p¨q, and the trans- The degree D and the number of variables β are bounded by sizepϕq.

ition
The number of locations is bounded by pD ˆ2sizepϕq q ˆpsizepϕq `1q.

The number of transitions is in Op2 P psizepϕqq q for some polynomial P p¨q.

The finite alphabet Σ in A ϕ is unary; MCSpA ϕ q is quadratic in sizepϕq.

By Lemma 10, the nonemptiness problem for TCA can be solved in time OpR 1 `cardpQq ˆcardpδq ˆMCSpAq ˆcardpΣq ˆR2 pβq ˘R2pβqˆR3pDq q.

Since the transition relations of the automata A cons(A) and A ‹ C can be built in polynomial-time, we get that nonemptiness of LpA ϕ q can be solved in exponential-time. đ

Let N be the concrete domain pN, ă, ", p" d q dPN q for which we can also show that nonemptiness of TCA with constraints interpreted on N has the same complexity as for TCA with constraints interpreted on Z. Let CTLpNq be the variant of CTLpZq with constraints interpreted on N. As a corollary, SAT(CTLpNq) is ExpTime-complete. With the concrete domain pQ, ă, ", p" d q dPQ q, all the trees in LpA cons(A) q are satisfiable (no need to intersect A cons(A) with a hypothetical A ‹ C , see e.g. [START_REF] Lutz | Interval-based temporal reasoning with general TBoxes[END_REF][START_REF] Ph | Computational complexity of propositional linear temporal logics based on qualitative spatial or temporal reasoning[END_REF][START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF][START_REF] Gascon | An automata-based approach for CTL* with constraints[END_REF]), and therefore SATpCTLpQqq is in ExpTime too.

TCA can be also used to show that the concept satisfiability w.r.t. general TBoxes for the description logic ALCF P pZ c q is in ExpTime [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF][START_REF] Labai | Automata-based reasoning for decidable logics with data values[END_REF], see more details in [27, Section 5.2].

Complexity of the Satisfiability Problem for the Logic CTL ˚pZq

We show that SATpCTL ˚pZqq can be solved in 2ExpTime. We follow the automata-based approach for CTL ˚, see e.g. [START_REF] Emerson | Deciding full branching time logic[END_REF][START_REF] Emerson | The complexity of tree automata and logics of programs[END_REF], but adapted to Rabin TCA. The main challenge here is to carefully check that essential steps for CTL ˚can be lifted to CTL ˚pZq, but also that computationally we are in a position to provide an optimal complexity upper bound.

Let us explain in short all steps necessary to obtain the result. We start by establishing a special form for CTL ˚pZq formulae from which Rabin TCA will be defined, following ideas from [START_REF] Emerson | Deciding full branching time logic[END_REF] for CTL ˚. A CTL ˚pZq state formula ϕ is in special form if it has the form below

E px " 0q ^`Ź iPr1,D´1s AGE Φ i ˘^`Ź jPr1,D 1 s A Φ 1 j ˘,
where the Φ i 's and the Φ (II) The cardinality of δ in A Φ is in Op2 P psizepΦqq q for some polynomial P p¨q.

(III)

The maximal size of a constraint in A Φ is quadratic in sizepΦq.

We can now construct, for every i P r0, D ´1s, a TCA A i such that LpA i q " tt :

r0, D ´1s ˚Ñ Z β | t |ù AGE Φ i and t satisfies AGE Φ i via iu.
The idea is to construct A i so that it starts off the word constraint automaton A Φi at each node n of the tree and runs it down the designated path n ¨i ¨0ω to check whether Φ i actually holds along this path. This can be easily done for AGE Φ i ; however, for formulas of the form A Φ 1 j , for this construction to be correct, the underlying constraint word automaton A 1 j must be deterministic, that is, for all locations s, letters a and pairs of valuations pz, z 1 q P Z 2β , there exists in A 1 j at most a single transition ps, a, Θ, s 1 q such that Z |ù Θpz, z 1 q. A well-known construction to transform nondeterministic Büchi automata to equivalent deterministic Rabin automata is due to Safra [60, Theorem 1.1]. An important step towards the optimal complexity for CTL ˚pZq is to show that it is possible to lift this construction to word constraint automata, which is a result of its own interest. A special attention is given to the cardinality of the transition relation and to the size of the constraints in transitions, as these two parameters are, a priori, unbounded in constraint automata but essential to perform a forthcoming complexity analysis. § Theorem 18. Let A " pQ, Σ, β, Q in , δ, F q be a Büchi word constraint automaton involving the constants d 1 , . . . , d α . There is a deterministic Rabin word constraint automaton A 1 " pQ 1 , Σ, β, Q 1 in , δ 1 , Fq such that LpAq " LpA 1 q verifying the following quantitative properties.

(I) cardpQ 1 q is exponential in cardpQq and the number of Rabin pairs in A 1 is bounded by 2 ¨cardpQq (same bounds as in [START_REF] Safra | Complexity of Automata on Infinite Objects[END_REF]Theorem 1.1]).

(II) The constraints in the transitions are from SatTypespβq, are of size cubic in β maxprlogp|d 1 |qs, rlogp|d α |qsq and cardpδ 1 q ď cardpQ 1 q 2 ˆcardpΣq ˆppd α ´d1 q `3q 2β ˆ3β (IV) MCSpA Φ q is cubic in β `maxprlogp|d 1 |qs, rlogp|d α |qsq, i.e. polynomial in sizepΦq.

This enables us to use the idea illustrated above for formulas of the form AGE Φ i also for formulas of the form A Φ 1 j , and define Rabin TCA A 1 j such that LpA 1 j q " tt : r0, D ´1s ˚Ñ Z β | t satisfies A Φ 1 j u. We are now ready to perform the final step towards the main result of this section. Let us recapitulate what we have so far.

One can define a TCA A 0 with two locations such that LpA 0 q is the set of trees t : r0, D ´1s ˚Ñ Z β such that tpεqpx 1 q " 0, to handle Epx 1 " 0q in formulae in special form.

For all 1 ď i ă D, there are (Büchi) TCA A i such that LpA i q is the set of trees t : r0, D ´1s ˚Ñ Z β such that t, ε |ù AGE Φ i and t satisfies AGE Φ i via i. Recall that TCA can be seen as Rabin TCA with a single Rabin pair.

For all 1 ď j ď D 1 , there are Rabin TCA A 1 j such that LpA 1 j q is the set of trees t such that t satisfies A Φ j , with an exponential number of Rabin pairs in sizepΦq.

To define a Rabin TCA A such that LpAq " LpA 0 q Ş iPr1,D´1s LpA i q Ş jPr1,D 1 s LpA 1 j q, and then use the complexity bounds previously established, we need the result below (see the full proof in [27, Section 6.5]). § Lemma 20. Let pA k q 1ďkďn be a family of Rabin TCA such that A k " pQ k , Σ, D, β, Q k,in , δ k , F k q, cardpF k q " N k and N " Π k N k . There is a Rabin TCA A such that LpAq " Ş k LpA k q and the number of Rabin pairs is equal to N ; MCSpAq ď n `MCSpA 1 q `¨¨¨`MCSpA n q, the number of locations (resp. transitions) is less than `Π k cardpQ k q ˘p2nq N (resp.

Π k cardpδ k q).
Putting all results together, the nonemptiness of LpAq can be checked in double-exponential time in sizepϕq, leading to Theorem 21 below, which is the main result of the paper. It answers open questions from [START_REF] Bozzelli | Branching-time temporal logic extended with Presburger constraints[END_REF][START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF][START_REF] Carapelle | Description Logics Reasoning w.r.t. General TBoxes is Decidable for Concrete Domains with the EHD-property[END_REF][START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]. § Theorem 21. SATpCTL ˚pZqq is 2ExpTime-complete.

2ExpTime-hardness is from SAT(CTL ˚) [START_REF] Vardi | Improved upper and lower bounds for modal logics of programs[END_REF]Theorem 5.2]. As a corollary, SATpCTL ˚pNqq is also 2ExpTime-complete. Furthermore, assuming that ă pre is the prefix relation on t0, 1u ˚, we can use the reduction from [START_REF] Demri | Temporal logics on strings with prefix relation[END_REF]Section 4.2] to conclude SATpCTL ˚pt0, 1u ˚, ă pre qq is 2ExpTime-complete too. Furthermore, as observed earlier, when the concrete domain is pQ, ă, ", p" d q dPQ q, all the trees in LpA cons(A) q are satisfiable, and therefore SATpCTL ˚pQqq is also in 2ExpTime, which is already known from [START_REF] Gascon | An automata-based approach for CTL* with constraints[END_REF]Theorem 4.3].

Concluding Remarks

We developed an automata-based approach to solve SAT(CTLpZq) and SAT(CTL ˚pZq), by introducing tree constraint automata that accept infinite data trees with data domain Z. The nonemptiness problem for tree constraint automata with Büchi acceptance conditions (resp.

with Rabin pairs) is ExpTime-complete, see Theorem 11 (resp. Theorem 13). The difficult part consists in proving the ExpTime-easiness for which we show how to substantially adapt the material in [45, Section 5.2] that guided us to design the correctness proof of p‹ C q. The work [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF] was indeed a great inspiration but we adjusted a few statements from there (see also [START_REF] Demri | Constraint automata on infinite data trees: From CTL(Z)/CTL*(Z) to decision procedures[END_REF]). We recall that p‹q in [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF] is not fully correct (see Section 4.2) as we need to add constants (leading to the variant condition p‹ C q). Moreover, our construction of the automaton in Lemma 7 does depend on the number of variables unlike [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]Proposition 26].

Constraint Automata on Infinite Data Trees

29:15

This is crucial for complexity, as it is related to the number of Rabin pairs. We also use [START_REF] Emerson | The complexity of tree automata and logics of programs[END_REF] more precisely than [46, p.621] as we handle non-binary trees. In short, we introduced TCA for which we characterise complexity of the non-emptiness problem (providing a few improvements to [START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]). We left aside the question of the expressiveness of TCA, which is interesting but out of the scope of this paper.

This lead us to show that SATpCTLpZqq is ExpTime-complete (Theorem 14), and SATpCTL ˚pZqq is 2ExpTime-complete (Theorem 21). The only decidability proof for SATpCTL ˚pZqq done so far, see [START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF]Theorem 32], is by reduction to a decidable second-order logic. Our complexity characterisation for SATpCTL ˚pZqq provides an answer to several open problems related to CTL ˚pZq fragments, see e.g. [START_REF] Bozzelli | Branching-time temporal logic extended with Presburger constraints[END_REF][START_REF] Gascon | An automata-based approach for CTL* with constraints[END_REF][START_REF] Carapelle | Satisfiability of ECTL ˚with constraints[END_REF][START_REF] Carapelle | Description Logics Reasoning w.r.t. General TBoxes is Decidable for Concrete Domains with the EHD-property[END_REF][START_REF] Labai | An Exptime Upper Bound for ALC with integers[END_REF]. We believe that our results on TCA can help to establish complexity results for other logics (see also Section 6 about a domain for strings and [START_REF] Exibard | A generic solution to register-bounded synthesis with an application to discrete orders[END_REF]Section 4] to handle more concrete domains).

 where Θ is a constraint. Negation occurs only in constraints since the LTL logical connectives have their dual in LTLpZq. In contrast to CTL ˚pZq and CTLpZq, LTLpZq formulae are evaluated over infinite paths of valuations v : VAR Ñ Z (no branching involved).

3. p or r is strict, and 4 .

 4 for all i P N, ppiq ă Ý Ñ rpiq.

 1 P T VAR . A constraint Θ is defined as a Boolean combination of atomic constraints. Constraints are interpreted on valuations v : T VAR Ñ Z that assign elements from Z to the terms in T VAR , so that v satisfies θ, written v |ù θ, if and only if, the interpretation of the terms in θ makes θ true in Z in the usual way. The Boolean connectives are interpreted as usual. A constraint Θ is satisfiable

def ô there is a valuation v : T VAR Ñ Z such that v |ù Θ. Similarly, a constraint Θ 1 entails a constraint Θ 2 (written Θ 1 |ù Θ 2) def ô for all valuations v, we have v |ù Θ 1 implies v |ù Θ 2 . The satisfiability problem restricted to finite conjunctions of atomic constraints can be solved in PTime (see e.g. [17, Lemma 5.5]) and entailment is in coNP. In the sequel, quite often, the valuations v are of the form tx 1 , . . . , x β u Ñ Z when we are only interested in the values for the variables in tx 1 , . . . , x β u. Kripke structures. In order to define logics with the concrete domain Z, the semantical structures of such logics are enriched with valuations that interpret the variables by elements in Z. A Z-decorated Kripke structure (or Kripke structure for short) K is a triple pW, R, vq,

C U R 2 0 2 3 29:4 Constraint Automata on Infinite Data Trees

 R Φ with K equal to Epx ă xq). No propositional variables occur in CTL ˚pZq formulae, but it is easy to simulate them with atomic formulae of the form Epx " 0q. We say that a formula in CTL ˚pZq is in simple form if it is in negation normal form (using A, R and

	but with constraints over Z. State formulae ϕ and path formulae Φ of CTL ˚pZq are defined below ϕ :" ␣ϕ | ϕ ^ϕ | EΦ Φ :" ϕ | t " d | t 1 " t 2 | t 1 ă t 2 | ␣Φ | Φ ^Φ | XΦ | ΦUΦ, where t, t 1 , t 2 P T VAR . The size of a formula is understood as its number of symbols with integers encoded with a binary representation. We use also the universal path quantifier A def " ␣E␣Φ, Φ 1 RΦ 2 def " ␣p␣Φ 1 U ␣Φ 2 q, and GΦ _ as primitive) and all terms occurring in the formula are from T ď1 VAR . State formulae are interpreted on worlds from a Kripke structure, whereas path formulae are interpreted on infinite paths. The two satisfaction relations are defined as follows (we omit the clauses for Boolean connectives), where K " pW, R, vq is a total Kripke structure, and w P W. K, w |ù EΦ def ô there is an infinite path π from w such that K, π |ù Φ. Let π " w 0 , w 1 , . . . be an infinite path of K. Let us define vpπ, X j xq def " vpw j , xq, for all terms of the form X j x. For every n, πrn, `8q is the suffix of π truncated by the n first worlds. C O N and the standard temporal connectives R and G (AΦ K, π |ù t " d def ô vpπ, tq " d; K, π |ù t 1 " t 2 def

def "K

on Infinite Data Trees 29:5

	does not provide a complexity upper bound as the target decidable
	2nd-order logic admits an automata-based decision procedure with open complexity [10, 8, 9].
	Let us shortly explain why the satisfiability problem is challenging. First of all, observe
	that CTL ˚pZq has atomic formulae in which integer values at the current and successor states

are compared. This prevents us from using a simple translation from CTL ˚pZq to CTL with new propositions. Models of CTL ˚pZq formulae can be viewed as an infinite network of constraints on Z; even if a formula contains only a finite set of constants, a model may contain an infinite set of values, as it is the case for, e.g., the formula EGpx ă Xxq. Hence a direct Boolean abstraction does not work. On the other hand, CTL ˚pZq has no freeze quantifier and no data variable quantification, and hence no way to directly compare values at unbounded distance (but this can only be done by propagating local constraints), unlike e.g. the formalisms in

[START_REF] Decker | Ordered navigation on multi-attributed data words[END_REF][START_REF] Song | On temporal logics with data variable quantifications: decidability and complexity[END_REF][START_REF] Bartek | Modal mu-calculus with atoms[END_REF][START_REF] Abriola | Logics of repeating values on data trees and branching counter systems[END_REF]

. Hence, the lower bounds from

[START_REF] Jurdziński | Alternating automata on data trees and XPath satisfiability[END_REF]

cannot apply either. A problem related to satisfiability is the model-checking problem. Fragments of the model-checking problem involving a temporal logic similar to CTL ˚pZq are investigated Constraint Automata

2 0 2 3 29:6 Constraint Automata on Infinite Data Trees

 TreeConspβq is infinite) and the maximal size of a constraint occurring in transitions is unbounded too. In particular, this means that cardpδq is a priori unbounded, even if Q and Σ are fixed. We write MCSpAq to denote the maximal size of a constraint occurring in A (with binary encoding of the integers). The complexity of the nonemptiness problem should take into account these parameters. Note also that our automaton model differs from the Presburger Büchi tree automata from[START_REF] Seidl | Counting in trees[END_REF][START_REF] Bednarczyk | Presburger Büchi tree automata with applications to logics with expressive counting[END_REF] for which, in the runs, arithmetical expressions are related to constraints between numbers of children labelled by different locations. Herein, the arithmetical expressions state constraints between integer values.Next, we introduce a variant of TCA by considering the Rabin acceptance condition (as opposed to the Büchi acceptance condition). A Rabin tree constraint automaton (Rabin TCA, for short) is a tuple A " pQ, Σ, D, β, Q in , δ, Fq defined as for TCA except that F is a set of pairs of the form pL, U q, where L, U Ď Q. All the definitions about TCA apply except that a run ρ : r0, D ´1s ˚Ñ δ is accepting iff for all paths π in ρ starting from ε, there is some pL, U q P F such that infpρ, πq X L ‰ H and infpρ, πq X U " H.

(Finite alphabet. The set Σ in data trees t : r0, D ´1s ˚Ñ pΣ ˆZβ q plays no specific role herein, especially that it could be encoded with simple constraints of the form x ‹ " d, where x ‹ is a distinguished variables. Its inclusion is more handy when the logical atomic formulae include constraints on variables and propositional variables, as done in [27, Section 5.2] dedicated to description logics (developments on description logics are very little in this paper, due to lack of space). 4 Complexity of the Nonemptiness Problem for TCA This section is dedicated to prove the ExpTime-completeness of the nonemptiness problem for TCA (Theorem 11) and Rabin TCA (Theorem 13) (we make a distinction between TCA and Rabin TCA because the complexity bounds differ slightly, see Lemma 10 and Lemma 12). Before we prove the ExpTime upper bound, let us drop a few words on the lower bound. We show ExpTime-hardness of the nonemptiness problem for TCA by reduction from the acceptance problem for alternating Turing machines running in polynomial space, see e.g. [18, Corollary 3.6]. Indeed, the polynomial-space tape using a finite alphabet Σ can be encoded by a polynomial amount of variables taking values in r1, cardpΣqs, details can be found in [27, Section 4.1]. ExpTime-hardness for Rabin TCA follows, as every TCA with set F of accepting locations can be encoded as a Rabin TCA with a single Rabin pair pF, Hq.

on Infinite Data Trees 29:7

	ρ	Ta	t	a, p3, 7q	tt	a, Θ
	Tb	Ta	b, p0, 0q		a, p2, 7q	b, Θ0	a, Θ1
	
		Tb	Ta	b, p0, 0q	a, p1, 7q	b, Θ0	a, Θ1

where for all i P r1, ns,

Θ CST i is equal to either z i ă d 1 , or z i ą d α or z i " d for some d P rd 1 , d α s.

This definition goes a bit beyond the constraint language in Z (because of expressions of Constraint Automata

 x 1 β is written SatTypespβq (n above is equal here to 2β). Observe that cardpSatTypespβqq ď ppd α ´d1 q `3q 2β ˆ3β 2 . The restriction of the type Θ to some set of variables X Ď tx i , x 1 i | i P r1, βsu is made of all the conjuncts in which only variables in X occur. The type Θ restricted to tx 1 i | i P r1, βsu agrees with the type Θ 1 restricted to tx i | i P r1, βsu iff Θ and Θ 1 are logically equivalent modulo the renaming for which x i and x 1

i are substituted, for all i P r1, βs. For instance, in Figure

1

, Θ restricted to tx

1

1 , x 1 2 u agrees with Θ 0 restricted to tx 1 , x 2 u. The main properties we use about satisfiable types are stated below.

 Rabin tree automata is polynomial in the cardinality of the transition relation and exponential in the number of Rabin pairs, see e.g. [30, Theorem 4.1]. More precisely, it is in time pm ˆnq Opnq , where m is the number of locations and n is the number of Rabin pairs, see the statement [30, Theorem 4.1]. However, this is not exactly what we need herein, as the complexity expression above concerns binary trees, and it assumes that the transition relation δ can be decided in constant time. If, as in our case, D ě 1 and deciding whether a tuple belongs to δ requires γ time units, checking nonemptiness is actually in time pcardpδq ˆγ ˆnq Opnq (by scrutiny of the proof of [30, Theorem 4.1], page 144

29:12 Constraint Automata on Infinite Data Trees § Theorem 13.

 relation can be decided in polynomial-time in cardpδq `β `cardpΣq `D `MCSpAq. , R 2 and R 3 . The nonemptiness problem for Rabin TCA is also in ExpTime. The nonemptiness problem for Rabin TCA is ExpTime-complete.This result is mainly useful to characterize the complexity of SATpCTL ˚pZqq in Section 6.Below, we harvest the first results from what is achieved in the previous section: SATpCTLpZqq is in ExpTime. So, enriching the CTL models with numerical values interpreted in Z does not cause a complexity blow-up. We follow the automata-based approach and (after proving a refined version of the tree model property for CTLpZq) the key step is to translate CTLpZq formulae into equivalent TCA. Theorem 14 below is one of our main results. § Theorem 14. The satisfiability problem for CTLpZq is ExpTime-complete.Sketch. ExpTime-hardness is inherited from CTL. For ExpTime-easiness, let ϕ be a CTLpZq formula. A first step is to preprocess the formula into a formula in simple form (see definition in Section 2.2). Then, we can construct from a formula ϕ in simple form a TCA A ϕ s.t. ϕ is satisfiable iff LpA ϕ q ‰ H and A ϕ satisfies the following properties.

	5	Tree Constraint Automata for CTLpZq
	As for Lemma 10, we conclude that the nonemptiness problem for Rabin TCA can be solved in
	time OpR 1 `cardpQqˆcardpδqˆMCSpAqˆcardpΣqˆR 2 pβ `cardpFqq	˘R2pβ`cardpFqqˆR3pDq q for
	polynomials R 1 C O N C U R 2 0 2 3

on Infinite Data Trees 29:13 § Proposition 15.

 For every CTL ˚pZq formula ϕ, one can construct in polynomial time in the size of ϕ a CTL ˚pZq formula ϕ 1 in special form s.t. ϕ is satisfiable iff ϕ 1 is satisfiable.So ϕ 1 is also of polynomial size in the size of ϕ. Let us state a tree model property of special formulae, with a strict discipline on the witness paths. Proposition 16 below is a counterpart of[START_REF] Emerson | Deciding full branching time logic[END_REF] Theorem 3.2] but for CTL ˚pZq instead of CTL ˚, see also the variant[START_REF] Gascon | An automata-based approach for CTL* with constraints[END_REF] Lemma 3.3]. § Proposition 16. Let ϕ be a CTL ˚pZq formula in special form built over x 1 , . . . , x β . ϕ is satisfiable iff there is a tree t : r0, D ´1s Ñ Z β such that t, ε |ù ϕ and for each i P r1, D ´1s,t satisfies AGE Φ i via i, that is, if t, n |ù E Φ i , then Φ i is satisfied on the path n ¨i ¨0ω .Proposition 16 justifies our restriction to infinite trees and to TCA in the rest of this section.Proposition 15 allows us to restrict our attention to constructing automata for formulae of (only) the form AGE Φ and A Φ, where Φ is a simple formula in LTLpZq. The first step is to translate simple formulae in LTLpZq into equivalent word constraint automata (TCA with degree D " 1). Adapting the standard automata-based approach for LTL[START_REF] Vardi | Reasoning about infinite computations[END_REF], we can show the following proposition (see the proof of[START_REF] Demri | Constraint automata on infinite data trees: From CTL(Z)/CTL*(Z) to decision procedures[END_REF] Proposition 8]).

	1 j 's are LTLpZq formulae in simple form (see Section 2), for some

D ě 1, D 1 ě 0. We can restrict ourselves to CTL ˚pZq state formulae in special form (see the proof of

[START_REF] Demri | Constraint automata on infinite data trees: From CTL(Z)/CTL*(Z) to decision procedures[END_REF] Proposition 6]

).

Constraint Automata § Proposition 17. Let Φ be an LTLpZq formula in simple form. There is a constraint word automaton A Φ such that tw : N Ñ Z β | w |ù Φu " LpA Φ q, and the following conditions hold.

(I)

The number of locations in A Φ is bounded by sizepΦq ˆ22ˆsizepΦq .

2 .

 2 This and Proposition 17 lead us to the result below on LTLpZq formulae in simple form. § Corollary 19. Let Φ be an LTLpZq formula in simple form built over the variables x 1 , . . . , x

β and the constants d 1 , . . . , d α . There exists a deterministic Rabin word constraint automaton A Φ such that tw : N Ñ Z β | w |ù Φu " LpA Φ q, and the following conditions hold. C O N C U R 2

0 2 3 29:14 Constraint Automata on Infinite Data Trees

 The number of locations in A Φ is bounded by 2 2 P : psizepΦqq for some polynomial P : p¨q. The number of Rabin pairs is bounded by 2 ˆsizepΦq ˆ22ˆsizepΦq . The cardinality of δ in A Φ is bounded by cardpSatTypespβqq ˆ22 P : psizepΦqq`1 .

	(II) (III)

(I)

Supported by the Deutsche Forschungsgemeinschaft (DFG), project 504343613.