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Abstract

The detection of community structure is probably one of the central
trends in complex network emphasizing the complex internal organization
of people, molecules or processes behind social, biological or computer net-
works. . . The issue is to provide a network partition representative of this
organization so that each community presumably gathers nodes sharing a
common mission, purpose or property. Usually the identification is based
on the difference between the connectivity density of the interior and the
boundary of a community. Indeed, nodes sharing a common purpose
or property are expected to interact closely. Although this rule appears
mostly relevant, some fundamental scientific problems like disease module
detection highlight the inability to determine significantly the communi-
ties under this connectivity rule. The main reason is that the connectivity
density is not correlated to a shared property or purpose. Therefore, an-
other paradigm is required for properly formalize this issue in order to
meaningfully detect these communities. In this article we study the com-
munity formation from this new principle. Considering colors formally
figures the shared properties, the issue is thus to maximize group of nodes
with the same color within communities. We study this novel community
framework by introducing new measurement called chromatic entropy as-
sessing the quality of the community structure regarding this constraint.
Next we propose an algorithm solving the community structure detection
based on this new community formation paradigm.

Keywords: Community structure, Detection algorithm, Complex Net-
work

1 Introduction

Complex networks model component interactions in diverse real-world domains
as in sociology with social or friendships networks, computer science with WEB,
and biology with regulatory, metabolic or neural networks. Nodes of these net-
works are often arranged in closely tight groups called communities. These
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communities delineate the organizational supports of function, property, pur-
pose or categories. They thus highlight a structure of the network providing
an organizational understanding behind the topology. Formally, the goal is to
identify a node partition of the network. A community structure is a partition
of the vertices of a graph defined according rules structuring the vertex dis-
tribution. Although there is no firm answer concerning these rules [17], it is
commonly admitted that the definition of a community relates to a difference
in connection density between its interior and its boundary. The density of
connection between nodes inside a community must be higher than the density
of connection across communities. Such community obtained by this method is
called the topological community [13]. Community detection algorithms capture
this difference of connection density for detecting communities in a network [8,
18]. The quality of a community structure is evaluated by a measure assessing
this partitioning rule. A recognized standard is the modularity introduced by
Newmman [5]. The modularity is based on the comparison of the network with
a random one having the same topological characteristics than the original one
(i. e., same number of nodes, same node degree). Therefore a good measure
must be greater than a community structure having the same characteristics
but obtained by chance because this reveals an organizational bias. Finding a
community structure maximizing the modularity is NP-hard [4] and different
heuristics have been proposed for detecting the best community structure [3, 7,
8, 9].

While the concept of community is central in network science, the connection
density rule fails to significantly identify the meaningful community structure
of a network for some issues, thus restricting the applicability of community
detection algorithms. It is notably the case for disease module discovery. A
disease module groups genes which are mechanistically linked to the same patho-
phenotype.The study of the modularity of human disease would provide a causal
understanding of the pathogenesis strengthening the etiological explanation and
rationally determine clues for drug target discovery.

In [15], the authors carefully demonstrate that disease module are not topo-
logical module/community. By using three representative, methodologically
distinct algorithms on community structure detection based on density con-
nection, the authors show that the disease genes gathered in a community by
connection density method are drastically under-represented, thus prohibiting
the ability to assign communities to diseases. Moreover, they also show that
this lack of representativeness is not due to an insufficiency of knowledge about
genetic diseases, but rather to the inadequacy of the density connection method
to properly address the disease module. This empirical analysis is explained by
the authors by the fact that the disease proteins do not form particularly dense
subgraphs. This conclusion is also confirmed by other works on the disease
module domain [16, 20, 19] which propose alternative clustering methods based
on other rules than those governing topological community detection.

Because of its overarching importance in health, the identification of disease
modules clearly states the need to extend this framework for detecting com-
munity structures by including other categories of problems. Therefore, based
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on the disease module, our objective is to generalize its principles from the
proposed method in order to characterize an alternative community detection
paradigm.

diamond [15], gladiator [20], and sca [21] are three computational meth-
ods solving the disease module detection based on different approaches. How-
ever, they share some common features allowing us to state the fundamental
rules for finding disease module.

The genes implicated in a disease are retrieved from databases analysis as
omim[2, 14] for Mendelian diseases or orphanet [19] for orphan diseases. They
constitute the landmarks of the disease at molecular level and reciprocally a
fundamental property assigned to these genes from which the disease module
can be detected. Hence this property is central and monitor the community
structure detection.

A backbone of network biology lies on the “local hypothesis” stating that
genes or proteins involved in the same disease have a tendency to interact with
each other [11] and to cluster in the same neighborhood [6, 10]. Hence, all disease
related genes in a module are necessary connected together over a short distance.
Connectivity analysis depends on algorithmic methods, and two disease-related
genes may or may not be considered neighbors. diamond examines the neigh-
borhood of gene by identifying a typical connection pattern that must differ to
random/null model connection. They are thus looking for a characteristic con-
nectivity pattern between disease genes. The connection rules of gladiator
are based on the reproduction of connection obtained by phenotypic similar-
ity analysis, while sca reconnects the disease seeds by few extra hidden nodes
qualified as seed connectors while complying with a short connectivity distance
between seeds.

All these algorithms aims at finding the largest modules encompassing the
greatest number of genes related to a disease, and stop when no improvements
are possible. Therefore the definition of a module relates here to largest number
of connected nodes which mostly share the same property.

Disease module detection exemplifies an important problem for community
structure inference where the condition underpinning the node partition is re-
lated to alternative criteria than connection density difference between the inte-
rior and the boundary of a community. Therefore, it seems greatly beneficial for
extending the scientific questioning on network community that the resolution
of this problem is achieved in a broader context than disease modules, impelling
to generalize the statement of this problem.

The common property which is responsible for the formation of the commu-
nity must be understood in a broad sense including a wide variety of situations
such as involvement in the same process or function, membership of a social
or ethnic group, identical characteristics, sharing a common topic of interest,
common purpose or mission etc., more generally any trait that can be shared
by a community and qualifying its members. This property will be formally
assimilated to a “color” leading to assigning the same color to the nodes having
the same property. Accordingly, the issue of chromatic community structure
detection is to find communities of connected nodes that maximize the density
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of the major color within each.
Such problem statement explains why the connection density based algo-

rithms may fail to detect such communities because the nodes with the same
colors can be sparsely connected since only the connectedness prevails and po-
tentially separated by nodes differently colored. As there is no a priori relation-
ships between colors and connections, nodes with the same color can be located
through communities obtained by connection density rule.

In this article, we study the chromatic community structure detection prob-
lem and propose an algorithm for finding partition of communities. In Section 2
we mathematically formalize the problem. We then define in Section 3 the
chromaritic entropy which is a measure assessing the significance of a chromatic
community structure. We detail in Section 4 an algorithm finding a chromatic
community structure. The algorithm is then evaluated in Section 5 before con-
cluding (Section 6).

2 Formalizing the coloring

In this section we address the basic notions related graph coloring. Let G =
⟨V,E⟩ be a graph where V is a set of vertices and E ⊆ V × V a set of edges, a
community p is a subset of V (i. e., p ⊆ V ) and a community structure P is a
partition of V , namely:⋃

pi∈P

pi = V ∧ ∀pi, pj ∈ P : pi ∩ pj ̸= ∅ =⇒ pi = pj .

A community structure based on color selection criteria is called a chromatic
community structure.

Coloring profile. Coloring assigns a color to each vertex of a graph which
is described by a coloring profile corresponding to an application from vertex
to color c : V → C where C denotes the set of colors. The set of colors C
will be represented by an integral interval [1, r] where integers define colors.
For example c = {1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 3, 5 7→ 3} assigns color 1 to
nodes 1, 2, color 2 to node 3 and color 3 to nodes 4, 5. The restriction of
the coloring to community denoted cp for community p ⊆ V is defined as:
cp = {v 7→ c(v) | v ∈ p}.

If the vertices correspond to an integral interval V = [1, n] then the coloring
profile can be described by a vector such that the index stands for a vertex label
and its corresponding value for a color (i. e., c(i) = k ⇐⇒ i 7→ k ∈ c). For
example c = {1 7→ 1, 2 7→ 1, 3 7→ 2, 4 7→ 3, 5 7→ 3} is described by the vector
(1, 1, 2, 3, 3).

Colored Graph. A colored graph is a 3−uple ⟨V,E, c⟩. The colored graph in
Figure 1 uses 3 colors C = [1, 3] where: green= 1, red= 2 and yellow= 3. From
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its coloring profile:

c = {1 7→ 1, 2 7→ 3, 3 7→ 1, 4 7→ 2, 5 7→ 1, 6 7→ 3}

the vector representation is (1, 3, 1, 2, 1, 3). Given the following chromatic com-
munity structure:

P = {p1 = {1, 3, 4, 5}, p2 = {2, 6}},

we deduce the following coloring profiles restricted to p1, p2:

cp1
= {1 7→ 1, 2 7→ 3, 4 7→ 2, 5 7→ 1}, cp2

= {2 7→ 3, 6 7→ 3}.

Figure 1: Community structure of a colored graph.

Transparency. The absence of properties of a vertex is represented by the
transparency (denoted 0) since a color is assumed to qualify a property or an
attribute of a vertex. The transparency is not a color i. e., 0 /∈ C. Transparent
vertices are therefore never involved by color, but the transparent vertices still
exist as vertices.

Chromatic function. A chromatic function χ : (V → C) → C → N counts
the number of occurrences of each color in a coloring profile. The formal def-
inition of the chromatic function is based on the counting operator (Count)
which is a function counting the positions/nodes of each element corresponding
to values of a vector or a function. Count(X, y) specifically counts the number
of occurrences of element y in vector/function X:

Count(X, y) =
{
y 7→

∣∣{i | X(i) = y}
∣∣} .

Count(X) =

|X|⋃
i=1

Count(X,X(i)).

5



The chromatic function is thus defined from a coloring profile c as:

χc =
⋃
k∈C

Count(c, k) (1)

The chromatic function of c of the example in Figure 1 is:

χc = {1 7→ 3, 2 7→ 1, 3 7→ 2}.

For the following coloring profile c = (0, 0, 1, 2, 1, 0, 1, 3, 0, 3) with transparent
color, we also have the same chromatic function because the transparency is not
accounted as color by definition (1) since 0 /∈ C.

Finally, the density also includes the transparency since it corresponds to
the ratio of the number d of vertices with the same color by the number n of
vertices in a community ( dn ). As example, from the previous coloring profile
with transparency, the density of color 1 (d = 3) is 3

10 = 0.3.

Dominant color. A coloring profile with d vertices of the same color, will
be called a d−coloring profile. This notion is also applied to community from
their local coloring profile. A d−colorful community p implies that:

∃k ∈ C : χcp(k) = d. (2)

Notice that these coloring profiles may also have several subsets of vertices with
the same color of cardinality greater or equal to d. The graph in Figure 1 is
a 3−coloring profile for color 1, but also a 2−coloring profile for color 3, and
1−coloring profile for color 2.

Among the d−coloring profiles we specifically focus on the class of profiles
where d is the cardinality of the color occurring the most. These profiles are
said d−dominant by this main color. Hence a coloring profile is d−dominant if
and only if:

∃k ∈ C : χc(k) = d ∧ ∀k′ ∈ C : χc(k
′) ≤ d. (3)

In this case, color k ∈ arg maxχcp is said dominant. In Figure 1 the domi-
nant color is 1 and the coloring profile is thus 3−dominant. By extension, a
community is said d−dominant if the restriction of the coloring profile to this
community is d−dominant. In Figure 1, p1 is 3−dominant for color 1 and p2
is 2−dominant for color 3. Notice that several dominant colors may exist in a
coloring profile.

3 Chromatic Entropy

The meaningfulness of a chromatic community structure will be deduced from a
measure. Although, the significance of the colorful communities closely depends
on the application fields for interpreting the colors, the issue is to define a
generic measure assessing the significance of a chromatic community structure.
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Basically this measure is related to the dominant color in each community.
Intuitively more a color dominates more significant a community is.

However, this characteristic is not enough for relevantly qualifying the sig-
nificance of community structure. Indeed, as an extreme illustrative example,
let us consider a community structure where each community is reduced to a
single node. Such structure leads to optimal coloring of the communities since
the single node owns the dominant color in its community because it covers
it totally. However such community structure clearly tells us nothing of value
about community organization since all nodes remain isolated.

A relevant measure should assess the intentionality behind the design of a
community. By considering that the human design driven by intention is op-
posed to chance, a significant community should thus lead to gather more nodes
of the dominant color than would be expected by chance. Indeed, the situa-
tion that cannot be delivered by chance underpins a mechanistic organization
representing an human intention. As a result, we can safely conclude that the
structure of the chromatic community excluding the chance would provide a
meaningful structure underpinning an intentional organization. Such perspec-
tive raises two major issues: 1) defining a measure characterizing the intention
in community design, 2) formally characterizing the probability to generate a
d-colorful community by chance.

3.1 Chromatic entropy definition

In complex system analysis, the entropy is a concept commonly used to quan-
tify disorder, randomness, chaos, or uncertainty in various fields [1, 12]. By
incorporating entropy into the community detection process, the goal is to find
partitions that maximize the quality of community structure while minimiz-
ing the randomness within communities considered as the sign of community
disorder and disorganization. This approach would reveal meaningful commu-
nities in complex networks, leading to a better understanding of the underlying
community structure and their organization law. This framework thus appears
suitable for assessing how much a community is the proceed of an intentional
construction.

In our context, the chromatic entropy H quantifies the intentionalness of
the community design. The chromatic entropy will relate to the coloring of a
community obtained by chance: the more likely a community is to be colored by
chance, greater its entropy. A community structure with a small entropy thus
emphasizes a meaningful community structure. Accordingly, the chromatic en-
tropy is based on the quantification of the community organization intentionally
designed, called the intentionalness quantity and denoted I : ∆1 → R. Intu-
itively, this quantity defines how much a community is intentionally organized.
This measure is semantically equivalent to the measure of information intro-
duced by Shannon. It is expected that the higher the probability of random
community generation, the lower the Intentionalness quantity.

Let ∆m = {(p1, · · · , pm) | 0 ≤ pi ≤ 1 ∧
∑m

i=1 pi ≤ 1} be the sets of (m-ary),
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possibly incomplete, probability distributions on m communities. The entropy
H is a continuous function defined as H : ∆∗ → R with ∆∗ =

⋃
m≥1 ∆m. ∆∗ as

domain is used for mathematical convenience to accommodate any community
structure cardinality and ∆1 ⊆ [0, 1] thus stands for a subset of the unit interval.
For characterizing the chromatic entropy, we focus on the axiomatic properties
framing the definition of this function (Table 1). Notice that the maximality is
a property specific to our context that does not necessarily apply to the other
notions of entropy as are the other properties. It is worth noticing that the

Definition Property

Non negative : The entropy cannot be
negative since it is a metric.

H(p) ≥ 0

Expansibility: adding a community with
probability zero does not change the entropy of
the structure.

H(p, 0) = H(p)

Symmetry: The entropy is insensitive to a
permutation on probability distribution.

H(p1, p2) = H(p2, p1)

Sub Additivity: The entropy of a community
structure is less than or equal to the sum of
the entropies of the communities composing it.

H(p1p2) ≤ H(p1)+H(p2).

Minimality: The community structure is
assumed to be totally meaningful with a
minimal entropy when the probability is null.

H(0) = 0

Maximality: The entropy is maximal when
the probability is 1 because the community is
assumed to be fully random.

H(1) =∞

For the sake of simplicity, we define the properties with the minimal number of
parameters requested for their definition.

Table 1: Properties of the entropy

definition of the Shannon entropy [1] cannot be straightforwardly used due to
the maximality property, since −p log2 p = 0 with p = 1 and not ∞.

By setting the intentionalness quantity as I(p) = log2(1−p) which fulfills the
expected requirements the chromatic entropy can be finally defined as follows
(Definition 1):

Definition 1 (Chromatic Entropy).

H(p) = −p I(p) = −p log2(1− p)

The extension to a distribution of probabilities ∆m follows the usual gener-
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alized form of entropy-function:

H(p1, · · · , pm) =

m∑
i=1

H(pi).

3.2 Probability of random coloring

The probability to randomly generate a d-colorful community with a particular
color chosen among |C| = r colors by chance is defined by the ratio of the
favorable cases to the possible cases. The number of the whole possible colored
communities is rn corresponding to the cardinal of the complete enumeration
of the possible combinations of vertex coloring among r colors. The definition
of the favorable cases necessitates to combinatorically enumerate them which is
harder to characterize than the possible cases community structure is assumed
to be totally unorganized. Two issues are addressed:

1. the enumeration of the d-colorful communities of size n considering r col-
ors;

2. the enumeration of the d−dominant colorful communities of size n con-
sidering r colors.

The first issue does not impose the domination but just the cardinality of a
subset of vertices with the same color while the second refers exactly to the
definition of a d−dominant coloring profile. The separation of the enumera-
tion problem in two issues is motivated by the computational complexity of
the resulting combinatorial formulas explained in Section 5. We thus need to
enumerate the favorable colorful communities for each issue. Subsection 3.2.1
defines the combinatorial formula enumerating the favorable colorful communi-
ties for issue 1, while Subsection 3.2.2 determines it for issue 2.

3.2.1 Enumeration of d−colorful communities

Different coloring of d vertices are obtained using any color. Let Dk be the set of
colorful communities having d vertices of color k, the count of all communities
containing a d−color profile obviously corresponds to the cardinality of the union
of these sets, namely: |

⋃r
k=1 Dk|. Some communities may have a d-color profile

for different colors, meaning that these sets intersect. The enumeration formula
of |

⋃r
k=1 Dk| is based on the Poincaré sieve (inclusion-exclusion principle), for

the cardinal of the union:∣∣∣∣∣
r⋃

k=1

Dk

∣∣∣∣∣ =
r∑

k=1

(−1k)
∑

1≤i1≤···≤ij≤···≤ik≤r

|Di1 ∩ · · · ∩Dij ∩ · · · ∩Dik |

.
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For example let us considering 3 sets, from the Poincaré sieve the cardinal
is then (see Figure 2)

|D1 ∪D2 ∪D3| = |D1|+ |D2|+ |D3|
− (|D1 ∩D2|+ |D1 ∩D3|+ |D2 ∩D3|)

+ |D1 ∩D2 ∩D3|.

To obtain the formula enumerating the d−colorful communities, we thus
need to define a combinatoric formula for each set and each intersection of sets.

D3

D2D1

D1 ∩ D3

D1 ∩ D2 D2 ∩ D3

D1 ∩ D2 ∩ D3

(
n
d

)
(r − 1)n−d

(
n
d

)(
n−d
d

)
(r − 2)n−2d

(
n
d

)(
n−d
d

)(
n−2d

d

)
(r − 3)n−3d

Figure 2: Ven diagram of the union of 3 sets of d−colorful communities.

Figure 2 shows the combinatorial formulas for all intersection cases of 3 sets
(see the Appendix for a detailed explanation of each formula). For 3 sets the
formula is thus:

3

(
n

d

)
(r−1)n−d−3

(
n

d

)(
n− d

d

)
(r−2)n−2d+

(
n

d

)(
n− d

d

)(
n− 2d

d

)
(r−3)n−3d,

which can be simplified by setting r = 3 into:(
n

d

)((
0n−3d

(
n− 2d

d

)
− 3

)(
n− d

d

)
+ 3 2n−d

)
,

considering that 00 = 1.
Theorem 1 provides the general enumeration formula deduced from the

Poincaré sieve once each intersection is combinatorically defined.

10



Theorem 1. The count of d−colorful communities of size n with r colors is
given by κ function:

κ(r, n, d) =

min(r,⌊n
d ⌋)∑

k=1

(−1)k−1
(
r
k

)
n!(r − k)n−kd

(n− kd)!(d!)k

The proof is in the Appendix

3.2.2 Enumeration of the d−dominant colorful communities

The domination implies to include the dominance constraint in comparison to
the d−colorful communities enumeration, leading to specify the different equiva-
lence classes of communities complying with the dominations conditions 3. Each
class addresses the number of nodes for each color while fulfilling the dominance
condition. Since the conditions of domination are only based on the number
of vertices of the same color regardless the color, if two chromatic functions
of two communities p, q are equal up to a permutation on colors π : C → C,
χcp = π◦χcq then these communities share the same domination property. Thus
they belong to the same equivalence class related to the color distribution.

We introduce the notion of chromatic signature σ to capture this equivalence
on chromatic functions. A signature of a chromatic function is a vector of color
count corresponding to its ordered image (Definition 4)

σp = Sort ◦ Img χcp (4)

Several chromatic functions may have the same signature. For example the
two chromatic functions: {1 7→ 0, 2 7→ 3, 3 7→ 2} and {1 7→ 3, 2 7→ 0, 3 7→ 2}
have the same chromatic signature which is: (0, 2, 3). The signatures are at
he heart of the combinatorial formula enumerating the d−dominant coloring
profiles by abstracting the chromatic functions. We can deduce that a signature
of a d−dominant color profile complies with the following conditions:

σ(r) = d ∧
r∑

i=1

σ(i) = n ∧

∀1 ≤ i ≤ r : σ(i) ≤ d ∧
∀1 ≤ i, j ≤ r : i ≤ j =⇒ σ(i) ≤ σ(j).

(5)

A chromatic signature properly defines an equivalence class on communities
with regard to the domination property. Indeed, two communities with an
equal chromatic signature share the same domination property (i. e., σp =
σq ⇐⇒ p ∼ q). Thus, each equivalence class specializing the property of
domination according to the count of each color leads to a specific signature
(Figure 3). Let Sr,n,d be the set of all possible dominant signatures (DSS) with
respect to parameters r, n, d, this set is explicitly generated by collecting all the
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Chromatic functions

r!∏
s∈Img◦Count(σ) s!

Chromatic signatures

Communities
n!∏r

k=1 χ(k)!

parameters: r = 3, n = 5, d =3. Two dominant signatures are deducted
(1, 1, 3) and (0, 2, 3) which respectively correspond to 3 and 6 chromatic func-
tion groups. 20 communities are associated with each chromatic function
of the first group and 10 for the second. A total of 120 communities are
3−dominant. The framed formulas correspond respectively to the number of
chromatic functions of a signature (under “Chromatic functions”) and to the
number of communities dominant for a chromatic function (near “Communi-
ties”).

Figure 3: Enumeration of 3−dominant communities of size 5 with 3 colors.
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signatures following Definition 5. As example the DSS for r = 4, n = 9, d = 4
is S4,9,4 = {(0, 1, 4, 4), (0, 2, 3, 4), (1, 1, 3, 4), (1, 2, 2, 4)}. It represents the core of
the combinatorial formula enumerating the d−dominant colorful communities.
The algorithm computing this set is given in the Appendix.

Figure 3 shows the distribution of the dominant colored communities into
two equivalence classes distinguished by their color count. The communities are
first grouped according to the chromatic function equality and next according
to their signature equality by gathering the chromatic functions with the same
signature. Counting all the d−dominant colorful communities intuitively follows
this hierarchical division. From signatures, we first count the chromatic func-
tions corresponding to them and then for each chromatic function we count the
possible coloring profiles leading to this chromatic function. The final count of
the dominant colorful communities is the product of these two steps. Theorem 2
defines the count of the d−dominant communities.

Theorem 2. The count of all possible d−dominant communities of size n with
r colors is given by γ function:

γ(r, n, d) = n!r!
∑

σ∈Sr,n,d

1∏
s∈Img◦Count(σ) s!

∏r
i=1 σ(i)!

.

The proof is in the Appendix.

3.2.3 Probability of random coloring

From the enumeration of the colorful communities, we can formally define the
probability of random coloring for normal or dominant coloring. This corre-
sponds to the ratio of the favorable cases to the possible cases where the favor-
able cases is given by κ or γ while the number of all possible colorful communities
is rn. Therefore, for a community p such that n = |p| with a coloring profile
cp distributing r colors into vertices of p, and considering the largest number of
vertices of the same color d = maxχcp . These probabilities are respectively:

pκ =
κ(r, n, d)

rn
, pγ =

γ(r, n, d)

rn

4 Chromatic community structure detection

The chromatic community detection algorithm (chrocode) finds a partition
of a colored graph minimizing the chromatic entropy H. The algorithm is di-
vided in two phases: first a partition grouping connected nodes of the same
color is built, forming as partition of monochrome communities, and next these
communities are iteratively merged to decrease the chromatic entropy until no
merges can improve the solution. The input parameters of the algorithm are
the colored graph G, c, a neighborhood distance δ, and a probability law pκ or
pγ . The algorithm was originally inspired by the Louvain algorithm [7] although
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Hγ =∞ Hγ =∞
Hγ = 0.000724Hγ = 0.000025

C
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muni

ty Quotient Graph

{II
I} ∪ {IV} ∪ {VII}

{
V
}
∪

{
V
I}

{II}∪{III,IV
,V

II}ChromaticCommuni
ty

St
ru

ct
u
re

The labels of the cluster of nodes that are vertices of the quotient graph are in Roman
while the nodes of the original graph are labeled in Arabic.
Parameters: n = 25, δ = 2, r = 4.

Figure 4: chrocode algorithm steps.
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the specificity of the chromatic community structure framework leads to a sig-
nificantly different program. chrocode is freely distributed in two open-source
implementations: in Python [23] and in Mathematica-Wolfram [22]. The algo-
rithm is completely detailed in the Appendix. In more detail, the tasks carried
out during these two stages are:

1) Connected monochrome community structure. From a colored graph
⟨V,E, c⟩, a community is designed from a vertex seed by first integrating neigh-
boring vertices of the same color, then extending it by integrating their respec-
tive neighborhood having the same color and so on. Once no supplementary
vertices can be added, the current community is closed and stored. Another
vertex is then chosen as seed until no vertices are available. The resulting com-
munity structure P is composed of monochrome communities.

2) Fusion of monochrome communities. From the monochrome commu-
nities P previously obtained, we define a quotient graph Q where each commu-
nity becomes a node of this graph (Q = ⟨P,EP ⟩). There exists a link between
two community-nodes if there already exists a link between some nodes com-
posing the respective communities (EP = {(pi, pj) | ∃(vi, vj) ∈ E : vi ∈ pi∧vj ∈
pj}).

Next the communities are merged to decrease the entropy. Iteratively, the
community p with the largest chromatic entropy is selected from P , and its
neighborhood N of distance δ is computed. The algorithm evaluates whether
merging p to a neighbor node will minimize the chromatic entropy. p is finally
merged with neighbor q that minimizes the chromatic entropy the most. The
node-communities located in the shortest path from p to q are also merged in
order to fulfill the connectedness property within the new resulting community.
Once the assembly of nodes is achieved they will now form a new community-
node corresponding to their union.

The quotient graph is then updated by replacing the merged nodes by this
new node-community and by updating the quotient graph. The process ends
when no merges can decrease the entropy.

Let ⟨G,E, c⟩ be a colored graph, the complexity of the first phase is in O(|E|)
since all nodes are visited from neighborhood to neighborhood to merge them
into monochrome communities. Now considering the worst case for monochrome
community reduced to a set of node singletons because the colors of all nodes are
different, and assuming that at each step the new community merges only two
communities, we deduce that the complexity is in O(|V |2(|E|+ |V | log(|V |))).

Figure 4 shows the evolution steps of the algorithm. First the monochrome
community quotient graph is defined. Let us remark that two connected node-
communities have necessary a different color. Next the algorithm starts by
merging the reduced single-node communities into larger communities because
their chromartic entropy is ∞ constituting the greatest possible value. After,
the communities are grouped together for forming larger communities decreasing
the chromatic entropy until finally reaching 0.000025.
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Figure 5 shows the computation steps on a larger example where the curve
describes the chromatic entropy progression by indicating the community as-
semblies at each step. The grid graph was chosen because it provides a clean
presentation of the final communities on the graph but the algorithm can be
applied to any graph.

Bottom left: initial quotient graph of monochrome communities; upper right: the
final colored graph where each final community contains the vertices with the same
color border; at left of each step point of the curve: the communities to be merged,
a column of roman numbers indicates a previously merged community.
Parameters: n = 40, δ = 1, r = 4, pγ .

Figure 5: Chromatic community structure computation.

5 CHROCODE evaluation

chrocode will be analyzed with regard to three network topologies: small
world, scale free, and Erdös Reny. the exploitation of these different network
topologies allows us the assessment of their respective influence on the perfor-
mance of the algorithm.

5.1 Probability Law Analysis

The choice of the probability law pκ or pγ seemingly alters the community
structure obtained by chrocode algorithm. How significant can this difference
be? This issue is crucial because the computational time between pκ or pγ could
drastically differ. The complexity of pκ is in O(rn) while the complexity of pγ
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depends on the cardinality of the DSS S, in O(|S|rn). Figure 6 shows the
evolution of the cardinality of the DSS by choosing optimally the parameters
r, n, d to maximize its growth. Notice that the optimal r is r = n− d+ 1.

The size of the DSS grows exponentially when n increases by selecting the
optimal parameters r, d (see Figure 6.1 ). However it is also worth noting that
this growth is limited if r remains small (≲ 10) (Figure 6.3) which is often the
case in practice.

1) n−evolution with optimal r and d.

2) d−evolution 3) r−evolution

n = 50, r = n− d+ 1. n = 50, d = 11.

Figure 6: Evolution of the cardinality of the DSS S.

5.2 Impact of the probability laws on chrocode

When the computation of the DSS becomes intractable due to its size, we do
wonder know if we can validly use pκ instead of pγ . To answer to this question
we compare the entropy of the community structure computed by chrocode
using respectively the probability laws pκ and pγ as input ((Figure 7).

For each topology we generate 10 networks by increasing their size from 10
to 100 by 10. Therefore for each topology 100 networks are produced (300 net-
works in total). For the benchmark, we use 4 colors (r = 4) and a neighborhood
of distance 2 (δ = 2). Based on these networks, we isolate the cases where the re-
sulting community structure computed by chrocode differs using pκ or pγ pos-
sibly leading to two distinct community structures: Pκ = chrocode(G, c, δ, pκ)
and Pγ = chrocode(G, c, δ, pγ) with Pκ ̸= Pγ .

The percent of networks where the community structures differ closely de-
pends on the topology. The small world topology induces more differences than
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1) Final chromatic entropy difference after chrocode computation.

2) Brute chromatic entropy difference

1) The analysis is achieved on 49 different cases (r = 4, δ = 2).
2) 1275 differences are computed since d never exceeds n. For the mean
difference computation (at right), the zero values are removed unless only
this value exists. The error bar represents the standard error.

Figure 7: Difference between pκ and pγ

18



the other topologies. We also determine the entropy distance on the resulting
community structures with the same initial graph: δH = |H(Pκ)−H(Pγ)|. Even
a community structure is computed from one probability law, but we also calcu-
late the entropy with both probability laws. Figure 7.1 describes the observed
distances. This distance never exceeds 1. with the tested networks whatever the
topologies. The difference between the chosen probability laws thus depends on
network topology and seemingly remains moderate on the tested cases.

Moreover, we also have evaluated the chromatic entropy distance ∆K(c) =
|Hκ(c) − Hγ(c)| by making n, d varying with the optimal parameter for r =
n− d+1 (Figure 7.2). This evaluation is focused on the difference between the
entropies using the two probability laws (∆H(c) = |Hγ(c)−Hκ(c)|), providing
a complementary approach to the previous one. This evaluation shows that the
difference is significant when d is small. If d > 3 this difference is in the order of
10−1 and if d > 5 the difference is negligible in the order of 10−6. The decrease
of ∆H is exponential and lower than 1 when d > 1 whathever n.

In conclusion, from these two evaluations, the quality of the community
structures appears almost equivalent whatever the probability law used. Hence,
they can be somehow considered practically similar although their definition
differ.

5.3 Network size sensitivity

The efficiency of the algorithm is sensitive to the network topology and its size.
Figure 8 clearly shows that the entropy decreases when the size increases. The
topology does not seem to affect the result significantly when the number of
nodes exceeds 30 for the tested networks. The curves for both probability laws
are similar because a real difference between them occur only when chrocode
provides different community structures according to the used probability law.
We have previously shown that only few cases induce a difference that remains
low. (Figure 7).

Hκ Hγ

The curves correspond to the mean of the entropy on 10 trials and the error-bars
describe the standard error. (r = 4, δ = 2).

Figure 8: Evolution of the chromatic entropy w.r.t. the vertex size.
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5.4 Neighborhood distance

The variation of the distance of the neighborhood (δ) also affects the final result.
Figure 9 shows the consequence of the variation of the neighborhood distance
from 1 to 10 on the chromarities with 10 networks of size 100 for each value of
δ on different topologies. for each trial chrocode was computed twice using
both chromarities and the community structure with the smallest chromaty is
kept when the result differs. We can observe that the optimal distance δ differs
on the topologies. The optimal δ is 1 whatever the topologies, and the variation
of δ does not significantly affect the result for Erdös Reny topology. It is also
worth noticing that the variation is always stabilized after δ ≥ 4 for all network
trials.

Therefore, a possible improvement of the algorithm is to perform 4 tests by
varying δ from 1 to 4 and to keep the structure with the lowest entropy among
these tests.

Kκ Kγ

The diagram reports the mean of the entropy on 10 trials of networks of size 100
and the error-bars describe the standard error. A different network is generated for
each trial. ( r = 4, |V | = 100).

Figure 9: Impact of δ on chrocode result.

6 Conclusion

We propose a new approach to detecting communities that relies on new criteria
to identify them. Instead of a difference in connection density between its inte-
rior and its border, defining a community will minimize the chromatic entropy
which is the entropy measure adapted to the problem of gathering nodes with
the same colors.

This new paradigm provides an alternative approach to connectivity rule.
It takes on its full meaning in challenges where the connection of nodes shar-
ing the same property remains loose and therefore cannot be captured by an
examination of the connection density as has been shown for disease modules.

This clustering criterion finds its application in problems where the commu-
nity organization is essentially based on the aggregation of nodes sharing the
same property without apparent correlation with the law of connectivity.It is
based on the idea that a relevant organization is opposed to a design by chance.
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We characterize two probability laws for defining the probability to generate
a community by chance: the difference between them lies on the fact that we
consider whether the color is dominant.

The significance of a community is assessed by its entropy. Low entropy
means that the community structure cannot have been the result of chance con-
firming its organizational relevance. We have proposed a chrocode heuristic
solving this problem in polynomial time. The tests analyzing the performance
of this algorithm highlight the proximity of the two probability laws as well as
a very good performance of the algorithm.

A first perspective would be to improve the algorithm by refining the heuris-
tic criteria for better aggregating communities notably based on the topology of
the graph. Another perspective would be to study how the grouping of nodes ac-
cording to the major color rule could also integrate connectivity between nodes
of the same color. Indeed, sharing the same property, these nodes could develop
a particular connectivity structure characterizing a connection pattern that can
be specific to the shared property. Such a perspective would allow recognition
of a property-dependent community through an hybrid model, combining the
identical property recognition with connectivity rules for detecting communities.
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Appendix

Proofs

Proof of Theorem 1. To combinatorially specify the cardinality of |
⋃r

k=1 Dk|,
we need to determine the cardinality of all the intersection sets |

⋂m
k=l Dk|, 1 ≤

m ≤ r. We illustrate the characterization of the formulas on 3 sets before
generalizing it to ease the explanation. The main issue is to formulate the
cardinality of any intersection of set by a combinatorial formula.

Basically Dk = {p | ∃k ∈ c : χcp(k) = d} is a set of communities with d
vertices of color k. The different possible selections of d vertices among n is
given by

(
n
d

)
. The count of the rest of the profile once the color k is assigned to

vertices equals (r−1)n−d, leading to the following combinatorial characterization
of |Dk|:

|Dk| =
(
n

d

)
(r − 1)n−d.

Let us remark that this formula can be applied for all the colors and the number
of possible used color is

(
r
1

)
(which is 3 for r = 3). We deduce that |D1|+ |D2|+

|D3| =
(
r
1

)(
n
d

)
(r − 1)n−d = 3

(
n
d

)
2n−d.

By extension, for the intersection of two sets Dk ∩ Dj = {p | χcp(k) =
d ∧ χcp(j) = d} the cardinal is defined by first considering the selection of a
subset of size d for color k and next the selection of a size d vertices of color j
in the remaining n− d vertices. The following combinatorial formula formalizes
these two steps of vertices selection.

|Dk ∩Dj | =
(
n

d

)(
n− d

d

)
(r − 2)n−2d.

Similarly, the number of possible color pairs is given by
(
r
2

)
(which is 3 for

r = 3). Then, we conclude that:

D1∩D2|+|D1∩D3|+|D2∩D3| =
(
r

2

)(
n

d

)(
n− d

d

)
(r−2)n−2d = 3

(
n

d

)(
n− d

d

)
.

The same reasoning can be applied for the cardinal of the intersection of the
three sets |D1 ∩D2 ∩D3| and more generally for any intersection.

|D1 ∩D2 ∩D3| =
(
r

3

)(
n

d

)(
n− 2d

d

)(
n− d

d

)
(r − 3)n−3d

The formula holds under considering that 00 = 1 since (r − 3)n−3d = 0n−3d

which must not be null or undefined when n = 3d e. g., for r = 3, n = 6, d = 2
we have |D1 ∩D2 ∩D3| = 90. The formula defining the cardinal of the union of
the 3 sets is finally:
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|D1 ∪D2 ∪D3| =
(
r

1

)(
n

d

)
(r − 1)n−d

−
(
r

2

)(
n

d

)(
n− d

d

)
(r − 2)n−2d

+

(
r

3

)(
n

d

)(
n− d

d

)(
n− 2d

d

)
(r − 3)n−3d.

The generalization to any number of colors based on the Poincaré sieve finally
leads to: ∣∣∣∣∣

r⋃
k=1

Dk

∣∣∣∣∣ =
r∑

k=1

(−1)k−1

(
r

k

)(k−1∏
i=0

(
n− id

d

))
(r − k)n−kd.

By simplification of the product and by considering that the product is null if
rd > n the number of d− colorful communities of size n with r colors is finally
given by κ function.

κ(r, n, d) =

min(r,⌊n
d ⌋)∑

k=1

(−1)k−1
(
r
k

)
n!(r − k)n−kd

(n− kd)!(d!)k

Proof of Theorem 2. The enumeration of d−dominant communities is based on
DSS by applying the formula counting the number of permutations with repe-
tition. Considering m distributed on n > m positions having each ki, 1 ≤ i ≤ m
repetitions, the n elements having each ki repetitions such that

∑m
i=1 ki = n,

let us recall that the number of permutation with repetition is:

n!∏m
i=1 ki!

Indeed, first we count the number of color profiles of size n for a specific
chromatic function. Since the vertices of the same color cannot be distinguished
in a community, the number of communities having the same chromatic function
corresponds to the number of permutations where the vertices of the same color
are repeated, that is:

n!∏r
k=1 χ(k)!

Notice that we can similarly define it using the signature σ by n!∏r
k=1 σ(k)! . This

formula using the signature σ will be used in the sequel.

Next we need to enumerate all the chromatic function related to a signature.
Let us remark that the number of chromatic function with the same signature
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is also obtained by the application of a permutation with repetition. The rep-
etition comes from the possible equality of the number of vertices for distinct
colors, thus decreasing the number of different chromatic functions. For exam-
ple in Figure 3, the number of chromatic functions for (1, 1, 3) is 3 while it is 6
for (0, 2, 3) because there is a repetition of the number 1 in the first and none
in the second. Therefore, the formula counting chromatic functions taking into
account the equal number of occurrences for different colors is:

r!∏
s∈Img◦Count(σ) s!

Finally, the number of communities associated to a signature is then the
product of these two formulas, leading to:

n!r!∏
s∈Img◦Count(σ) s!

∏r
j=1 σ(j)!

This formula counts the number of communities having the same signature.
The total number of communities is the sum of this count for all signatures. Let
Sr,n,d be the DSS according to parameters r for the number of colors, n for the
community size and d for the maximal number of vertices of the same colors,
the formula counting the dominant communities is finally given by γ function:

γ(r, n, d) = n!r!
∑

σ∈Sr,n,d

1∏
s∈Img◦Count(σ) s!

∏r
i=1 σ(i)!

.
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CHROCODE Algorithm

The main variables and used functions are:
Vget(V ) gets a vertex in V (randomly).
Path(G) set of pathes of graph G.
ShortestPath(E, p, q) finds a shortest path between p, q.
c function giving the color of a node
Hω chromatic entropy with a probability law ω as parameter
P community structure.
N neighborhood of radius δ.
up Boolean variable determining whether P must be updated.

function ChroCoDe(⟨V,E, c⟩: colored graph, r: number of colors,δ: radius,ω: probabil-
ity)

W ← V ;
while W ̸= ∅ do ▷ Generate the monochrome communities.

v ← Vget(W ); W ←W \ {v};
pnew = {v};p = ∅;
while pnew ̸= ∅ do

w ← Vget(pnew); pnew ← pnew \ {w};
p← p ∪ {w};
N ← {w′ | (w,w′) ∈ E ∧ c(w′) = c(v) ∧ w′ /∈ p};
pnew ← pnew ∪N ;

end while
W ←W \ p;
P ← P ∪ {p};

end while ▷ ⟨P,EP ⟩ is the quotient graph.
EP ← {(p, p′) | ∃v ∈ p, ∃v′ ∈ p′ : (v, v′) ∈ E, p, p′ ∈ P};
W ← P ;
while W ̸= ∅ do ▷ Assemble the communities.

p← arg max {Hω(q, r) | q ∈W};
W ←W \ {p};
N ← {q | q ∈ EP ∧ 1 < ShortestPath(EP , p, q) ≤ δ};
hmin ← Hω(P, c, r); up← False;
for q ∈ N do ▷ Find the merging of communities minimizing Hω in N .

SP ← ShortestPath(EP , p, q);

h← Hω((P \ SP ) ∪
{⋃

pi∈SP pi

}
, c, r);

if hmin ≥ h then
up← True;
hmin ← h; SPmin ← SP ;

end if
end for
if up then

p =
⋃

pi∈SPmin
pi; ▷ Merge the communities of the path.

P ← (P \ SPmin) ∪ {p}; ▷ Update P
EP ← {(p, p′) | ∃v ∈ p, ∃v′ ∈ p′ : (v, v′) ∈ E, p, p′ ∈ P}; ▷ quotient graph rebuilt
W ← P ;

end if
end while
return P ;

end function
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Algorithm computing the Dominant set of signatures (DSS)

We define . is the concatenation operator between two vectors, and a vector is
written (x1, · · · , xm).

function SubSig(r, n, d, σ)
var : s
if n = 0 then

s← {
r︷ ︸︸ ︷

(0, · · · , 0) .σ}
else if d = 0 then

s← ∅
else if r = 1 ∧ n ≤ d then

s← {(n).σ}
else if r = 0 then

if n = 0 then
s← {σ}

else
s← ∅

end if
else

s← ∅
for d′ ← ⌈nr ⌉ to min(d, r) do

s← s ∪ SubSig(r − 1, n− d′, d′, (d′).σ)
end for

end if
return s

end function

function FindAllSigs(r, n, d)
var : S
if r = 0 then

if n = 0 then
S ← {∅} ▷ a solution exists but empty

else
S ← ∅ ▷ No solutions

end if
else

S ← SubSig(r − 1, n− d, d, (d))
end if
return S

end function
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