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Abstract. A very compact weighted residual formulation is proposed for the construction of periodic solutions of oscil-
lators subject to frictional occurrences. Coulomb’s friction is commonly expressed as a differential inclusion which can
be cast into the complementarity formalism. When targeting periodic solutions, existing algorithms rely on a procedure
alternating between the frequency domain, where the dynamics is solved, and the time domain, where friction is dealt
with. In contrast, the key idea of the present work is to express all governing equations including friction as equalities,
which are then satisfied in a weak integral sense through a weighted residual formulation. The resulting algebraic non-
linear equations are numerically solved using an adapted trust-region nonlinear solver. The shape functions considered in
this work are the classical Fourier functions. It is shown that periodic solutions with clear sticking and sliding phases can
be found with an improved accuracy when the number of harmonics is increased.

1 Introduction
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Figure 1: Two-degree of freedom mass-spring

system with Coulomb friction at the second de-

gree of freedom.

Figure 2: Function ‰.r; Px2/ (blue) in Equa-

tion (3) showing that its intersection with the

zero plane (orange) is the classical friction con-

dition (2).

Non-smooth nonlinearities due to unilateral contact and dry friction are ubiq-
uitous in structural engineering systems. Turbomachinery rotors are a prime
example of industrial systems that are subject to intermittent contact and
feature dry friction dampers to mitigate adverse vibrations. While predicting
the dynamic response of non-smooth systems is of great importance and
has been the subject of much research over the years, their equations of
motion can be remarkably challenging to solve, because Signorini unilateral
contact and Coulomb friction conditions involve a system of equalities and
inequalities. Existing methods commonly rely on the penalization of the
friction force by introducing a finite stiffness or on the smoothing of the
contact force [2]. Frequency-domain formulations require the calculation of
the contact conditions in the time domain at each iteration of the nonlinear
solver via an FFT [6], while time-domain methods mandate advanced time-
stepping or event-driven schemes [1]. The present work suggests a simpler
methodology where dry friction is expressed as an equality enforced in a
weighted residual sense.

2 Theory

Governing equations The considered academic system is shown in Fig-
ure 1. The system is subject to an external harmonic force f cos !t of
period T D 2�=! at the first degree-of-freedom along with a frictional
force r at the second degree-of-freedom. Denoting the displacements of the
two degrees-of-freedom by x1.t/ and x2.t/ and their respective masses by m1 and m2 and stiffnesses by k1 and k2, the
equations of motion governing the dynamics are:

m1 Rx1 C .k1 C k2/x1 � k2x2 � f cos !t D 0 (1a)

m2 Rx2 C k2x2 � k2x1 � r D 0: (1b)

The friction condition on mass m2 is characterized by the friction coefficient �. It is assumed that there is no vertical
separation such that the corresponding normal force N can be specified.

Equality-based Coulomb’s friction Assuming a closed contact in the normal direction, Coulomb’s friction classically
says the following:

�

Px2 D 0 H) jr j � �N

Px2 ¤ 0 H) jr j D �jN j and 9˛ � 0 j r D �˛ Px2:
(2)

Among others, Equation (2) can equivalently be recast into the nonsmooth equality [1, 8, 3]

‰.r; Px2/ D Px2 C min.0; �.r C �N / � Px2/ C max.0; �.r � �N / � Px2/ D 0 (3)

where � is any strictly positive real number. Equations (1) and (3) in the unknowns functions of time x1, x2, and r
collectively describe the dynamics of the system. The equivalent Coulomb’s friction equality is depicted in Figure 2.

Weighted-residual formulation It is proposed to search for periodic solutions by solving the above formulation in a
weighted residual sense. All unknowns of the problem are expanded on an appropriate truncated basis of T -periodic
functions with n members �k.t/, k D 1; : : : ; n, commonly the Fourier basis in the Harmonic Balance Method, as follows:

x1.t/ D
P

k
x1k�k.t/; x2.t/ D

P

k
x2k�k.t/; r.t/ D

P

k
rk�k.t/: (4)
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Depending on the smoothness of the selected basis functions, time derivatives might either be obtained by pointwise
differentiation in time or expanded on a less smooth basis and related to the differentiated quantity in a weak sense. Once
the expressions in Equation (4) and their time-derivatives are inserted in Equations (1) and (3), the corresponding residuals
R(1a).t/, R(1b).t/ and R(3).t/ are built and the goal is to find the 3n unknowns x1k , x2k , and rk satisfying the 3n equations

Z T

0

�k.t/R(1a).t/ dt D

Z T

0

�k.t/R(1b).t/ dt D

Z T

0

�k.t/R(3).t/ dt D 0; 8k D 1; : : : ; n: (5)

The above integrals can be numerically computed using appropriate quadrature schemes. The resulting system of nonlinear
equations can be solved using a classical trust-region nonlinear solver [4]. The proposed strategy can be seen as a very
compact form of the AFT methodology [2] without regularization, and it shares similarities with the DLFT technique [6]
which also relies on the AFT. The proposed formulation is very compact and involves simple implementations such as basic
integral quadrature schemes and existing nonlinear solvers. Its engineering value lies in its capability to generate reasonable
approximations without difficulty in contrast to much more advanced time-stepping or event-driven schemes [1, 5, 7].

3 Results and discussion

Periodic responses are sought for the following dimensionless values of the system parameters: m1 D 1, k1 D 1, m2 D 1,
k2 D 1, � D 0:45, and f D 10. The normal force is N D 1. Responses and comparison with a first-order time-marching
Implicit Euler scheme are shown in Figure 3. Associated linear systems can be considered in the limiting cases of sliding or
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Figure 3: Solution over one period of motion for n D 30, � D 0:2 and ! D 4:5 rad/s: Frequency domain [solid line], time domain

[dashed line].

sticking over an entire period of the motion. In the case of sliding for the mass m2 (� D 0), linear natural frequencies are
!1 D 0:618 rad/s and !2 D 1:618 rad/s. In the case of sticking for the mass m2 (� D 1), then the associated linear system
has a single degree of freedom and its free vibration natural frequency is !1 D 1:414 rad/s. For the specified parameters �
and N , sliding only is observed when the forcing frequency lies in the vicinity of the (linear) natural frequencies, with
large velocities Px1 and Px2. However, at ! D 4:5 rad/s, the computed motion over one period features stick-slip transitions
at the friction point, with two stick-slip phases per cycle. The sticking phases are characterized by a constant displacement
x2. The number of harmonics is set to n D 30 and the method has the ability to capture sticking behavior accurately. The
graph of friction force versus velocity is such that the velocity at the friction point remains near zero as the friction force
varies in the interval Œ��N; �N � D Œ�0:45; 0:45� N, in agreement with Coulomb’s friction law. The slipping phases of the
motion are also well captured. Again, the friction force remains nearly constant at ˙0:45 N as a function of the slipping
velocity, in accordance with Coulomb friction law. Overall, the results in the time and frequency domains agree well, at
least for the considered set of parameters.
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