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Abstract—Open-ended learning benefits immensely from the
use of symbolic methods for goal representation as they offer
ways to structure knowledge for efficient and transferable learn-
ing. However, the existing Hierarchical Reinforcement Learning
(HRL) approaches relying on symbolic reasoning are often lim-
ited as they require a manual goal representation. The challenge
in autonomously discovering a symbolic goal representation is
that it must preserve critical information, such as the environ-
ment dynamics. In this work, we propose a developmental mech-
anism for subgoal discovery via an emergent representation that
abstracts (i.e., groups together) sets of environment states that
have similar roles in the task. We create a HRL algorithm that
gradually learns this representation along with the policies and
evaluate it on navigation tasks to show the learned representation
is interpretable and results in data efficiency.

I. INTRODUCTION

Symbol emergence is key for developmental learning to
tackle the curse of dimensionality and scale up to open-ended
high-dimensional sensorimotor space, by allowing symbolic
reasoning, compositionality, hierarchical organisation of the
knowledge, etc. While symbol emergence has been recently
investigated for the sensor data, action symbolization can lead
to a repertoire of various movement patterns by bottom-up
processes, which can be used by top-down processes such
as composition to form an action sequence [1], planning
and reasoning for more efficient learning, as reviewed in
[2]. Sensorimotor symbol emergence thus is key to scaling
up primitive actions into complex actions for open-ended
learning, using compositionality [3] and hierarchy [4].

Action hierarchies are the core idea of Hierarchical Rein-
forcement Learning (HRL) that decomposes a task into easier
subtasks. In particular, in Feudal HRL [5] a high-level agent
selects subgoals that a low-level agent learns to achieve. The
performance of Feudal HRL depends on the ”hierarchical divi-
sion of the available state space” [5], the representation of the
goals that the high level agent uses to decompose a task. Yet,
only few algorithms learn it automatically [6], while others
either use directly the state space [7] or manually provide a
representation [8], [9]. In this research, we tackle the problem
of learning automatically, while learning the policy, a discrete
interpretable goal representation from continuous observations
that expresses the task structure for data-efficiency.

We introduce a novel goal space representation and a feudal
HRL algorithm, GARA (Goal Abstraction via Reachability
Analysis), that develops such a representation while simul-
taneously learning a hierarchical policy from exploration data.

The representation emerges through a developmental process,
gradually gaining precision from a bottom-up manner, by
leveraging data acquired from exploration. This discretisation
of the environment is used to orient top-down process of the
goal-directed exploration, that in turn helps improving policies
and this representation.

II. FORMULATION

The goal space G is formulated as a partition of the state
space S into n disjoint sets of states G = {G0, . . . , Gn} s.t⋃

G∈G G = S and and ∀G,G′ ∈ G, G ∩ G′ = ∅ if G 6= G′.
We define Rk(G,G

′) as the set of states reached when starting
from a state in G and applying the low-level policy πLow(s ∈
G,G′) targeting G′ for k steps. This goal space should satisfy
the reachability property: ∀ G,G′ ∈ G, Rk(G,G

′) ⊆ G′

or Rk(G,G
′) ∩ G′ = ∅. Intuitively, this property expresses

that each goal G would group together states with a similar
role in the task in terms of their ability to reach other goals.
Inversely, if only some states in G manage to reach the target
G′ then G contains states having different roles. This means
that environment dynamics are not completely captured. In
the following section we present GARA (Goal Abstraction via
Reachability Analysis) that concurrently learns a hierarchical
policy and the abstract goal space.

III. METHODOLOGY

GARA is a Feudal HRL algorithm that learns two policies; a
high-level policy πHigh : S → G selects goals Gi ∼ πHigh(s),
and a low-level goal-conditioned policy πLow : S × G →
A that learns how to best achieve these goals by choosing
actions in the action space A s.t at ∼ πLow(s,Gi). πHigh is
rewarded by the environment reward, while πLow is rewarded
with respect to its ability to reach the selected goal.

Learning the goal space comes down to identifying which
states in each goal exhibit similar reachability behaviours. To
this end, GARA trains a neural network from data acquired
during exploration after each learning episode. This network is
called the forward model Fk : S×G → S such that Fk(st, G

′)
predicts the state st+k reached after applying πLow(s,G′)
for k steps. A core idea of GARA, is that the reachability
relations are computed over sets of states. To derive this
from Fk, we resort to a formal verification tool Ai2 [10]
that can compute the output of a neural network given a set
of inputs. More precisely, if the input to Fk is the set of
states G, then the output should be an approximation of the
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Fig. 1: In this maze, the transition starting from a state in G0

with the policy ”go right” may reach both G1 and G2. G0 is
thus split into two regions where all the states in the upper
one reach G1 and the states in the bottom one don’t.

reached set of states R̃k(G,G
′). For each explored transition

from start set Gs to destination goal Gd, Ai2 computes
R̃k(Gs, Gd). If R̃k(Gs, Gd) ⊆ Gd or R̃k(Gs, Gd) ∩ Gd = ∅
then the reachability property is respected and Gs would
not be refined as the behaviour is similar across its states.
Otherwise if R̃k(Gs, Gd) 6⊆ Gd and R̃k(Gs, Gd) ∩ Gd 6= ∅,
Gs would be split in two sets G′ and G′′ on which the
reachability analysis is re-conducted (we compute R̃k(G

′, Gd)
and R̃(G′′, Gd)). This process continues recursively until the
reachability relation is decidable. G would thus be refined
into two new sets G′

s and G′′
s where Rk(G

′
s, Gd) ⊆ Gd and

R̃k(G
′′
s , Gd) ∩ Gd = ∅. Fig.1 illustrates this process. The

emerging regions constitute learning targets that are easily
reachable and together would compose an abstract model for
the task.

IV. RESULTS

We focus on one experimental evaluation from our study
which seeks to determine if an interpretable representation for
the goal space can be learned from exploration, and if it helps
the hierarchical policy to be more data-efficient. We conduct
the evaluation on a U-shaped maze with a continuous state
space, discrete actions controlling the agent’s acceleration in 4
directions and a sparse reward is only attributed when reaching
the exit. We compare GARA against some of the state-of-art
approaches:
- Feudal HRL with Handcrafted representation: inspired by
hDQN [8], this algorithm is similar in structure to GARA in
using a discrete set-based goal space. This represntation is
however handcrafted and fixed.
- HIRO: also a feudal HRL algorithm, it relies on raw states
to act as goals G = S. Additionally, it uses a goal interpolation
mechanism along with hindsight experience.

a) Representation learning: Focusing first on the learned
representation by GARA, Fig. 2b, Fig. 2c, and Fig. 2d show
the evolution of the goal space throughout the learning at 0,
103, and 3 × 104 steps (for a randomly selected run of the
algorithm). Initially, GARA identifies the region at the top-
left corner of the maze with positive velocity which provides
a good starting point to learn policies that efficiently manage
to reach the right half of the maze. Later, GARA refines the
right half region, which allows it to focus on the exit point. Our
intuition is that such final partition results in easier to reach
goals, prompting the agent to select successful behaviours.

(a) Handcrafted
representation

(b) Initial
G given to
GARA

(c) G learned
by GARA after
103 steps

(d) Final G
learned by
GARA

Fig. 2: Representation of the goal space G in the U-shaped
maze for one run of algorithm. The exit is marked in red.
Green boxes show intervals for x, y and the horizontal and
vertical arrows indicate the sign of the velocities vx and vy ,
respectively. No arrows indicate there are no split across vx
or vy .

Fig. 3: Average success rate on the U-shaped Maze (20 runs).
Overall, Fig. 2 shows that GARA learns an interpretable
representation from data collected during the HRL exploration.

b) Data efficiency: Fig. 3 shows that our approach man-
ages to learn a successful hierarchical policy with a perfor-
mance approaching the handcrafted representation, whereas
HIRO cannot learn to solve the task within the same time
frame. We attribute this to the better sample efficiency asso-
ciated with the learned abstraction, as the agents successfully
decompose the task into simple-to-achieve goals.
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