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A new class of rational parametrization has been developed and it was used to generate a new family of rational

which depends on an index α ∈ ]-∞ , 0[ ∪ ]1 , +∞[. This family of functions verifies, among other things, the properties of positivity, of partition of the unit and, for a given degree k, constitutes a true basis approximation of continuous functions. We loose, however, the regularity classical optimal linked to the multiplicity of nodes, which we recover in the asymptotic case, when α → ∞. The associated B-splines curves verify the traditional properties particularly that of a convex hull and we see a certain "conjugated symmetry" related to α. The case of open knot vectors without an inner node leads to a new family of rational Bezier curves that will be separately, object of in-depth analysis.

Introduction

In this paper we will explore geometric objects very frequently used in the world of industrial design and graphic animation on computer. These are Bézier curves and B-spline curves. Their applications range from printing on paper and robotics to video games. In this introduction, we will present in turn a brief overview of the evolution of computer graphics, a bibliographic analysis and then our motivation which will situate the context of our work. The papers [START_REF] De | On Calculating with B-splines[END_REF][START_REF] Cox | The numerical evaluation of B-spline[END_REF] lay the groundwork for the approach to defining "normalized" B-spline functions commonly referred to as the Cox-de Boor recurrence relation although it was previously established by Lois Mansfield. Both papers show the numerical stability of this recurrence relation in spline approximation calculations as opposed to Schoenberg's initial approach which defined B-spline functions as divided differences of power functions truncated and which turns out to be very unstable. This numerical instability is very extensively illustrated in the article by Cox [START_REF] Cox | The numerical evaluation of B-spline[END_REF].

The Cox-de Boor recurrence relation will be used to formulate a new rational approach to B-spline functions from an algorithmic point of view. Although the founders of our approach to defining B-splines as basic functions of splines, these papers do not address the issue of curves generated by B-splines using control points. David Rogers in [START_REF] Rogers | An Introduction to NURBS with historical perspective[END_REF], gives a very educational presentation of the different geometric objects ranging from Bezier curves to non-uniform rational B-spline curves. Surfaces were also well addressed. It gives us a synthetic view of the state of the art in the field of geometry applied to computer graphics, while indicating the contexts of its evolution as well as the actors of this evolution. The many examples which illustrate the various concepts here serve as a benchmark in our work. It should be noted that in this book, the emphasis has mainly been placed on the algorithmic aspects of the construction of curves and surfaces.

W. Tiller et al. [START_REF] Piegl | The NURBS Book[END_REF] is the essential reference on the question of B-spline curves and surfaces. It offers in a single volume the essential proofs of the properties of these geometric objects which are the curves and surfaces of Bezier and B-splines and that the assisted design industry computer uses extensively today. It also contains some very interesting examples that we have borrowed to illustrate some properties in our work. Other works going in the direction of the use of polynomial B-spline functions and Nurbs are also approached in the references [START_REF] Biswas | Bezier and Spline in Image Processing and Machine Vision[END_REF][START_REF] Chandrasekharan | Design Automation Techniques for Approximation Circuits-Verification[END_REF][START_REF] Ceruzzi | A History of Modern Computing[END_REF][START_REF] Solomon | Curves and Surfaces for Computer Graphics[END_REF][START_REF] Knuth | The Metafont Book[END_REF][START_REF] Marsh | Applied Geometry for Computer Graphics and CAD[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF][START_REF] Jüttler | Geometric Modeling and Algebraic Geometry[END_REF][START_REF] Kunoth | Serra-Capizzano Splines and PDEs-From Approximation Theory and Numerical Linear Algebra[END_REF][START_REF] Lengyel | Mathematics for 3D game programming and Computer Graphics[END_REF][START_REF] Randriambelosoa | On a family of rational polynomials for Bezier curves and surfaces[END_REF][START_REF] Schoenberg | Contribution to the problem of approximation of equidistant data by analytical function[END_REF][START_REF] Surana | Numerical methods and methods of Approximation in science and engineering[END_REF][START_REF] Versprille | Computer-Aided Design Applications of the rational B-Spline Approximation Form[END_REF][START_REF] Wahba | Spline Models for Observational Data[END_REF].

A is given by the recurrence relation of Cox/de Boor [START_REF] Rogers | An Introduction to NURBS with historical perspective[END_REF] as follows: Likewise we have the rational B-spline basis (R i ) n i=0 of degree k ∈ I N * associated to the vector of nodes U and the weight vector W = (ω i ) n i=0 which can be defined by

G 0 i (x) = 1 if t i ≤ x < t i+1 for i = 0, . . . , m -1 0 otherwise G k i (x) = w k i (x)G k-1 i (x) + 1 -w k i+1 (x) G k-1 i+1 (x)
w k i (x) =    x -t i t i+k -t i if t i ≤ x <
R i (x) = ω i G n i (x) n j=0 ω j G n j (x)
where ω i > 0, ∀i = 0, . . . , n.

We can then define the rational B-spline curves replacing the polynomial basis by the rational basis [START_REF] Rogers | An Introduction to NURBS with historical perspective[END_REF][START_REF] Versprille | Computer-Aided Design Applications of the rational B-Spline Approximation Form[END_REF]. One has to notice that w k i (x) = ϕ(x , t i , t i+k ) where ϕ is a real function defined on I R 3 satisfying the following properties:

1. ϕ(x , a , b) ∈ [0 , 1) for all (x , a , b) ∈ I R 3 2. For all a, b ∈ I R such that a < b the function x ∈ I R → ϕ(x , a , b) is continuous, strictly increasing on [a , b)

and we have:

• ϕ(x , a , b) = 0 for all x / ∈ (a , b)

• lim x→b - ϕ(x , a , b) = 1
The aim of this work is to maintain these properties while imposing that for all a, b ∈ I R such that a < b, the function x ∈ I R → ϕ(x , a , b) is homographic in order to build a natural B-spline basis composed of rational functions.

The outline of the paper is as follows. In Section 2, we study the new class of rational parametrization with their fundamental properties. The new class of rational B-spline basis has been developped in section 3, as well as the new properties obtained. The Section 4 studies the new class of B-spline curves. Some illustrations of properties of the new class of rational B-spline curve have been given in Section 5. We then offer our conclusion and the further works in Section 6.

A class of rational parametrization 2.1 Definition

The targeted class of parametrization is based on the following lemma which gives the foundation of a new class of curves of rational B-spline type. 

(α -1) > 0, therefore α ∈ (-∞ , 0) ∪ (1 , ∞).
We then write

H ([a , b]) = f α | f α (x) = α(x -a) x + (α -1)b -αa , α ∈ (-∞ , 0) ∪ (1 , ∞), x ∈ [a , b] ( Uniqueness ) Let α, β ∈ (-∞ , 0) ∪ (1 , ∞) and f α , f β ∈ H ([a , b]) corresponding f α = f β implies α = β Remark 2.2. 1. Let x ∈ [a , b] and α ∈ (-∞ , 0) ∪ (1 , ∞). One has D = x + (α -1)b -αa = 0. 2. Let α ∈ (-∞ , 0) ∪ (1 , ∞) and a < b. f α ∈ H ([a , b]) is continuous and strictly increasing on [a , b] with f α ([a , b]) = [0 , 1].
Moreover, the classical case as an asymptotic situation holds:

lim |α|→∞ f α (x) = λ = x -a b -a .
In addition, we have: 

f α (a + b -x) = 1 -f 1-α (x) and f α (x) = 1 -f 1-α (a + b -x). Definition 2.3. Let α ∈ (-∞ , 0)∪(1 , ∞). A parametrization of index α is any real function ϕ α defined for all (x , a , b) ∈ I R 3 by ϕ α (x , a , b) = f α (x) if a ≤ x < b with f α ∈ H ([a , b]) 0 otherwise

Properties of the parametrization

I R such that a < b. Let a < t 1 < t 2 < b. For all x ∈ [a , b], we have ϕ α (a + b -x , t 1 , t 2 ) = 1 -ϕ 1-α (x , a + b -t 2 , a + b -t 1 )
Proof. We apply Proposition 2.1 by taking T (x) = a + b -x on I R. We observe that T is strictly decreasing and verifies T • T (x) = x for all x ∈ I R. This gives the result.

Illustration 2.1. The figures 1 and 2 illustrate ϕ α (x , 0 , 1) for x ∈ (-1 , 2) with values of α conjugated respectively. We observe that on the subinterval (0 , 1) which is the interior of its support, the function is convex for α < 0 and concave for α > 1.

The figure 3 which illustrates ϕ α (x , 1 , 3) for x ∈ (0 , 6) confirms the previous observations and lets suspect the symmetrical role that the conjugated α are to play. It also shows that the effect of α is crucial in the neighborhood of 0 and of 1. n i=0 of I R d called control polygon. The nature of chosen vector of nodes may strongly influence the properties of B-spline basis generated as well as the resulting curve. We must very quickly specify this object.

We follow the definitions of the book of D. F. Rogers entitled "An Introduction to NURBS with historical perspective" [START_REF] Rogers | An Introduction to NURBS with historical perspective[END_REF]. such that t k = a and t m-k = b.

End nodes:

The nodes t 0 , t 1 , . . . , t k and the nodes t m-k , t m-k+1 , . . . , t m are called end nodes.

The nodes t k+1 , t k+2 , . . . , t m-k-1 are called interior nodes.

Open node vector:

The vector of nodes is said to be open if its end nodes coincide; we then have

t 0 = t 1 = . . . = t k = a and t m-k = t m-k+1 = . . . = t m = b.
Otherwise U is said to be periodic.

Uniform node vector:

U is uniform if its interior nodes are equidistant; that is, there exists h > 0 such that t i+1 -

t i = h for all k ≤ i ≤ m -k -1.
Otherwise U is non-uniform.

Multiple node (multiplicity of a node) :

Let p ∈ I N * and t i be a node of U . We say that t i is a node of multiplicity p if there exists a unique j ∈ [0, . . . , m-1]∩I N such that the subsequence

U i = (t j+l ) p-1 l=0 with j ≤ i ≤ j + p -1 is constant. If p > 1,
we say that t i is multiple node.

Stop nodes:

The set (u i ) r i=0 of distinct nodes of U = (t i ) m i=0 constitutes the stop nodes. We have u 0 = t 0 < u 1 < . . . < u r = t m and there exists a unique sequence of nonnegative integers p = (p i ) r i=0 such that for all i = 0, . . . , r, u i is of multiplicity p i .

We shall remark that r i=0 p i = m + 1. On the other hand, these nodes define the different segments of studied curves and the interior stop nodes define the transition between its segments. 6. Symmetrical node vector:

U = (t i ) m i=0 is a symmetrical node vector if for all i = 0, . . . , m, t m-i = t 0 + t m -t i . Definition 3.3. Let a, b ∈ I R such that a < b and m, n, k ∈ I N * such that n ≥ k and m = n + k + 1. Let α ∈ (-∞ , 0) ∪ (1 , ∞) and ϕ α the parametrization of index α. Let U = (t i ) m i=0 be a node vector of the interval [a , b].
A B-spline basis of index α and of degree k on the node vector U is the real functions α G k i n i=0 defined by the recurrence relation:

α G 0 i (x) = 1 if t i ≤ x < t i+1 for i = 0, . . . , m -1 0 otherwise α G k i (x) = w k i (x) α G k-1 i (x) + 1 -w k i+1 (x) α G k-1 i+1 (x) w k i (x) = ϕ α (x , t i , t i+k ) (3.1)
This relation is said to be of Cox/de Boor.

Definition 3.4. Let a, b ∈ I R such that a < b. Let m, n, k ∈ I N * such that n > k and m = n + k + 1. Let α ∈ (-∞ , 0) ∪ (1 , ∞). Let U = (t i ) m i=0 be a node vector of interval [a , b]. Let d ∈ I N * such that d ≤ 3, and Π = (d i ) n i=0 ⊂ I R d . Let α G k i n i=0
be the B-spline basis of index α, of degree k and of node vector U . A B-spline curve of index α, with node vector U and control points

(d i ) n i=0 is the I R d valued function G α defined by: x ∈ [t 0 , t m ] → G α (x) = n i=0 d i α G k i (x)
Π is called control polygon of the curve G α . 

Fundamental properties of the new class of basis

∈ (-∞ , 0) ∪ (1 , ∞).
The rational B-spline basis of index α with vector of nodes U and of degree k, α G k i n i=0 , verifies the following properties: 1. Local support property:

For all x / ∈ (t i , t i+k+1 ), α G k i (x) = 0 2.

Positivity property:

For all i = 0, . . . , n and x ∈ (t i , t i+k+1 ), α G k i (x) > 0 3. Unit partition property:

For all j such that t j < t j+1 , for all x ∈ [t j , t j+1 ), we have

n i=0 α G k i (x) = j i=j-k α G k i (x) = 1

Symmetry property:

If U is a symmetrical node vector then for all x ∈ [t 0 , t m ] and i = 0, . . . , n we have

α G k i (t 0 + t m -x) = 1-α G k n-i (x) Proof. Let α ∈ (-∞ , 0) ∪ (1 , ∞
) and ϕ α be the parametrization of index α.

We will proceed by recurrence on k.

(Local support and Positivity: )

• For k = 0, we have by definition: for all i = 0, . . . , m -1

α G 0 i (x) = 1 if t i ≤ x < t i+1 for i = 0, . . . , m -1 0 otherwise hence we have α G k i (x) = 0 if x / ∈ (t i , t i+k+1 ) α G k i (x) > 0 if x ∈ (t i , t i+k+1 ) = ∅ • Let k > 0 and assume that for all 0 ≤ j < k we have α G j i (x) = 0 if x / ∈ (t i , t i+j+1 ) α G j i (x) > 0 if x ∈ (t i , t i+j+1 ) = ∅ By definition we have α G k i (x) = w k i (x) α G k-1 i (x) + 1 -w k i+1 (x) α G k-1 i+1 (x) with α G k-1 i (x) = 0 if x / ∈ (t i , t i+k ) α G k-1 i (x) > 0 if x ∈ (t i , t i+k ) = ∅ and α G k-1 i+1 (x) = 0 if x / ∈ (t i+1 , t i+k+1 ) α G k-1 i+1 (x) > 0 if x ∈ (t i+1 , t i+k+1 ) = ∅ -Let x / ∈ (t i , t i+k+1 ) = (t i , t i+k ) ∪ (t i+1 , t i+k+1 ). Then we have x / ∈ (t i , t i+k ) and x / ∈ (t i+1 , t i+k+1 ) which gives α G k-1 i (x) = 0, α G k-1 i+1 (x) = 0 and α G k i (x) = 0 -Let x ∈ (t i , t i+k+1 ) = (t i , t i+k ) ∪ (t i+1 , t i+k+1 ) = ∅. Then we have x ∈ (t i , t i+k ) = ∅; or x ∈ (t i+1 , t i+k+1 ) = ∅. If x ∈ (t i , t i+k ) = ∅ then one has α G k-1 i (x) > 0 and α G k-1 i+1 (x) ≥ 0. But from proposition 2.1 we have w k i (x) = ϕ α (x , t i , t i+k ) ∈ (0 , 1) w k i+1 (x) = ϕ α (x , t i+1 , t i+k+1 ) ≥ 0 We conclude that α G k i (x) ≥ w k i (x) α G k-1 i (x) > 0 Similarly if x ∈ (t i+1 , t i+k+1 ) = ∅ then α G k-1 i (x) ≥ 0 and α G k-1 i+1 (x) > 0.
By using once more proposition 2.1 we have

w k i (x) = ϕ α (x , t i , t i+k ) ≥ 0 w k i+1 (x) = ϕ α (x , t i+1 , t i+k+1 ) ∈ (0 , 1)
We then conclude that

α G k i (x) ≥ 1 -w k i+1 (x) α G k-1 i+1 (x) > 0 Hence α G k i (x) > 0 if x ∈ (t i , t i+k+1 ) 2. (Unit partition) Let m, k, n ∈ I N * such that n > k and m = n + k + 1.
• Let j such that t j < t j+1 . Let i = 0, . . . , n.

[t i , t i+k+1 ) ∩ [t j , t j+1 ) = ∅ ⇔ j -k ≤ i ≤ j • Let x ∈ [t j , t j+1
) and i = 0, . . . , n.

α G k i (x) = 0 ⇔ j -k ≤ i ≤ j
Thus we have

n i=0 α G k i (x) = j i=j-k α G k i (x). As α G k i (x) = w k i (x) α G k-1 i (x) + 1 -w k i+1 (x) α G k-1 i+1 (x) then j i=j-k α G k i (x) = j i=j-k w k i (x) α G k-1 i (x) + j i=j-k 1 -w k i+1 (x) α G k-1 i+1 (x) = j i=j-k w k i (x) α G k-1 i (x) + j+1 i=j-k+1 1 -w k i (x) α G k-1 i (x) = w k j-k (x) α G k-1 j-k (x) + j i=j-k+1 α G k-1 i (x) + 1 -w k j+1 (x) α G k-1 j+1 (x) = j i=j-k+1 α G k-1 i (x) because supp α G k-1 j-k ∩ [t j , t j+1 ) = [t j-k , t j ) ∩ [t j , t j+1 ) = ∅ supp α G k-1 j+1 ∩ [t j , t j+1 ) = [t j+1 , t j+k+1 ) ∩ [t j , t j+1 ) = ∅ • Let us show that for all 0 ≤ r ≤ k -1 we have j i=j-k+r α G k-r i (x) = j i=j-k+r+1 α G k-r-1 i (x) -For r = 0, it is verified. -Let 0 < r ≤ k -1.
Suppose that the property is satisfied for all 0 ≤ s < r, i.e.

j i=j-k+s α G k-s i (x) = j i=j-k+s+1 α G k-s-1 i (x) Then, since α G k-r i (x) = w k-r i (x) α G k-r-1 i (x) + 1 -w k-r i+1 (x) α G k-r-1 i+1 (x)
we have

j i=j-k+r α G k-r i (x) = j i=j-k+r w k-r i (x) α G k-r-1 i (x) + j i=j-k+r 1 -w k-r i+1 (x) α G k-r-1 i+1 (x) = w k-r j-k+r (x) α G k-r-1 j-k+r (x) + j i=j-k+r+1 α G k-r-1 i (x) + 1 -w k-r j+1 (x) α G k-r-1 j+1 (x) = j i=j-k+r+1 α G k-r-1 i (x) because supp α G k-r-1 j-k+r ∩ [t j , t j+1 ) = [t j-k+r , t j ) ∩ [t j , t j+1 ) = ∅ supp α G k-r-1 j+1 ∩ [t j , t j+1 ) = [t j+1 , t j+k-r+1 ) ∩ [t j , t j+1 ) = ∅
Therefore the result follows.

• By setting r = k -1 we obtain

j i=j-k α G k i (x) = j i=j α G 0 i (x) = α G 0 j (x) = 1 3. (Symmetry) Consider the symmetrical vector of nodes U = (t i ) m i=0 , let x ∈ [t 0 , t m ], let us show that for all k ≥ 0 and all i ≤ m -k -1, we have α G k i (t 0 + t m -x) = α G k m-k-1-i (x)
Let T be the affine function on I R defined by T (x) = t 0 + t m -x. T is strictly decreasing.

• For all j 1 < j 2 such that t j1 < t j2

x

∈ (t j1 , t j2 ) ⇔ T (x) ∈ (T (t j2 ) , T (t j1 )) ⇔ T (x) ∈ (t m-j2 , t m-j1 ) because U is symmetric
• We begin by checking for k = 0, i.e.

α G 0 i (T (x)) = 1-α G 0 m-1-i (x) α G 0 i (T (x)) = 0 ⇒ t i < T (x) < t i+1 ⇔ t m-i-1 = T (t i+1 ) < x < T (t i ) = t m-i ⇒ 1-α G 0 m-1-i (x)
= 0 and conversely. The result follows as a consequence of the definition.

• Let k ∈ I N * . We suppose that for all j < k one has

α G j i (T (x)) = 1-α G j m-j-1-i (x)
We first observe that

T (x) ∈ (t i , t i+k+1 ) ⇔ x ∈ (T (t i+k+1 ) , T (t i )) = (t m-i-k-1 , t m-i )
By definition:

α G k i (T (x)) = ϕ α (T (x) , t i , t i+k ) α G k-1 i (T (x)) + [1 -ϕ α (T (x) , t i+1 , t i+k+1 )] α G k-1 i+1 (T (x))
By using corollary 2.4

α G k i (T (x)) = ϕ α (T (x) , t i , t i+k ) α G k-1 i (T (x)) + [1 -ϕ α (T (x) , t i+1 , t i+k+1 )] α G k-1 i+1 (T (x)) = [1 -ϕ 1-α (x , T (t i+k ) , T (t i ))] α G k-1 i (T (x)) + ϕ 1-α (x , T (t i+k+1 ) , T (t i+1 )) α G k-1 i+1 (T (x)) = ϕ 1-α (x , t m-i-k-1 , t m-i-1 ) α G k-1 i+1 (T (x)) + [1 -ϕ 1-α (x , t m-i-k , t m-i )] α G k-1 i (T (x))
By using the recurrence hypothesis for j = k -1 we obtain:

α G k i (T (x)) = ϕ 1-α (x , t m-i-k-1 , t m-i-1 ) α G k-1 i+1 (T (x)) + [1 -ϕ 1-α (x , t m-i-k , t m-i )] α G k-1 i (T (x)) = ϕ 1-α (x , t m-i-k-1 ) , t m-i-1 ) 1-α G k-1 m-k-i-1 (x) + [1 -ϕ 1-α (x , t m-i-k , t m-i )] 1-α G k-1 m-k-i (x) = 1-α G k m-k-i-1 (x)
by definition This completes the proof of the property.

Lemma 3.6. Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be an open node vector and α ∈ (-∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis of index α with node vector U and of degree k,

α G k i n i=0 . For all 0 ≤ r ≤ k -1 we have: α G k-r r (t 0 ) = α G k-r-1 r+1 (t 0 ) α G k-r r+1 (t 0 ) = α G k-r-1 r+2 (t 0 ) (3.2)
Proof.

• For r = 0, we have

α G k-r r (t 0 ) = α G k 0 (t 0 ) = ϕ α (t 0 , t 0 , t k ) α G k-1 0 (t 0 ) + [1 -ϕ α (t 0 , t 1 , t k+1 )] α G k-1 1 (t 0 ) = α G k-1 1 (t 0 ) = α G k-r-1 r+1 (t 0 ) Besides α G k-r r+1 (t 0 ) = α G k 1 (t 0 ) = ϕ α (t 0 , t 1 , t k+1 ) α G k-1 1 (t 0 ) + [1 -ϕ α (t 0 , t 2 , t k+2 )] α G k-1 2 (t 0 ) = α G k-1 2 (t 0 ) = α G k-r-1 r+2 (t 0 ) because ϕ α (t 0 , t 1 , t k+1 ) = ϕ α (t 0 , t 0 , t k+1 ) = 0 ϕ α (t 0 , t 2 , t k+1 ) = ϕ α (t k , t k , t k+1 ) = 0 since U is open. • Let 0 < r < k.
We assume that for all 0 ≤ j < r we have

α G k-j j (t 0 ) = α G k-j-1 j+1 (t 0 ) α G k-j j+1 (t 0 ) = α G k-j-1 j+2 (t 0 ) Then α G k-r r (t 0 ) = ϕ α (t 0 , t r , t k ) α G k-r-1 r (t 0 ) + [1 -ϕ α (t 0 , t r+1 , t k+1 )] α G k-r-1 r+1 (t 0 ) = α G k-r-1 r+1 (t 0 ) and α G k-r r+1 (t 0 ) = ϕ α (t 0 , t r+1 , t k+1 ) α G k-r-1 r+1 (t 0 ) + [1 -ϕ α (t 0 , t r+2 , t k+2 )] α G k-r-1 r+2 (t 0 ) = α G k-r-1 r+2 (t 0 ) because ϕ α (t 0 , t r+1 , t k+1 ) = ϕ α (t 0 , t 0 , t k+1 ) = 0 ϕ α (t 0 , t r+2 , t k+2 ) = ϕ α (t k , t k+1 , t k+2 ) = 0
since U is open.

The result follows.

Lemma 3.7. Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be an open node vector and α ∈ (-∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis of index α with node vector U and of degree k,

α G k i n i=0 . For all 0 ≤ r ≤ k -1 we have lim x→t - m α G k-r n (x) = lim x→t - m α G k-r-1 n (x) lim x→t - m α G k-r n-1 (x) = lim x→t - m α G k-r-1 n-1 (x) for k ≥ 2 (3.3)
Proof.

• For r = 0, we have

lim x→t - m α G k-r n (x) = lim x→t - m α G k n (x) = lim x→t - m ϕ α (x , t n , t n+k ) lim x→t - m α G k-1 n (x) + lim x→t - m [1 -ϕ α (x , t n+1 , t m )] lim x→t - m α G k-1 n+1 (x) = lim x→t - m ϕ α (x , t n , t m ) lim x→t - m α G k-1 n (x) = lim x→t - m α G k-1 n (x) = lim x→t - m α G k-r-1 n (x) since supp α G k-1 n+1 = [t n+1 , t m ) = ∅ and lim x→t - m α G k-r n-1 (x) = lim x→t - m α G k n-1 (x) = lim x→t - m ϕ α (x , t n-1 , t n+k-1 ) lim x→t - m α G k-1 n-1 (x) + lim x→t - m [1 -ϕ α (x , t n , t n+k )] lim x→t - m α G k-1 n (x) = lim x→t - m α G k-1 n-1 (x) = lim x→t - m α G k-r-1 n-1 (x) since for k ≥ 2 one has lim x→t - m ϕ α (x , t n-1 , t n+k-1 ) = lim x→t - m ϕ α (x , t n-1 , t m ) = 1 lim x→t - m ϕ α (x , t n , t n+k ) = lim x→t - m ϕ α (x , t n , t m ) = 1 . • Let 0 < r < k.
We suppose that for all 0 ≤ j ≤ r we have lim

x→t - m α G j-r n (x) = lim x→t - m α G j-r-1 n (x). Then lim x→t - m α G k-r n (x) = lim x→t - m ϕ α (x , t n , t n+k-r ) lim x→t - m α G k-r-1 n (x) + lim x→t - m [1 -ϕ α (x , t n+1 , t m-r )] lim x→t - m α G k-r-1 n+1 (x) = lim x→t - m ϕ α (x , t n , t m ) lim x→t - m α G k-r-1 n (x) = lim x→t - m α G k-r-1 n (x) because supp α G k-1 n+1 = [t n+1 , t m-r ) = [t n+1 , t m ) = ∅ The result then follows.
On the other hand we assume that for all 0 ≤ j ≤ r with k ≥ 2, one has

lim x→t - m α G j-r n-1 (x) = lim x→t - m α G j-r-1 n-1 (x)
Then we get

lim x→t - m α G k-r n-1 (x) = lim x→t - m ϕ α (x , t n-1 , t n+k-r-1 ) lim x→t - m α G k-r-1 n-1 (x) + lim x→t - m [1 -ϕ α (x , t n , t n+k-r )] lim x→t - m α G k-r-1 n (x) = lim x→t - m α G k-r-1 n-1 (x) because for k ≥ 2 we have lim x→t - m ϕ α (x , t n-1 , t n+k-r-1 ) = lim x→t - m ϕ α (x , t n-1 , t m ) = 1 lim x→t - m ϕ α (x , t n , t n+k-r ) = lim x→t - m ϕ α (x , t n , t m ) = 1 Proposition 3.1 (Continuity property). Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be a vector of nodes, let α ∈ (-∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis of index α, with node vector U and of degree k, α G k i n i=0 . The following properties hold:

1. For all i = 0, . . . , n, α G k i is a piecewise rational function. 2. For all i = 0, . . . , n, α G k i is of class C 0 if the nodes vector U does not have any interior nodes with multiplicity strictly greater than k.

If the node vector U is open we have

α G k 0 (t 0 ) = 1 α G k i (t 0 ) = 0 for all 0 < i ≤ n α G k i (t m ) ≡ lim x→t - m α G k i (x) = 0 for all 0 ≤ i < n α G k n (t m ) ≡ lim x→t - m α G k n (x) = 1 Proof. Let n, k ∈ I N * such that n ≥ k, let m = n + k + 1 and U = (t i )
m i=0 be a node vector. Let t i be an interior node with multiplicity m i . Assume that 1 ≤ m i ≤ k 1. We shall show simultaneously the two properties by recurrence on the degree k 2. We make use of the recurrence for k ≥ 1.

• For k = 1, we suppose a multiplicity m i = 1 for all interior node t i .

α G 1 i (x) = ϕ α (x , t i , t i+1 ) α G 0 i (x) + [1 -ϕ α (x , t i+1 , t i+2 )] α G 0 i+1 (x) =    ϕ α (x , t i , t i+1 ) if x ∈ [t i , t i+1 ) = ∅ 1 -ϕ α (x , t i+1 , t i+2 ) if x ∈ [t i , t i+1 ) = ∅ 0 otherwise Since x ∈ [t i , t i+1 ) → ϕ α (x , t i , t i+1 ) is homographic on [t i , t i+1 ) = ∅ then α G 1 i is rational on [t i , t i+1 ) = ∅ and [t i+1 , t i+2 ) = ∅ as well. We then deduce that α G 1 i is C ∞ on [t i , t i+1 ) = ∅ and also on [t i+1 , t i+2 ) = ∅. Let show that α G 1 i is continuous at the nodes t i , t i+1 et t i+2 lim x→t - i α G 1 i (x) = 0 because x / ∈ (t i , t i+2 ) lim x→t + i α G 1 i (x) = lim x→t + i ϕ α (x , t i , t i+1 ) = 0 if [t i , t i+1 ) = ∅ = α G 1 i (t i ) lim x→t - i+1 α G 1 i (x) = lim x→t - i+1 ϕ α (x , t i , t i+1 ) = 1 if [t i , t i+1 ) = ∅ lim x→t + i+1 α G 1 i (x) = lim x→t + i+1 [1 -ϕ α (x , t i+1 , t i+2 )] = 1 if [t i+1 , t i+2 ) = ∅ = α G 1 i (t i+1 ) lim x→t - i+2 α G 1 i (x) = lim x→t - i+2 [1 -ϕ α (x , t i+1 , t i+2 )] = 0 if [t i+1 , t i+2 ) = ∅ lim x→t + i+2 α G 1 i (x) = α G 1 i (t i+2 ) = 0 because x / ∈ (t i , t i+2 ) = ∅
We conclude that α G 1 i is piecewise rational and of class C 0 . • For k > 1 we suppose a multiplicity 1 ≤ m i ≤ k for all interior node t i .

Suppose that for all 1 ≤ j < k α G j i is piecewise rational and of class C 0 . Let us show that α G k i is piecewise rational and of class C 0 on [t 0 , t m ].

By definition we know that

α G k i = ϕ α (x , t i , t i+k ) α G k-1 i (x) + [1 -ϕ α (x , t i+1 , t i+k+1 )] α G k-1 i+1 (x)
Thus α G k i is piecewise rational as product and sum of piecewise rational functions. As the α G k-1 i are C 0 on [t 0 , t m ) and if the multiplicity of interior nodes is at most k,

x → ϕ α (x , t i , t i+k ) is continuous on [t 0 , t k+i ) ∪ (t k+i , t m ) x → ϕ α (x , t i+1 , t i+k+1 ) is continuous on [t 0 , t k+i+1 ) ∪ (t k+i+1 , t m ) with lim x→t - i+k ϕ α (x , t i , t i+k ) = 1 lim x→t + i+k ϕ α (x , t i , t i+k ) = 0 lim x→t - i+k+1 ϕ α (x , t i+1 , t i+k+1 ) = 1 lim x→t + i+k+1 ϕ α (x , t i+1 , t i+k+1 ) = 0 then α G k i is continuous on [t 0 , t k+i ) ∪ (t k+i , t m ) since supp α G k-1 i ∩ (t k+i+1 , t m ) = ∅ supp α G k-1 i+1 ∩ (t k+i+1 , t m ) = ∅
It is left with checking the continuity at t k+i , which is obvious.

We can conclude that α G k i is of class C 0 on [t 0 , t m ) 3.
For the endpoints values of the node vector U , we have

α G 0 k (t 0 ) = α G 0 k (t k ) = 1 lim x→t - m α G 0 n (x) = lim x→t - n+1 α G 0 n (x) = 1
By using successively, for r = 0 and r = k -1, the recurrence 3.2 of lemma 3.6 and the recurrence 3.3 of lemma 3.7, one can deduce that:

α G k 0 (t 0 ) = α G 0 k (t 0 ) = α G 0 k (t k ) = 1 lim x→t - m α G k n (x) = lim x→t - m α G 0 n (x) = lim x→t - n+1 α G 0 n (x) = 1
From the property of unit partition, we have

n i=0 α G k i (x) = 1 ∀x ∈ [t 0 , t m ) = [t k , t n+1 ) Thus n i=1 α G k i (t 0 ) = 0 n-1 i=0 lim x→t - m α G k i (x) = lim x→t - m n-1 i=0 α G k i (x) = 0
From the fact that the α G k i are positive, we obtain

α G k i (t 0 ) = 0 for all i = 1, . . . , n lim x→t - m α G k i (x) = 0 for all i = 0, . . . , n -1
Each α G k i admits a continuous extension at t m Using Lemmas 3.6, 3.7 and the Proposition 3.1, we obtain the following lemma:

Lemma 3.8. Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be an open node vector and α ∈ (-∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis α G k i n i=0 of index α with node vector U and of degree k. For all 0 ≤ r ≤ k -1 and all i ≥ 2 we have:

lim x→t + 0 d dx α G k-r r (x) = lim x→t + 0 d dx α G k-r-1 r+1 (x) -lim x→t + 0 d dx w k-r r+1 (x) lim x→t + 0 d dx α G k-r r+1 (x) = lim x→t + 0 d dx α G k-r-1 r+2 (x) + lim x→t + 0 d dx w k-r r+1 (x) lim x→t + 0 d dx α G k-r i+r (x) = lim x→t + 0 d dx α G k-r-1 i+r+1 (x) (3.4) with w j i (x) = ϕ α (x , t i , t i+j )
By the Lemma 3.8, we easily proof the regularity result given by the following lemmas:

Lemma 3.9. Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be an open node vector and α ∈ (-∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis α G k i n i=0 of index α with node vector U and of degree k. For all 0 ≤ r ≤ k -1 we have:

lim x→t - m d dx α G k-r n (x) = lim x→t - m d dx α G k-r-1 n (x) + lim x→t - m d dx w k-r n (x) lim x→t - m d dx α G k-r n-1 (x) = lim x→t - m d dx α G k-r-1 n-1 (x) -lim x→t - d dx w k-r n (x) (3.5) 
with

w j i (x) = ϕ α (x , t i , t i+j ) Lemma 3.10. Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be an open node vector, let α ∈ (-∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis α G k i n i=0 of index α, U as a vector of nodes and of degree k. For all i ≤ n -2, k ≥ 2 we have:

lim x→t - m d dx α G k i (x) = 0 (3.6) with w j i (x) = ϕ α (x , t i , t i+j ) Theorem 3.11 (Regularity property). Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be a vector of nodes, let α ∈ (-∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline α G k i n i=0 of index α, U as node vector and of degree k. We have the following properties:

1. For all i = 0, . . . , n, α G k i is of class C ∞ on all (t j , t j+1 ) if t j < t j+1 .

2. For all i = 0, . . . , n, α G k i is left and right differentiable at all t j for all j.

If

U is an open node vector then we have (a)

lim x→t + 0 d dx α G k 0 (x) = -lim x→t + 0 d dx α G k 1 (x) = - αk (α -1)(t k+1 -t 0 ) lim x→t + 0 d dx α G k i (x) = 0 for all 2 ≤ i ≤ n (b) lim x→t - m d dx α G k n (x) = -lim x→t - m d dx α G k n-1 (x) = (α -1)k α(t m -t n ) lim x→t - m d dx α G k i (x) = 0 for all 0 ≤ i ≤ n -2
By definition, for all 0

≤ i ≤ n, d dx α G k i (t 0 ) = lim x→t + 0 d dx α G k i (x) d dx α G k i (t m ) = lim x→t - m d dx α G k i (x) . Proof.
1. C ∞ regularity except on the nodes is a consequence of the fact that α G k i is picewise rational function, as stated in proposition 3.1 on continuity property.

The basis functions

α G k i are of C 0 on [t 0 , t m ] and C 1 on m-1 i=0 (t i , t i+1 ).
It is sufficient to prove that for all i = 0, . . . , n and all j = 0, . . . , m-1 such that t j < t j+1 , we have lim

x→t + j d dx α G k i (x) ∈ I R and lim x→t - j+1 d dx α G k i (x) ∈ I R.
We will proceed by recurrence on k.

• Let k = 1. Assume a multiplicitym i = 1 for all interior node t i . Thus

α G 1 i (x) =    ϕ α (x , t i , t i+1 ) if x ∈ [t i , t i+1 ) = ∅ 1 -ϕ α (x , t i+1 , t i+2 ) if x ∈ [t i+1 , t i+2 ) = ∅ 0 otherwise
One deduces that

d dx α G 1 i (x) =    d dx ϕ α (x , t i , t i+1 ) if x ∈ (t i , t i+1 ) = ∅ -d dx ϕ α (x , t i+1 , t i+2 ) if x ∈ (t i+1 , t i+2 ) = ∅ 0 otherwise
From this we obtain:

lim x→t - i d dx α G 1 i (x) = 0 lim x→t + i d dx α G 1 i (x) = lim x→t + i d dx ϕ α (x , t i , t i+1 ) = α (α -1) (t i+1 -t i ) ∈ I R lim x→t - i+1 d dx α G 1 i (x) = lim x→t - i+1 d dx ϕ α (x , t i , t i+1 ) = α -1 α (t i+1 -t i ) ∈ I R lim x→t + i+1 d dx α G 1 i (x) = -lim x→t + i+1 d dx ϕ α (x , t i+1 , t i+2 ) = - α (α -1) (t i+2 -t i+1 ) ∈ I R lim x→t - i+2 d dx α G 1 i (x) = -lim x→t - i+2 d dx ϕ α (x , t i+1 , t i+2 ) = - α -1 α (t i+2 -t i+1 ) ∈ I R lim x→t + i+2 d dx α G 1 i (x) = 0
We can conclude that α G 1 i is left and right differentiable at any point if U only admits interior points of multiplicity 1.

• Let k > 1 and suppose that for all 1 ≤ s ≤ k -1 and all i = 0, . . . , m -s -1 α G s i is left and right differentiable at all node of multiplicity at most s.

As for all x

∈ I R α G k i (x) = ϕ α (x , t i , t i+k ) α G k-1 i (x) + (1 -ϕ α (x , t i+1 , t i+k+1 )) α G k-1 i+1 (x) then if for all i α G k-1 i
is left and right differentiable at a certain node t j , α G k i is also left differentiable at t j as product and sum of left differentiable functions at t j because from remark ??, all ϕ α (. , t i , t i+k ) is left and right differentiable at any point of I R It is also the case for the right differentiability.

(a) Using lemma 3.8 one can prove that:

• on one hand,

lim x→t + 0 d dx α G k 0 (x) = lim x→t + 0 d dx α G 0 k (x) - k-1 i=0 lim x→t + 0 d dx w k-i i+1 (x) = - k-1 i=0 lim x→t + 0 d dx ϕ α (x , t i+1 , t k+1 ) = - k-1 i=0 lim x→t + 0 d dx ϕ α (x , t 0 , t k+1 ) = -k α (α -1) (t k+1 -t 0 )
• on other hand

lim x→t + 0 d dx α G k 1 (x) = lim x→t + 0 d dx α G 0 k+1 (x) + k-1 i=0 lim x→t + 0 d dx w k-i i+1 (x) = k-1 i=0 lim x→t + 0 d dx ϕ α (x , t i+1 , t k+1 ) = k-1 i=0 lim x→t + 0 d dx ϕ α (x , t 0 , t k+1 )
• and finally for i ≥ 2 we obtain

lim x→t + 0 d dx α G k i (x) = lim x→t + 0 d dx α G 0 i+k (x) = 0 because supp α G 0 i+k ∩ [t 0 , t k+1 ) = ∅ (b)
Similarly by using lemma 3.9 one shows that:

• from one hand, lim x→t - m d dx α G k n (x) = lim x→t - m d dx α G 0 n (x) + k-1 i=0 lim x→t - m d dx w k-i n (x) = k-1 i=0 lim x→t - m d dx ϕ α (x , t n , t n+k-i ) = k-1 i=0 lim x→t - m d dx ϕ α (x , t n , t m ) = k α -1 α (t m -t n )
• On another hand, we have

lim x→t - m d dx α G k n-1 (x) = lim x→t - m d dx α G 0 n-1 (x) - k-1 i=0 lim x→t - m d dx w k-i n (x) = - k-1 i=0 lim x→t - m d dx ϕ α (x , t n , t n+k-i ) = - k i=1 lim x→t - m d dx ϕ α (x , t n , t m ) = -k α -1 α (t m -t n )
• Finally for i ≤ n -2 by directly applying lemma 3.10 we have:

lim x→t - m d dx α G k i (x) = 0
Remark 3.12. As shown by the illustrations of appendix, for k ≥ 1 the functions α G k i n i=0 are not of class C 1 , even when the nodes are of multiplicity 1, this perfectly contradicts the classical results [START_REF] Piegl | The NURBS Book[END_REF] page 57.

Conjecture 3.1 (Existence property and unicity of a maximum

). Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be a node vectors, let α ∈ (-∞ , 0) ∪ (1 , ∞).
Any element of the rational B-spline α G k i n i=0 of index α with node vector U and of degree k admits one and only one maximum. Remark 3.13. We admit for any useful purpose this conjecture which is widely illustrated by numerical experience and cited in classical review [START_REF] Rogers | An Introduction to NURBS with historical perspective[END_REF] to the page 58 and [START_REF] Piegl | The NURBS Book[END_REF] to the page 45. be an open node vector with interior nodes of multiplicity at most k, let α ∈ (-∞ , 0) ∪ (1 , ∞).

The rational B-spline basis α G k i n i=0 of index α with node vector U and of degree k is a free system in the vector space

C 0 ([t 0 , t m ]) of continuous functions on [t 0 , t m ].
Proof. To show that the B-spline basis α G k i n i=0 is linear independent, we will proceed by recurrence on the degree k.

• Let k = 1 we search (λ i ) m-k-1 i=0 ⊂ I R such that m-k-1 i=0 λ i α G k i = 0 Let x ∈ [t 0 , t m ] by setting w r i (x) = ϕ α (x , t i , t i+r ) 0 = m-k-1 i=0 λ i α G k i (x) = m-2 i=0 λ i α G 1 i (x) = m-2 i=0 λ i w 1 i (x) α G 0 i (x) + m-2 i=0 λ i 1 -w 1 i+1 (x) α G 0 i+1 (x) = λ 0 w 1 0 (x) α G 0 0 (x) + λ m-2 1 -w 1 m-1 (x) α G 0 m-1 (x) + m-2 i=1 λ i w 1 i (x) + λ i-1 1 -w 1 i (x) α G 0 i (x) = m-2 i=1 λ i w 1 i (x) + λ i-1 1 -w 1 i (x) α G 0 i (x)
since U is open and

supp w 1 0 = [t 0 , t 1 ) = ∅ supp w 1 m-1 = [t m-1 , t m ) = ∅
As the interior nodes of U are of multiplicity at most k = 1 then for all 1 ≤ j ≤ m -2 [t j , t j+1 ) = ∅.

Thus for all 1 ≤ j ≤ m -2 and all x ∈ [t j , t j+1 ) we have

0 = m-2 i=1 λ i w 1 i (x) + λ i-1 1 -w 1 i (x) α G 0 i (x) = λ j w 1 j (x) + λ j-1 1 -w 1 j (x) Moreover we have 0 = m-2 i=0 λ i α G 1 i (t 0 ) = λ 0
All in all we get this linear system:

   λ 0 = 0 λ j-1 1 -w 1 j (x j ) + λ j w 1 j (x j ) = 0 for j = 1, . . . , m -2 and x j ∈ ]t j , t j+1 [
where w 1 j (x j > 0 and 1 -w 1 j (x j > 0 for all 1 ≤ j ≤ m -2. Since the system is lower-triangular with null diagonal terms and homogeneous then we have λ j = 0 for all j = 0, . . . , m -2. We conclude that α G 1 i m-2 i=0 is a free system.

• let k > 1 and suppose that for all

1 ≤ p ≤ k -1 ( α G p i ) m-p-1 i=0 is a free system. Let show that α G k i m-k-1 i=0 is a free system. 0 = m-k-1 i=0 λ i α G k i (x) = m-k-1 i=0 λ i w k i (x) α G k-1 i (x) + m-k-1 i=0 λ i 1 -w k i+1 (x) α G k-1 i+1 (x) = λ 0 w k 0 (x) α G k-1 0 (x) + λ m-k-1 1 -w k m-k (x) α G k-1 m-k (x) + m-k-1 i=1 λ i w k i (x) + λ i-1 1 -w k i (x) α G k-1 i (x) = m-k-1 i=1 λ i w k i (x) + λ i-1 1 -w k i (x) α G k-1 i (x)
since U is open and

supp w k 0 = [t 0 , t k ) = ∅ supp w k m-k = [t m-k , t m ) = ∅ As by hypothesis α G k-1 i m-k
i=0 is a free system and the multiplicity of a node of U is at most k, then for all 1 ≤ j ≤ m -k -1 and all x j ∈ (t j , t j+k ) = ∅ we have λ j w k j (x j ) + λ j-1 1 -w k j (x j ) = 0 with w k j (x j ) > 0 and 1 -w k j (x j ) > 0.

Moreover we have 0 =

m-k-1 i=0 λ i α G k i (t 0 ) = λ 0
We then obtain the following linear system:

   λ 0 = 0 λ j-1 1 -w k j (x j ) + λ j w k j (x j ) = 0 for j = 1, . . . , m -k -1 and x j ∈ ]t j , t j+1 [
This lower-triangular system with positive diagonal terms admits a unique solution λ j = 0 for all 0 ≤ j ≤

m -k -1. Hence α G k i m-k-1 i=0
is free.

Case of an open node vector with no interior node

Proposition 3.3. Let a, b ∈ I R such that a < b. Let m, k, n ∈ I N * such that n = k and m = 2k + 1. Let U k = t k i 2k+1 i=0 be the open node vector such that t k k = a and t k k+1 = b let α ∈ (-∞ , 0) ∪ (1 , ∞). Let α B k i k i=0
be the rational B-spline basis of index α with node vectors U k and of degree k, let α B k-1 i k-1 i=0 be the rational B-spline basis of index α with node vectors U k-1 and of degree k -1.

For all x ∈ [a , b] and by setting w(x) = ϕ α (x , a , b) we have the following: Proof.

1. Recurrence relation α B k i (x) = w(x) α B k-1 i-1 (x) + (1 -w(x)) α B k-1 i (x) (3.7) 2. Explicit formula α B k i (x) = C i k (w(x)) i (1 -w(x))

Recurrence relation

Consider the open node vectors:

U k = t k i 2k+1 i=0 and U k-1 = t k-1 i 2k-1 i=0 satisfy t k k = a and t k k+1 = b t k-1 k-1 = a and t k-1 k = b Let g k : i ∈ Z Z → g k (i) = i -1 ∈ Z Z.
Based on this bijection, we have

t k i = t k-1 g k (i) ∀i = 0, . . . , 2k + 1 by imposing t k 0 = t k-1 -1 = t k-1 0 and t k 2k+1 = t k-1 2k . Thus U k is seen as a natural extension of U k-1 .
Consider the family α G j i 2k-j i=0 of B-spline basis of index α with node vector U k and of degree j with 0 ≤ j ≤ k.

Let α B k i k i=0 be the B-spline basis of index α with node vector U k and of degree k.

Let α B k-1 i k-1
i=0 be the B-spline basis of index α with node vector U k-1 and of degree k -1. From the definition, for all i = 0, . . . , k and all x ∈ [a , b] we have

α B k i (x) = α G k i (x) = w k i (x) α G k-1 i (x) + 1 -w k i+1 (x) α G k-1 i+1 (x) α G k-1 i
is of degree k -1 respect to the node vector U k which is an extension of the node vector U k-1 .

Relative to the node vector U k-1 by imposing

α B k-1 -1 = α B k-1 k ≡ 0
we have for all i = 0, . . . , k

+ 1 α G k-1 i = α B k-1 g k (i) = α B k-1 i-1
Thus we have

α B k i (x) = w k i (x) α B k-1 i-1 (x) + 1 -w k i+1 (x) α B k-1 i (x) As w k i (x) = ϕ α (x , t i , t i+k ) = ϕ α (x , a , b) if 1 ≤ i ≤ k 0 otherwise
we can set w(x) = ϕ α (x , a , b) and obtain for all k ∈ I N * and all 0 ≤ i ≤ k, the recurrence relation

α B k i (x) = w(x) α B k-1 i-1 (x) + (1 -w(x)) α B k-1 i (x)

Explicit formula

We will now show that the recurrence relation 3.7 leads to

     α B k 0 (x) = (1 -w(x)) k α B k k (x) = (w(x)) k α B k i (x) = C i k (w(x)) i (1 -w(x)) k-i for 1 ≤ i ≤ k -1 • For all k ∈ I N * , if i = 0 then the equation 3.7 becomes α B k 0 (x) = (1 -w(x)) α B k-1 0 (x)
The sequence α B k 0 (x) k≥0 is geometric with common ratio 1 -w(x). We deduce that

α B k 0 (x) = (1 -w(x)) k α B 0 0 (x) = (1 -w(x)) k since α B 0 0 (x) = α G 0 0 (x) = 1 for all x ∈ [a , b).
We remark that for all x ∈ (a , b

) α B k 0 (x) = C 0 k (w(x)) 0 (1 -w(x)) k since C 0 k = 1, w(x) > 0 and 1 - w(x) > 0 • For all k ∈ I N * , if i = k then the equation 3.7 gives α B k k (x) = (w(x)) α B k-1 k-1 (x)
The sequence α B k k (x) k≥0 is geometric with common ratio w(x). We deduce that

α B k k (x) = (w(x)) k α B 0 0 (x) = (w(x)) k As previously we observe that for x ∈ (a , b) α B k k (x) = C k k (w(x)) k (1 -w(x)) 0 because C k k = 1 • For all k ∈ I N * , if 1 ≤ i < k then the equation 3.7 gives α B k i (x) = (w(x)) α B k-1 i-1 (x) + (1 -w(x)) α B k-1 i (x)
Let us prove by recurrence on

k that α B k i (x) = C i k (w(x)) i (1 -w(x)) k-i -The relation is true for k = 1. -Let k > 1.
Suppose that for all 1 ≤ j < k, one has for all

0 ≤ i ≤ j α B j i (x) = C i j (w(x)) i (1 -w(x)) j-i .
For all 

1 ≤ i ≤ k -1, we have α B k i (x) = (w(x)) α B k-1 i-1 (x) + (1 -w(x)) α B k-1 i (x) = (w(x))C i-1 k-1 (w(x)) i-1 (1 -w(x)) k-i + (1 -w(x))C i k-1 (w(x)) i (1 -w(x)) k-1-i = C i-1 k-1 (w(x)) i (1 -w(x)) k-i + C i k-1 (w(x)) i (1 -w(x)) k-i = C i-1 k-1 + C i k-1 (w(x)) i (1 -w(x)) k-i = C i k (w(x)) i (1 -w(x)) k-i because C i k = C i-1 k-1 + C i k-1 .

New class of B-spline curves

G α (x) = n i=0 d i α G k i (x)

Geometric properties

The curves of this new class verify the classical properties of B-spline curve. They also show some exotic properties namely related to the symmetry. These properties are given in the following propositions.

Proposition 4.1. We have the following properties:

1. Local control property:

Let j ∈ I N such that 0 ≤ j ≤ n. Any variation of the control point d j does influence G α (x) only for x ∈ [t j , t j+k+1 )

Second local control property:

Let j ∈ I N such that k ≤ j ≤ n and t j < t j+1 . For all x ∈ [t j , t j+1 ), we have

G α (x) = j i=j-k d i α G k i (x)
This computation uses only the k + 1 control points (d i ) j i=j-k .

Convex hull property:

G α is in convex hull of its control points

(d i ) n i=0 .
In other words, for all x ∈ [a , b], there exists (λ i )

n i=0 ⊂ I R + such that G α (x) = n i=0 λ i d i with n i=0 λ i = 1

Invariance by affine transformation property:

For any affine transformation T in I R d , we have

T (G α (x)) = n i=0 T (d i ) α G k i (x)
Proof.

Local control property:

Consider the control polygons Π = (d i )

n i=0 ⊂ I R d and Π = di n i=0 ⊂ I R d . Suppose that for a fixed 0 ≤ j ≤ n we have di = d i if i = j dj = d j
Let G α and Ĝα be the B-spline curves of index α of degree k and of control polygons Π and Π respectively.

For x ∈ [t 0 , t m ] we have          G α (x) = n i=0 d i α G k i (x) Ĝα (x) = n i=0 di α G k i (x)
The variation ∆d j = d j -dj of the control point d j induces a variation at x of the curve G α denoted by

∆G α (x) = G α (x) -Ĝα (x).
One has

∆G α (x) = G α (x) -Ĝα (x) = d j -dj α G k j (x) = ∆d j α G k j (x) Thus ∆G α (x) = 0 ⇔ α G k j (x) = 0 ⇔ x ∈ (t j , t j+k+1 )
The effect of the variation ∆d j can then only be viewed on the computation of G α (x) for x ∈ (t j , t j+k+1 ).

Second local control property:

Let j ∈ I N. Since U = (t i ) m i=0 is open, t j < t j+1 ⇒ j ≥ k and j ≤ n = m -k -1 ⇔ k ≤ j ≤ n = m -k -1 Let then k ≤ j ≤ n such that t j < t j+1 and x ∈ [t j , t j+1 ]. A control point d s influences the computation of G α (x) = n i=0 d i α G k i (x) if and only if α G k s (x) = 0 α G k s (x) = 0 ⇔ supp α G k s ∩ [t j , t j+1 ) = ∅ ⇔ ∅ = [t j , t j+1 ) ⊂ [t s , t s+k+1 ) ⇔ t s ≤ t j < t j+1 ≤ t s+k+1 ⇔ s ≤ j < j + 1 ≤ s + k + 1 ⇔ j -k ≤ s ≤ j We deduce that G α (x) = n i=0 d i α G k i (x) = j i=j-k d i α G k i (x)
This computation does use only the k + 1 control points (d i ) j i=j-k . This result gives another point of view of local control.

Convex hull property:

Let x ∈ [t 0 , t m ] G α (x) = n i=0 d i α G n i (x) = n i=0 λ i d i where λ i = α G n i (x) ∈ I R + ∀i
But from unit partition property, one gets

n i=0 λ i = n i=0 α G n i (x) = 1. G α (x) is in the convex hull of control polygon (d i ) n i=0
4. Invariance by affine transformation property:

Let T be an affine transformation in I R d . There exists a square matrix M of order d and a point

C ∈ I R d such that for all X ∈ I R d , T (X) = M X + C. Let x ∈ [t 0 , t m ]. Since G α (x) ∈ I R d then we have T (G α (x)) = T n i=0 d i α G n i (x) = M n i=0 d i α G n i (x) + C = n i=0 M (d i α G n i (x)) + n i=0 α G n i (x) C = n i=0 (M d i α G n i (x)) + n i=0 (C α G n i (x)) = n i=0 (M d i + C) α G n i (x) = n i=0 T (d i ) α G n i (x)
what is expected.

Proposition 4.2. The following properties hold:

1. Interpolation property of extreme points:

The curve G α interpolates the extreme points of is control polygon, that is G α (t 0 ) = d 0 and G α (t m ) = d n

Tangent property at extreme points:

The curve G α is tangent to its control polygon at extreme points. More precisely, we have

         dG α dx (t 0 ) = kα (α -1)(t k+1 -t 0 ) (d 1 -d 0 ) dG α dx (t m ) = k(α -1) α(t m -t n ) (d n -d n-1 )
Proof. We draw attention on the fact that once the node vector U = (t i ) m i=0 has no interior node of multiplicity greater than k, the associated basis

α G k i n i=0 is of class C 0 . We have a curve G α = n i=0 d i α G k i which is C 0 on [t 0 , t m ] for all control polygon Π = (d i ) n i=0 ⊂ I R d .
1. Interpolation property of extreme points:

By using proposition 3.1 we have

G α (t 0 ) = n i=0 d i α G k i (t 0 ) = d 0 α G k 0 (t 0 ) = d 0 and G α (t m ) = n i=0 d i α G k i (t m ) = d n α G k n (t m ) = d n

Tangent property at extreme points:

By making use of proposition 3.11 we obtain

d dx G α (t 0 ) = n i=0 d i d dx α G k i (t 0 ) = d 0 d dx α G k 0 (t 0 ) + d 1 d dx α G k 1 (t 0 ) = (d 1 -d 0 ) d dx α G k 1 (t 0 ) = (d 1 -d 0 ) kα (α -1) (t k+1 -t 0 ) and d dx G α (t m ) = n i=0 d i d dx α G k i (t m ) = d n-1 d dx α G k n-1 (t m ) + d n d dx α G k n (t m ) = (d n -d n-1 ) d dx α G k n (t m ) = (d n -d n-1 ) k(α -1) α (t m -t n ) Proposition 4.3 (Symmetry property). If the node vector U = (t i ) n i=0 is symmetric and the control polygon Π = (d i ) n i=0
is also symmetric with respect to the perpendicular bisector D of segment (d 0 , d n ) then the curves of degree k : G α and G 1-α of the same node vector U and of the same control polygon Π are symmetric with respect to the line D Proof. Let U = (t i ) m i=0 be symmetric. We suppose that I R d is endowed with orthonormed coordinate system R = (O , e 1 , . . . , e d ). Let Π = (d i ) n i=0 ⊂ I R d be a symmetric control polygon with respect to the perpendicular bisector D of segment

(d 0 , d n ).
Then for all 0 ≤ i ≤ n, D is the perpendicular bisector of (d i , d n-i ); there exists a unique

M i ∈ D such that --→ M i d i = - ----→ M i d n-i and D orthogonal to (d i , d n-i ).
Without loss of generality, suppose that {O} = D ∩ (d 0 , d n ), D is the line (O , e d ) and R the canonical coordinate system. Hence for all 0 ≤ i ≤ n, there exists di ∈ I R d-1 and

z i ∈ I R both unique such that    d i = di , z i ≡ di + z i e d d n-i = -di , z i ≡ -di + z i e d
Consider the B-spline curves G α and G 1-α of degree k, of node vector U which is symmetric and of symmetric control polygon Π.

For all x ∈ [t 0 , t m ], we have

G α (x) = n i=0 d i α G k i (x) = n i=0 di + z i e d α G k i (x) = n i=0 di α G k i (x) + n i=0 z i α G k i (x) e d Also G 1-α (t 0 + t m -x) = n i=0 d i 1-α G k i (t 0 + t m -x) = n i=0 d i α G k n-i (x) = n i=0 di + z i e d α G k n-i (x) = n i=0 di α G k n-i (x) + n i=0 z i α G k n-i (x) e d = - n i=0 dn-i α G k n-i (x) + n i=0 z n-i α G k n-i (x) e d = - n i=0 di α G k i (x) + n i=0 z i α G k i (x) e d We deduce that 1 2 [G α (x) + G 1-α (t 0 + t m -x)] = n i=0 z i α G k i (x) e d ∈ D 1 2 [G α (x) -G 1-α (t 0 + t m -x)] . e d = n i=0 di . e d α G k i (x) = 0
Thus D is the perpendicular bisector of segment [G α (x) , G 1-α (t 0 + t m -x)], we can then conclude that both G α and G 1-α are symmetric with respect to D.

Algorithms of computation of B-spline curve

These algorithms show that it is possible to compute a point of B-spline curve or all of them without making use of the explicit construction of the associated B-spline basis. The fundamental algorithm is of deBoor and can be defined as follows: For all j = k, . . . , m -k -1 such that t j < t j+1 and for all x ∈ [t j , t j+1 )

G α (x) = j i=j-k+r d r i (x) α G k-r i (x) with        d 0 i (x) = d i ∀i = 0, . . . , n d r+1 i (x) = w k-r i (x)d r i+1 (x) + 1 -w k-r i (x) d r i (x) ∀r = 0, . . . , k -1 ∀i = j -k + r, . . . , j where w k-r i (x) = ϕ α (x , t i , t i+k-r ) Moreover we have G α (x) = d k j (x)
Proof. Let j = k, . . . , m -k -1 such that t j < t j+1 and x ∈ [t j , t j+1 ). Since for all i

α G k i (x) = w k i (x) α G k-1 i (x) + 1 -w k i+1 (x) α G k-1 i+1 (x) then G α (x) = j i=j-k d i α G k i (x) = j i=j-k d i w k i (x) α G k-1 i (x) + j i=j-k d i 1 -w k i+1 (x) α G k-1 i+1 (x) = j i=j-k d i w k i (x) α G k-1 i (x) + j+1 i=j-k+1 d i-1 1 -w k i (x) α G k-1 i (x) = d j-k w k j-k (x) α G k-1 j-k (x) + d j 1 -w k j+1 (x) α G k-1 j+1 (x) + j i=j-k+1 d i-1 1 -w k i (x) + d i w k i (x) α G k-1 i (x) G α (x) = d j-k w k j-k (x) α G k-1 j-k (x) + d j 1 -w k j+1 (x) α G k-1 j+1 (x) + j i=j-k+1 d i-1 1 -w k i (x) + d i w k i (x) α G k-1 i (x) = j i=j-k+1 d i-1 1 -w k i (x) + d i w k i (x) α G k-1 i (x) = j i=j-k+1 d 1 i (x) α G k-1 i (x)
with for all j -k -

1 ≤ i ≤ j d 1 i (x) = d i-1 1 -w k i (x) + d i w k i (x) = d 0 i-1 (x) 1 -w k i (x) + d 0 i (x)w k i (x) by setting d 0 i (x) = d i for all i; since supp α G k-1 j-k ∩ [t j , t j+1 ) = ∅ supp α G k-1 j+1 ∩ [t j , t j+1 ) = ∅ We have established G α (x) = j i=j-k d 0 i (x) α G k i (x) = j i=j-k+1 d 1 i (x) α G k-1 i (x)
Let us show by recurrence that for all 0 ≤ r ≤ k we have

G α (x) = j i=j-k+r d r i (x) α G k-r i (x) with for all r ≤ k d r i (x) = d r-1 i-1 (x) 1 -w k-r+1 i (x) + d r-1 i (x)w k-r+1 i (x)
We assume that for all 1 ≤ r < k we have

G α (x) = j i=j-k+r d r i (x) α G k-r i (x) with d r i (x) = d r-1 i-1 (x) 1 -w k-r+1 i (x) + d r-1 i (x)w k-r+1 i (x) Then G α (x) = j i=j-k+r d r i (x) α G k-r i (x) = j i=j-k+r d r i (x)w k-r i α G k-r-1 i (x) + j i=j-k+r d r i (x) 1 -w k-r i+1 α G k-r-1 i+1 (x) = j i=j-k+r d r i (x)w k-r i α G k-r-1 i (x) + j+1 i=j-k+r+1 d r i-1 (x) 1 -w k-r i α G k-r-1 i (x) = d r j-k+r (x)w k-r j-k+r α G k-r-1 j-k+r (x) + 1 -w k-r j+1 d r j (x)w k-r j+1 α G k-r-1 j+1 (x) + j i=j-k+r+1 d r i-1 (x) + 1 -w k-r i d r i (x)w k-r i α G k-r-1 i (x) = j i=j-k+r+1 d r i-1 (x) + 1 -w k-r i d r i (x)w k-r i α G k-r-1 i (x) = j i=j-k+r+1 d r+1 i (x) α G k-r-1 i (x) with d r+1 i (x) = d r i-1 (x) + 1 -w k-r i d r i (x)w k-r i since supp α G k-r-1 j-k+r ∩ [t j , t j+1 ) = ∅ supp α G k-r-1 j+1 ∩ [t j , t j+1 ) = ∅
We have thus proved that for all 0 ≤ r ≤ k we have

G α (x) = j i=j-k+r d r i (x) α G k-r i (x)
with for all r ≤ k d

r i (x) = d r-1 i-1 (x) 1 -w k-r+1 i (x) + d r-1 i (x)w k-r+1 i (x)
For r = k, we have for all x ∈ [t j , t j+1 )

G α (x) = j i=j d k i (x) α G 0 i (x) = d k j (x) α G 0 j (x) = d k j (x)
This completes the proof.

Some illustrations of properties of the new class of rational B-spline curves

In this section, we will present a set of practical cases which depicts the established properties in previous sections. Here the aim is just to give some illustration view without being concerned with the issue of algorithm optimization. To this end, we have adopted Scilab scripts and sometimes Maxima scripts particularly for the formal expressions of B-spline basis listed in appendix. We will first present the basis and then the B-spline curves.

The new class of rational B-spline basis

We emphasize on illustrations of first properties of the new class of B-spline basis.

We know that the B-spline basis are grouped in two categories regarding the fact that they are spanned by a periodic node vector or not and in each category, the node vector may be uniform or not. We shall go through all of these variations.

Case of periodic node vectors

We plan two illustrations. The first one explores the influence of the uniformity of node vector while the second one explores the non-uniformity. Illustration 5.1. We present here B-spline basis of degree 0 to 3 for the uniform periodic node vector U 0 = (0, 1, 2, 3, 4, 5, 6) with α ∈ {-1, 2, 5, ∞} From the analysis of figures 4 to 7, we deduce that since U 0 is a uniform periodic node vector, an element of We observe that supp α G k i = [t i , t i+k+1 ] and also the effect of parameter α is crucial at the neighborhood of 0 -and 1 + . The figure 7 The non-uniformity may come from the presence of a multiple node, it is the case of node vectors U 1 and U 2 . It may be also due to the step of variable between nodes as in U 3 . The figures 9 to 11 show that in all the cases we have supp α G 2 i = [t i , t i+3 ] and the effect of the parameter α remains important at the neighborhood of 0 -and 1 + . We observe a large diversity among the elements of the basis concerning the regularity.

the basis α G k i m-k-1 i=0 is obtained by simple translation of α G k 0 that is α G k i (x) = α G k 0 (t 0 -t i + x).
The two illustrations of this subsection seem to confirm the conjecture 3.1 related to the existence of a unique maximum for α G k i when k > 0.

Case of open node vectors

This subsection is also based on two test cases which give light on the basis of degree 2 generated by open node vectors for α ∈ {-1, 2, 5, ∞}.

The first test case dealts with five node vectors having two multiple interior nodes or not.

In the second test case we also have five node vectors but having three interior nodes where the multiplicity may reach 3. Illustration 5.3. We explore the case of B-spline basis of degree 2 associated with an open node vector in the following cases: U 4 = (0, 0, 0, 1, 2, 3, 3, 3) U 5 = (0, 0, 0, 0.4, 2.6, 3, 3, 3) U 6 = (0, 0, 0, 1.8, 2.2, 3, 3, 3) U 7 = (0, 0, 0, 1, 1, 3, 3, 3) U 8 = (0, 0, 0, 2, 2, 3, 3, 3) The figures 12 to 16 illustrate abundantly the properties of the proposition 3.1 especially those of values at extreme nodes. The figures 12 and 13 depict the behaviors of basis generated respectively by U 4 and U 5 which are symmetric node vectors. One can observe that for all x ∈ [t 0 , t 7 ], we have

-1 G 2 i (t 0 + t 7 -x) = 2 G 2 4-i (x) 2 G 2 i (t 0 + t 7 -x) = -1 G 2 4-i (x) ∞ G 2 i (t 0 + t 7 -x) = ∞ G 2 4-i (x)
For the non-uniform open node vector U 6 , U 7 and U 8 we observe a large diversity of behaviors of generated basis. 

The new class of rational B-spline curves

Let us have a look on some examples showing the behavior of new B-spline curves under the effect of various parameter appearing in their definition.

Amongst some parameters we can refer to index α, the degree k, the node vector U and the control polygon Π. 1. For α ≤ -4 and α ≥ 5, the B-spline curve G α of degree k and index α is a good approximationof the standard polynomial B-spline curve G ∞ generated by the same control polygon Π.

2. When α tends to 0 -or to 1 + , the curve G α is really separated from the standard curve G ∞ . The effect seems more viewed at the neighborhood of 0 but the question is still to be tackled later on.

3. We reach a conclusion that the B-spline curves family becomes more interesting. 1. Example 1 Π 1 = {(0 , 0), (3 , 9), (6 , 3), (9 , 6)} U 1,1 = (0, 0, 1, 2, 3, 3) U 1,2 = (0, 0, 0, 1.5, 3, 3, 3) U 1,3 = (0, 0, 0, 0, 3, 3, 3, 3)

Example 2

Π 2 = {(1 , 3), (0 , 5), (5 , 5), (3 , 0), (8 , 0), (7 , 3)} U 2,1 = (0, 0, 1, 2, 3, 4, 5, 5) U 2,2 = (0, 0, 0, 5/4, 5/2, 15/4, 5, 5, 5) U 2,3 = (0, 0, 0, 0, 5/3, 10/3, 5, 5, 5, 5) U 2,4 = (0, 0, 0, 0, 0, 5/2, 5, 5, 5, 5, 5) U 2,5 = (0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5)

The figure 23 summarizes example 1 and show on one hand that independently from α, the degree k = 1 yields the control polygon Π. On the other hand, k = 3 corresponds to a node vector without any interior node and the obtained B-spline curve G α is independent from α. Only the degree k = 2 between the extremes undergo the influence of index α with some highlight when α tends to 0.

The results of example 2 shown in figure 24 confirm above observations. The degree k = 1 yields the control polygon Π 2 and the degree k = 5 which corresponds to a node vector with no interior node does not have any influence under α. For the intermediate degrees k the index α has an incresing influence when α tends to 0. Illustration 5.7. Now we intend to look at the influence of control polygon Π on the local behavior of a B-spline curve. We fix the degree to 3 on the uniform and open node vector U by varing only one point of the control polygon as follows: The multiplicity of a node acts on the geometrical regularity of curves G α and G 1-α . In the presence of a double control point, the curves G α and G 1-α adhere to this point.

The figure 29 shows however a singular case which we will light upon later on since α seems to have no influence on it.

Conclusion

The class of parametrization we developed allows us to construct a family of rational B-spline basis depending on a parameter α which generalizes all including polynomial B-spline basis. This new family of B-spline basis possesses all the classical fundamental properties such as positivity, unit partition property and linear independence. Some symmetry property has been established. We have proved that the family of B-spline curves we obtained 
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 123 Figure 1: The curves of ϕ α for α ∈ {-1 3 , -1 2 , -4, ∞}
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 3132 Let a, b ∈ I R such that a < b. A node vector or vector of nodes in [a, b] is any increasing sequence U = (t i ) m i=0 in [a , b]. The node vectors fall into two categories: the open node vectors and periodic node vectors. Each category is divided in two variants: uniform and non-uniform. Let a, b ∈ I R such that a < b and m, k ∈ I N * such that m > 2k. We consider the node vector U = (t i ) m i=0
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 32 Linear independence property). Let m, k, n ∈ I N * such that n ≥ k and m = n+k+1. Let U = (t i ) m i=0

  By definition α B k i k i=0 will be called Bernstein basis of index α and of degree k on the parametrization space [a , b].

  Let m, k, n ∈ I N * such that n ≥ k and m = n+k+1. Let U = (t i ) m i=0 be an open node vector, let α ∈ (-∞ , 0) ∪ (1 , ∞). Consider the rational B-spline basis α G k i n i=0 of index α with node vector U and of degree k, Consider the B-spline curve G α of index α,of node vector U , of control points (d i ) n i=0 ⊂ I R d and defined for all x ∈ [t 0 , t m ] by

Theorem 4 . 1

 41 ( de-Boor algorithm). Let m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i ) m i=0 be a node vector. Let Π = (d i ) n i=0 ⊂ I R d be a control polygon.
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 456 Figure 4: The B-spline basis α G 0 i of node vector U 0
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 7 Figure 7: The B-spline basis α G 3 i of node vector U 0
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 89 Figure 8: Les Bases B-splines α G 2 i de vecteur noeud U 0
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 10211 Figure 10: The B-spline basis α G 2 i of node vector U 2
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 12413 Figure 12: The B-spline basis α G 2 i of node vector U 4
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 14654 Figure 14: The B-spline basis α G 2 i of node vector U 6
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 15716 Figure 15: The B-spline basis α G 2 i of node vector U 7
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 1751 Figure 17: The B-spline basis α G 2 i of node vector U 9
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 18 Figure 18: The B-spline basis α G 2 i of node vector U 10
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 19 Figure 19: The B-spline basis α G 2 i of node vector U 11
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 201255 Figure 20: The B-spline basis α G 2 i of node vector U 12
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 21 Figure 21: The B-spline basis α G 2 i of node vector U 13
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 2256 Figure 22: Influence of α to k = 3, U uniform and open with fixed Π
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 23 Figure 23: Influence of degree k, U uniform and open at α with fixed Π
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 2552 Figure 25: Influence of the variation of a point of Π at k = 3, U uniform and open and α ∈ {-∞, -4, -1/2, -1/5, -1/7}
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 30 Figure 30: G α curves of degree k = 3, U 4 uniform and open, Π 4 symmetric with no multiple point and α ∈ {∞, -1, -1/2, -1/5}
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 33 Figure 33: G α curves of degree k = 3, U 7 uniform and open, Π 7 symmetric with double point and α ∈ {∞, -1, -1/2, -1/5}

Theorem 3.5. Let

  m, k, n ∈ I N * such that n ≥ k and m = n + k + 1. Let U = (t i )

	m i=0 be a vector of nodes and
	α
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Illustration 5.8. In this test case, we will explore the property of symmetry proved in proposition 4.3 through seven contexts where we restrict ourselves to an axis of symmetry parallel to the coordinate axes which does not reduce generality. The data are as follow:

1. Axial symmetry of Π with axis parallel to Oy with no multiple point

(4 , 0), (0 , 11), (6 , 14), (10 , 14), (16 , 11), (12 , 0) U 1 = (0, 0, 0, 0, 1, 2, 3, 3, 3, 3) 2. Axial symmetry of Π with axis parallel to Oy with one double point

(4 , 0), (0 , 11), (8 , 14), (8 , 14), (16 , 11), (12 , 0) U 2 = (0, 0, 0, 0, 1, 2, 3, 3, 3, 3) 3. Axial symmetry of Π with axis parallel to Oy with double point and double node Π 3 = (4 , 0), (0 , 11), (8 , 14), (8 , 14), (16 , 11), (12 , 0) U 3 = (0, 0, 0, 0, 2, 2, 4, 4, 4, 4)

4. Axial symmetry of Π with axis parallel to Ox with no multiple point (1 , 4), (2 , 4), (2 , 6), (4 , 6), (5 , 5), (5 , 1), (4 , 0), (2 , 0), (2 , 2), (1 , 2), (0 , 2), (0 , 1) [START_REF] Rogers | An Introduction to NURBS with historical perspective[END_REF][START_REF] Piegl | The NURBS Book[END_REF][START_REF] Biswas | Bezier and Spline in Image Processing and Machine Vision[END_REF][START_REF] Chandrasekharan | Design Automation Techniques for Approximation Circuits-Verification[END_REF][START_REF] Ceruzzi | A History of Modern Computing[END_REF][START_REF] Solomon | Curves and Surfaces for Computer Graphics[END_REF][START_REF] Knuth | The Metafont Book[END_REF][START_REF] Marsh | Applied Geometry for Computer Graphics and CAD[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF] 5. Axial symmetry of Π with axis parallel to Ox with double point (2 , 6), (4 , 6), (5 , 3), (5 , 3), (4 , 0), (2 , 0), (2 , 2), (1 , 2), (0 , 2), (0 , 1) [START_REF] Rogers | An Introduction to NURBS with historical perspective[END_REF][START_REF] Piegl | The NURBS Book[END_REF][START_REF] Biswas | Bezier and Spline in Image Processing and Machine Vision[END_REF][START_REF] Chandrasekharan | Design Automation Techniques for Approximation Circuits-Verification[END_REF][START_REF] Ceruzzi | A History of Modern Computing[END_REF][START_REF] Solomon | Curves and Surfaces for Computer Graphics[END_REF][START_REF] Knuth | The Metafont Book[END_REF][START_REF] Marsh | Applied Geometry for Computer Graphics and CAD[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF][START_REF] Gupta | Recent Advances in Constructive Approximation Theory[END_REF] 6. Axial symmetry of Π with axis parallel to Ox with double point and double node (1 , 4), (2 , 4), (2 , 6), (4 , 6), (5 , 3), (5 , 3), (4 , 0), (2 , 0), (2 , 2), (1 , 2), (0 , 2), (0 , 1)

(0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 10, 10, 10) 7. Double axial symmetry of Π with one double point

(0 , 2), (0 , 3), (1 , 4), (3 , 4), (5 , 4), (6 , 3), (6 , 2), (6 , 1), (5 , 0), (3 , 0), (1 , 0), (0 , 1), (0 , 2) Based on figures from 27 to 33, it can be drawn that the curves G α and G 1-α are symmetric with respect to the perpendicular bisector of extreme points of the control polygon Π. As stated above, the effect àf index α is very remarkable for α ∈ (-1 , 0) ∪ (1 , 2).