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GRAPHICAL ABSTRACT 

➢The role of machine learning (ML) in 

biohydrogen production is detailed.

➢ML can predict complex data and identify 

patterns in biohydrogen production.

➢The patent landscape suggests promising 

potential for biohydrogen to replace fossil fuels.

➢Improving ML predictive performance in 

biohydrogen production is a future need. 
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Biohydrogen is emerging as a promising carbon-neutral and sustainable energy carrier with high energy yield to replace 

conventional fossil fuels. However, biohydrogen commercial uptake is mainly hindered by the supply side. As a result, various

operating parameters must be optimized to realize  biohydrogen commercial uptake on a large-scale. Recently, machine learning 

algorithms have demonstrated the ability to handle large amounts of data while requiring less in-depth knowledge of the system 

and being capable of adapting to evolving circumstances. This review critically reviews the role of machine learning in 

categorizing and predicting data related to biohydrogen production. The  accuracy and potential  of different machine learning 

algorithms are reported. Also, the practical implications of machine learning models to realize biohydrogen uptake by the 

transportation sector are discussed. The review indicates that machine learning algorithms can successfully model non-linear 

and complex interactions  between operational and performance parameters in biohydrogen production. Additionally, machine 

learning algorithms can help researchers identify the most efficient methods for producing biohydrogen, leading to a more 

sustainable and cost-effective energy source.
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Abbreviations 

ANFIS Adaptive neuro-fuzzy inference systems 

ANN Artificial neural networks 

ATP Adenosine triphosphate 

BNN Binary neural network 

CSVM Cubic support vector machine 

DOE Department of Energy 

GA Genetic algorithm 

EGPR Exponential Gaussian process regression 

EQGPR 
Exponential quadratic Gaussian process 
regression 

Fd Ferredoxin 

FGSVM Fine Gaussian support vector machine 

IPC International patent classification 

LSVM Linear support vector machine 

MKLMA Levenberg-Marquardt algorithm 

MLPANN Multilayer perceptron artificial neural network 

MPCA Multi-way principal component analysis 

PSO Particle swarm optimization 

QSVM Quadratic support vector machine 

R2 Determination coefficient 

RBF Radial basis function 

RQGPR 
Rotational quadratic Gaussian process 

regression 

SVM Support vector machine 

1. Introduction 

Researchers are working on renewable resources to produce clean 

energy substitutes for fossil-based fuels. This is driven by rising concerns 

about climate change, increasing oil prices, and health issues caused by 
airborne pollutants (Vassilev and Vassileva, 2016). Only 10% of the 

world's energy demand is met by modern biomass conversion, while the 

remaining 90% comes from fossil fuels such as coal, natural gas, and oil 
(Shuttleworth et al., 2014). Since energy is crucial for any nation's 

economy, many countries seek reliable ways to make alternative fuels 

(Kaloudas et al., 2021). Some alternative fuels have an energy density close 
to that of fossil fuels and thus may replace them to solve concerns about 

carbon footprint (Roy et al., 2015; Shanmugam et al., 2020). Biomass-

derived biofuels are also promising for addressing potential energy 
shortages in the future (Srivastava et al., 2020).  

Biofuels derived from modern biomass are carbon-neutral and 

renewable. Unlike fossil fuels, which release carbon dioxide (CO2) 
sequestered for millions of years, biomass-derived biofuels are made from 

recently grown plants and thus do not contribute to increased atmospheric 

CO2 levels (Saravanan et al., 2022). As a result, biofuels are a promising 
alternative to fossil fuels to lower greenhouse gas emissions and mitigate 

climate change. Another advantage of biomass-derived biofuels is that they 

can be made from biomass sources, including agricultural residues, forestry 
waste, and energy crops (Demirbas, 2009). This means they can be 

manufactured locally, reducing reliance on imported fossil fuels and 

improving energy security. However, one of the main challenges in 
producing biomass-derived biofuel is breaking down the substrate into 

relatively simple moieties. 

Recently, hydrogen has shown the potential to be an excellent surrogate 
fuel because hydrogen has a higher energy density than other biofuels, at 

approximately 140 MJ/kg; it is quickly produced and transported and can 

be used directly in cells to produce energy (LewisOscar et al., 2015; 
Nagarajan et al., 2017; Show et al., 2018; Kumar et al., 2019). Nonetheless, 
these    benefits    are   hindered    by   process   limitations   at   large-scale 
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(Sivagurunathan et al., 2016). Therefore, different ways to upscale the process 

are currently being investigated. As organic substrates are readily available, 

process parameters can be optimized to boost hydrogen production rates, and 

biological methods and genetic modification can enhance hydrogen yields 

(Nath and Das, 2011; Sivagurunathan et al., 2016; Zhao et al., 2017). Compared 

to other biofuels, biohydrogen stands out for being both carbon-free and high-

energy-dense. However, improving biohydrogen production is challenging due 

to the complexity of biohydrogen generation systems. 

Nanotechnologies have been recently developed for farming, food, 

pharmaceutical, and energy industries (LewisOscar et al., 2016; Chari et al., 

2017; Vasantharaj et al., 2019). For instance, nanomaterials improve many 

biological processes because of their effect on microbial growth, intracellular 

electron transfer, and the interaction of metalloenzymes responsible for 

hydrogen yield (Liu and Tang, 2017). Therefore, nanomaterials can boost 

biohydrogen production (Yang and Wang, 2018). Nanoparticles facilitate 

electron transfer between microorganisms and electrodes or other electron 

acceptors, improving the efficiency of biohydrogen production (Cheng et al., 

2020). There has been a lot of interest in using nanoparticles as ingredients to 

boost biohydrogen production, and a few studies have shown that it can be an 

effective strategy (Kumar et al., 2019).  

The recent progress in machine learning can potentially create new 

opportunities in large-scale biohydrogen production. Indeed, machine learning 

can be applied to analyze large datasets and identify patterns that could be 

valuable for designing efficient industrial processes (Bertolini et al., 2021). 

Large datasets from bioreactors can be analyzed using machine learning 

algorithms to identify patterns and correlations between different process 

variables. This data can be used to improve the yield and efficiency of 

biohydrogen production by optimizing process parameters such as temperature, 

pH, and nutrient concentrations. This could enable the development of tailored 

solutions for biohydrogen production and optimize the efficiency of the 

production processes.  

For example, machine learning could be used to identify the best 

combination of factors for increasing the yield of biohydrogen production from 

a specific strain or environment. This can be accomplished by training machine 

learning models on the large microbial genome and metabolic data datasets and 

then employing these models to predict the metabolic pathways and energy 

production potential of various microbial strains. This data can be used to 

identify the most promising microbial strains for biohydrogen production and 

to develop targeted genetic engineering strategies to improve their performance 

even further. Additionally, machine learning algorithms are used to develop 

predictive models for biohydrogen production, identify the optimal conditions 

for biohydrogen production, and optimize the process accordingly (Kumar 

Sharma et al., 2022; Pandey et al., 2023). Finally, machine learning could be 

applied to develop new real-time tools for controlling and managing the 

production process. This review, therefore, provides a comprehensive 

knowledge of machine learning's role in biohydrogen production. Recent 

advances in machine learning-assisted biohydrogen techniques are discussed. 

The anticipated production of biohydrogen from waste is also covered. The 

scientific and technological roadblocks and pathways to machine learning use 

in biohydrogen production are outlined. Besides, the patent landscape analysis 

of machine learning-enabled biohydrogen production is presented.  The 

comparison of the present review with previously published reviews in this 

domain is provided in Table 1. 

2. Importance of biohydrogen 

"Biohydrogen" refers to the dihydrogen gas (H2) produced by 

microorganisms like bacteria, archaea, and algae. Biohydrogen can be 

manufactured   biologically  in   several   ways,   such    as  through  hydrogen- 
 

 
 

 

 
 

 

 
 

 

producing bacteria, i.e., fermentation (Wang et al., 2012), microbial 

electrolysis cells (Cardeña et al., 2019), and biophotolysis (Ghirardi et al., 

2014). These methodologies, which utilize biowastes, are not only cheaper 

than other energy-producing methods, but they also produce no pollution. 

Biohydrogen offers a suitable replacement for carbon-based fuels and 
stands out as a potential clean energy carrier (Sung et al., 2003; Carere et 

al., 2008).  

Since it is feasible to produce biohydrogen from non-depletable 
resources, especially wastes (Dutta et al., 2022), waste processing problems 

and land pollution from landfilling can also be fixed simultaneously 

(Saratale et al., 2008; Panagiotopoulos et al., 2009; Kiran et al., 2014). As 
a result, making biohydrogen from waste is attracting a lot of interest. 

Consequently, biohydrogen is considered the future's primary energy 

carrier (Kapdan and Kargi, 2006). Manufacturing models proposed for 
hydrogen production from biological biomasses can generate energy with 

limited density and elevated heating value (Rachman et al., 1997; Yokoi et 

al., 1998).  
In contrast to the extreme pressures and temperatures required for 

hydrogen generation from natural gas, biohydrogen production methods 

can be engineered to be carbon neutral. Hydrogen is produced in large 

quantities annually for use in manufacturing processes, but its use as an 

energy source to substitute fossil fuels is minimal. Ammonia generation for 

fertilizer, petroleum cracking, and methanol manufacturing are the primary 
industrial uses for hydrogen. Biomethane gas is crucial bioenergy, but cost-

effective biohydrogen generation may eventually replace it (Powell et al., 

2012). Compared to conventional production techniques like the steam 
revamping of petroleum products and water electrolysis, biological 

hydrogen manufacturing processes are safer for the environment and 

require minimal energy (Kapdan and Kargi, 2006). As a result, biohydrogen 
draws attention worldwide due to its potential to serve as a limitless and 

inexpensive renewable energy provider. Although global attention has 

grown, this field of research remains in its infancy (Show et al., 2012). The 
most frequently used keywords in "biohydrogen" research are depicted in 

Figure 1, showing the preponderance of "biohydrogen", "fermentation", 

and "dark fermentation" keywords. Figure 1 is based on co-occurrence 
analysis with "all keywords" as a unit of analysis using the VOSviewer tool.  

3. Overview of biohydrogen production 

The most common method for biohydrogen production is microbial 

electrolysis (Varanasi et al., 2019). In this process, microbial fuel cells 
convert organic matter into electricity, which is then used to produce 

hydrogen gas from water (Varanasi et al., 2019). Other methods for 

biohydrogen production include photobiological hydrogen production 
(Touloupakis and Torzillo, 2019), dark fermentation (Kumar et al., 2015), 

and photo fermentative hydrogen production (Hallenbeck, 2013). These 

methods all involve using biological organisms to produce hydrogen, and 
they are becoming increasingly popular due to their sustainability and low 

cost. 

The most important step in the cost-effective production of biohydrogen 
is to turn sophisticated organic feedstock into simple glucose that can be 

fermented (Zhang et al., 2015). Furthermore, the type of biomass used for 
biohydrogen production dictates the pretreatment method required. For 

example, lignocellulosic materials require comprehensive pretreatment due 

to their complex structure, consisting of cellulose, hemicellulose, and lignin 

(Srivastava et al., 2016; Shanmugam et al., 2019). Since lignocellulosic 

materials contain high concentrations of hemicellulose and cellulose-

derived polymers, they are considered good sources for biohydrogen 
production (Srivastava  et  al.,  2016; Shanmugam  et al.,  2019). Hydrolytic 

 
Table 1.  

Comparison of the coverage of the present review with previously published reviews on the application of machine learning in biohydrogen production.

Comparative analysis Practical implications Perspective Patent landscape Roadmap, pathways Reference 

√ √ - - - Mohd Asrul et al. (2022) 

√ √ √ - - Kumar Sharma et al. (2022) 

√ - √ - - Pandey et al. (2023) 

√ √ √ √ √ This Review 



 

enzymes are necessary to break down carbohydrate polymers into simple 
sugars, but recalcitrant lignin constituents limit their activity, thus limiting the 

material's usefulness. To this end, enzymes that break down lignin and ferment 

hemicellulose and cellulose molecules into simple sugars have been frequently 
investigated during the pretreatment phase (Sherpa et al., 2018). Free enzymes 

in pretreatment have many benefits, including being more efficient with the 

energy used, catalyzing specific degradations or conversions, and not leading 
to generating any toxic compounds causing fermentation inhibition (Sherpa et 

al., 2018). However, free enzymes have a short shelf life, are expensive, and 

cannot be recycled (Macrelli et al., 2014).  
Therefore, there has also been a lot of focus on immobilizing enzymes on 

nano supports so they can be used in biomass pretreatment to produce 

biohydrogen (Zhang and Shen, 2007). Nanomaterials seem well-suited for the 
bond formation of hydrolytic enzymes that greatly enhance the effectiveness of 

the pretreatment method due to the relatively large surface area and variety of 
chemical and physical characteristics they possess. This approach is also 

economical because the nano-immobilized bioactive molecules could be 

retrieved and used again (Rai et al., 2019). Recently, researchers found that 

biohydrogen production could be enhanced when lignocellulose-degrading 

enzymes like hemicellulase, laccase, and cellulase were immobilized on nano 

supports (Chang et al., 2011; Jordan et al., 2011; Rasha, 2012; Abraham et al., 
2014; Dutta et al., 2014; Srivastava et al., 2014; Rai et al., 2016; Fortes et al., 

2017; Ahmad and Khare, 2018; Kumar et al., 2018; Periyasamy et al., 2018; 

Shanmugam et al., 2018). 

3.1. Dark fermentation 

Dark fermentation is a process by which organic matter is broken down in 

an anaerobic environment to produce biohydrogen. The process involves using 

microorganisms, such as bacteria, to break down the organic matter and 
produce hydrogen as a by-product (Kim et al., 2013). Dark fermentation is an 

efficient way to produce hydrogen and is famous for rapidly producing energy 

from various renewable substrates (Kumar et al., 2015). Because it does not use 

 

any light energy, it is good for the environment and cheap to run (Azwar et 
al., 2014). Strict anaerobes produce reduced ferredoxin (Fd (red)) by 

oxidizing pyruvate to acetyl coenzyme A (acetyl-CoA) and CO2. After 

exposure to oxygen, the red Fd becomes oxidized and releases hydrogen 
gas (Jiménez-Llanos et al., 2020; Salakkam et al., 2021). Facultative 

anaerobes metabolize pyruvate into acetyl-CoA and formate. The formate 

hydrocarbon lyase converts the formate into hydrogen in the next step. 
Figure 2 depicts the overall dark fermentation route for extracting 

biohydrogen from biomass. 

Fig. 2. Dark fermentative biohydrogen generation in a single-step process using dark 

fermentative bacteria. 

3.2. Photofermentation 

In the absence of oxygen, purple non-sulfur photosynthetic bacteria 

undergo a fermentative transformation of organic matter into hydrogen and 
CO2, known as  photofermentation. Light is harnessed for  its energy

Fig. 1. Most frequently used keywords in biohydrogen research according to Scopus database. The network visualization was developed by VOSviewer.



 

potential, and organic acids are metabolized. Commonly used purple non-sulfur 

photosynthetic bacteria include those from the genera Rhodobacter 

(Phanduang et al., 2019), Rhodospirillum (Chen et al., 2011), and 

Rhodopseudomonas (Liu et al., 2020). These purple non-sulfur photosynthetic 

bacteria utilize an inverted electron transport method to reduce ferredoxin, 

capturing light energy to produce adenosine triphosphate (ATP) and high-

energy electrons. Subsequently, nitrogenase converts hydrogen protons into 

hydrogen using ATP and reduced ferredoxin. Nitrogenase activity can produce 

hydrogen even in the apparent lack of nitrogen. The route for producing 

biohydrogen from biomass in a single phase using photofermentation is 

depicted in Figure 3.  

Fig. 3. Photofermentative biohydrogen generation from biomass in a single-step process using 

purple non-sulfur photosynthetic bacteria. 

The excess organic acids in the hydrogenic treated wastewater of dark 

fermentation   can  be  converted to    biohydrogen  by   purple non - sulfur

 

photosynthetic bacteria using photofermentation. One of the main benefits 

of photofermentation is that it can theoretically produce more hydrogen 

than dark fermentation. Dark fermentation and photofermentation were 

demonstrated to boost hydrogen yield from hexose and pentose 

fermentation, respectively, from 4.2 to 12.1 mol-H2 per mol-hexose and 
from 2.1 to 10.2 mol-H2 per mol-pentose (Jacob et al., 2015), which is 

necessary for a method to be efficient and financially viable. To produce 

hydrogen, photofermentation uses the hydrogenic effluent from the dark 
fermentation stage as a substrate for the purple non-sulfur photosynthetic 

bacteria. Thus, the process improves energy recovery from the substrate 

and addresses the issue of low substrate energy conversion in dark 
fermentation. Figure 4 depicts combined dark fermentation and 

photofermentation to produce biohydrogen from biomass. 

3.3. Other methods  

Hydrogen can also be produced from hemicellulose obtained from the 
hydrolysis of lignocellulosic materials (Akubude et al., 2021). 

Hemicellulose can be extracted from various plant materials, including 

agricultural residues, and converted into hydrogen via dark fermentation 

(Akubude et al., 2021). During dark fermentation, hemicellulose is broken 

down by microorganisms in the absence of light, and the resulting organic 

acids are then converted into hydrogen gas through a series of biochemical 
reactions. This process has the potential to be a sustainable and renewable 

source of hydrogen, as it utilizes agricultural wastes that would otherwise 

be discarded. Figure 5 shows hydrogen can be obtained through 
fermentation using anaerobic microorganisms on xylose. Other processes, 

such as electrolysis (Cardeña et al., 2019) and gasification (Cao et al., 

2020), can also be used to produce biohydrogen. Electrolysis is when an 
electric current is used to split water molecules into hydrogen and oxygen 

(Cardeña et al., 2019). This can be done using renewable energy sources 

like wind, solar, or hydropower. The resulting biohydrogen can be 
considered a sustainable fuel if the electricity used in the process comes 

from renewable sources. On the other hand, gasification is a process in 

which  organic  materials  such  as  biomass, coal, or  municipal  waste  are 

 Fig. 4. Combined dark fermentation and photofermentation for biohydrogen generation from biomass by exploiting organic acid from dark fermentation in the photofermentation process.  



converted into a gas by heating them in the absence of oxygen (Cao et al., 
2020). The resulting gas can be a mixture of carbon monoxide, hydrogen, and 

other gases, depending on the feedstock and the conditions of the gasification 

process. The hydrogen can then be separated from the other gases and purified 
for use as a fuel. 

4. Machine learning models in biohydrogen production 

Machine learning models have been used to better understand and optimize 

the production process of biohydrogen. One approach to using machine 
learning for biohydrogen production is to use data mining and predictive 

modeling to identify the factors influencing biohydrogen production. This can 

be done by analyzing the data generated from various experiments conducted 
on the production process. From this analysis, predictive models can be 

developed that can help researchers identify the conditions that lead to higher 

production yields and the factors that should be adjusted to optimize the 
process. Another approach to using machine learning for biohydrogen 

production is reinforcement learning algorithms (Pandey et al., 2023). By 

learning from trial and error, these algorithms can identify the optimal 
conditions for biohydrogen production.  

Among different machine learning models, artificial neural networks (ANN) 
are complex machine learning models used to identify patterns in data and 

make predictions (Rodríguez-Hernández et al., 2021). ANN models were 

explored to develop models for biohydrogen production processes by 

identifying the best combinations of parameters for the highest yield (Nikhil et 

al., 2008; Rosales-Colunga et al., 2010; Mullai et al., 2013; Nasr et al., 2013; 

Sridevi et al., 2014; Whiteman and Gueguim Kana, 2014; Sewsynker et al., 
2015; Ghasemian et al., 2019; Yogeswari et al., 2019). The prediction 

efficiency of the ANN algorithms for biohydrogen production, represented by 

the coefficient (R2), is illustrated in Figure 6. 

Figure 6 clearly shows that most ANN models display prediction accuracy 

values higher than 0.90 and, in some cases, even 0.99, indicating excellent 

prediction accuracy. In work by Monroy et al. (2018), biohydrogen was 

simulated to be produced through photofermentation utilizing an immobilized 

consortium of photo-bacteria, demonstrating the prospects of ANN as a 

modeling technique. To build the ANN model, a series of controlled, indoor, 

batch-operated investigational fermentations were conducted at 30oC with 

varying light levels, metals such as vanadium, molybdenum, and iron, and 

initial pH introduced to the medium. The framework was then cross-validated

Fig. 6. Prediction accuracy of artificial neural network (ANN) algorithms in biohydrogen 

production: (a) Nasr et al. (2013); (b) Sridevi et al. (2014); (c) Nikhil et al. (2008); (d) 
Rosales-Colunga et al. (2010); (e) Sewsynker et al. (2015); (f) Mullai et al. (2013); (g) 
Yogeswari et al. (2019); (h) Ghasemian et al. (2019); and (i) Whiteman and Gueguim Kana 

(2014). Note: The number enclosed in square brackets denotes the ANN topology. The first 

and last numbers correspond to parameters in the input and output layers, respectively, while 

the middle number(s) represent neurons in the hidden layer(s). 

using data from indoor photofermentations. The data-based framework was 
created by comparing various ANN architectures. The selected architecture 

showed the potential to display the highest degree of similarity between the 

ANN model's predictions and the actual biohydrogen production. By 
comparing the model's predicted kinetics to those obtained from 

experiments, researchers could see that model could anticipate biohydrogen 

production. The validity and generalizability of the ANN-based framework 
were confirmed by testing it on an exterior fermentation in which the light 

intensity varied throughout the method.  

In another work, the authors employed neural network models combined 
with genetic algorithms to optimize biohydrogen production. To determine 

the efficacy of the experiments, the data were first analyzed by a neural 

network. The results showed that a network with a topology of 4-10-1 
performed well, with 10 neurons in the hidden layer. The neural network 

could make an accurate prediction of 99.99%. Training data with known 

Fig. 5. Hemicellulose to biohydrogen obtained through fermentation using anaerobic microorganisms on xylose. Adapted from Akubude et al. (2021).



 

input and output values showed a mean absolute percentage error of 3×10-10, 

mean absolute error of 3.4×10-8, and mean square error of 9×10-8, indicating 

precision in the predictions (Prakasham et al., 2011).  

In a study, biohydrogen production was studied using a multilayer 

perceptron artificial neural network (MLPANN) and the microbial kinetic with 

Levenberg-Marquardt algorithm (MKLMA) derived from microbial growth. 

The kinetics of significant metabolites were modeled using the MLPANN and 

the MKLMA during dark fermentation. From the total data, after 24 h of 

fermentation, the MLPANN with response surface model was used to design 

the electron-equivalent balance during dark fermentation. Comparisons of 

model uncertainties were made using expanded experimental data of kinetic 

data and cumulative data. The authors used MLPANN and MKLMA to 

investigate the kinetics of the huge metabolites from a small size of 

investigational data sets. Using the MLPANN and response surface model to 

statistically analyze the researched process parameters upon such primary 

metabolites from an electron-equivalent balance perspective, a new, effective 

method was suggested for demonstrating the complex biohydrogen production 

during dark fermentation (Wang et al., 2021). 

To maximize biohydrogen manufacturing and enhance the efficacy of 

biogas production, an approach was designed to examine the impact of volatile 

fatty acids (Mahmoodi-Eshkaftaki et al., 2022). Regression models must be 

robust for calculating responses in time-dependent methods with limited data. 

Therefore, a deep neural network model on the volatile fatty acids was 

proposed to estimate biogas production. The deep neural network model's 

ability to predict the impact of time on biogas implications improved upon that 

of regression models. Thus, the impact of every volatile fatty acid on biogas 

substances was determined by employing the time-dependent capabilities 

provided by the deep neural network model (Mahmoodi-Eshkaftaki et al., 

2022).  

Recently, several new machine learning methods other than neural networks 

were evaluated using the mean square error and R2 to choose the most reliable 

models for modeling the biohydrogen process. Grid search optimization and 

the permutation variable importance analysis revealed that the gradient 

boosting machine, support vector machine, random forest, and AdaBoost were 

the best models for determining the most critical aspects of the biohydrogen 

production process. Elevated R2 values of 0.89, 0.89, 0.9, and 0.89, and low 

mean square error values of 0.015, 0.015, 0.016, and 0.015 for gradient 

boosting machine, support vector machine, random forest, and AdaBoost 

models indicate their effectiveness in predicting hydrogen manufacturing 

(Hosseinzadeh et al., 2022a).  

5. Applications of machine learning to optimize biohydrogen production

Classical statistical optimization cannot capture the complexity and non-

linearity of the dynamic interaction in the biohydrogen process. However, by 

integrating data-driven models based on machine learning, researchers can get 

around the restrictions of traditional methods and model correctly, quickly, and 

at a low cost (Mohd Asrul et al., 2022). 

Using advanced algorithms and predictive models, machine learning can 

help identify the most efficient ways to produce and store biohydrogen. It can 

also help identify the optimal conditions for biohydrogen production. 

Additionally, machine learning can be used to develop strategies for optimizing 

production processes and controlling the behavior of microorganisms in 

biohydrogen production systems. Ultimately, this will improve production 

efficiency, cost savings, and environmental benefits. Machine learning is 

similarly a powerful tool for monitoring biohydrogen production. It can be used 

to analyze data from various sources, such as sensors and images, to identify 

patterns and anomalies and predict future trends. For instance, machine 

learning algorithms can be used to detect changes in the pH of a biohydrogen 

production system so that adjustments can be made to optimize the process. 

Machine learning can also be used to interpret data from sensors that measure 

temperature, pressure, and other parameters so that operators can make better 

decisions about the system's operation.  

Additionally, machine learning algorithms can be used to interpret images 

of the biohydrogen production system, such as photos taken with a microscope, 

to identify cells and microbial activity. This information can then be used to 

refine the process and optimize biohydrogen production. To forecast the 

temporal profile of hydrogen production in batch experiments, an ANN 

framework was established (Nasr et al., 2013). The ANN was designed with a 

5-6-4-1 layer backpropagation configuration. Substrate and biomass

concentrations, time, temperature, and initial pH were the inputs to the 

ANN. Researchers used 312 data points culled from 25 different studies to 

train the model. While training, validating, and testing the model, the 

investigational and estimated hydrogen generation had a correlation 

coefficient 0.989. The new data hydrogen production profile was accurately 
predicted by the ANN, with a coefficient of correlation of 0.98 shown by 

the findings (Nasr et al., 2013).  

In another work, researchers attempted to optimize the primary operating 
variables for hydrogen generation via photofermentation by creating a new 

hybrid fuzzy clustering-ranking method coupled to a radial basis function 

(RBF) neural network. Rhodospirillum rubrum, a light-dependent 
microorganism, served as the carbon source in the biomass transformation 

of syngas to hydrogen through the water-gas shift responses. Two 

exogenous input parameters were used with an RBF neural network to 
establish a correlation between the exergetic outputs. A combination fuzzy 

clustering-ranking algorithm was devised and linked with the RBF model 

to improve both rational and process exergy efficiency while reducing 
normalized exergy destruction (Aghbashlo et al., 2016).  

5.1. Biohydrogen production from wastewater 

Machine learning algorithms can be used to predict the output of 

biohydrogen production from wastewater to achieve better yields. 
Additionally, machine learning can identify wastewater sources that may 

be more suitable for biohydrogen production and can be used to optimize 

the anaerobic digestion process. The use of machine learning can reduce 
the time and resources needed to optimize the biohydrogen production 

process and provide more efficient and cost-effective solutions for 

wastewater treatment. Figure 7 shows the interface of biohydrogen 
production and machine learning models. 

Fig. 7. Wastewater to biohydrogen generation using different supervised and unsupervised 

machine learning algorithms. Sources: Hosseinzadeh et al. (2022a and b). 

The agro-industry processing sector routinely produces millions of 

tonnes of wastewater each year. In keeping with the principles of the 

circular economy, it may be possible to recover bioenergy resources like 
biohydrogen from sewage at the same time as it is being treated. Scientists 

investigated the accuracy of different machine-learning models to recover 

biohydrogen (Safdar Hossain et al., 2022). A total of eight different data-
driven machine learning algorithms were used to create the models, 

including the cubic support vector machine (CSVM), exponential quadratic 

Gaussian process regression (EQGPR), fine Gaussian support vector 

machine (FGSVM), binary neural network (BNN), quadratic gaussian 

process regression (RQGPR), linear support vector machine (LSVM), 

rotational quadratic support vector machine (QSVM), and exponential 



 

gaussian process regression (EGPR). These models have been trained and 

evaluated using collected data. The R2 for predicting hydrogen generated from 

wastewater using the agro-industrial processes was below 0.69, indicating 

unimpressive performance by the CSVM, LSVM, and QSVM. Better 

performance was exhibited by FGSVM, BNN, RQGPR, EQGPR, and EQGPR 

models, as indicated by the high R2 > 0.9 (Safdar Hossain et al., 2022).  

Recently, a study employed adaptive neuro-fuzzy inference systems 

(ANFIS) and ANN to forecast the transmembrane pressure as a critical 

operational parameter in the context of an anaerobic membrane bioreactor-

sequencing batch reactor during biohydrogen production (Taheri et al., 2021). 

Testing transmembrane pressure as an output variable, both models used 

organic loading rates between 0.5 and 8.0 g COD/L/d, effluent pH between 

3.59 and 6.87, blended liquor suspended solid between 4.61 and21.52 g/L, and 

blended liquor volatile floating substances between 3.7 and 15.5 g/L. The 

ANFIS model prepared for transmembrane pressure forecasting by utilizing 

hybrid algorithms utilizing a Gauss membership function with 4 participation 

rates, improved prediction performance. A backpropagation algorithm was 

used for the feed-forward training of the ANN model. The best architecture was 

a Levenberg-Marquardt instructional algorithm of 9 neurons in a hidden layer. 

The R2 values for predicting transmembrane pressure using ANFIS and ANN 

concepts were 0.9 and 0.8, correspondingly, while the determined mean square 

error of transmembrane pressure using the ANFIS model (7.1×10-3) was less 

than that using the ANN model (8×10-3). The ANFIS model's transmembrane 

pressure predictive accuracy was superior to that of the ANN model, as 

evidenced by the ANFIS model's higher R2 and lower mean square error values. 

The sensitivity assessment of the ANN model concluded that organic loading 

rates were the input parameter with the most significant influence on the range 

of transmembrane pressure variation (Taheri et al., 2021).  

5.2. Biohydrogen production from fatty acids 

Monitoring the process and predicting production, which involves the 

characterization of the biogas and the production of volatile fatty acids, is a 

crucial step in scaling up the biohydrogen production process (Sydney et al., 

2020). Recently, researchers investigated the ability of ANN to forecast total 

hydrogen production relying upon the volatile fatty acid generation (Sydney et 

al., 2020). The study inputs included time, acetate, and butyrate intensities 

(model 1); lactate, time, propionate, butyrate intensities, and acetate (model 2); 

time and the sum of all volatile fatty acid (model 3); and time, butyrate, and 

acetate intensities (model 4). With an R2 greater than 0.98, all models 

accurately predicted either the total amount of biohydrogen produced or its rate 

of production, as well as the yield. The volatile fatty acid is the recommended 

input parameter for procedures involving pure cultures, whereas an 

acetate/butyrate model is preferred for methods involving complex/mixed 

cultures. Accumulated biohydrogen generation rate might be predicted 

precisely using ANN frameworks that depend on volatile fatty acid species 

diversity and quantity. Potential studies assessing the ability to adapt ANN to 

handle turbulences are required to lead the path for its utilization on a realistic 

scale. It is feasible to create an ANN biohydrogen forecasting tool relying upon 

volatile fatty acid generation and profile, mainly when instabilities to the 

bioprocess occur. The metabolic processes of the microorganisms and the 

species diversity of volatile fatty acids are essential considerations when 

selecting input variables for such a model's development (Sydney et al., 2020).  

5.3. Biohydrogen production from organic waste 

As mentioned earlier, biohydrogen can be produced from waste by dark 

fermentation (Balachandar et al., 2013). This process uses bacteria to break 

down organic material such as food waste or wastewater sludge and release 

hydrogen gas as a by-product (Balachandar et al., 2013). Recently, a study 

demonstrated the financial viability of producing biohydrogen from liquid 

pineapple waste (Ahmad et al., 2022). This study analyzed total production 

costs, annual sales, profitability analysis, and financial position of biohydrogen 

production through combined dark and photofermentation. The expected total 

profit after taxes for producing 3000 metric tonnes of biohydrogen from the 

fluid state of pineapple waste was 1.7 times that of total capital investment. The 

return on investment was 68% (  Ahmad et al., 2022). Hence, biohydrogen 

generation from waste was shown to be economically feasible and  attractive, 

positioning it as a critical player in achieving the circular economy.

Machine learning models can be trained on data collected from 

experiments on different types of organic waste. The data can consist of 

information such as the composition of the organic waste, the temperature 

and pressure used, the amount of time the process takes, and the amount of 

biohydrogen produced. Machine learning models can learn the best 
parameters to optimize the conversion process from this viewpoint. Models 

can also identify potential problems that could arise in the conversion 

process, such as the formation of byproducts or the incomplete conversion 
of organic waste. Using machine learning models, researchers and 

engineers can identify the most efficient and cost-effective methods for 

producing biohydrogen from organic waste. A representation of organic 
waste to biohydrogen using machine learning models is depicted in Figure 

8. 

Fig. 8. Organic-waste to biohydrogen using machine learning models. (a) ANN-Artificial 

neural network (Moreno Cárdenas et al., 2020; Wang et al., 2021), (b) SVM-Support vector 

machines (Monroy et al., 2016), and (c) MPCA-Multi-way principal component analysis 

(Monroy et al., 2016). 

A study evaluated the biohydrogen output prediction potential from 
organic waste by employing ANN and support vector machine (SVM) 

analyses to the experimental data. Compared to ANN, SVM was discovered 

to be more effective at making predictions. The SVM model was estimated 
to have an R2 and root mean square error of 0.98 and 0.01, correspondingly. 

Later, a genetic algorithm (GA) with particle swarm optimization (PSO) 

was combined with these models to zero in on the most effective settings 
for the processes at hand. While the GA and PSO similarly found the 

optimal parameter value, the latter was considerably quicker (Mahata et al., 

2020).   

6. The patent landscape for biohydrogen 

The patent landscape is used to know the trend of biohydrogen 

production, in addition to aiding researchers in understanding which 

biohydrogen production method is feasible. Patent landscape analysis 
primarily depends on keywords and international patent classification 

(IPC). In this way, researchers can narrow down their search very 

accurately. This analysis is carried out stage by stage so researchers can 
perform it without needing expertise. In the first stage, research is carried 

out only with keywords, and in the next, with the combination of keywords 

and IPC for easy understanding.  
Patent landscape analysis was carried out for the keyword – 

"biohydrogen" in the "English All" category; the total count popped out was 

567 (as on 17th Nov 2022); another option enabled was "single family 
member" and "stemming" (Fig. 9).  

Figure 9 reveals that the United States of America is leading other 
countries with a patent filing count of 221. The year-based  analysis  shows  



 

 

 
 
  

 
 
 
 
 
 
 
 
 

Fig. 9. Patent landscape analysis for the "biohydrogen" keyword. 

 
 
  
 
 
 
  
 
 
 
 
  
 
 
 
  
 
 
 

Fig. 10. Patent landscape analysis for the "biohydrogen production" keyword. 



 

 

 
 
  
 
 
 
  
 
 
 
 
  
 
 
 
  
 
 
 

Fig. 11. Patent landscape analysis for the "biohydrogen production" keyword and IPC "C12P". 

Fig. 12. Functions of machine learning models allowing to foster large-scale biohydrogen production. 



 

consistent growth over the decade. The dominant IPC were C12P, C12N, and 

A23K, occupying the top three positions. Patent landscape analysis was also 

carried out for the keyword – "biohydrogen production" in the "English All" 

category; the total count popped out was 183 (as on 17th Nov 2022); another 

option enabled was "single family member" and "stemming" (Fig. 10).  

Figure 10 reveals that the United States of America is leading other 

countries again with a patent filing count of 77. The year-based analysis shows 

some fluctuations in their growth over the decade. The dominant IPC were 

C12P, C12N, and C12M, occupying the top three positions. Patent landscape 

analysis was carried out for the keyword – "biohydrogen production" in the 

"English All" category with IPC "C12P"; the total count popped out was 113 

(as of 19th Nov 2022); another option enabled was "single family member" and 

"stemming". 

 Figure 11 reveals that the United States of America is leading other 

countries with a patent filing count of 52, with the year-based analysis revealing 

some fluctuations in their growth over the decade. The dominant IPC were 

C12P, C12N, and C12M, occupying the top three positions. 

7. Perspectives of machine learning for biohydrogen production 

Machine learning is expected to play a major role in biohydrogen 

production. Machine learning algorithms can be used to analyze the data related 

to biohydrogen production and identify patterns to optimize the process. 

Machine learning algorithms can be used to identify the most efficient 

production reactors and parameters, including resistance time, space velocity, 

and surface area, to maximize the yield of hydrogen (Deng et al., 2021; Ganguli 

and Bhatt, 2023). Additionally, machine learning can be used to predict the 

potential yield of biohydrogen from a given set of inputs, enabling researchers 

to make more informed decisions about the best pathways for production. 

Furthermore, machine learning can be used to identify potential genetic 

modifications that could increase the efficiency of biohydrogen production. 

Overall, machine learning can be used to optimize biohydrogen production, 

making the process more efficient and cost-effective. Based on the above 

discussion, we propose different pathways to boost large-scale biohydrogen 

production using machine learning models, as shown in Figure 12. 

Using machine learning to improve biohydrogen production can take us 

closer to a promising future for this green vehicle fuel. However, one of the 

major challenges for machine learning in biohydrogen production is the limited 

data availability. Due to the complexity and variability of the process, it is not 

easy to generate sufficient data for machine learning algorithms to learn from. 

Additionally, the available data is often incomplete or biased, making it 

difficult to train reliable models. Finally, machine learning models must be able 

to account for non-linear or non-monotonic relationships between input and 

output variables, which can be difficult to model. One solution to these 

challenges is to use synthetic data generated by simulation. This can provide a 

more comprehensive set of data to train machine learning algorithms on, as 

well as data that is not biased by experimental conditions. Additionally, a 

combination of simulation and real experimental data can help reduce the data 

set's bias and provide more accurate results. Finally, using advanced algorithms 

such as deep learning can help to account for non-linear relationships between 

input and output variables. 

8. Conclusions 

The rising number of scholarly articles and patent applications in 

biohydrogen suggests that the industry has promising growth potential in the 

not-too-distant future for biohydrogen replacing fossil fuels. In particular, when 

burned, hydrogen fuel does not produce harmful byproducts or heat. 

Biohydrogen production can also be implemented in developing countries by 

using existing bio-wastes.  

While there is no single policy on biohydrogen production, many 

governments are determined to support developing and deploying renewable 

energy technologies, including biohydrogen production. One example of the 

policies that support biohydrogen production is the European Union's Horizon 

2020 research and innovation program, which funds research and 

demonstration projects related to renewable energy technologies. In the United 

States, the Department of Energy (DOE) has programs to support research and 

development of renewable energy technologies. The DOE's Hydrogen and Fuel 

Cells Program funds research on producing, storing, and using hydrogen as a 

fuel. In addition, the DOE's Bioenergy Technologies Office supports research 

on using biomass as a feedstock for economic hydrogen production via 

fermentation. 

The use of machine learning for biohydrogen production is still in its 

infancy but holds great promise. Machine learning algorithms can be used 

to analyze complex data sets and to identify patterns and correlations. This 
information can be used to develop models to predict the optimal conditions 

for biohydrogen production. Machine learning can also identify the most 

promising strains or organisms for biohydrogen production and optimize 
the fermentation process. In addition, machine learning can be used to 

develop efficient systems for controlling biohydrogen production and 

process control systems to ensure optimal yields. All of these applications 
are very promising, and with the increased use of machine learning in 

biohydrogen production, this process's efficiency and cost-effectiveness 

will likely improve significantly. 
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