
HAL Id: hal-04201285
https://hal.science/hal-04201285

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic modeling and AI-based control of a
cable-driven parallel robot

Abir Bouaouda, Rémi Pannequin, François Charpillet, Dominique Martinez,
Mohamed Boutayeb

To cite this version:
Abir Bouaouda, Rémi Pannequin, François Charpillet, Dominique Martinez, Mohamed Boutayeb.
Dynamic modeling and AI-based control of a cable-driven parallel robot. 22nd IFAC World Congress,
IFAC 2023, Jul 2023, Yokohama, Japan. �10.1016/j.ifacol.2023.10.868�. �hal-04201285�

https://hal.science/hal-04201285
https://hal.archives-ouvertes.fr


Dynamic modeling and AI-based control of
a cable-driven parallel robot

Abir Bouaouda ∗,∗∗,∗∗∗∗ Rémi Pannequin ∗∗

François Charpillet ∗∗∗∗ Dominique Martinez ∗∗∗∗,†

Mohamed Boutayeb ∗∗∗

∗ e-mail: abir.bouaouda@univ-lorraine.fr
∗∗ Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
∗∗∗ Université de Lorraine, CNRS, CRAN, Inria, F-54000 Nancy,

France
∗∗∗∗ Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy,

France
† Aix-Marseille Université, CNRS, ISM, 13009 Marseille, France

Abstract: Controlling over-constrained cable-driven parallel robots (CDPRs) is a challenging
task due to the complex dynamics of the system. Classical controllers require force distribution
algorithms that involve an optimization problem, which is time consuming. In this paper, we
propose an AI-based approach that learns a controller from simulated trajectories. A dynamic
model of the CDPR is first validated experimentally on a real robot. Then, the controller is
trained on the CDPR simulator with randomly generated trajectories using a deep deterministic
policy gradient (DDPG). Finally, the trained controller is tested on different trajectories.
Validation results show that the proposed approach is able to track unknown trajectories with
a good accuracy.

Keywords: Reinforcement learning, deep learning, control, cable-driven parallel robot, deep
deterministic policy gradient, trajectory tracking.

1. INTRODUCTION

Cable-Driven Parallel Robots (CDPRs) are among the
most appealing type of parallel robots in the industry.
Because of flexible cables and few moving parts, they
provide a large workspace, payload, high speed, and high
acceleration making them suitable for a wide range of
applications.

In this paper, we consider a challenging application of
CDPRs, which is to track fast moving targets. A CDPR
that can track free-flying insects has been developed by
Pannequin et al. (2020). The main difficulty in this ap-
plication in previous work was to develop a controller
capable of tracking the insect motion, which is highly
unpredictable.

In this study, we intend to use the deep deterministic
policy gradient (DDPG) algorithm to reduce tracking error
and track the insect more efficiently. This algorithm was
first introduced in the paper (Lillicrap et al., 2016), and
described as an adaptation of the ”Deep Q Network”
(DQN) algorithm to continuous domains.

The advantage of using reinforcement learning is that it
is a model-free approach, which means that it can be
used to learn the optimal control policy directly from the
interaction with the environment. It can thus reduce the
effect of model uncertainty and can be used to learn the
optimal policy for complex systems. Moreover, the control
policy can be learned in an online fashion, which means

that the policy can be updated as the environment changes
over time, unlike the traditional control strategies like PID
controller which requires an offline tuning.

The use of reinforcement learning for the control of CDPR
has been investigated in many works, some of them are
interested in hybrid methods that combine reinforcement
learning with other control strategies. For example, in
(Grimshaw and Oyekan, 2021), Q-learning is used to
balance unstable loads on a CDPR, the deep neural
network is providing the desired platform response to
a nested PID controller. Another example of a hybrid
approach is in applying Q-learning to optimize the tension
of the cables (Xie et al., 2021).

Other works consider end-to-end reinforcement learning
to solve the position control problem, e.g. in (Vu and
Alsmadi, 2020; Ma et al., 2019; Sancak et al., 2022). Yet
most of them focus on the trajectory tracking problem
in specific conditions. In (Vu and Alsmadi, 2020), the
trajectories are basically point-to-point trajectories for
pick-and-place tasks. Reinforcement learning is used to
track rotational trajectories in (Ma et al., 2019), and
planar trajectories in (Sancak et al., 2022). In both cases,
the performance of the control strategy is tested in low
accelerations. Moreover, none of these previous works has
been tested in a real environment.

In this study, we first establish a dynamic model for a
two-DOF point mass CDPR, we validate the dynamic
model with the real CDPR and use this model to create

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

©2023 the authors. Accepted by IFAC for publication
under a Creative Commons Licence CC-BY-NC-ND

10761



the training environment for the reinforcement learning
algorithm. The reason for using a simplified CDPR with
only 4 cables is to be able to investigate the reward and
the input trajectories influence on the training process in
shorter training times. We then use the deep deterministic
policy gradient algorithm to learn the optimal control
policy. Finally, we test the performance of the control
strategy in simulation. The proposed AI-based control
strategy will be applied later to an existing robot with
eight cables (Pannequin et al., 2020) in a real environment.

2. DYNAMIC MODELING OF TWO-DOFS
POINT-MASS CDPR AND VALIDATION WITH

REAL DATA

The aim of our work is to control cable-driven parallel
robots (CDPRs) with a reinforcement learning based ap-
proach to track trajectories that are unknown in advance.
In this section, we examine the dynamic model of the
robot.

2.1 System description

The robot is composed of an end-effector and four motors,
each one driving a cable that is attached to the end-
effector. The motors are placed at the corners (Ak) of a
vertical rectangle in the x− z plane. We suppose that the
end-effector is a point mass p of mass m.

Fig. 1. Two-DOFs point-mass CDPR with four cables, lk
is the length of the cable k, Ak is the position of the
motor k, p is the position of the end-effector.

2.2 Dynamic model

Dynamic modeling consists in finding the equations be-
tween the set of variables that describe the system in our
case the position and the speed of the end-effector and the
set of variables that describe the inputs of the system, in
our case the speed applied to each motor.

According to the Newton-Euler equations, the dynamic
model of the robot is given by:

ma = T1.n1 + T2.n2 + T3.n3 + T4.n4 + P (1)

a represents the acceleration vector of the end-effector, ni

represents the unit vector of the cable i, Ti represents the

tension of the cable i and P represents the Earth’s grav-
itational force applied to the end-effector. This equation
can be rewritten as:

mẍ = T1.n1x + T2.n2x + T3.n3x + T4.n4x (2)

mz̈ = T1.n1z + T2.n2z + T3.n3z + T4.n4z −mg (3)

nkx and nkz are the components of the unit vector nk in
the x and z axis, respectively. The Jacobian matrix of the
robot is given by (Pott, 2018):

J =

[
n1x n2x n3x n4x

n1z n2z n3z n4z

]
(4)

The dynamic model of the robot can be rewritten as:

m.Ẍ = J(X).T +

[
0

−mg

]
(5)

where X =

[
x
z

]
and T =

T1

T2

T3

T4

 .

The relation between the speed of the cables and the speed
of the end-effector is given by:

l̇ = J⊺(X).Ẋ (6)

where l =

l1l2l3
l4

 .

For the sake of simplicity, we assume that the cables are
inextensible and that the torque produced by the motors
is proportional to the tension of the cable as follows:

τi = rTi (7)

where r is the drum radius.

As we use DC motors, the torque produced by the motors
is proportional to the current of the motor.

τi = KcIi (8)

Where Ii is the current of the motor i and Kc is the torque
constant. Thus, the expression of the cable tension for
motor i is given by:

Ti =
Ii
rKc

(9)

Moreover, we consider that the proportional control loop
of the current of the motors is part of the dynamic model of
the system. So the relation between the motor current, the
desired speed, and measured speed of the motor is given
by:

Ii = kmotor(ui − vmi) (10)

where ui is the desired speed of the motor i, vmi is the
measured speed of the motor i, and kmotor is the motor
gain.

We further assume that the cables are under sufficient
tension so that the speed of the cable is the same as the
speed of the motor:

vmi = li . (11)

2.3 Training environment

We created a training environment for the robot using
the previous model. In the perspective of the Agent, the

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

10762



Fig. 2. Dynamic model of CDPR setting down the relation between the inputs (desired motors speed and the outputs
(measured motors speed, end-effector position and speed).

environment is a black box that takes as input the action
of the agent and returns the reward and the next state.

We define the state of the environment as the last position
of the end-effector, the current position of the end-effector,
the tracking error and the electric current of the motors.
At the time t, the state st and action at write as follows :

st = (Xt, Xt−1, et, It) (12)

at = u = (u1, u2, u3, u4) (13)

The use of the position in the state space rather than cable
lengths is justified by the fact that there is a combination
of lengths that does not describe any position, as well as
to reduce the dimension of the state space.

We will use this environment in the next section to train
the agent.

3. CONTROL LAW

Our goal is to use the deep deterministic policy gradient
(DDPG) to control the robot in order to track an arbitrary
trajectory.

3.1 DDPG algorithm

The DDPG algorithm is composed of two networks: the
actor and the critic. The actor is a neural network that
maps the state of the system to the action of the system
and the critic is a neural network that maps the action and
the state to the Q function, an estimation of the future
rewards. See Fig 3.

Each network is associated with another network with the
same architecture (target network) that is updated more
slowly, which makes the training more stable. The param-
eters of the Actor and the Critic network are optimized
so that the agent recommends actions that maximize the
rewards.

3.2 Action and state space exploration

One of the main assumptions of the reinforcement learning
algorithms to converge is that all the states and actions
are visited during the training. To ensure that, we use a
Gaussian noise to explore the action space, and we use a
random trajectory to explore the state space.

Fig. 3. Actor-Critic Networks. The input of the actor is
the state of the system st and the output is the action
µ(st) . The input of the critic is the state st and the
action with noise at = µ(st) +Nt of the system, and
the output is the Q(st, at), the value of the Q function
for the action at at state st.

Unlike the original paper (Lillicrap et al., 2016), we found
that the ornstein-uhlenbeck noise doesn’t have real advan-
tage, and other papers (Barth-Maron et al., 2018; Fujimoto
et al., 2018) simply use Gaussian noise, so, we decided to
use it as well.

For the state space exploration, we generate a random
initial position for each episode and random trajectory
which starts from this initial position. The components
of the target position are generated using the following
equation:

vt+1 = vt + at ∗ dt
xt+1 = xt + vt ∗ dt

(14)

where at is the acceleration generated randomly between
minimum and maximum values, v0 = 0 and x0 is the initial
position.

3.3 Current limits

In order to keep the cables tensed and to avoid reaching
the maximum current of the motors, we use a current
saturation function. This function is applied on the action
of the agent before sending it to the robot. Unlike the
old control method (Pannequin et al., 2020), using a
saturation function doesn’t affect the control law as the
agent is trained with this condition, so it can learn to
control the robot with this constraint.

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

10763



isat =


imax if i > imax

i if imin < i < imax

imin if i < imin

(15)

And as the current is related to the speed of the motor,
we use equation 10 to compute the maximum speed of the
motor:

isat = kmotor(usat − vm) (16)

So the action of the agent is deduced using this function:

usat =
isat

kmotor
+ vm (17)

3.4 Reward function

The reward function is the most important part of the
reinforcement learning algorithm. It is used to evaluate
the performance of the agent. We use the following reward
function modified from (Sancak et al., 2022):

rt = −(∥et∥+ (∥et∥ − ∥et−1∥) + 0.05
√
∥it∥) (18)

where et is the tracking error and it is the current of the
motors. The reward function is composed of three parts:

• The first part is the tracking error. The goal of the
agent is to minimize this error to get closer to the
target trajectory.

• The second part is the difference between the tracking
error in current and previous steps. Thus, it penalizes
the agent when the tracking error increases.

• The third part is the current of the motors, the goal
of the agent is to minimize this current to minimize
the energy consumption, and to avoid reaching the
maximum current of the motors.

3.5 DDPG algorithm for Cable Robot control:Algorithm 1

4. RESULTS

4.1 Validation of the model in simulation with real data

We simulated the developed model in Fig. 2 of the robot
using Simulink. To validate the model, we used real data
that we collected during a trajectory tracking using classi-
cal control law with real CDPR (Pannequin et al., 2020).

We used the same motors speed generated during the
real trajectory tracking experiment to compare the real
and simulated end-effector position for the same inputs.
The results are shown in Fig. 4. The simulation and
the real data are very close. The maximum error is 0.04
m in both x and z axis. We also measured the cable
tensions experimentally using Phidget 22 force sensors
during trajectory tracking and found that the current
is proportional to the cable tension (Pearson correlation
R2 = 0.98, Fig. 5). Thus, the measured motor currents
it can be used as estimators of the cable tensions in the
reward function.

4.2 Hyperparameters and training

We use the hyperparameters in Table 1 for the DDPG
algorithm, the parameters in Table 2 for the trajectory
generation and the parameters in Table 3 for the current
limits.

Algorithm 1: DDPG algorithm for CDPR control.

Initialize the parameters of the critic network Q(s, a) and copy
them to the critic target network Q′(s, a) ;

Initialize the parameters of the actor network µ(s) and copy
them to the actor target network µ′(s) ;

for episode← 1 to Total number of episodes do
Initialize s ;
Generate a random trajectory;
for step← 1 to Maximum number of steps do
Generate a random noise Nt for action exploration ;
Select an action at = µ(st) +Nt ;
Compute usat using the equations (16, 17) to ensure the
current limits;

Use usat to deduce the saturated action usat(t);
Apply usat(t) to the robot and get the next state
st+1 = (Xt+1, Xt, et+1) and the reward rt ;

Store the transition (st, at, rt, st+1) in the replay buffer;
Sample a random minibatch of transitions (si, ai, ri, si+1)
from the replay buffer. ;

Update the Q network by minimizing the training loss ;
Update the µ network policy using the sampled policy
gradient ;

Update the parameters of the target networks (slowly) by
using an update rate τ ;

if the new position can’t be reached then
End this episode;

end

end

end

Fig. 4. Comparison between the real and simulated end-
effector trajectories using the same inputs.

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

10764



Fig. 5. Correlation between the cable tension and the
motor electrical current. Experimental data recorded
for one motor.

Table 1. Hyperparameters

Hyperparameter Value

Number of episodes 10000
Time step 0.01 s

Maximum number of steps 1000
Critic learning rate 0.0002
Actor learning rate 0.0001

Update rate for target networks 0.0005
Discount factor for future rewards 0.99

Buffer size 50000
Mini-batch size 128

Table 2. Acceleration limits

Parameter Value

Maximum acceleration in x axis 1 m/s2

Maximum acceleration in z axis 0.5 m/s2

Maximum velocity in x axis 4 m/s
Maximum velocity in z axis 2 m/s

4.3 Training results

In Fig 6 we can see the increasing of the reward during the
training of the agent until it converges to a stable value.

The total training time is 1 day for 10000 episodes using
an i7-10850H CPU (6 cores) with 16 GB RAM.

Table 3. Current limits

Parameter Value

Maximum current 6 A
Minimum current 0.3 A

Maximum input speed 300 rpm
Minimum input speed -300 rpm

Fig. 6. Average reward during the training, it increases
during the training and reaches a stable value after
5000 episodes.

4.4 Testing

In Fig 7 we test the agent with a trajectory that the
robot has never seen before. The robot is able to track
the trajectory with a maximum tracking error of 0.03 m
in both x and z axis. In Fig 8 we can see the trajectory
projection in the x-z plane. In Fig 9 we can see that the
average current is less than 3 A during the trajectory
tracking while the maximum allowed current is 6 A and
the average current for the motors in the bottom is so close
to the minimum current which is 0.3 A.

5. CONCLUSION

In this study, we developed a test bench for the control
of a CDPR using a reinforcement learning algorithm.
From the proposed model, we generated an environment
to test different training algorithms. Then we used this
environment to develop an approach to control a CDPR
using a deep deterministic policy gradient algorithm. The
results show that the proposed approach is able to track
a trajectory with a maximum error of 3 cm in both x and
z axes while optimizing current consumption during the
trajectory. This study was conducted with some limitation
in motor speed so as to reduce the training time. As
future works, we intend to investigate the effect of the
motor input speed on the training process, to use the
trained agent to control the real robot, and to extend the
proposed approach to cable robots with more cables and
more degrees of freedom.

ACKNOWLEDGEMENTS

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

10765



Fig. 7. x and z positions during trajectory tracking using
the trained agent in simulation vs target trajectory.

Fig. 8. Trajectory projection in the x-z plane.

group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr/).

REFERENCES

Barth-Maron, G., Hoffman, M.W., Budden, D., Dabney,
W., Horgan, D., TB, D., Muldal, A., Heess, N., and
Lillicrap, T. (2018). Distributional policy gradients. In
International Conference on Learning Representations.

Fig. 9. Average current over 1 second during the trajectory
tracking in Fig 7.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Address-
ing function approximation error in actor-critic meth-
ods. ArXiv, abs/1802.09477.

Grimshaw, A. and Oyekan, J. (2021). Applying Deep Rein-
forcement Learning to Cable Driven Parallel Robots for
Balancing Unstable Loads: A Ball Case Study. Frontiers
in Robotics and AI, 7, 611203.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning.
In Y. Bengio and Y. LeCun (eds.), 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

Ma, T., Xiong, H., Zhang, L., and Diao, X. (2019).
Control of a Cable-Driven Parallel Robot via Deep
Reinforcement Learning. In 2019 IEEE International
Conference on Advanced Robotics and its Social Impacts
(ARSO), 275–280. IEEE, Beijing, China.

Pannequin, R., Jouaiti, M., Boutayeb, M., Lucas, P., and
Martinez, D. (2020). Automatic tracking of free-flying
insects using a cable-driven robot. Science Robotics,
5(43), eabb2890.

Pott, A. (2018). Cable-Driven Parallel Robots: Theory
and Application, volume 120. Springer International
Publishing.

Sancak, C., Yamac, F., and Itik, M. (2022). Position
control of a planar cable-driven parallel robot using
reinforcement learning. Robotica, 1–18. Publisher:
Cambridge University Press.

Vu, D.S. and Alsmadi, A. (2020). Trajectory Planning
of a CableBased Parallel Robot using Reinforcement
Learning and Soft Actor-Critic. Wseas transactions on
applied and theoretical mechanics, 15, 165–172.

Xie, C., Zhou, J., Song, R., and Xu, T. (2021). Deep Re-
inforcement Learning Based Cable Tension Distribution
Optimization for Cable-driven Rehabilitation Robot. In
2021 6th IEEE International Conference on Advanced
Robotics and Mechatronics (ICARM), 318–322. IEEE,
Chongqing, China.

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

10766


