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Abstract
The global contamination of water resources by organic contaminants such as pharmaceuticals and pesticides is calling 
for advanced remediation techniques, yet conventional water treatments are incomplete or generate toxic byproducts 
such as chlorinated compounds. As a consequence, safer methods such as treatment with ferrate are needed. Here, we 
review the utilization of ferrate(VI), the tetraoxy anion  FeO4

2−, with emphasis on synthesis and activation of ferrate. 
Ferrate synthesis is done by wet, thermal, and electrochemical processes. An increase in the oxidation capacity can be 
obtained by activation of ferrate(VI), which generates highly reactive high-valent iron species such as iron(V) and iron(IV) 
species. We present activa-tion of ferrate(VI) by iron(III), copper(II), and colloidal Mn(IV), which are present in natural 
minerals. We compare various ferrate(VI)–metal ion systems to reveal the most effective systems to remove organic 
contaminants from contaminated water.
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Abbreviations
MNV	� Murine norovirus
QB	� Qubevirus durum
ATL	� Atenolol
CAF	� Caffeine
ACE	� Artificial sweetener
SET	� Single-electron transfer
OAT	� Oxygen-atom transfer
PMSO	� Methyl phenyl sulfoxide
PMSO2	� Methyl phenyl sulfone
EWT	� Emergency water treatment
SMX	� Sulfamethoxazole
CBZ	� Carbamazepine
DCF	� Diclofenac

SIZ	� Sulfisoxazole
GCE	� Glassy carbon electrode

Introduction

One of the human rights includes water, but a significant 
population of many countries lacks safe drinking water 
(Everard 2019). The contamination in source water is a 
worldwide concern, which is continuously increasing due to 
the high use of pesticides to meet the demand for food secu-
rity, the high consumption of pharmaceuticals and personal 
care products by the human population, and the increasing 
industrialization of the society (Hoek van Dijke et al. 2022; 
Morin-Crini et al. 2022). The effluents from agriculture, 
health care, and industrial activities contribute to water con-
tamination (Anand et al. 2022; Cizmas et al. 2015; Fan et al. 
2021; Kovalakova et al. 2021, 2020). Conventional treatment 
plants are not made to remove a wide range of contaminants, 
especially emerging ones, and obtaining safe drinking water 
is challenging and requires innovative approaches (Hejase 
et al. 2022; Lim et al. 2022; Von Gunten 2018; Winkler and 
Van Loosdrecht 2022). Furthermore, treatments like chlo-
rination generate potentially toxic halogenated and nitrog-
enous byproducts (Dong et al. 2019; Richardson and Ternes 
2022; Sharma et al. 2014, 2017b). Iron-based technologies 
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have emerged as attractive approaches to address the chal-
lenges of currently used treatment processes to achieve 
water sustainability (Brillas 2022; Garcia et al. 2021; He 
et al. 2023; Luo et al. 2021a; Parvulescu et al. 2022; Sharma 
et al. 2017a; Wang et al. 2022).

Iron (Fe) has a range of valence states (0, II, III, IV, V, 
and VI) (Sharma et al. 2015a, b). Iron in low-valent oxi-
dative forms, such as Fe(0), Fe(II), and Fe(III), has been 
applied in nanotechnology, medicine, biocatalysis, energy, 
and environmental remediation (Brillas 2022; El Kateb et al. 
2022; Gupta et al. 2022; Hong et al. 2022; Li et al. 2021b). 
Among the high-valent iron species, Fe(IV) and Fe(V) are 
implicated in biological oxidation reactions (Sharma 2013a; 
Soler et al. 2022; Zhang et al. 2021c). Iron in + 6 oxidation 
states (iron(VI)) has been investigated for many decades 
that have potential applications in super iron batteries, green 
synthesis, and remediation of contaminants (Sharma et al. 
2016). The most studied role of iron(VI) is in the remedia-
tion processes (He et al. 2022; Sailo et al. 2017; Sharma 
et al. 2015a, b; Sharma 2010a, 2011; Sharma et al. 2022; 
Wang et al. 2021a; Yates et al. 2014; Zhang and Jiang 2022). 
Here, we review ferrate(VI) with focus on ferrate synthe-
sis, ferrate activation and application to remove organic 
contaminants.

Ferrate(VI)

Alkali and alkaline salts of tetraoxy anions of iron(VI) 
 (FeVIO4

2−), commonly called ferrates, have been investi-
gated to remove a wide range of contaminants in water and 
wastewater (El Kateb et al. 2022; He et al. 2023; Liu et al. 
2022; Tian et al. 2022; Wu et al. 2022; Zhang and Jiang 
2022). Salts of sodium and potassium ferrate(VI)  (Na2FeO4 
and  K2FeO4) have been used in studying their roles in the 
remediation of inorganic and organic contaminants. Since 
1950, three approaches have been applied to synthesize 
these salts (Cataldo-Hernández et al. 2018; Sharma 2008; 
Sharma et al. 2009; Zboril et al. 2014). The synthesis of 
 K2FeO4 was produced by heating a mixture of potassium 
nitrate and iron(III) oxides up to 1100 °C. However, this 
thermal approach gave a ferrate product of low purity, below 
50%. The high purity of the ferrate(VI) salt (~ 90%) could 
be obtained by replacing potassium nitrate with sodium per-
oxide and heating the mixture to 600 °C. Significantly, this 
approach lowered the heating temperature; however, sodium 
peroxide is expensive compared to potassium nitrate.

In the wet chemical approach, salts of Fe(III) and 
iron(III) oxides were oxidized by hypochlorite under high 
alkaline conditions, e.g., with more than 10 M hydroxide 
ion (Perfiliev and Sharma 2008). Using sodium hydroxide 
and potassium hydroxide as an alkaline medium in the wet 
method yielded  Na2FeO4 and  K2FeO4, respectively. The 
high 

purity of K2FeO4, 98% and higher, could be obtained from 
Na2FeO4 by exchanging the sodium ion with the potassium 
ion. This was possible because of the lower solubility of 
K2FeO4 than Na2FeO4 in water (5406 Sharma 2010; 3631 
Luo, Z. 2011). The electrochemical method involved oxi-
dizing iron rode (Fe(0)), Fe(II) salts, and oxides and salts 
of Fe(III) under a high alkaline medium to generate either 
Na2FeO4 or K2FeO4. The strength of the alkaline solution 
and temperature in the synthetic procedure determine the 
yield of the salts of ferrate(VI). The overlap of potentials in 
the oxygen evolution decreases the conversion of Fe(III) to 
ferrate(VI).

Some researchers have used an inert anode-like boron-
doped electrode (BDE) to overcome the drawback of elec-
trochemical synthesis of ferrate(VI) (Macova et al. 2009; 
Sánchez-Carretero et al. 2010) (Macova et al. 2009). More 
details of ferrate synthesis are in published reviews (Sharma 
et al. 2013, a, b). Overall, large-scale solid synthesis of 
ferrate(VI) has many practical problems, such as high tem-
perature for dry preparation, i.e., thermal approach, low 
product yield involving many reaction steps, i.e., wet chemi-
cal approach, and the formation of residual passive film on 
the electrode surface and the interference of competitive 
oxygen evolution reaction, i.e., electrochemical approach. 
Furthermore, both wet chemical and electrochemical 
approaches require high concentration of OH−, e.g., 10 M 
or higher. The direct use of FeVIO4

2− ion solutions produced 
by these methods has limitations because of their high pH 
that raises the pH of the treated water. Also, the high pH 
reduces the efficacy of FeVIO4

2− by decreasing the oxidation 
power, i.e., a decrease in rates with an increase in pH. High 
amounts of FeVIO4

2− would be needed to achieve the desired 
efficacy at high pH that would further increase the pH of the 
treated water and the treatment cost.

Novel methods to surmount the harsh conditions of syn-
thesizing FeVIO4

2−, such as 10 M or higher NaOH in wet 
synthesis, are thus needed to achieve FeVIO4

2− synthesis at 
lower pH. The potential of electrochemical preparation is 
too close to the one of oxygen evolution reactions, but elec-
trodes based on smart iron-containing materials may over-
come such inherent conditions. However, attention must be 
focused on lowering the pH since decreasing pH decreases 
the stability of the FeVIO4

2− ion. Ideally, the synthesized 
solution should have a pH of 9.0—10.5, the range at which 
FeVIO4

2− is the most stable for several hours.
The issue of the inherent instability of FeVIO4

2− ion may 
be addressed by generating it in situ, or at the site of use. 
This would still require innovation in the procedures used 
to generate FeVIO4

2− ion, i.e., liquid with low pH that elimi-
nates current shortcomings of synthesis methods. Consid-
ering the advances made in materials/nanomaterials, an 
improvement is needed to develop the starting material, 
or iron(III) oxide/hydroxide, to synthesize FeVIO4

2− ion. 



A hybrid approach of synthesizing liquid FeVIO4
2− with 

enhanced stability of several weeks has been used, and the 
pH was at least three units lower than the high alkaline solu-
tion produced by either the wet chemical or electrochemical 
method (Sharma 2015). This approach presents opportuni-
ties to improve the applicability of FeVIO4

2, especially in 
treating solid surfaces to inactivate a wide range of bacte-
ria and viruses (Sharma and Jinadatha 2020). However, the 
potential of the FeVIO4

2 solution, prepared by the hybrid 
approach, in treating polluted water is unknown due to a 
lack of testing. Future research may include improving the 
stability of FeVIO4

2− solutions from weeks to months, so that 
activated ferrate can be utilized similarly to bleach in many 
applications. Testing the liquid FeVIO4

2− solution to solve 
emerging environmental concerns provides the confidence 
that this iron-based molecule is not restricted to laboratory 
research.

Ferrate(VI) can perform multi-modal actions to induce 
simultaneous oxidation, coagulation, and disinfection 
in sludge and water treatment (5421 Sharma 2007; 7516 
Le 2004; 3241 Lee 2009; 7959 Kralchevska 2016; 7025 
Sharma 2015; 9956 Zhang 2020; 10,118 Zheng 2020; 9957 
Cui 2018; 10,881 Rougé V. 2022; 9888 Meng 2019; 10,877 
Islam 2018; 9428 Shin J. 2018). Ferrate(VI) is reduced to 
lower oxidation state iron(III) oxides/hydroxides, which 
have performed superior being coagulants for the removal 
of metals such as  (arsenic, copper, cadmium, and thallium) 
and nutrients like phosphate ion (Filip et al. 2011; Good-
will et al. 2019; Johnson and Lorenz 2015; Kolarík et al. 
2018; Prucek et al. 2013, 2015; Wang et al. 2020; Yang et al. 
2018). Importantly, the generated iron(III) oxides/hydrox-
ides (γ-Fe2O3 and γ-FeOOH) possess core–shell structures 
from FeVIO4

2− successfully captured metals from water. 
FeVIO4

2− has also been shown to be a powerful disinfectant. 
Ferrate(VI) has shown its inactivation of bacteria and virus-
like Bacillus cereus Escherichia coli, MS2 Bacteriophage, 
murine norovirus (MNV), Qubevirus durum (QB), and bac-
teriophages f2 (Sharma and Jinadatha 2020; Sharma 2007). 
Importantly, ferrate(VI) destroys capsid proteins, genome, 
and MS2, inhibiting the regeneration of the virus in water.

In the past decade, the research on the application of 
ferrate(VI) to oxidize emerging contaminants (X) has 
increased (Cui et al. 2018; Karlesa et al. 2014; Kim et al. 
2015; Kovalakova et al. 2021; Li et al. 2021a; Luo et al. 
2021a; McBeath and Graham 2021; Meng et al. 2019; Shao 
et al. 2019; Shin et al. 2018a, 2018b; Sun et al. 2016; Wang 
et al. 2021a; Yang et al. 2020; Zhang et al. 2021a; Zhao 
et al. 2018b, 2018c; Zheng et al. 2021; Zhu et al. 2021). 
Ferrate(VI) is considered a strong oxidant in an acidic 
medium (+ 2.2 V vs. NHE), while it is a mild oxidant in 
alkaline conditions (+ 0.7 V vs. NHE) (Delaude and Laszlo 
1996; Sharma 2013a). Contaminants with electron-rich moi-
eties like aniline, phenolic, and thiol functionalities have 

shown high reactivity with ferrate(VI) (He et al. 2022; Jiang 
2015; Sharma et al. 2011; Sharma 2013b). Ferrate(VI) had 
sluggish reactivity with X that contains electron-deficient 
functional groups. The dose of ferrate(VI) to remove X 
depends on the oxidation capacity, which is discussed in 
the next section.

Oxidation capacity of ferrate(VI)

Numerous studies revealed that the oxidation capac-
ity, expressed as moles of electron equivalent per mole 
of ferrate(VI), to degrade X depends on the participation 
of generated intermediate iron(V) ((Fe(V)) and iron(IV) 
((Fe(IV)) species in reactions. Fe(V) and Fe(IV) are pro-
duced by when ferrate(VI) oxidizes X by one-electron and 
two-electron (or oxygen atom) transfer steps, respectively 
(reactions 1 and 2) (Huang et al. 2018, 2021; Sharma 2010b, 
2013b; Sharma et al. 2011; Tian et al. 2020):

Further reactions of X with Fe(V) and Fe(IV) can increase 
the oxidation capacity of ferrate(VI) (reactions 3–5). The 
reaction of Fe(V) with X can proceed by either one-electron 
(reaction 3) or two-electron transfer (reaction 4) steps. The 
formed Fe(IV) in reaction 3 can subsequently react with X 
to oxidize it (reaction 5):

When the oxidation of X by ferrate(VI) occurs by one-
electron steps, i.e., reactions 1, 3, and 5), each mole of 
ferrate(VI) would be able to oxidize 3 mol of X, yielding 
an oxidation capacity of 3.0. However, if the oxidation of 
X happens by the initial two-electron step (reaction 2), fol-
lowed by one-electron transfer (reaction 5) processes, only 
2 mol of X would be oxidized by ferrate(VI), giving an oxi-
dation capacity of 2.0.

Additional reactions that may also simultaneously occur 
during the oxidation of ferrate(VI) with X are the reactions 
of ferrate(VI), Fe(V), and Fe(IV) with water and them-
selves (reactions 6–11) (Karlesa et al. 2014; Lee et al. 2005, 
2009; Lee and von Gunten 2010; Sharma et al. 2015a, b; 
Sharma et al. 2016; Sun et al. 2018a, b; Wang et al. 2021a). 
These reactions would decrease the oxidation capacity 
of ferrate(VI) because ferrate(VI) is consumed by such 

(1)Fe(VI) + X → Fe(V) + X⋅

(2)Fe(VI) + X → Fe(IV) + X(O)

(3)Fe(V) + X → Fe(IV) + X⋅

(4)Fe(V) + X → Fe(III) + X(O)

(5)Fe(IV) + X → Fe(III) + X(O)



un-desired reactions rather than ferrate species reacting with 
X (i.e., desired reactions):

Reactions (6), (8), and (10) proceed by the first order, sug-
gesting independent of the concentration of ferrate species. 
Reactions (7), (9), and (11) follow second-order reactions 
and thus, depend on the concentrations of ferrate species. 
The kinetics of the reactions (6)–(11) are pH dependent. 
Generally, three patterns have been seen for ferrate(VI) and 
Fe(V) species. Under high acidic conditions, reactions fol-
low first-order kinetics. At neutral pH, the reactions are of 
second-order kinetics. In an alkaline medium, the reactions 
are of second-order kinetics. More details of pH dependence 
of the reactions are given in reviewed articles (Sharma et al. 
2015a, b; Sharma et al. 2022).

Oxidation of X by ferrate(VI) and its intermediate species 
(Fe(V) and Fe(IV)) (reactions 1–5) are pH dependent with 
the general trend of increase in rates with the decrease in pH. 
Rates of reactions also vary with the nature of X. Therefore, 
the oxidation capacity of ferrate to degrade X depends on 
the type of X and pH. Furthermore, the oxidation capacity 
would usually vary between 1.0 and 3.0. The experimental 
conditions may be applied to obtain the optimum oxidation 
capacity of degraded X by ferrate(VI). As mentioned above, 
tuning the chemistry of the reaction between ferrate(VI) and 
X is needed to increase the participation of highly reactive 
iron intermediate Fe(V) and Fe(IV) in oxidative reactions. 
In recent years, a concept of "activated ferrate(VI)" has been 
introduced that achieves this objective and is discussed in 
the next section.

Activation of ferrate(VI)

The production of iron(V) and iron(IV) from ferrate(VI) in 
high concentrations at short time scales has been given the 
term "activated ferrate(VI)", which has shown high potential 
in treating contaminants of low reactivity (or recalcitrant 
organic molecules) in water and wastewater (Cao et al. 2021; 
Feng et al. 2017a, b; Feng et al. 2017a, b; Ghosh et al. 2019; 

(6)Fe(VI) + H2O → Fe(III) + O2

(7)Fe(VI) + Fe(VI) → [diferrate(VI)] → Fe(III) + O2

(8)Fe(V) + H2O → Fe(III) + O2

(9)Fe(V) + Fe(V) → Fe(III) + O2

(10)Fe(IV) + H2O → Fe(III) + O2

(11)Fe(IV) + Fe(IV) → Fe(III) + O2

Lee et al. 2009; Manoli et al. 2022, 2017a, 2017c; Shao et al. 
2019; Sharma et al. 2015a, b; Spellman et al. 2022; Wang 
et al. 2021b; Zhu et al. 2021). Some examples of recalcitrant 
contaminants are caffeine (CAF) (i.e., psychostimulants), 
flumequine and trimethoprim (i.e., antibiotics), acesulfame 
potassium (i.e., artificial sweetener), and Atenolol (ATL) 
(i.e., β-blocker) (Ghosh et al. 2019; Manoli et al. 2019; Pan 
et al. 2020). Many investigations are in progress on activat-
ing ferrate(VI) by different activators that could generate 
Fe(V) and Fe(IV) to enhance the oxidation of recalcitrant 
contaminants in water.

One of the initial approaches to activate ferrate(VI) in 
mild alkaline pH (i.e., pH 9.0) in water was by adding a 
small amount of nitric acid, hydrochloric acid, and acetic 
acid without significant change in pH (Manoli et al. 2017b). 
This acid activation could oxidize caffeine, acesulfame 
potassium, and atenolol in seconds, while without such acti-
vation, degradation of the contaminants occurred in min-
utes-hours. For example, the activated ferrate(VI) exhibited 
a 30% increase in the removal of caffeine, acesulfame, and 
atenolol. It was observed that the activated Fe(VI) showed an 
increased reduction in caffeine, artificial sweetener (ACE), 
and atenolol by 30% (Manoli et al. 2017b). An increase in 
the amount of acid addition led to the complete removal of 
these contaminants (Manoli et al. 2017b). Enhanced removal 
of contaminants for a wide range of pharmaceuticals and 
pesticides in wastewater effluent by acid-ferrate(VI) combi-
nations has been demonstrated.

Later approaches have applied reductants (R) to generate 
iron(V) and iron(IV) from ferrate(VI) (reaction 12) (Feng 
et al. 2018; He et al. 2023; Shao et al. 2019; Spellman et al. 
2022; Sun et al. 2018a, b, 2019a; Zhang et al. 2017):

A detailed study on using inorganic reductants was con-
ducted, which showed varied increased removal of phar-
maceuticals by ferrate(VI)-reductant system. This research 
showed that Fe(V) and Fe(IV) may be formed selectively 
by initial single-electron transfer (SET) and oxygen-atom 
transfer (OAT) reductant, respectively (e.g., Fig. 1) (Sharma 
2010b, 2013b; Sharma et al. 2011). Reductants of SET like 
bisulfite (SO3

2−) and thiosulfate (S2O3
2−) showed enhanced 

removal in a shorter time scale of 30 s (Feng et al. 2018). 
Comparatively, OAT reductants like hydroxylamine, arsen-
ite, nitrite, ammonia, amines, and creatinine took minutes 
to have similar removal percentages of pharmaceuticals. 
Researchers have focused on using bisulfite as a reductant 
to study the enhanced phenomena of oxidizing contaminants 
by ferrate(VI).

In recent years, silica and carbonaceous surfaces have 
also been applied to enhance the oxidation of contaminants 
in water (Cao et al. 2021; Pan et al. 2020; Sun et al. 2019a, 

(12)Fe(VI) + R → Fe(V)∕Fe(IV) + R⋅∕R(O)



b; Tian et al. 2020). Silica has an acidic character and may 
behave like the small addition of acid to ferrate(VI) to 
increase the oxidation of contaminants. It seems that car-
bonaceous surfaces possess functional moieties that may 
be acting as reductants to generate Fe(V) and Fe(IV) to 
cause enhanced oxidation of pollutants in the heterogene-
ous system of Fe(VI)–carbonaceous solids. An example of 
carbonaceous surfaces is biochar and hydrochar that contain 
functional groups like C=O groups as reductants to produce 
Fe(V)/Fe(IV), which yielded increased removal of pharma-
ceuticals and pesticides under mild alkaline conditions.

Activation of ferrate(VI) by metal ions

An interest in applying alkaline earth (Ca(II), Al(III), and 
Sc(III)) and transition metals ions (Co(II), Ni(II), Fe(II), 
Fe(III), Cu(II), Mn(II), and Mn(IV)) in combination with 
ferrate(VI) has been forthcoming in order to understand their 
role in increased removal of contaminants in water (Sharma 
et al. 2022; Zhang and Jiang 2022; Zhang et al. 2021b; 
Zhao et al. 2018a, 2018b; Zheng et al. 2020). A thought of 
applying the metal ion was to enhance the decomposition 
of Fe(VI) to increase the concentration of Fe(V)/Fe(IV) in 
a short time period for enhanced degradation of contami-
nants in water. Additionally, the structures and properties of 
Fe(IV) and Fe(V) may vary advantageously with the metal 

ions in the mixed solution of Fe(VI)–metal ions–contami-
nant present in a solution like synthesized salts of FeVI hav-
ing different metal ions (Delattre et al. 2000; Herber and 
Johnson 1979; Yu and Licht 2008). In other words, this 
approach may allow modulating the reactivity of ferrate(VI) 
to increase its oxidation power.

A summary of tested metal ions is presented in Fig. 2. 
The addition of Ca(II) has shown an increase in the decom-
position of ferrate(VI); however, the removal of atenolol did 
not increase significantly. Al(III), Sc(III), and Co(II) also 
had almost no noticeable enhanced removal of atenolol. 
Ni(II) showed increased removal of atenolol by ferrate(VI). 
Ni(II) is known to have a solid influence on decomposing 
the ferrate(VI) even in trace amounts in solution (Licht et al. 
1999). The addition of Fe(III) to ferrate(VI) had the high-
est enhanced removal of atenolol in water. The comparative 
results of Fig. 2 indicate that the type of metal ions has a 
role in enhancing the removal effects of metal ions when 
combined with ferrate(VI) in water. The variation of metal 
ions may be related to the competing rate constants of the 
self-decomposition of Fe(V)/Fe(IV) by metal ions.

Figure 2 suggests that most of the metal ions, except 
Fe(III), were able to destabilize Fe(V)/Fe(IV) at a higher 
rate than the reaction rates of the intermediate iron spe-
cies with the atenolol. Interestingly, this negative effect 
of the metal ions was not predominant in using Fe(III) in 
the ferrate(VI)–atenolol system. This is significant because 
Fe(III) is routinely used as a coagulant in treatment plants. 
We have therefore presented a detailed review of Fe(III) in 
enhancing the removal of contaminants by ferrate(VI) in 
the next section. Other metal ions, Cu(II) and Mn(IV), may 
either present inherently in contaminated water or exist in 

Fig. 1   Effect of reductants on the activation of ferrate(VI) to remove 
contaminants in water. The addition of one-electron reductants like 
sulfite gives Fe(V) from ferrate(VI), which could completely remove 
pharmaceuticals and pesticides in 30  s. Comparatively, two-electron 
reductants such as creatinine generate Fe(IV) that removes recalci-
trant contaminants completely in 10  min. Note that without reduct-
ants, the removal of different contaminants by only ferrate(VI) was 
lower than 20%. The potential ligands such as borate, phosphate, car-
bonate, and ammonia for the Fe(V) and Fe(IV) determine the magni-
tude of the increased effect of reductants on the ferrate(VI)
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Fig. 2   Removal of atenolol (ATL) by ferrate(VI)–metal ion 
systems. (Experimental conditions: [atenolol] = 5.0  µM, 
[ferrate(VI)] = 100  µM, [Metal ion] = 100  µM, [borate 
buffer] = 2.0 mM, pH 9.0). In applying ferrate(VI) only, the removal 
of atenolol was ~ 18%. Most ions showed minimal influence on the 
removal efficiency of ferrate(VI)–metal ions. The addition of Fe(II) 
to ferrate(VI) had increased removal efficiency to ~ 60%. Data were 
taken from Zhang et al. (2021b) with the permission of the American 
Chemical Society)



natural minerals; hence, we have also briefly discussed these 
metal ions in the following section.

Activation of ferrate(VI) by iron(III)

Initial testing of Fe(III) influence on the activation of 
ferrate(VI) was carried out on four contaminants, ateno-
lol, flumequine, aspartame, and diatrizoic acid, which have 
varied molecular structures (Fig. 3) (Zhang et al. 2021b). 
Importantly, these contaminants have sluggish reactiv-
ity with ferrate(VI) with corresponding second-order rate 
constants at pH 9.0 are (5.0 ± 0.4) × 10−1, (3.4 ± 0.1) × 10−1, 
(8.2 ± 1.0) × 10−1, and (5.3 ± 0.1) × 10−1 M−1 s−1 for atenolol, 
flumequine, aspartame, and diatrizoic acid, respectively. The 
slow reactivity could be seen in the minimal removal effi-
ciency of the contaminants by only ferrate(VI) (i.e., less than 
20%) (Fig. 3). However, with increasing addition of Fe(III) 
to the same solution of ferrate(VI),  resulted in increased 
removal of the contaminants in water. Complete removal of 
atenolol and flumequine was obtained with increasing Fe(III) 
concentration (Fig. 3a, b). Aspartame and diatrizoic acid 
also showed increased removal, but maximum removal was 
up to 35% (Fig. 3c, d). The results of Fig. 3 clearly showed 
the significant role of Fe(III) in enhancing the removal of 
pollutants by ferrate(VI). Furthermore, the oxidizing spe-
cies, Fe(V)/Fe(IV), generated from ferrate(VI)–Fe(III) 
mostly contributed to enhance the removal of the contami-
nants. The Fe(V) and Fe(IV) species are much more reactive 

than ferrate(VI) (Sharma 2002, 2011) to cause the increasing 
removal of contaminants from Fe(VI) alone. The enhance-
ment of Fig. 3 was also observed in the oxidation of sul-
famethoxazole (i.e., antibiotic) by ferrate(VI)–Fe(III) system 
in borate buffer (Shao et al. 2019). It appears that the reac-
tivity of Fe(V)/Fe(IV) species differed with the molecular 
structure of each contaminant to yield different percentages 
of removal by the Fe(VI)–Fe(III).

The importance of Fe(V)/Fe(IV) species in the oxidation 
of contaminants by ferrate(VI)–Fe(III) has been explored 
by the selective oxidation of methyl phenyl sulfoxide 
(PMSO) to methyl phenyl sulfone (PMSO2). The methyl 
phenyl sulfoxide is known to probe high-valent iron species 
(Shao et al. 2019, 2020). Fe(V)/Fe(IV) species react much 
faster with contaminants than with ferrate(VI)  (Sharma 
2002, 2011), and therefore, the comparative formation rate 
of methyl phenyl sulfone usually indicates the generation 
of Fe(V)/Fe(IV) in the ferrate(VI)–Fe(III) system. In the 
ferrate(VI)–Fe(III)–contaminant system, the stoichiomet-
ric formation of methyl phenyl sulfone was seen, indicat-
ing that the Fe(V)/Fe(IV) caused the enhanced removal of 
contaminants by ferrate(VI)–Fe(III) system. Interestingly, 
the help of kinetic modeling of the oxidation of atenolol was 
sought to distinguish which of the two Fe(V) and Fe(IV) 
were the major species responsible for giving increased 
removal of atenolol in the ferrate(VI)–Fe(III) system. The 
modeling was able to demonstrate that the major oxida-
tive species was Fe(IV), and the calculated second-order 
rate constant for reaction with atenolol was obtained as 

Fig. 3   Effect of Fe(III) on 
removal of (A) atenolol, 
(B) flumequine, (C) aspar-
tame, and (D) diatrizoic
acid by FeVI–Fe(III) system.
(Experiments conditions:
[Contaminant] = 5.0 µM, 
[Fe(VI)] = 100.0 µM, pH 9.0 
([borate buffer] = 2.0 mM), 
reaction time = 10 min). 
Herein, Fe(III) removed much
of the studied contaminants in
10.0 min. The removal of ateno-
lol by ferrate(VI) was ~ 20%,
which increased to ~ 100% by
adding 200 µM Fe(III). In the
case of other contaminants, the
removal efficiency of Fe(III)
was low (≤ 10%). With the
addition of 200 µM Fe(III), the
removal efficiency increased to
100, 35, and 30% for flume-
quine, aspartame, and diatrizoic
acid, respectively. Adapted from
(Zhang et al. 2021b) with the
permission of the American
Chemical Society



(6.3 ± 0.2) ×  104  M−1  s−1, which is much higher than that 
of the reaction between ferrate(VI) and atenolol (i.e., 
(5.0 ± 0.4) ×  10–1  M−1  s−1). Reactions (13) and (14) may thus 
describe the enhancement of the oxidation of atenolol by the 
addition of Fe(III) to ferrate(VI):

Both reactions (13), (14) have pH dependence, and there-
fore, the magnitude of enhancement would vary with pH 
(Dong et al. 2017; Lee et al. 2014; Luo et al. 2021a, 2021b, 
2020). Effect of water constituents of natural water like 
carbonate and phosphate ions on the removal efficiency of 
ferrate(VI)–Fe(III) was examined (Baum et al. 2021; Luo 
et al. 2021a, 2019). The studied contaminant was diatrizoic 
acid at 5.0 mM carbonate and phosphate at pH 9.0. Car-
bonate had no effect on the removal of diatrizoic acid with 
efficiencies of 19.7 ± 1.9% and 16.2 ± 2.2% without and with 
carbonate. However, phosphate ion decreased the efficiency 
to 5.5 ± 0.5%, similar to previous studies (Huang et al. 2018, 
2021). Details of the reasoning behind inorganic constitu-
ents of water have been well studied and explained else-
where, in which the role of ligands of Fe(V) and Fe(IV) was 
provoked (Huang et al. 2018; Luo et al. 2019). Fe(V)- and 
Fe(IV)-complexes behave differently than un-complexed 
Fe(V) and Fe(IV) species because oxidation mechanisms 
are varied from the change of the coordination sphere around 
the central iron element (Guo et al. 2019; Morimoto et al. 
2011; Park et al. 2011). Natural organic matter showed a 
decrease in the removal efficiency of the contaminants by 
the ferrate(VI)–Fe(III) system. In addition to the influ-
ence of organic moieties as ligands on Fe(V)/Fe(IV) spe-
cies, the competitive consumption of natural organic mat-
ter by ferrate(VI) may decrease the oxidation capacity of 
ferrate(VI)–Fe(III)(Feng et al. 2016; Lee et al. 2020; Luo 
et al. 2015).

Figure  4 shows the removal of diatrizoic acid 
investigated in lake water and river water by the 
ferrate(VI)–Fe(III) system. The water samples were col-
lected from the Brazos River water and Bryan Lake, the 
City of Bryan in Texas (Zhang et al. 2021b). The samples 
were mixed with diatrizoic acid to test for the effect of the 
amount of ferrate(VI) on the removal of diatrizoic acid 
from the lake water and river water samples in a borate 
buffer at pH 8.0 (Zhang et al. 2021b). Diatrizoic acid was 
removed 100% from water at pH 8.0 after 10 min of the 
reaction by applying an increasing amount of ferrate(VI) 
(> 200.0  μM) while maintaining the ([ferrate(VI)]
{[Fe(III)} = 0.5 (Zhang et al. 2021b). Figure 4 further 
depicts that > 400.0 μM amounts of ferrate(VI) in the 
ferrate(VI)–Fe(III) were needed for the complete removal 

(13)Fe(VI) + Fe(III) → Fe(IV)

(14)Fe(IV) + ATL → Fe(II) + Oxidized products(ATL)

of diatrizoic acid. Overall, the magnitude of contaminant 
removal in real water samples will vary with pH, inor-
ganic constituent concentrations, and the levels and types 
of natural organic matter (Zhang et al. 2021b). The opti-
mization of the pH and concentration of ferrate(VI) and 
the molar ratio of ferrate(VI) to Fe(III) could be required 
to achieve high efficiency in removing contaminants from 
water (Zhang et al. 2021b).

In another real water application of the ferrate(VI)–Fe(III) 
system, 1.0 L of pharmaceutical industrial wastewater in China 
was used as the sample, maintained at 4 °C, and adjusted to a 
pH of 9.0 (Mao et al. 2022). The filtered (0.45 syringe) waste-
water sample was spiked with 5.0 µM of sulfamethoxazole 
(Mao et al. 2022). The successful removal of sulfamethoxa-
zole from industrial wastewater could be optimized using 
the ferrate(VI)–Fe(III) combination rather than ferrate(VI) 
alone. More recently, a set laboratory-scale batch of studies 
assessed the effects of the Fe(VI):Fe(III) ratio and Fe dosage 
to produce drinking water in emergency disaster and disease-
outbreak scenarios (Zheng et al. 2020). The study revealed that 
the joint use of ferrate(VI) and Fe(III) salts as an oxidant in 
the emergency water treatment (EWT) process had simultane-
ously and effectively removed chemical and microbial contam-
inants from water (Zheng et al. 2020). The cost-effectiveness 
of ferrate(VI) in the usage of water treatment was discussed, 
wherein the addition of Fe(III) into ferrate(VI) lowered the 
overall treatment cost-effectiveness (Zheng et al. 2020). Addi-
tionally, a modest amount of acid inherently present in Fe(III) 

Fig. 4   Effect of concentration of ferrate(VI) on the removal of dia-
trizoic acid in surface waters collected from Brazos River and 
Lake Bryan by ferrate(VI)–Fe(III) system at a fixed molar ratio of 
0.5 ([Ferrate(VI)]/[Fe(III)]) at pH 8.0. (Experimental conditions: 
[diatrizoic acid] = 5.0  µM. [borate buffer] = 2.0  mM and reaction 
time = 10  min). The constituents of natural water samples like lake 
and river water decreased the removal efficiency of diatrizoic acid 
by ferrate(VI)–Fe(III) system. The decrease in efficiency could be 
compensated by increasing the amount of ferrate(VI) in the mixed 
solution of ferrate(VI) and Fe(III). As shown herein, 200.0  µM of 
ferrate(VI) in a mixed solution was needed, while about 400.0  µM 
was required to completely remove sulfamethoxazole in ions and nat-
ural organic water-containing water samples. (Adapted from (Zhang 
et al. 2021b) with permission of the American Chemical Society)



liquid used in treatment plants would be beneficial in removing 
contaminants in water (Zheng et al. 2020).

Activation of ferrate(VI) by copper(II) ions

Recently, copper(II) performance was thoroughly researched 
to comprehend and define the extent of its efficacy in activat-
ing ferrate(VI) to enhance the oxidation of sulfamethoxazole 
(Shi et al. 2022). Results on the enhanced effect of Cu(II) on 
the removal of sulfamethoxazole by ferrate(VI) are presented 
in Fig. 5 (Shi et al. 2022). In 10 min, the removal of sulfameth-
oxazole by ferrate(VI) alone was ~ 60.0% at pH 8.0. However, 
the addition of Cu(II) to ferrate(VI) yielded the complete 
removal of sulfamethoxazole. A similar effect of Cu(II) was 
also observed at pH 7.0 and 8.0. Increased removal of sul-
famethoxazole was seen with the increasing amount of Cu(II) 
to ferrate(VI) at pH 8.0. A wide range of contaminants having 
different structures (e.g., bisphenols) could also be removed 
effectively by the ferrate(VI)–Cu(II) combination at pH 8.0.

The enhanced effect of Cu(II) was described by the follow-
ing reactions (15)–(17):

(15)Fe(VI) + Cu(II) → Fe(V) + Cu(III)

(16)Fe(V) + Cu(II) → Fe(IV) + Cu(III)

(17)Fe(IV) + Cu(II) → Fe(III) + Cu(III)

As discussed in the previous section, Fe(V) and Fe(IV) 
species have a high potential to oxidize contaminants in 
water. An additional oxidant in the reaction was Cu(III), 
which also has the ability to oxidize contaminants by the 
ferrate(VI)–Cu(II) system. Both kinds of high-valent iron 
and copper were supported by different analytical methods 
(Shi et al. 2022). The Fe(V)/Fe(IV) species were identified 
by the stoichiometric conversion of methyl phenyl peroxide 
to methyl phenyl sulfone. The identification of Cu(III) was 
explored by spectroscopic techniques.

The influence of inorganic and organic constituents on 
the removal of sulfamethoxazole by ferrate(VI)–Cu(II) was 
investigated at pH 8.0 (Shi et al. 2022). Most inorganic ions 
(cations and anions), except carbonate ion, had no effect on 
the removal efficiency. The negative effect of carbonate ion 
may be related to the formation of Cu(II)–carbonate complex 
and that inhibited the formation of highly reactive oxidative 
species. The decrease in the removal efficiency in the pres-
ence of natural organic matter was seen for the oxidation of 
sulfamethoxazole by ferrate(VI)–Cu(II), similar to the oxi-
dation system of ferrate(VI)–Fe(III) (Zhang et al. 2021b). It 
seems that natural organic matter and its functional moie-
ties could remove oxidative species (Fe(IV), Fe(IV), and 
Cu(III) through competitive reactions to decrease the ability 
to oxidize the contaminant. This could be further shown 
by the increase in inhibitory effect with an increase in the 
concentration of natural organic matter. The presence of 
carbonate and natural organic matter in surface water also 
decreases the removal efficiency of sulfamethoxazole by the 
ferrate(VI)–Cu(II) system. The influence of other copper 
species, Cu(I), has also indicated its removal of contami-
nants by ferrate(VI) (Sharma et al. 2005, 2008; Yngard et al. 
2008). Importantly, finalized state of copper was Cu(II), 
which could be removed by coagulation by Fe(III) oxides/
hydroxide, produced by ferrate(VI), similar to many previ-
ous studies (Ghosh et al. 2008).

Activation of ferrate(VI) by colloidal 
manganese dioxide

Colloid manganese dioxide (cMnO2) is usually found in 
natural water and water treatment processes (Yu et  al. 
2020; Zhang et al. 2020a, b). Researchers have used dif-
ferent types of colloidal manganese dioxide  (αMnO2, 
βMnO2, γMnO2, and δMnO2) in removing contaminants in 
water and in carrying out organic oxidation reactions (Luo 
et al. 2022). Therefore, colloidal manganese dioxide com-
bined with ferrate(VI) seeks enhancement of contaminants 
removal. A detailed study was performed using sulfameth-
oxazole, and the results are presented in Fig. 6a. (Luo et al. 
2022). Among the various types of colloidal manganese 
dioxide, only amorphous manganese dioxide (cMnO2) in 

Fig. 5   Degradation of sulfamethoxazole by ferrate(VI) in the pres-
ence of Cu(II). (Reaction conditions: [sulfamethoxazole]0 = 5.0  μM, 
[ferrate(VI)]0 = 50.0  μM, [copper((II)]0 = 20.0  μM, pH = 8.0, 
and T = 20  °C) Degradation of sulfamethoxazole by copper(II), 
ferrate(VI), and ferrate-Cu(II) system. Copper(II) did not give any 
degradation of sulfamethoxazole. However, ferrate(VI) showed degra-
dation of up to 60% removal in 10.0 min. When copper(II) was added 
to ferrate(VI), the sulfamethoxazole degradation rate increased, which 
gave complete removal in 10.0 min. (Adapted from (Shi et al. 2022) 
with the permission of Elsevier Inc.)



combination with ferrate(VI) had an increasing effect on 
the oxidation of sulfamethoxazole compared to ferrate(VI) 
alone. The characterization of different phases of manga-
nese dioxide revealed that colloidal manganese dioxide has 
an amorphous phase with a large surface area and surface 
defects (Luo et al. 2022), thereby contains a large number of 
active sites to interact with ferrate(VI) to result in enhanced 
oxidation of sulfamethoxazole. The ease of oxidation of 
sulfamethoxazole by ferrate(VI)–cMnO2 was supported by 
determining the activation energy of the reaction, which was 
20.6 kJ mol−1, lower than the activation energy obtained 
as 25.6 kJ mol−1 in the reaction of sulfamethoxazole by 
ferrate(VI) only (Luo et al. 2022).

The enhanced effect of ferrate(VI)–cMnO2 was also tested 
against carbamazepine (CBZ), diclofenac (DCF), sulfisoxa-
zole (SIZ), and atenolol in borate and phosphate buffer at 
pH 8.0 (Fig. 6b). Results showed higher removal efficiency 
of the contaminants by ferrate(VI)–cMnO2 than that of 
ferrate(VI) alone in both buffers in solution. It was noticed 
that phosphate buffer had lower removal efficiency than 
borate buffer, similar to previous studies (Huang et al. 2018). 
Significantly, removal efficiency by the cMnO2-induced acti-
vation of ferrate(VI) varied with the structure of the organic 
contaminants (Fig. 6b).

Identification of reactive intermediates, Fe(V) and Fe(IV), 
in the ferrate(VI)–cMnO2 system was initially investigated 
by measuring the amount of methyl phenyl sulfone from the 
conversion of methyl phenyl sulfoxide (Luo et al. 2022). 
A higher amount of methyl phenyl sulfone was observed 
than only ferrate(VI), indicating higher concentrations 

of Fe(V) and Fe(IV) to yield an enhanced effect of the 
ferrate(VI)–cMnO2. It was suggested that cMnO2 forms a 
complex with ferrate(VI) (ferrate(VI)–cMnO2) to ease the 
oxidation of contaminants. Such complexation was initially 
explored by Raman spectroscopy (Fig. 7a). The stretching 
vibrations of [MnO6] in cMnO2 were seen in the region of 
574–638 cm−1 (Cheng et al. 2014). The vibration intensity 
was affected in the presence of ferrate(VI), which showed a 
decrease in this band. The band at 783 cm−1 of ferrate(VI) 
for the Fe–O oscillator also showed influence due to the 
complex formation (Sitter et  al. 1985). Overall, bands 
observed in Raman spectroscopy indicate the complex for-
mation between ferrate(VI) and cMnO2.

The ferrate(VI)–cMnO2 complex was further investigated 
by in situ electrochemical measurements. The open-circuit 
potential of the GCE (glassy carbon electrode), coated 
with cMnO2 (cMnO2-GCE), increased with the addition of 
ferrate(VI) (Fig. 7b). When sulfamethoxazole was added into 
the ferrate(VI) containing solution, the potential decreased, 
which was interpreted that the complex formed reacted with 
sulfamethoxazole to cause such decrease. Comparatively, the 
glassy carbon electrode without coating with cMnO2 had 
a small decrease when sulfamethoxazole was added into 
the ferrate(VI) containing solution. This finding inferred a 
higher oxidation ability of postulated ferrate(VI)–cMnO2 to 
oxidize sulfamethoxazole than ferrate(VI) (Fig. 7b). More 
details of electrochemical measurement are given elsewhere 
(Luo et al. 2022).

The inf luence of cations (Ca2+ and Mg2+) and 
anion (SO4

2−) on the removal of sulfamethoxazole by 

Fig. 6   a Effects of various crystal-shapes MnO2  on activation of 
ferrate(VI) to remove sulfamethoxazole and b Degradation effi-
ciencies of five representative pollutants after reaction 5.0  min in 
ferrate(VI) and cMnO2-ferrate(VI) systems with borate  or phos-
phate buffer, SMX-sulfamethoxazole, CBZ-carbamazepine, DCF-
diclofenac, SIZ-sulfisoxazole, and ATN. (Experimental condi-
tions: [SMX]0 = [CBZ]0 = [DCF]0 = [SIZ]0 = [ATN]0 = 5.0  μM, 
[ferrate(VI)]0 = 50.0  μM, [cMnO2]0 = 50.0  μM, [phosphate 
buffer]0 = [borate buffer]0 = 20.0  mM, [αMnO2]0 = [βMnO2]0 = [γ
MnO2]0 = [δMnO2]0 = 150  mg  L−1, pH = 8.0). cMnO2-amorphous 
shape manganese dioxide, which had varied disorder structures of 

short-range order and long-range disorder structure, possesses more 
surface area and defects having more  surface defects  and active 
sites. a Shows that such active sites could promote the activation of 
ferrate(VI) to increase the oxidation of sulfamethoxazole. b Depicts 
that cMnO2 induced similar activation of ferrate(VI) was also seen in 
oxidizing other contaminants. However, the magnitude of enhance-
ment of oxidation of contaminations by such cMnO2-induced activa-
tion of ferrate(VI) differs due to different moieties in the molecular 
structures of contaminants. Adapted from Luo et al. (2022) with the 
permission of Elsevier



ferrate(VI)–cMnO2 was examined (Luo et al. 2022). The 
cations were found to increase sulfamethoxazole's oxidation 
rate by ferrate(VI)–cMnO2. It seems that the cations have a 
positive role through interaction with negative surfaces of 
cMnO2 and, therefore, a possibility of a stronger complex 
with negatively charged ferrate(VI) (FeO4

2−). The stronger 
complex in the presence of Ca2+ and Mg2+ has a higher abil-
ity to oxidize sulfamethoxazole than the absence of these 
ions in the ferrate(VI)–cMnO2 system. The SO4

2− had no 
significant influence on oxidation. The sulfamethoxazole 
degradation rate also increased in the lake and river waters 
(Luo et al. 2022). This positive influence of inorganic and 
organic constituents of natural water needs further mecha-
nisms to optimize the ferrate(VI)–cMnO2 to remove a wide 
variety of contaminants present in treatments (Luo et al. 
2022).

Conclusion

The oxidation of contaminants by fer rate(VI) 
can be accelerated with increased removal effi-
ciency by producing Fe(V) and Fe(IV) species in the 
ferrate(VI)–metal ion system. Both Fe(V) and Fe(IV) have 
much higher reactivity than ferrate(VI) in the following 
order: Fe(V) > Fe(IV) > ferrate(VI). The preference for gen-
erating Fe(V) may take precedence over producing Fe(IV) 
in the ferrate(VI)-reductant system, which may take seconds 
to oxidize contaminants compared to Fe(IV), which requires 
minutes to degrade the recalcitrant organic contaminants 
completely. Natural metal ions, Fe(III), Cu(II), and Mn(IV), 

showed enhanced removal of a wide variety of contaminants 
when combined with ferrate(VI). Fe(III) ions addition has 
shown promise among the metal ions because they are 
already used as coagulants at water treatment facilities. Fur-
thermore, the Fe(III) coagulant has an acidity that may also 
enhance the removal efficiency of contaminants. Addition-
ally, the addition of Fe(III) to ferrate(VI) may be cost-effec-
tive because of the less required dosage of ferrate(VI) com-
pared to achieving the same removal efficiency at a much 
higher amount of ferrate(VI) alone. Advantageous multi-
modal actions of ferrate(VI) as a disinfectant and coagulant 
would create a comprehensive, advanced treatment process 
by the ferrate(VI)–Fe(III) system. The exploitation of the 
ferrate(VI)–Fe(III) system in continuous-flow treatment 
technology may be investigated to overcome real-time chal-
lenges in treating contaminated water and wastewater.

Many studies on ferrate(VI) activation by various homo-
geneous and heterogeneous activators are forthcoming; 
however, a mechanistic understanding of the system is far 
from clear. In-depth comprehension will assist investiga-
tors in modulating ferrate(VI) reactivity with contaminants. 
Importantly, researchers should work on creating natural 
metal ion-based activators that could be recycled. In these 
directions, researchers may take advantage of the advance-
ment made in bioinspired materials that may be efficient 
activators of ferrate(VI). These activators must be least influ-
enced by inorganic and organic constituents of water, which 
are present in much higher concentrations than the targeted 
contaminants. The objective may be to combine the robust 
catalyst with ferrate(VI) to treat water with high removal 
efficiency.

Fig. 7   a In  situ Raman spectra of ferrate(VI), cMnO2, 
and cMnO2-ferrate(VI). (Experimental conditions: 
[ferrate(VI)]0 = 3.0 mM, [cMnO2]0 = 3.0 mM). b The change of open-
circuit potential with or without cMnO2 (SMX-sulfamethoxazole, 
GCE-glassy carbon electrode). a Suggests the change in cMnO2 
and ferrate(VI) vibration bands when mixed compared to individual 
cMnO2 and ferrate(VI). Bands at 574–638  cm−1 are from cMnO2, 
while the band at 800  cm−1 is from ferrate(VI). Both bands are 

affected by the presumed complex ferrate(VI)–cMnO2. b Shows the 
oxidation potential of glassy carbon electrode (GCE) with and with-
out the coating of cMnO2. Oxidation potential decreased by adding 
sulfamethoxazole in ferrate(VI) containing solution, which was more 
in the  GCE coated with cMnO2, indicating the possibility of the 
ferrate(VI)–cMnO2 complex. (Adapted from (Luo et  al. 2022) with 
the permission of Elsevier, Inc.)
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